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In equilibrium hard-rod fluids, and in effective hard-rod descriptions of anisotropic soft-particle
systems, the transition from the isotropic (I) phase to the nematic phase (N) is observed above the
rod aspect ratio L/D = 3.70 as predicted by Onsager. We examine the fate of this criterion in a
molecular dynamics study of a system of soft repulsive spherocylinders rendered active by coupling
half the particles to a heat bath at a higher temperature than that imposed on the other half. We
show that the system phase-separates and self-organizes into various liquid-crystalline phases that
are not observed in equilibrium for the respective aspect ratios. In particular, we find a nematic
phase for L/D = 3 and a smectic phase for L/D = 2 above a critical activity.

I. INTRODUCTION

The equilibrium liquid-crystalline properties of
anisotropic particles are well understood @@] On-
sager’s theory @] of the transition from the isotropic
(I) phase to the nematic (N) phase, which has uniaxial
apolar orientational order, predicts that a nematic phase
cannot arise for hard rods with aspect ratio L/D < 3.70
ﬂﬁ] In this Letter, we inquire into the extension of
Omnsager’s limit to active matter, in the specific context
of two-temperature systems.

Active matter is driven locally by a constant supply
of free energy to its constituent particles, which dissi-
pate it by performing mechanical work @] In flock-
ing models, activity is linked to a vector order param-
eter . 138, @] In scalar active matterﬂ3__1|, M],
activity enters by minimally breaking detailed balance
in scalar Halperin-Hohenberg models @] or, as in our
present work, by introducing two (or more) species of
particles coupled to thermal baths at distinct tempera-
tures @, , @] The temperatures in question are
not thermodynamic but emergent from the effective diffu-
sivities of the multiple motile species. Two-temperature
models have accounted for chromatin organization in the
cell nucleus m ; self-organization in bidisperse Brown-
ian soft disks ] and Lennard-Jones (LJ) particles [50],
and in polymer systems @, @] Recently, we have im-
plemented this idea in a system of soft repulsive sphero-
cylinders (SRSs) of aspect ratio L/D = 5 (where L and
D are the effective length and diameter defined by the
anisotropic repulsive potential B, 1, @—@]) and showed
that increasing the temperature of the hot particles pro-
motes liquid-crystal ordering in the cold particles, shift-
ing the IN phase boundary to lower densities than its
equilibrium location ﬂi_lﬂ Here, we aim to explore or-
dering transitions of SRS of different L/D, in particular,
those below Onsager’s limit.
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FIG. 1. (a) Schematic diagram of SRSs. The dotted line
segment joining the centers of the two hemispheres is known
as core of the spherocylinder. u; and uz represent the ori-
entation vectors of spherocylinders 1 and 2, respectively. r
is the distance between their centers of masses, and d.,, is
the shortest distance that determines the interaction poten-
tial between them. (b-e)Snapshots representing steady state
configurations of hot (red) and cold (green) particles before
(middle panel) and after (right panel) phase separation for the
aspect ratios (b,c) L/D = 2 at the packing fraction n = 0.45
and activity x = 9; (d,e) L/D = 3 at n = 0.33 and x = 4.
Cold particles show (c) smectic ordering for L/D = 2 and (e)
nematic ordering for L/D = 3 at the aforementioned activi-
ties.

II. MODEL AND SIMULATION METHOD

We have carried out a series of Molecular Dynamics
(MD) simulations of a system of SRS with L/D = 5,3
and 2. The model [Figll(a)] and simulation protocol are
as in our previous work Nﬂ] Here we give brief details
for completeness. The SRS interact through the Weeks-
Chandler-Andersen potential [5(]:

D 12 D 6

Vsns = e [(a) - (ﬁ
-0 it d, >26D.

(1)

Here d,,, the shortest distance between two sphero-
cylinders, implicitly determines their relative orientation
and the direction of the interaction force B, 5, 53

+e if d,<28D
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@] We build the initial configuration in a hexagonal
close-packed (HCP) crystal structure and perform
MD simulations at constant particle number, pres-
sure and temperature (NPT) with periodic boundary
conditions in all three directions ﬂﬂ, g, @] For each
aspect ratio, we simulate a wide range of pressures
spanning the transition from the crystal to the isotropic
phase and characterize the phases by calculating the
nematic order parameter and appropriate pair corre-
lation functions. For a system of N spherocylinders
labelled ¢ = 1,...,N, with orientations defined by
unit vectors u; with components wu;,, the traceless
symmetric nematic order parameter Q has components

Qap = (1/N) Zi\il [(3/2)Umum - %%ﬁ]. The scalar

nematic order parameter S is the largest eigenvalue of Q.

Hereafter we work in reduced units defined in terms
of the system parameters ¢ and D: temperature 7" =
kgT/e, pressure P* = Pus./(kpT), packing fraction
N = Vhsep, where p = N/V and vps. = 7D?(D/6 + L/4)
is the volume of a spherocylinder.

Activity in our system is introduced by connecting half
of the particles to a thermostat of higher temperature,
while maintaining the temperature of the other half fixed
at a lower value. Let T} and T} be the temperatures of
the baths connected to the hot and cold particles respec-
tively, controlled by a Berendsen thermostat @] with a
time constant 7p = 0.01. We then define the activity
x = (Ty —=T})/T}. Starting from a statistically isotropic
structure at a definite temperature with 77 = T} = 5,
we gradually increase the temperature of the hot particles
1“:’;%', keeping the wvolume of the simulation box constant

IIT. RESULTS

Equilibrium phase behaviour of SRS and Onsager’s
limit: In equilibrium, we observe four stable phases for
L/D = 5: crystal (K), smecticA (SmA), nematic (N),
isotropic (I); three stable phases for L/D = 3: crystal,
smecticA, isotropic and two stable phases for L/D = 2:
crystal, isotropic (Fig. S1 in Supplemental Information
(SI) [59]). Our results are consistent with the studies of
soft rods [, 16].

To define a criterion analogous to that of Onsager [1]
for our case, we construct an effective hard-cylinder di-
ameter for the SRS, in terms of the interaction potential
and the temperature of the system [Fig. S2| defined as,
Deff(T) = fooo(l - exp[_ﬁUSRS(dm)]) d(dm) ﬂav @7 |6-_1|]
Therefore, a SRS with aspect ratio Asgrs = L/D can be
mapped to a HSC with an effective aspect ratio Aggsc =
L/D.gs. In Table[ll we mention different values of Aggrg
and the corresponding values of Aggc at T = 5. The
value of Agrs corresponding to Agsc = 3.70 (Onsager’s
limit for HSC) becomes Agrs = 3.52 (Onsager’s limit for
SRS) at T* = 5. This approximate version of Onsager’s

criterion is verified by the absence of a nematic phase for
SRS at thermal equilibrium with Asgs = 3 and 2 in our
simulations and those of Cuetos et al. [, [6].

Activity-induced phase separation: Starting from a ho-
mogeneous isotropic structure, we observe local phase
separation between hot and cold particles, which emerges
at the macroscopic scale by forming a well-defined inter-
face (Fig. Mi(b-e)). We quantify the degree of mesoscale
phase separation through the difference between the lo-
cal densities of hot and cold particles. Dividing the
simulation box into sub-cells labelled i = 1,..., Neen
and letting n} _,, n’ ,, be the numbers of hot and
cold particles respectively in each cell, we define ¢ =
Nty (25" [(Mhr = i)l /1ior) B0, BI] where the av-
erage (...) is carried out over a sufficiently large number
of steady-state configurations. The choice of N,y is such
that each cell contains a sufficient number of particles to
get stable statistics. ¢ is further offset by its initial value
¢o at x = 0. [50, 51]

In Fig. Bl(a), we plot ¢ as a function of activity x
for L/D = 5,3 and 2. For the sake of comparison, the
system is chosen with a packing fraction between n =
0.33 — 0.36 for which the system is in the isotropic phase
at thermal equilibrium for the given L/D at T* = 5 (Fig.
S1). From Fig. Bt (a), we observe: (i) phase separation
starts at a lower activity for higher aspect ratios; (ii)
the amount of phase separation at a given x is higher
for higher aspect ratios. To understand observation (i)
precisely, we calculate the critical activity x., which is
defined as the value of x above which macroscopic phase
separation is seen (see SI and Fig. S3 for details [59]).
The calculated ranges of critical activities for the given
packing fractions are: y. = 1.4 — 2 for L/D =5, x. =
2—3for L/D=3and x. =3—5for L/D = 2.

Activity-induced liquid-crystalline ordering:  After
phase separation, the interactions between hot and cold
particles mostly take place at the interface. The cold
zone undergoes an ordering transition above a critical
activity x* that depends on the aspect ratio of the rods
as well as their packing fractions. In Fig. 2H(b), we see
that the nematic order parameter of cold particles Seoq
increases with x for L/D = 5 and 3 for 0 < x < 9,
while for L/D = 2 it increases above y > 10 (Fig.
S4) resulting in a higher x* . However, the difference
between the critical activities for phase separation
and ordering decreases with increasing density. In Fig
Rlc), we have plotted Seoq versus y for L/D = 2 at a
slightly higher packing fraction, n = 0.45, which also
corresponds to the isotropic phase in equilibrium. Here
we see both phase separation and ordering transition for
the given range of activities. The critical activities for
phase separation and ordering at n = 0.45 are y. =3 —5
and x* = 5, respectively.

The phases of the ordered structures in the cold zones
are identified by calculating the local nematic order pa-
rameter S and appropriate pair correlation functions (see
ST for details). We observe that with increasing activity
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(a) Density order parameter ¢ of the system and (b) nematic order parameter of the cold particles Scoiq vs activity

x for different aspect ratios L/D at their respective packing fractions: for L/D = 5, n = 0.36 ; for L/D = 3, n = 0.33 and
for L/D = 2, n = 0.35. (c) Nematic order parameter of the cold and hot particles for L/D = 2 at a higher packing fraction

(a) 10 - (b) 0.9
9l i:g —e— lIsotropic 08
8 X =4 —e— Nematic 0.7
7k X =5 —e— Nematic
6k X =6 —e— Smectic 0.6
= x=7 = o5
S 5r x =10 —e— Crystal <
L o 04
3+ 03
2 0.2
1+ 0.1
0 1 1 1 1 1 1 1 0
0o 1 2 3 4 5 6 7 8 9
/D /D

r,/D r. /D

FIG. 3. Pair correlation functions for the cold particles at different activities x for L/D = 3 at the packing fraction n = 0.33.
(a) The center of mass pair radial distribution function g(r), (b) orientational pair distribution function g2(r), (¢) projection
of g(r) along the direction parallel [g(r))] and (d) perpendicular [g, (r1)] to the director of the spherocylinders. The inset of
Fig. (b) shows g2(r) at x = 7 in a single cluster with a definite director. The distance between the two peaks in panel (c) is
4D which is the end to end distance of a spherocylinder with L/D = 3.

both translational and orientational correlations in the
cold zone are enhanced, indicating incipient order in the
cold zone. Interestingly, we observe liquid crystal phases
for small values of L/D that do not occur for the same
parameter range in a one-temperature system, i.e., in
equilibrium.

In Fig. (a-d), we plot different pair correlation
functions of the cold particles at different activities for
L/D =3 at n = 0.33. We see that, both of translational
[9(r)] and orientational [g2(r)] pair correlation functions
are flat in absence of activity (x = 0) which is obvious
for an isotropic phase. g¢(r) develops the first peak at
x = 4 and eventually the other peaks at higher values
of x. In Fig. Blb), we see that, g2(r) has a finite cor-
relation length of roughly 2.5D, beyond which it decays
to zero for x = 4,5 and to a finite value for y > 6.
This is also observe in the calculation of the half width
at half maximum (HWHM) of go(r) defined as the dis-
tance from the first peak at which the value of go(r) is
half of its value at the first peak [see Fig. S5 in SI for
details]. These observations suggest that there exists a
finite orientational order in the cold zone for x = 4,5
which designates this phase as nematic. Above this ac-
tivity, g2(r) develops multiple peaks at longer distances
and saturates at a finite value. This is due to the pres-
ence of multiple clusters of different average directors,
which effectively suppress the overall orientational corre-
lation. In these cases, we calculate the go(r) in a single

cluster of a definite director and find it to saturate at a
higher value, as shown in the inset of Fig. Bi(b). Smec-
tic and crystalline structures are identified by calculating
translational correlations along the parallel [g)(r)] and
perpendicular [g (r )] directions of the average nematic
director of the spherocylinders. The periodic oscillations
in g (r) and liquid-like structure in g, (r,) at x = 6,7
indicate that the phase is smectic, as shown in Fig. Bl (c,
d).

Similarly, we find that the system with L/D = 2 ex-
hibits smectic ordering at n = 0.45, x = 9 as shown in
Fig. S6. However, the hot zone shows isotropic struc-
ture with reduced packing fractions for each of the cases.
Table [l summarizes these results, comparing equilibrium
and two-temperature phases for each aspect ratio.

Pressure anisotropy and heat flux: To find the micro-
scopic origin of the ordering transitions that are not ob-
served in equilibrium, we calculate the local pressure in
the phase-separated system. We divide the simulation
box into a number of slabs (i) along the direction nor-
mal to the interface, following the procedure mentioned
in Ref. [51]. The region where the local densities of hot
and cold particles change sharply between their values in
the segregated zones is identified as the interfacial region
[Fig. E(a)].

We then calculate the pressure components along the
normal () and tangential directions (yz) of the in-
terfacial plane using the diagonal components of the
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FIG. 4. Pressure anisotropy and local heat flux across the hot-cold interface for L/D = 3 at n = 0.33 and x = 7. We plot (a)
effective packing fraction n; (b) normal (P,) and tangential (P;) components of the pressure; (c) pressure anisotropy A = P, — P;
and (d) local heat flux J along the direction perpendicular to the interfacial plane. The red dashed lines indicate boundaries
of different zones. The black dashed lines in Fig. (d) indicate the location where the heat flux becomes 0 . The arrows indicate
the directions of the heat flow, depending on the sign of J. We find a positive pressure anisotropy at the interface that extends
in the cold zone and a finite heat flux flowing from the bulk hot zone to the bulk cold zone. Here, Sco1q = 0.42, Spot = 0.07.

TABLE I. Liquid crystal phases in the cold zone for the re-
spective aspect ratios at different activities. The phases that
are absent in the equilibrium system and occur in the active
systems are mentioned in bold. The equilibrium phases of
HSC at the given aspect ratios are taken from Ref. B, @] :

stress tensor.  Therefore, the normal P, and tan-
gential P, components of the pressure are defined as:

P, (i) = Pyy(i) and Pi(i) = (Pyy (i) + P..(i))/2, where,
Pop(i) = ﬁ (Z?g mU}l”éB + Z;lg ! Zk>j T?kfjﬁk)'
The 1% and 2" term in this equation represent the ki-
netic and virial contributions (arises due to the particle’s
interaction) of the pressure tensor, where, 7j = (r{) and
v; = (v§') are the position and velocity of the 4t parti-
cle (a = z,y, z) and 7, and fj;, are the relative distance
and interacting force between the SRSs j and k. n(i) and
V(i) represent total number of particles and volume of
the i slab.

In Figs. H(b), for aspect ratio L/D = 3, we find, (i) in
equilibrium (x = 0), normal and tangential pressure com-
ponents are equal, implying that the pressure tensor is
isotropic throughout the simulation box. (ii) After phase
separation (y > X.), the pressure anisotropy A = P, — P;
vanishes within error bars in the hot zone. (iii) At the
interface and in the cold zone, P; acquires a lower value,
while P, remains balanced throughout the simulation
box. This causes a pressure anisotropy at the interface
that persists in the bulk cold zone as well [Figllc)]. This
compresses the cold zone along the interface normal pro-
moting cold-particles alignment parallel to the interfacial
plane, thereby inducing an ordering transition.

To understand further the effects of the activity, we

calculate the local heat flux J in each slab using the fol-
lowing equation [62, [63]

n(9)

Q.

n(i)
viej + Y 0+ vj),
J_

J(i) = 7 (2)

Asrs|Ausc x=20 Phases at x # 0 j=1 =1
5 528 |T, N, Sm, K|, N, Sm, K, Multidomain K| Where ¢ = (1/2)mof + 37, Ujk is the total energy and
at n = 0.36 0j = (1/2) 3245 ik fjn i the stress tensor. In Fig. [d),
3 320 | I, Sm, K I, N, Sm, K at = 0.33 we show the spatial variation of J along the direction
o | 211 I K I Sm, K at n = 0.45 normal to the interface. We find J = 0 in equilibrium,
] | T ] but it obtains a finite value in the phase separated

systems, both at the interface and in the bulk region.
This reveals that, though the interaction between hot
and cold particles takes place mainly at the interface, its
effect extends to the bulk region as well. The sign of J
indicates heat flows from the bulk hot to the bulk cold
zone. This results in heterogeneous activity and broken
time-reversal invariance throughout the simulation
box giving rise to anomalous thermodynamic behav-
ior (such as pressure anisotropy) away from the interface.

System size effects: For larger system sizes with
N = 4000 , we find S..q saturates at a lower value for
L/D = 2 [Fig. 2(c)] which is due to the presence of
multiple clusters that sometimes makes it challenging to
identify the phases precisely. However, our key findings,
i.e., the emergence of liquid crystalline phases for the
lower aspect ratios and the spontaneous appearance of
macroscopic heat currents and anisotropic stresses in
the bulk zones, remain unaffected by the system sizes
[Fig. 2 and Fig. S8-S11].

IV. CONCLUSION AND OUTLOOK

Our simulation study examines the effect of two-
temperature activity in a soft-rod fluid for a range of
effective aspect ratios of the rods. We show that the



two-temperature model can give rise to liquid crystal
phases that are not observed in equilibrium for the
respective aspect ratios. We observe a smectic phase for
L/D = 2 and a nematic phase for L/D = 3. We find
that the presence of two temperatures causes a pressure
anisotropy extending from the hot-cold interface into
the bulk of the cold zone, and a heat current flowing
from the hot to the cold zone. Thus, the nonequilibrium
behavior is not limited to the hot-cold interfaces but
pervades the system as a whole, driving the anomalous
ordering transitions in the cold zone. An understanding
of these results within analytical theory, experimental
realizations of two-temperature systems, presumably in
suspensions with bidisperse motility, and methods to
capture and stabilize the anomalously ordered domains
are some of the challenges that emerge from our work.
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