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The Susceptible-Infected (SI) and Susceptible-Infected-Recovered (SIR) models provide two dis-
tinct representations of epidemic evolution, distinguished by whether or not the number of suscepti-
bles always drops to zero at long times. Here we introduce a new active matter epidemic model, the
“Susceptible-Cleric-Zombie-Recovered” (SCZR) model, in which spontaneous recovery is absent but
zombies can recover with probability v via interaction with a cleric. Upon colliding with a zombie,
both susceptibles and clerics enter the zombie state with probability 8 and «, respectively. By
changing the initial fraction of clerics or their healing ability rate v, we can tune the SCZR model
between SI dynamics, in which no susceptibles or clerics remain at long times, and SIR dynamics,
in which a finite number of clerics and susceptibles survive at long times. The model is relevant to
certain real world diseases such as HIV where spontaneous recovery is impossible but where medical
interventions by a limited number of caregivers can reduce or eliminate the spread of infection.

I. INTRODUCTION

Understanding the propagation of infectious diseases is
an intensely studied issue, and a variety of different epi-
demic models and methods to simulate the spread of dis-
ease have been developed [1-4]. Two of the most widely
used disease propagation models are the Susceptible-
Infected (SI) and Susceptible-Infected-Recovered (SIR)
models [1-4]. In the SI model, illustrated in Fig. 1(a),
there are only susceptibles (S5) and infectives (I) present.
There is no spontaneous recovery, and the model contains
only a single probability 8 for an S to transform to an 1.
As shown in Fig. 1(b), the SIR model adds a spontaneous
recovery process with rate p for an I to become recovered
(R). A key difference between the ST and SIR models is
that in the SI model the amount of S present always
drops to zero at long times, but in the SIR model the
amount of S can remain finite. A wide range of diseases
can be described using these two models. Diseases with
lifelong transmittivity and no recovery are captured by
the ST model, while situations where reinfection is impos-
sible but spontaneous recovery occurs can be represented
with the SIR model. Numerous variations of the SI and
SIR models have been considered over the years [2-5],
including epidemic spreading on networks [6], memory
effects [7], adding vaccination [8], spatial heterogeneity
[9, 10], social distancing [11], diffusion [12], and models
that include details on mobility patterns in attempts to
more accurately portray real world epidemics [13, 14].

It would be interesting to identify a model in which
a transition from SI to SIR behavior naturally emerges.
Such transitions could arise for certain types of infectious
disease where spontaneous recovery does not occur but
where direct medical intervention can result in recovery
or a reduced rate of infectiousness. For example, in the
human immunodeficiency virus (HIV), an untreated pa-
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FIG. 1. (a) In the SI model, there is no spontaneous re-
covery, and susceptibles (S, yellow) that come into contact
with infectives (I, red) become infected with probability 3.
(b) The SIR model adds a spontaneous recovery process in
which an I transitions to recovered (R, blue open circle) at a
rate p. (c) In the Living-Zombie-Recovered model employed
in Ref. [15], a zombie (Z, green) interacting with S recovers
with probability x and turns the S into Z with probability
B. (d) In our SCZR model, we divide the susceptible popula-
tion into S and clerics (C, brown). Z can only recover when
in contact with C' with probability v, but interaction with Z
causes S to turn into Z with probability S and C to turn into
Z with probability a.

tient remains contagious, but when appropriate medical
interventions are applied, the patient becomes effectively
cured and has a rate of infectiousness that drops dra-
matically or even reaches zero. In such cases, if there is
an insufficient supply of resources or treating agents (doc-
tors), the course of the epidemic will follow the SI model,
but if there are ample resources or treating agents, the
epidemic will instead fall in the SIR regime. We note that
there have already been studies of several epidemic mod-
els that take into account additional medical constraints



such as limited vaccine supply [14, 16], resulting in the
emergence of multiple equilibrium states [17] or explosive
epidemics [18, 19]. Various methods have been proposed
to maximize the effectiveness of different courses of action
in treating an epidemic to account for such constraints
[20].

Standard SI and SIR models assume homogeneous
mixing of infectious and susceptible individuals, either
across the entire population or within strata. For
many diseases, that assumption is known to fail and in
Refs. [21, 22], the impact of the failure of the homogene-
ity assumption is studied. In our previous work [23], we
showed that a run-and-tumble active matter model com-
bined with SIR dynamics produces different regimes of
behavior when quenched disorder is introduced, due to
the lack of homogeneous mixing in the system. For low
infection rates, the quenched disorder strongly affects the
duration of the epidemic as well as the final epidemic size
or fraction of S that survive to the end of the epidemic.
When the infection rate is high, the quenched disorder
has little impact and the epidemic propagates as waves
through the system.

The term “active matter” encompasses self driven sys-
tems such as an assembly of self-motile particles that un-
dergo contact interactions with each other [24, 25]. In our
previous work [23], we considered run-and-tumble parti-
cles moving in two dimensions and subjected to rules
of how an infection spreads when a contact interaction
occurs between an S and an I particle. Active matter
systems are attractive for epidemic modeling since they
allow real world effects such as spatial heterogeneity to be
incorporated easily because density heterogeneities arise
naturally from the interactions among the particles, and
there have now been several studies in which active mat-
ter is used to study epidemics [26-28]. There have also
been several experimental realizations of active matter
systems that can mimic social dynamics through the ac-
tivity and tracking of individual active particles, so the
type of active matter epidemic systems we consider here
should be feasible to create experimentally [29, 30].

Here we introduce a new model for epidemic spread-
ing featuring multiple susceptible species and no sponta-
neous recovery, and show that in this model, an easily
tunable transition between SI and SIR behavior occurs.
We specifically consider a modification of the Susceptible-
Zombie-Removed (SZR) model previously studied by sev-
eral groups [15, 31-33]. The modeling of zombie epi-
demics has been performed in a variety of contexts, with
the first studies [31-33] focusing on how such an epidemic
would spread based on portrayals of zombies in the popu-
lar media [34, 35]. In these scenarios, the zombies gener-
ally win, but various modifications such as a rapid attack
to eliminate zombies can result in situations where the
non-zombies prevail. Such models are not only useful for
educational purposes in teaching methods of representing
epidemic spreading, but can with certain modifications
actually represent real-world diseases where infection is
irreversible.

Figure 1(c) shows the dynamics of the SZR model. Un-
like the SIR model, the SZR model has no spontaneous
recovery. Instead, when an S and a zombie (Z) inter-
act, the Z transitions to recovered (R) with probability
k, while the S transitions to Z with probability 8. In
our modification of the model, there is again no sponta-
neous recovery, but we break the susceptible population
into two portions: susceptibles (S) and clerics (C). As
illustrated in Fig. 1(d), when an S interacts with a Z, the
S becomes a Z with probability 3, as in the SZR model;
however, the S cannot cause the Z to recover. Instead,
only an interaction between a C' and a Z can cause the
Z to recover with probability v, while with probability
«, the C becomes a Z. We call this the Susceptible-
Cleric-Zombie-Removed or “SCZR” model. Although, as
in Ref. [15], we have placed the model in a zombie frame-
work, the model can be rephrased in terms of certain
real world diseases such as HIV which, if left untreated,
confer a lifelong ability to infect; however, under medi-
cal treatment from a health care provider, the infection
rate can be reduced or dropped to zero, resulting in an
effectively recovered individual. In this case, the zombie
class would be simply be labeled as infected (I) while
the cleric class would represent some form of health care
provider or medical resources. As we show below, the
SCZR model exhibits SI behavior when the initial frac-
tion of C or the healing rate v is low, since in this case
the Z wipe out both the C' and the S so that a finite
fraction of Z remains at the end of the epidemic. In con-
trast, when the initial fraction of C' or the healing rate
~ is high enough, the C are able to eliminate the Z so
that a finite fraction of S and C remain at the end of
the epidemic, which is behavior associated with an SIR
model.

II. MODELING AND CHARACTERIZATION
OF THE SCZR DYNAMICS

We consider a two-dimensional assembly of N = 5000
run-and-tumble active particles in a system of size L x L
where L = 200.0 and where there are periodic boundary
conditions in both the x and y directions. The motion
of the particles is obtained by integrating the following
overdamped equation of motion in discrete time:

agv; = Fd L Fm (1)

Here v; = dr;/dt is the velocity and r; is the posi-
tion of particle ¢, and the damping constant oy = 1.0.
The interaction between two particles, each of radius
r, = 1.0, is modeled with a harmonic repulsive potential
Fdd = Zgé] k(2rq—|rij|)O(|rij| —2rq)t;;, where © is the
Heaviside step function, r;; = r; —rj, &;; = r;;/|ri;|, and
the repulsive spring force constant is k = 20.0.

Each particle is subjected to an active motor force
F" = Fym; of magnitude F), applied in a randomly
chosen direction m; during a continuous run time of
7, € [1.5x10%, 3.0 x 10%] before instantaneously changing



to a new randomly chosen direction. This type of run-
and-tumble dynamics of active particles has been used
extensively to model active matter systems [24, 25, 36],
active ratchets [37], active jamming [38] and motility
induced phase separation [36, 39]. In another version
of active matter, the particles undergo driven diffusion;
however, many of the generic phases are the same for
both run-and-tumble and driven diffusive active matter
[36, 40], so we expect that our results will also be relevant
to driven diffusive systems. For sufficiently large den-
sity or activity, both run-and-tumble and driven diffusive
active particles begin to exhibit self-clustering, leading
to what is known as motility-induced phase separation
(MIPS) [24, 25, 36, 41-44].

We select the run length range and motor force value
such that the system is in the MIPS regime, and thus
creates large connected active clusters similar to those
employed in our previous active matter epidemic model
[23], where the spontaneous recovery rate was pu = 2 X
10~°. Each particle tracks which one of the four possible
states, S, Z, C' or R, it is currently occupying. These
states are linked together by the following equations:

dS= —-pSZ (2)
dZ=aCZ + pSZ —~CZ (3)
dC= -aCZ (4)
dR=~CZ . (5)

According to these equations, when an S particle encoun-
ters a Z particle, it changes its label to Z with rate .
More interestingly, when a C and Z particle come in con-
tact, a change in state occurs with rate a + . For inter-
actions in which a state change occurs, with probability
a/ (o + 7) the C particle becomes a Z, and with proba-
bility v/(a+7), the Z morphs into R. In our simulation
we discretize time in A-sized steps, and in the above dy-
namic, rates are changed into probabilities. Specifically,
the probability that an S particle in contact with a Z
particle morphs into a Z particle is 1 — e~25. Similarly,
the probability that a change occurs during a Z and C
particle encounter is 1 — e~2(@=7)_ The probability of
transitions from C' to Z and Z to R remains unchanged.

If at a given time step an S particle is in contact with
multiple Z particles, or a Z particle is in contact with
multiple C' or S particles, every possible pair interaction
is computed independently using the unmodified states
of all particles, and the state of each particle is updated
simultaneously at the end of the computation when we
apply all S — Z, Z — R, and C — Z transitions. There
are no concurrency issues since each type of particle can
undergo only one type of transition.

The R state is absorbing since the R particles experi-
ence no further state transitions, but there is no mecha-
nism to replenish the initial pool of either S or C parti-
cles. The epidemic ends when either there are no more S
and C particles or there are no more Z particles. There-
fore, there are only two possible types of final state for
the SCZR model: an Sl-like situation in which all S and

C particles have been transformed into Z and R particles
(indicating that the zombies or the clinical cases prevail),
and an SIR-like situation in which all Z particles have
been extinguished by becoming R particles (indicating
that the medical community prevails and no zombies or
clinical cases remain). While the time ¢; to reach the
final state is finite, we observe in simulations that ¢4 can
become very long because, in order for the epidemic to
come to a conclusion, it is necessary for the remaining S
and C' or the remaining Z particles to come into contact
with Z or C particles, respectively.

We initialize the system by randomly placing the parti-
cles at non-overlapping positions in the sample. Initially
all of the particles are set to the S state. We allow the
system to evolve for 5 x 10° simulation time steps until
a large MIPS cluster emerges, and we define this state
to be the t = 0 condition. We then randomly select five
particles and change their state to Z. We choose five
particles rather than one particle in order to lower the
probability of a failed outbreak. We also randomly select
a fraction ranging from 10% to 100% of the S to change
into C. The system continues to evolve under both the
motion of the particles and the reactions between states
S, C, Z, and R until there are either no S or C particles
or there are no Z particles, indicating that further epi-
demiological change is impossible. We consider different
values of «, (3, and 7 in addition to varying the fraction
of C' in the initial population.

III. RESULTS

In Figure 2 we illustrate the spatial evolution of our
system under the SCZR model at fixed o = 5 x 1076,
B=1x107%and v = 1.9 x 1075, For Fig. 2(a,b,c), the
initial fraction of C' is ¢g = C(t = 0)/N = 0.2, and over
time we find an Sl-like behavior in which the zombie out-
break prevails and the populations of S and C' drop to
zero. When ¢q is raised to ¢ = 0.4, Fig. 2(d,e,f) shows
an SIR-like behavior in which recovery prevails and the
population of Z drops to zero. The initial condition of
the MIPS cluster is identical for the two cases, and the
motion of the particles is not influenced by their epidemi-
ological state. The peak of the zombie outbreak is shown
in Figs. 2(b) and 2(e), and the particle positions are dif-
ferent for the two cases only because the peak in Fig. 2(e)
occurs at a later time of ¢ = 9.67 x 10° compared to the
peak in Fig. 2(b), which falls at t = 4.85x 10°. In general
we find that the progression of an SIR-like epidemic is sig-
nificantly slower than that of an SI-like epidemic. The
end state of the epidemic is illustrated in Fig. 2(c) when
the last C is eliminated after a time of ¢ = 1.606 x 106,
and in Fig. 2(e) when the last Z is eliminated after a
time of t = 2.277 x 10%. In the well-mixed mean field
limit, when 8 > «a we would expect that all of the S are
eliminated prior to the elimination of the last C' for the
co = 0.2 system. In practice, due to the heterogeneity of
our system, we found that out of all the SI simulations



FIG. 2. Snapshots of the time evolution of the SCZR system
fora=5x107% 8=1x10"° and v = 1.9 x 10~°. Yellow
disks are susceptibles (S), brown disks are clerics (C), green
disks are zombies (Z), and open blue circles are recovered (R).
(a,b,c) are for an initial cleric fraction of co = 0.2, and (d,e,f)
are for ¢g = 0.4. (a,d) The ¢ = 0 moment where the MIPS
cluster is present. (b,e) The peak of the zombie outbreak,
which occurs at t = 4.85 x 10° in (b) and at ¢ = 9.67 x 10° in
(e). (c,f) The final state, which is reached at t = 1.606 x 10°
in (c) and t = 2.277 x 10° in (f). (a,b,c) show an Sl-like
evolution in which all S and C' are eliminated in the final
state, while (d,e,f) show an SIR-like evolution in which all Z
are eliminated in the final state.

we considered, the S were eliminated prior to the C' 78%
of the time, and the C' were eliminated prior to the S
22% of the time.

In Fig. 3(a) we plot the epidemic curves s = S/N,
¢ =C/N, z=Z/N, and r = R/N versus simulation
time for the ¢y = 0.2 system in the SI regime from
Fig. 2(a,b,c). At first, r and z increase at roughly the
same rate until z passes through a local peak. Mean-
while, since 8 > «, s decreases more rapidly than ¢, and
at longer times z undergoes a modest decrease from its
peak value so that, at the end of the epidemic, s = 0,
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FIG. 3. Epidemic curves for the individual runs illus-

trated in Fig. 2 with @ = 5 x 107% 8 = 1 x 107° and
~ = 1.9 x 107° showing the fractions of susceptible s (yellow),
cleric ¢ (brown), zombie z (green), and recovered r (blue)
particles versus time ¢. (a) Sl-like progression at co = 0.2
corresponding to the system in Fig. 2(a,b,c). Here, s =c =10
in the final state. (b) SIR-like progression at ¢o = 0.4 cor-
responding to the system in Fig. 2(d,e,f). The value of z is
plotted on a separate y axis for better visibility. In the final
state, z = 0.

¢ =0, z=0.25 and r = 0.75. Figure 3(b) shows the
epidemic curves for the SIR regime with ¢y = 0.4 from
Fig. 2(d,e,f). Here the evolution to the final state occurs
much more slowly, and in order to show the behavior of
z clearly we plot z on a separate y axis scale, which is
why the curve has a noisy appearance. Both s and ¢
decrease with time, but after passing through a peak, z
drops to z = 0 at the end of the epidemic while the values
of s, ¢, and r all remain finite. At late times during the
epidemic in Fig. 3(b), where all of the epidemic curves
become relatively flat, a strongly stochastic process oc-
curs in which the surviving C' and Z need to come into
contact with each other in order to end the epidemic.
Since the motion of both C' and Z is diffusive in nature,
this slows the progression of the epidemic and introduces
more stochasticity. For late times in Fig. 3(a), as the sur-
viving Z transform the remaining C into Z, z increases
with each transformation and so there is a higher proba-
bility of making contact with the remaining C', shortening
the epidemic. In contrast, for late times in Fig. 3(b), the
surviving C' transform the remaining 7 into R, which are
epidemiologically inert, so there is no increase in ¢ with
each transformation and the total duration ¢4 of the epi-
demic is longer.

We next consider how changing the values of the model
parameters cg, «, 3, and 7 affects the epidemic outcomes.
To characterize the outcome of a given simulation, we
introduce the quantity

v=(sf+cs)/(s0o+co), (6)



where so = S(t = 0)/N is the initial fraction of suscepti-
bles, sy = S(t = tq)/N is the final fraction of susceptibles
at time t = t4 equal to the duration of the epidemic, and
¢t = C(t =tq)/N is the final fraction of clerics. Using v
we can determine what fraction of the initial population
of S and C survive the epidemic. In the SI-like regime,
v = 0, and in the SIR-like regime, v remains finite.

From an epidemiological point of view, v gives an in-
dication of how effective the medical intervention by the
clerics is at suppressing the epidemic. High values of v
are desirable since this indicates that a smaller fraction
of the population caught the disease. For any individual
simulation with a given set of parameters, it is possi-
ble to have either SI or SIR behavior emerge due to the
stochasticity, so we average v over an ensemble of 50 runs
for each parameter choice, where each run has a different
random seed for the initial particle positions and place-
ment of Z and C particles. When (v) remains high, the
SIR behavior is dominant and the Z are usually elimi-
nated from the system, while when (v) becomes small,
the SI behavior is dominant and the S and C' are usually
eliminated from the system so that the zombies prevail.

In Fig. 4 we plot phase diagrams of v as a function of
o, the initial cleric fraction, versus -y, the probability of
the transition C' + Z — C' + R. Each diagram contains
160 points, and each point is averaged over 50 different
initial realizations. In the blue region, v is high and we
find SIR-like behavior where S and C survive while Z
are eliminated, while in the green region, v is low and
the system is Sl-like, with Z persisting to the end of the
epidemic and all of the S and C vanishing. Figure 4(a)
shows the phase diagram for samples with oo = 5 x 1076
and 8 =1 x 107°, as in Figs. 2 and 3. At higher ~, the
zombies are more effectively healed by the clerics, and
the initial fraction ¢y of C needed to produce SIR-like
behavior drops to lower values, as shown by the solid
line which is a fit of the SI-SIR transition to the form
co o< a(y+ b)~L. For a simple way to understand the
general form of this curve, consider the early time be-
havior of an individual Z particle. As it moves, the Z
encounters a C' with probability ¢y and an S with prob-
ability 1 — ¢g. The Z always survives an encounter with
S, but it only survives an encounter with C' with proba-
bility 1 — «. Thus, the probability that the Z survives is
Zsurvive = (1 —)co + (1 — ¢p) and the probability that
the Z is destroyed by turning into an R is Zgestroy = YCo-
At the SI-SIR transition, we have Zgurvive = Zdestroys
meaning that the transition line is expected to fall at
co=0.5(y)" L.

The actual location of the SI-SIR transition line is af-
fected by the values of a and 3 because these control
the way in which the populations of S, C, Z, and R
evolve over time. If we cut the probability a of the
C + Z — Z + Z transition in half to o = 2.5 x 1075,
the phase diagram in Fig. 4(b) indicates that the SI-SIR
transition line shifts to lower values of ¢q since it becomes
more difficult for the Z to eliminate all of the C. If we
instead double o to a = 1 x 107°, as in Fig. 4(c), we

1.0

0.8

r0.6

(v)

r0.4

ro.2

l 0.0

2.0x107°5.0x107%  1.0x10™° 1.5x107>  2.0x107°

5.0x107°  1.0x107°  1.5x107°
Y Y

FIG. 4.  Phase diagrams showing heat maps of (v), the
average fraction of the initial population of S and C that
survive the epidemic, as a function of initial cleric fraction
co vs the probability v of the transition C + Z2 — C + R.
Blue indicates SIR behavior in which Z are eliminated, and
green indicates SI behavior in which S and C are eliminated.
In general, as v increases, the SIR behavior emerges at a
lower value of ¢g. (a) Samples of the type shown in Figs. 1
to 3 with @ = 5 x 107 and § = 1 x 107°. (b) Samples
with the same 8 = 1 x 107° where «, the probability for
C+Z — Z+Z, has been halved to a = 2.5x107%. (c) Samples
with the same 8 = 1 x 107° in which « has been doubled to
a = 1x107°. (d) Samples with the same o = 5 x 107°
in which 8, the probability for S + Z — Z + Z, is doubled
to 8 = 2 x 107°. The solid lines in the figures are fits of
the form co o a(y + b)~' where (a) a = 7.77 x 107¢ and
b=3.781x107%, (b) a = 6.912 x 107¢ and b = 5.696 x 107¢,
(¢) @ = 9.056 x 1075 and b = 9.498 x 1077, and (d) a =
1.212 x 107° and b = 8.381 x 107°.

reach the limit in which @ = 8 and the S and C particles
are both equally likely to be infected upon encountering
a Z. Here, not only does the SI-SIR transition line shift
to higher ¢y, but for small values of v only SI behav-
ior can occur even if the entire population apart from
the zombie index cases is initialized to state C. If we
leave @ unchanged but double 3, the probability of the
S+ Z — Z + Z transition, to f = 2 x 107°, Fig. 4(d)
shows that at low -, the location of the SI-SIR transition
does not change very much, but at higher -, it shifts to
higher ¢y.

In order to illustrate some representative averaged epi-
demic curves, in Fig. 5(a) we reproduce the phase dia-
gram of Fig. 4(a) for « = 5x 107% and g = 1 x 107°
with a black line indicating the location of a horizontal
cut. Figure 5(b) shows (v) versus « at the cut location
of ¢g = 0.5. When v < 9 x 1079, there are no realiza-
tions in which SIR behavior occurs; instead, the Z always
wipe out all of the S and C. Similarly, for v > 1.1 x107?,
there are no realizations in which SI behavior occurs, and
the Z are always fully eliminated. The kink in the curve
marks the transition to fully SIR behavior. The value
of (v) indicates how effective the clerics are at suppress-
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a) The phase diagram with a heat map of (v) as a function of ¢y vs v from Fig. 4(a) with & = 5 x 107% and
(a) p g p v g

B =1x10"". (b) A horizontal slice of (v) vs v taken at co = 0.5 along the black line in panel (a). (c,d,e) Epidemic curves
averaged over 50 runs taken at the black points in panel (b) showing s (yellow), ¢ (orange), z (green), and r (blue) vs the
rescaled time £ = t/tq. (c) At v = 9 x 1075, ST behavior occurs 90% of the time, so the averaged values of s and ¢ do not
reach zero but are lower than the averaged value of z. (d) At v = 1.2 x 1075, all runs are in the SIR regime and on average
50% of the population is never infected. (e) At v = 1.4 x 107, the clerics become more effective at reducing the impact of the
epidemic, and on average 90% of the population is never infected.

ing the epidemic. When (v) increases, it means that a
greater fraction of the population was never infected by
the disease. For v just above the transition into fully
SIR behavior, over 75% of the population still becomes
infected before the zombies are eliminated, whereas for
higher -, the majority of the population is able to avoid
becoming infected.

For the three points highlighted in black in Fig. 5(b),
we show averaged epidemic curves with s, ¢, z, and r
plotted as a function of normalized time # = t¢/t; in
Figs. 5(c,d,e). For v = 9x 10~ in Fig. 5(c), we are still in
the SI dominated regime and the z curve is higher than
the s and ¢ curves. Although in any individual run we
either have z = 0 or s = ¢ = 0, for the ensemble average
s and ¢ are finite since SIR behavior emerges 10% of the
time. Since we are working at ¢y = 0.5, we have s = ¢ at
the beginning of the epidemic, and although s drops more
rapidly than ¢ as the epidemic progresses, by the end of
the epidemic s ~ ¢, due in large part to the many SI runs
for which s = ¢ = 0. In Fig. 5(d) at v = 1.2 x 1075, all
50 simulations are in the SIR regime so that z = 0 at
the end of the epidemic, while the final value of r ~ 0.5
shows that on average half of the population becomes
infected before the zombies are extinguished. Since we
have 8 = 2a, the value of s drops approximately twice
as fast as the value of ¢ at early times in the epidemic,

but as the supply of Z is depleted through healing by
the clerics, both s and ¢ reach a plateau, and in the fi-
nal state ¢ > s. For v = 1.9 x 1075 in Fig. 5(e), well
within the SIR regime, z remains quite small throughout
the epidemic. Although we still find ¢ > s at the end of
the epidemic, both quantities have dropped only slightly
from the original levels and are not very different from
each other, and 90% of the population is able to avoid
becoming infected.

As shown in Fig. 6(a), we next consider a vertical cut
at v =1 x 107 from the phase diagram in Fig. 4(a) for
a=5x10"%and B8 =1x 107°. In Fig. 6(b) we plot
(v) versus ¢q along this cut. For ¢y < 0.5, all of the real-
izations are in the SI regime and the Z prevail, while for
co > 0.6, all of the realizations are in the SIR regime and
there are no Z remaining at the end of the epidemic. The
black points in Fig. 6(b) correspond to the values of ¢
at which the averaged epidemic curves in Figs. 6(c,d,e)
were obtained. At ¢y = 0.4 in the SI regime, Fig. 6(c)
shows that at the end of the epidemic, s = ¢ = 0 and the
average fraction of zombies is z = 0.28. When ¢y = 0.5
in Fig. 6(d), the system is in the SI regime 36% of the
time, so that the final value of z is greater than zero.
Although ¢ and s approach each other toward the end
of the epidemic, we find that ¢ > s by a small amount
since the s = ¢ = 0 behavior of the SI regime is no longer



1.0

0.8

0.6

(v)

0.4

0.2

(b)

0.8

0.6

(v)

0.4

0.2

0.0 T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Co

A(C) A(d)

s,Czr
© © o o o
N -

o
N)

A(e)

L~

S NO W

o
i

o
o

0.2 04 06 0.8 1.00.0 0.2

t

o
o

0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

t £
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(b) A vertical slice of (v) vs co taken at v = 1 x 1075 along the black line in panel (a). (c,d,e) Epidemic curves averaged over
50 runs taken at the black points in panel (b) showing s (yellow), ¢ (orange), z (green), and r (blue) vs . (c) At co = 0.4,
only SI behavior occurs. (d) At ¢o = 0.5, we find mixed behavior, with an SI response occurring 36% of the time and an SIR
response appearing in the remaining 64% of runs. (e) At ¢o = 0.6, all runs are in the SIR regime.

dominant. In Fig. 6(e), for ¢g = 0.6 the system is fully
in the SIR regime, and throughout the epidemic we find
not only that ¢ > s but that the difference between ¢
and s remains constant. This is an indication of the im-
portance of the stochastic diffusive process that occurs
in our model in order to permit Z to come into contact
with S or C. For ¢y = 0.4 in Fig. 6(c), at early times in
the epidemic a Z encounters an S 60% of the time but a
C only 40% of the time. Since S are twice as likely as C
to be infected, s drops much more rapidly than ¢ in this
regime. When ¢p is increased to ¢y = 0.5 in Fig. 6(d),
a Z is equally likely to encounter an S or a C' at early
times, and we see that the doubled infection probability
causes s to drop about twice as fast as ¢, as also shown
in Fig. 5(c,d,e). Further increasing ¢y to ¢y = 0.6 in
Fig. 6(e) means that at early times a Z encounters a C
60% of the time and an S only 40% of the time. Since
the C are more resistant to infection, the relative fraction
of C' and S in the population remains nearly constant.
Increasing cg even further produces many short-lived epi-
demics in which s and ¢ do not change very much from
their initial values.

We can analytically evaluate v for well mixed systems
whose dynamics is described through Equations (2)-(5).

Rewrite equations (2) and (4) as

o o S(1) = ~(af) - Z(1) 7)
5+ G 108C(0) = —(a) - Z(1) ®)
to conclude that
4 log S(t)* = 4 log C(t)”. (9)
dt dt

Integrating both sides, and using the initial conditions to
fix the integration constants yields (after suitable division

by N)
(2)-(5)

This provides us with the opportunity to compute a
target for v:

v = (s +colsy/s0)*7)/(s0 + co) - (11)

Failure to hit that target in simulations is an indication
that the homogeneous mixing assumption failed. From
the data in Figs. 5(c,d,e) and 6(c,d,e), we find that the
predicted value of v is higher than the actual value of
v, as shown in Table I, but that the agreement between
predicted and actual improves as we move deeper into
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the SIR regime. This could be an indication that the SIR
regime is better mixed than the SI regime, possibly due
to the faster dynamics that tend to occur for SI behavior.

Predicted | Actual
Fig. 5(a)| 0.2 0.1
Fig. 5(b)| 0.57 0.55
Fig. 5(c)| 0.92 0.9
Fig. 6(a)| 0 0
Fig. 6(b)| 0.32 0.25
Fig. 6(c) 0.68 0.62

TABLE 1. Predicted value of v from Eqn. (10) compared to
the actual value of v observed in the simulations from Figs. 5
and 6.

In Fig. 7 we plot the distribution P(¢4) of the duration
tqy of the individual epidemics for the runs in all of the
phase diagrams in Fig. 4. The data is split into two dis-
tributions, with the first for simulations that ended in the
SI regime with a finite number of Z remaining, and the
second for simulations that ended in the SIR regime with
no Z remaining. For the SI case, there are no epidemics
of short duration. This is because all C' and S must be
eliminated in the SI regime, and the elimination process
requires a minimum amount of time to occur. In the
inset we show the same data on a log-linear scale, indi-
cating that some of the SI epidemics last for an extremely
long time before reaching a final state. These lengthy epi-
demics occur for values of ¢y and v at which the behavior
is evenly split between SI and SIR on average. There is

also a peak in P(t4) near tq = 1.5 x 10° simulation time
steps. In the SIR regime, there is a large peak in P(t4) at
small t; corresponding to failed outbreaks in which the
C can rapidly encounter and cure the small number of
Z present at early times before the epidemic gets going.
This is followed by a gap similar to what we observed
previously in SIR simulations [23], and then by a second
peak representing epidemics that involve a substantial
portion of the population. Here we find that if the epi-
demic in the SIR regime is able to become established, it
lasts longer than the typical epidemic in the SI regime,
but that there is a high probability for the SIR epidemic
to be extinguished before it can become established.

IV. DISCUSSION

As we noted earlier, although we have cast our SCZR
model in terms of zombies and clerics, it could also be
rephrased so that the zombies are disease-spreading indi-
viduals that cannot spontaneously recover from the dis-
ease they have caught, and the clerics are medical care
providers who can cure the infected individuals or at least
render them non-infectious. In this picture, when we take
a < 3 but a > 0, this would mean that the medical care
providers are more careful than the general population
and take more precautions against becoming infected,
but that they are not immune from becoming infected.
The transition between SI and SIR behavior is significant
because it indicates that by introducing a larger number
of medical care providers (increasing cg) or giving the
medical care providers more effective treatment proto-
cols (increasing 7), the disease can be prevented from
entering the SI regime in which the entire population
winds up getting infected eventually, and can instead be
held in the SIR regime, ideally in the limit where ¢4 is
short and the epidemic never becomes established in the
population. Some of the next steps for our SCZR model
would be to consider the effect of adding fixed spatial
heterogeneity such as quenched disorder. For example,
the C might be confined to only certain regions of the
system, as in real world scenarios where impassable ter-
rain or military blockades are present. Other situations
include considering the case where the R are not epidemi-
ologically inert but can produce infection at greatly re-
duced rates 3’ < 8 and o/ < «, to represent situations
in which the medical care givers only reduce the infec-
tiousness rather than fully eliminating it. Active matter
models in general also readily allow other effects to be
captured, such as introducing a small fraction of very ac-
tive particles with increased motor force Fj; embedded
in a population of reduced mobility or much smaller F),
in order to represent different types of mobility patterns
in social systems.

Another question that could be explored with the
SCZR model is what is the nature of the transition from
the SI to the SIR regime. Although the transition is
somewhat sharp in our phase diagrams, it may be only a



crossover. Note that in the limit cg = 1, the SCZR model
becomes equivalent to the SZR model of Ref. [15]. In this
limit, Fig. 4 shows that for certain parameter regimes
there is still a transition from SI to SIR behavior; how-
ever, it is much more intuitive from a medical interven-
tion point of view to tune between the two regimes using
the ¢y and v parameters of the SCZR model than by us-
ing the parameter o (which is written as £ in the SZR
model). Epidemic models show various types of critical
phenomena associated with directed percolation transi-
tions [45, 46]; however, such transitions can be screened
or modified by the introduction of quenched disorder [47],
so we expect that there could be various types of critical
behavior in our system.

V. SUMMARY

We have introduced a model for epidemics that we call
the Susceptible-Cleric-Zombie-Removed or SCZR model,
and we demonstrate the use of this model with active
matter run-and-tumble particles. In the SCZR model,
the infectious agents are the zombies, and there is no
spontaneous recovery. There is an initial population of
susceptibles and clerics. With probability « for clerics
and [ for susceptibles, interaction with a zombie causes
infection into the zombie state, while with probability ~,
a cleric interacting with a zombie causes the zombie to
enter an epidemiologically inert recovered state. We show
that by varying the initial density of clerics or their heal-
ing rate v, we can tune the SCZR model between SI and

SIR regimes. If the initial cleric density or the healing
rate 7 is low, the zombies eliminate all of the clerics and
susceptibles to give SI behavior, while if the initial cleric
density or healing rate 7 is high enough, the clerics are
able to heal all of the zombies and SIR behavior emerges.
Our model has implications for real world diseases where
infections are lifelong and spontaneous recovery does not
occur, but where medical intervention can produce recov-
ery or at least drive the rate of infectiousness to zero. One
example of this type of disease is the human immunode-
ficiency virus (HIV). In this case, the zombies would be
infected persons and the clerics would represent medical
caregivers that can provide treatment. The SCZR model
could provide a good staring point for creating new types
of epidemic models where treatment is needed for recov-
ery and there are finite or limited treatment resources
available.
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