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The theory of finite-strain elasticity is applied to the phenomenon of cavitation observed in polymer gels
following liquid-liquid phase-separation of the solvent, which opens up a fascinating window on the role of
finite-strain elasticity theory in soft materials in general. We show that compressibility effects strongly enhance
cavitation in simple materials that obey neo-Hookean elasticity. On the other hand, cavitation phenomena in gels
of flexible polymers in a binary solvent that phase separates are surprisingly similar to those of incompressible
materials. We find that, as a function of the interfacial energy between the two solvent components, there is a
sharp transition between cavitation and classical nucleation-and-growth. Next, biopolymer gels are character-
ized by strain hardening and even very low levels of strain hardening turn out to suppress cavitation in polymer
gels that obey Flory-Huggins theory in the absence of strain hardening. Our results indicate that cavitation is in
essence not possible for polymer networks that show strain hardening.

I. INTRODUCTION

Biological physics has been enriched by the realization that
the physics of phase separation provides insight into segre-
gation phenomena that take place inside cells [1–3]. Exam-
ples are the formation of stress granules in the cytoplasm of
cells and the formation of nucleoli in the cell nucleus. These
membrane-less “organelles” typically contain a high concen-
tration of macromolecules, such as RNA or proteins, that are
in a liquid-like state [4–6]. The formation of these structures
is triggered by changes in environmental conditions such as
concentration, pH, salinity or temperature.

Cellular separation phenomena have characteristics that
sets them apart from the well-studied liquid-liquid phase sep-
aration of simple binary liquids [7]. A striking example is the
absence of Oswald ripening, or “coarsening”, which refers to
the growth of larger droplets of the minority phase and a corre-
sponding shrinkage of smaller droplets. It is driven by the in-
terfacial energy between the two components of the liquid [8].
In contrast, liquid-liquid phase-separation in cells produces a
distribution of droplets with constant radii. This is attributed
to the fact that both the cytoplasm of cells and the interior
of the cell nucleus are permeated by networks of biopoly-
mers. As confirmed by numerical simulations [9], growth of
minority-phase droplets can be stopped by elastic deformation
of the surrounding polymer network.

The cytoplasm of a cell and the interior of the cell nucleus
both are complex environments with complex elastic proper-
ties. However, model systems are available in the form of
permanently cross-linked synthetic gels with a solvent that is
a simple binary liquid [10]. The majority component of the
binary liquid is a good solvent for the gel polymers while the
minority phase is a poor solvent. Upon phase separation, a
relatively mono-disperse phase of minority phase droplets ap-
pears inside the polymer matrix. For lower levels of supersat-
uration, droplet growth is indeed arrested by the polymer ma-
trix but the droplets grow in an unlimited fashion when the os-
motic pressure of the minority phase exceeds a critical value,
which is of the order of the elastic modulus of the polymer

network.
An interesting possibility is that this is a form of cavita-

tion, which refers to the swelling of a pressurized cavity in-
side an elastically deformable material when the pressure ex-
ceeds a certain critical value. Cavitation has been observed in
rubber-like materials [11] as well as in soft matter materials
[12, 13].Cavitation can not be understood within the confines
of the theory of linear elasticity. It is a consequence of the in-
herently non-linear nature of elasticity when the elastic strains
no longer are small compared to one. When finite-strain elas-
ticity theory [14] is applied to cavity formation in rubber-like
materials, one encounters cavitation with a critical pressure
equal to 5/2 of the shear modulus of the material [11].

In theoretical studies of the cavitation of rubber-like ma-
terials it is assumed that the material is incompressible, or
nearly so, and this same assumption is also commonly made
in theoretical studies of cavitation by liquid-liquid phase sep-
aration in polymer gels. The assumption allows for an impor-
tant simplification: for incompressible materials the displace-
ment field surrounding a pressurized spherical cavity has a
known analytic form that is completely determined by mass
conservation. Once this deformation map is known, one can
directly compute the relation between pressure and cavity ra-
dius. However, for compressible materials obtaining the dis-
placement field requires using the mathematical machinery
of finite-strain elasticity theory, which leads to an equation
for mechanical equilibrium that is of a daunting mathematical
complexity.

While the combined system of solvent plus polymers as a
whole indeed is (nearly) incompressible, osmotic compression
and expansion of the polymer matrix with respect to the sol-
vent at fixed total volume certainly is possible. The study of
osmotic compression is in fact a central feature of the physics
of polymer gels [15]. Measured values of the osmotic com-
pressional and shear moduli of gels composed of flexible syn-
thetic polymers typically are comparable to each other [16]
so the assumption of incompressibility certainly is not valid
but is compressibility really an important issue for cavitation?
Compressibility could drastically alter the deformation and
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density profiles surrounding the cavity. On the one hand, the
density profile could develop a maximum at or near the sur-
face of the swelling cavity due to pile-up of the material that
has been pushed out of the cavity (“snowplow effect”). This
could slow down cavitation. On the other hand, as the cav-
ity swells, the density might also develop a minimum at the
cavity surface due to the lateral stretching of volume elements
(“balloon effect”) and this could accelerate cavitation. It so
happens that in linear elasticity theory these two effects cancel
each other exactly, with the result that in that case the density
surrounding a pressurized cavity is uniform. As we shall see,
this is certainly not so under the theory of finite-strain elastic-
ity.

An important question about cavitation in biogels involves
strain hardening. This refers to an increase of the differential
shear modulus under increasing levels of shear strain. Strain
hardening is not significant for the type of gels on which cav-
itation experiments have been carried out but it is a known
characteristic of biopolymer networks [17]. Strain hardening
plays an important role in the biomechanics of cells and tis-
sue. A numerical study of phase-separation in a network of
biopolymers indicate that strain hardening can suppress cav-
itation [9]. Synthetic biomimetic hydrogels have been devel-
oped with a tunable level of strain hardening [18–21] so it now
is possible to study quantitatively the effects of strain harden-
ing.

A final question of interest concerns the relation between
cavitation and the classical scenario of droplet nucleation-
and-growth in phase-separating binary liquids. It would seem
that when the interfacial energy between the two components
of the binary solvent increases, cavitation should somehow
transform to the spontaneous growth of droplets with a radius
larger than that of the critical nucleus but it is not clear how
this transformation takes place.

The aim of this article is to apply finite-strain elasticity the-
ory to explore the effects of compressibility, interfacial energy
and strain hardening on cavitation. In Section II we briefly re-
view finite-strain elasticity and discuss the general form of
invariant free energy densities. In Section III we apply fi-
nite strain elasticity theory to the simpler case of compressible
neo-Hookean materials. There, we also develop a variational
method to obtain the deformation map for cavitation in the
presence of compressibility, strain hardening and surface ten-
sion. The variational method is tested by comparing it with
the outcome of a numerical solution of the equations for me-
chanical equilibrium. In Section IV the variational method is
applied to cavitation in gels. We conclude in Section V.

II. FINITE-STRAIN ELASTICITY THEORY

Finite-strain elasticity theory can be formulated in different
but equivalent ways [14, 22, 23]. In this section we review our
particular choice.

A. Deformation Maps and the Green-Lagrange Strain Tensor.

Consider a material whose internal configuration is defined
by the positions of material elements that form a coarse-
grained description of the underlying molecular structure of
the material. The reference configuration B0 of the mate-
rial is defined to be a state with neither internal nor exter-
nal stresses. By assumption, the material elements are uni-
formly distributed in this state. When the material is exposed
to external stress, it deforms into a new configuration B. In
the Lagrangian formalism, this deformation is described by
a continuous mapping of each position ~x ∈ B0 in the refer-
ence configuration to a new position ~X ∈ B in the deformed
configuration,

~ϕ : ~x 7→ ~X. (1)

Figure 1 shows an example of a material that, in the strain-
free reference configuration, has a spherical cavity of radius
r0. When this cavity is pressurized it swells up, with a new
radius R0.

FIG. 1. Schematic deformation map of a spherical cavity that has a
radius r0 in a strain-free reference configuration. When pressurized,
the radius of the cavity increases to R0. The deformation map ϕ(r)
relates points in the reference configuration to points in the deformed
configuration. The figure shows the mapping for the case of a point
on the cavity surface

The distinction between the reference configuration B0 and
the deformed configuration B is a key feature of finite-strain
elasticity theory: the vectors ~x and ~X “live” in two distinct
vector spaces. In the following, vectors and tensors defined in
the reference space will carry Greek indices while vectors and
tensors defined in the deformed space will have Latin indices.
Final expressions for physical quantities will all be defined on
the reference space, i.e. we use a Lagrangian frame of refer-
ence. We also will be using curvilinear coordinate systems for
both spaces with gαβ the metric tensor of the reference space,
and Gij that of the deformed space. Covariant derivatives in
the reference space will be denoted as D

Dxα , while those in
the deformed space will be denoted as D

DXi . The associated
Christoffel symbols are Γαβγ , respectively, Γ̄ijk.

A line element dxα in the reference space is transformed
into a line element dXi in the deformed space by the defor-
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mation gradient matrix:

dXi = Aiαdx
α (2)

with

Aiα ≡
∂ϕi

∂xα
(3)

Note the mixed indices of the deformation gradient matrix.
The norm-squared of the line element transforms as

∣∣∣d ~X∣∣∣2 = AiαAiβdxαdx
β ≡

(
2Uαβ + δαβ

)
dxαdx

β . (4)

Here

Uαβ ≡
1

2

(
AiαAiβ − δαβ

)
(5)

is the Green-Lagrange strain tensor defined on the reference
space. Indices are here raised and lowered using the two met-
ric tensors. In the limit of small deformations, the Green-
Lagrange strain tensor is conveniently expressed in terms of
the displacement vector

~u (~x) = ~X − ~x = ~ϕ (~x)− ~x (6)

of a material point under the action of the force. In the limit
~u→ 0, the Green-Lagrange strain tensor reduces to

Uαβ lin
=

1

2
(∂αuβ + ∂βu

α) +O(u2) (7)

which is the strain tensor of linear elasticity theory [24].

Using the polar decomposition theorem, one can write the
deformation gradient A as the product of a rotation matrix R
and the symmetric, positive definite matrices U and V .

Aiα = RiβU
α
β = V ijR

j
α (8)

Here, U is defined on the reference space and is referred to
as the “right stretch tensor”, while V , which lives in the de-
formed space, is the “left stretch tensor.” The three eigenval-
ues of U and V are identical and denoted by λi=1,2,3. They
correspond to the principal stretch ratios in the sense that a
spherical volume in the reference space is transformed into
an ellipsoid in the deformed space whose principal axes are
along the directions of the eigenvectors while the stretching
ratios along the principal axes are λi. Note that ATA = U2

and AAT = V 2 both have eigenvalues λ2
i .

A volume element dv in the reference space transforms un-
der the deformation into a volume element dV in the deformed
space given by dV = Jdv where J is the Jacobian of the de-
formation map A. Conservation of mass allows us to write J
in terms of the local densities of the material before and after
the deformation:

ρdV = ρ0dv ⇒ J =
ρ0

ρ
(9)

so J = 1 for incompressible systems. For convenience,
the ratio ρr ≡ ρ

ρ0
= 1

J will be referred to as the
“relative density”. The Jacobian can be expressed as
J = detA = detU = detV = λ1λ2λ3. In linear elasticity
theory, J ≈ 1 + trUlin. The linear shear strain tensor Ūlin is
constructed from the linear strain tensor by subtraction of the
trace times the unity matrix, so the trace of the shear strain
tensor is zero in linear elasticity.

These relations break down for large deformations and the
shear strain tensor must be constructed differently. As a first
step, consider an area element in the reference space dsα =
ds nα, where n̂ is the unit vector normal to the area element
of the deformation. Under the deformation, a volume element
dxαdsα transforms as

dXidSi = Jdxαdsα (10)

where dXi = Aiαdx
α. This gives for the transformed area

element

dSi = J
(
A−1

) i
α
dsα (11)

where A−1 is the inverse deformation gradient matrix:

(
A−1

)α
i
≡
∂
(
ϕ−1

)α
∂Xi

(12)

Next, write a general deformation mapping ~ϕ as the product
of two successive mappings:

~ϕ (~x) = ~ϕshr (~ϕcmp (~x)) (13)

The first map ~ϕcmp (~x) is here a pure dilation given by

~ϕcmp (~x) = J1/3~x (14)

with J the Jacobian of the full deformation ~ϕ. The second
map ~ϕshr is a volume preserving shear. Using the chain rule,
the deformation gradient matrix of the full map ~ϕ is

Aiα =
∂ϕishr

∂ϕβcmp

∂ϕβcmp

∂xα
= J1/3Āiα (15)

The new deformation gradient matrix Ā is volume preserving
since

det Ā = det
(
J−1/3A

)
=

1

J
detA = 1 (16)

The associated Green-Lagrange shear strain tensor is then

Ūαβ =
1

2

(
ĀiαĀiβ − δαβ

)
=

1

2

(
J−2/3AiαAiβ − δαβ

)
= J−2/3Uαβ +

1

2

(
J−2/3 − 1

)
δαβ

(17)

While this non-linear shear strain tensor is volume preserving,
it is – unlike its linearized counterpart – not traceless. The
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trace of the shear strain tensor will play a central role in the
following.

For the cavitation problem, one assumes spherical sym-
metry. The reference configuration B0 will be defined as a
strain-free state that has a spherical cavity with radius r0 at
the center. The cavity is then pressurized with a pressure
P . The new configuration B is described by a mapping
from a material point at (r, θ, φ) ∈ B0 to the new location
(ϕ (r) , θ, φ) ∈ B (see Fig.1). The radius of the swollen
cavity in B is then R0 = ϕ (r0). Recall that the density ρ(R)
of the deformed material is related to that of the undeformed
material by the Jacobian J(R) = ρ0

ρ(R) = 1/ρr. It follows

that ρ(R)R2dR = ρ0r
2dr which gives ρr = r2

ϕ(r)2ϕ′(r) .
For an incompressible system with fixed Jacobian J = 1,
this reduces to the differential equation ϕ′(r) = r2

ϕ(r)2

with solution ϕ(r) =
(
R3

0 + r3 − r0
3
)1/3

. For spherical
symmetry, the deformation gradient matrix, Jacobian and
strain tensor reduce - in spherical coordinates - to

Aiα =
∂ϕi

∂xα
=

ϕ′ 0 0
0 1 0
0 0 1

 (18)

J =

√
detG

det g
detA =

ϕ2

r2
ϕ′ (19)

Uαβ =
1

2

ϕ′2 − 1 0 0

0 ϕ2

r2 − 1 0

0 0 ϕ2

r2 − 1

 (20)

tr U =
ϕ2

r2
+

1

2
ϕ′2 − 3

2
(21)

Finally, the trace of the shear strain tensor is

tr Ū = J−2/3

(
ϕ2

r2
+

1

2
ϕ′2
)
− 3

2
(22)

An important part of finite-strain elasticity theory are the
definitions of the different stress tensors that can enter in the
equation for mechanical equilibrium (see Eq.A5). The vari-
ational method that we will use does not involve the stress
tensor. For completeness, the different versions of the stress
tensor are briefly reviewed in Appendix A.

B. Elastic Free Energy Densities.

In finite-strain elasticity theory, the free energy density of
a material is in general expressed as a combination of scalar
quantities obtained from the strain tensor U that are invari-
ant under coordinate transformations. The lowest-order in-
variant is the trace tr U of the strain tensor. This invariant

can be expressed in terms of the principle stretch ratios λi as
1
2

(∑3
i=1 λ

2
i − 3

)
(in the engineering literature, this invariant

is normally denoted as I1). Next, the Jacobian J = λ1λ2λ3 is
a cubic invariant that enters in the equation of state of materi-
als. Contributions to the free energy density that only depend
on the density ρr can be expressed in terms of J = 1/ρr. Fi-
nally, free energy densities associated purely with shear strain
can be constructed from invariants of the shear strain tensor
Ū . The lowest order invariant of Ū is the trace:

tr Ū =
1

2

[
J−2/3

(
3∑
i=1

λ2
i − 3

)
− 3

]

= J−2/3

(
ϕ2

r2
+

1

2
ϕ′2
)
− 3

2
.

(23)

The lowest order shear strain invariant energy density thus has
the form fs = µ′trŪ with µ′ a constant. Following Shokef and
Safran [25], one can extend this expression to include shear
hardening by imposing a maximum shear strain 1/η through

fs =µ′ tr Ū
(

1

1− η tr Ū

)
' µ′ tr Ū

(
1 + η tr Ū + η2 (tr Ū)2 + ...

)
.

(24)

The constant µ′ can be identified by going to the limit of in-
finitesimal deformations. Expanding in powers of the strain
tensor of linear elasticity theory, uij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(Eq.7),

µ′tr Ū ' µ′
(
uik −

1

3
δikull

)2

+O(u3). (25)

In linear elasticity theory, the elastic energy density of an
isotropic material has the form [24]:

fLE =
µ

4

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij

∂ui
∂xj

)2

+
1

2
κ

(
∂uk
∂xk

)2

(26)

with µ the shear modulus and κ the compressional modulus.
The first term corresponds to the trace of the non-linear shear
strain tensor so it follows that one can equate µ′ with the shear
modulus µ of linear elasticity theory.

III. NEO-HOOKEAN ELASTICITY AND CAVITATION.

Before discussing cavitation in gels, it is useful to first ex-
amine the simpler case of cavitation in materials that obey
neo-Hookean elasticity. The elastic energy density of a neo-
Hookean materials generalizes the energy density of isotropic
materials according to linear elasticity (Eq.26) by replacing
the linearized strain tensor Ulin with the full Green-Lagrange
strain tensor U . The resulting elastic energy density can be
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expressed in terms of the invariants I1 and J as:

fNH = µ
1

2

[
J−2/3

(
3∑
i=1

λ2
i

)
− 3

]
+
κ

2

1

J
(1− J)2

= µ

[
J−2/3

(
ϕ2

r2
+

1

2
ϕ′2
)
− 3

2

]
+
κ

2

1

J
(1− J)2

(27)

with J = ϕ2

r2 ϕ
′ [26]. The first term is the shear strain energy

density contribution and the second term the contribution from
changes in density. Shear-strain hardening is included by re-
placing this first term with Eq.24. The second term can be
expressed in the deformed space as κ

2 (ρ/ρ0 − 1)2. The Jaco-
bian J has to be included to allow for the transformation of
volume elements when going from the deformed to the refer-
ence space.

The deformation map ϕ(r) is determined by minimization
of the functional

F [ϕ] = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ Fel[ϕ] (28)

Here, P is the pressure inside the cavity and γ represents a
surface tension of the cavity, which is treated as an external
force per unit area. The last term is the elastic energy

Fel[ϕ] = 4π

∫ ∞
r0

dr r2fNH (29)

A. Cavitation in Incompressible neo-Hookean Systems.

The simplest case is the incompressible limit in which case
the mapping ϕ is determined by mass conservation. We also
can drop in this case the compressional term in the elastic en-
ergy density. The resulting elastic energy density is

fNH = µ

(
ϕ2

r2
+

1

2
ϕ′2 − 3

2

)
(30)

The stretch ratio along the radial direction is

λ(r) ≡ ϕ

r
=

1

r

(
r3 +R3

0 − r3
0

)1/3
(31)

The stretch ratio of the surface of the cavity is then λ(r0) =
R0/r0, which we will denote by λ0. Since ϕ′ = 1/λ2 one can
write the elastic energy density as

fNH(r) = µ

(
λ(r)2 +

1

2λ(r)4
− 3

2

)
(32)

The elastic energy Fel is given by

Fel = 4π

∫ ∞
r0

dr r2f (r) = 4πµ

∫ ∞
r0

dr r2

(
λ2 +

1

2λ4
− 3

2

)
(33)

Change the integration variable from r to λ using

λ(r) =
1

r

(
r3 +R3

0 − r3
0

)1/3 ⇒ r(λ)3 =
R3

0 − r3
0

λ3 − 1
(34)

and

dλ =
1

r

(
ϕ′ − ϕ

r

)
dr = −λ− λ

−2

r
dr ⇒ dr

r
= − λ2

λ3 − 1
dλ

(35)
This gives

Fel = 4πµ
(
R3

0 − r3
0

) ∫ λ0

1

dλ

(
λ

λ3 − 1

)2(
λ2 +

1

2λ4
− 3

2

)
= 4πµr3

0

[
5

6
λ3

0 − λ2
0 +

1

2λ0
− 1

3

]
(36)

Minimization of the full energy F with respect to λ0 gives(
5

2
− P

µ

)
λ2

0 + 2

(
γ

µr0
− 1

)
λ0 −

1

2λ2
0

= 0 (37)

so

P/µ =

(
2γ

µr0

)
1

λ
+

(
5

2
− 2

λ
− 1

2λ4

)
(38)

where we dropped the subscript of λ0. The first term of Eq.38
is the Laplace capillary pressure. In the following, surface ten-
sion will be expressed in dimensionless form as γ̄ = γ

µr0
[27].

The second term reproduces the known relation between pres-
sure and radial extension for cavitation in incompressible ma-
terials [11]. The physical meaning of Eq. 38 can be illustrated
by expanding it to second order in the dimensionless radial
displacement ε = λ− 1 = (R0/r0 − 1). This gives

P/µ = 2γ̄ + (4− 2γ̄)ε+ (−7 + 2γ̄)ε2 +O(ε3) (39)

The zero’th order term 2γ̄ is the Laplace capillary pressure of
the original cavity. The first order terms (4−2γ̄)ε is the result
that would have been obtained if one had used linear elasticity
and expanded the Laplace Law pressure to first order in ε. If
one keeps only the zero’th order and first order terms for a
cavity that is not under pressure (so for P = 0) then the radial
strain is ε = −2γ̄/(4−2γ̄). This is a negative quantity, which
is reasonable since the capillary pressure exerted by surface
tension should cause the radius of an un-pressurized cavity to
shrink. The second order term (2γ̄ − 7)ε2 is the lowest-order
non-linear correction term. It states that, for γ̄ less than 7/2,
the actual cavity radius will be larger than the radius obtained
from linear elasticity. The effect of finite-strain elasticity is
thus to soften the material.

This softening is the key to the cavitation effect. It can be
illustrated by a toy model for a balloon treated as a thin spher-
ical elastic shell of radius R composed of a two-dimensional
lattice of N harmonic springs with equilibrium spacing a0.
The shell is under an interior pressure Pshell. By minimizing
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the total energy, it is easy to show that the pressure is related
to the radial extension λ = R/R0, where R0 ∼ N1/2a0, by

Pshell(λ)/P0 =

(
1

λ
− 1

λ2

)
Here, P0 is proportional to the spring constant and inversely
proportional to R0. Expanding Pshell(λ) again in powers of
the radial displacement ε = (λ − 1) produces a term propor-
tional to ε with a positive coefficient and a term proportional
to ε2 with a negative coefficient, just as for Eq.38. For the
shell case, Pshell/P0 has, as a function of λ, a maximum at
λ = 2 after which it decreases to zero in the limit of large λ.
Thermodynamic stability requires that the derivative of pres-
sure with respect to volume must be positive. Because Pshell
decreases with λ for P > 2P0, that section of the curve cor-
responds to an energy maximum. It follows that the stable
section for P < 2P0 actually is only metastable. The unstable
section describes energy maxima that correspond to the transi-
tion states that need to be crossed before spontaneous bursting
of the elastic shell [28].

Does Eq.38 describe a scenario similar to the bursting of
a pressurized elastic shell? Equation 38 has a finite pressure
solution when we set λ to infinity, namely P∞ = 5

2µ, inde-
pendent of surface tension. This the known critical cavitation
pressure of the rubber elasticity literature. Figure 2 shows that
the radial extension (R0−r0)/r0 diverges continuously as the
pressure P approaches P∞ provided γ̄ is less than one:

FIG. 2. (color online) Dimensionless cavity pressure P/µ versus ra-
dial extension ratio for an incompressible system for different values
of the dimensionless surface tension γ̄ = γ/µr0. The surface ten-
sion values are γ̄ = 0 (solid, blue), γ̄ = 0.5 (dashed, yellow), γ̄ = 1
(dashed, green), γ̄ = 1.5 (dotted,red), and γ̄ = 2 (dash-dotted, pur-
ple). The dashed black line shows the critical pressure P∞ = 5

2
µ.

There are no other solutions for γ̄ less than one. These
plots are in fact fully stable solutions so cavitation is physi-
cally quite different from the bursting of a pressurized shell.

If γ̄ is larger than one then the cavity radius does not di-
verge at P = P∞. For P > P∞ there are again two solu-
tion branches, similar to the case of pressurized shells. One
of these – the bottom one in Fig.2 – is stable since the ra-
dius increases with pressure while the top branch is unstable

as the radius decreases with increasing pressure. This absence
of a divergence at P∞ seems mathematically puzzling since
λ = ∞ is a solution of Eq.38 at P∞. However, if γ̄ > 1 then
Eq.38 acquires additional solutions at P = P∞. One of these,
λ = 1

4(γ̄−1)1/3
, is real and it is this solution that corresponds

to the lower branch for P > P∞. As for the elastic shell, the
lower branch is metastable with the upper branch correspond-
ing to a transition state energy maximum that separates the
metastable state from the actual minimum energy state with
infinite radius. The metastable solution “survives” under in-
creasing pressure up to a maximum radius r0/(γ̄−1)1/3 when
the two branches fuse. Droplet growth for γ̄ > 1 sequence is
consistent with the nucleation-and-growth scenario of conven-
tional phase separation. There is thus a well-defined transition
between cavitation for γ̄ < 1 and nucleation for γ̄ > 1.

Shear strain hardening is included by extending the neo-
Hookean energy density through the use of Eq.24 for shear
strain energy density. There are two limiting cases. If η1/2λ
is small compared to one then can use the perturbation series
in powers of the inverse maximum shear strain η. To second
order in η one obtains [29]:

P (λ)/µ '
(

2γ

µr0

)
1

λ
+

(
5

2
− 2

λ
− 1

2λ4

)
+

η

[
4λ− 177

20
+

6

λ
− 2

λ2
+

3

2λ4
− 2

5λ5
− 1

4λ8

]
+O(η2λ3). (40)

The zero’th order term in η reproduces Eq.38 for η = 0. The
first order term (second line) has a term that diverges linearly
in the limit of large λ. It this will dominate over the zero’th
order term, which is finite in the limit of large λ. The sec-
ond order term (not shown explicitly) diverges even faster, as
λ3. Higher powers in λ appear as one includes higher order
terms in the perturbation expansion in η. Next, in the limit
that λη1/2 approaches one, the integral in the elastic energy is
determined by the singularity at λη1/2 = 1 with the result that
the pressure diverges in this limit as

P (λ)/µ ' η1/2

2(1− λη1/2)
(41)

Fig. 3 shows the relation between cavity radius and pressure
for a strain hardening parameter η = 0.01 up to and including
the second-order term in the expansion in η. The figure is
restricted to λ values for which the third-order term in η can
be neglected. The divergence of the radius at P/µ = 5

2µ
has disappeared. For increasing γ the elastic energy again
develops a maximum. Beyond a threshold pressure, the radius
again increases discontinuously but the radius now does not
diverge. Instead, it saturates at a finite value. There is thus
still a transition to nucleation-type behavior for larger γ̄ and
for dimensionless pressures larger than 5/2 but droplets no
longer expand without limit. For large values of the pressure,
λ = R0/r0 increases less rapidly and eventually levels off as
it approaches the maximum strain 1/η according to Eq.41.



7

FIG. 3. (color online) Dimensionless cavity pressure P/µ versus
radial extension ratio for an incompressible system for various values
of the dimensionless surface tension γ̄ = γ/µr0 and strain hardening
parameter η = 0.01. The dimensionless surface tensions are γ̄ = 0
(solid, blue), γ̄ = 0.5 (dashed, yellow), γ̄ = 1 (dashed, green),
γ̄ = 1.5 (dotted, red), and γ̄ = 2 (dash-dotted, purple). The dashed
black line shows the critical pressure P∞ = 5

2
µ.

B. Cavitation of neo-Hookean Compressible Systems.

For compressible systems, the deformation map ϕ(r) is not
known ahead of time. We used the following variational form:

ϕ (r) = r + (R0 − r0)

 1 + b+ c(
r
r0

)2

+ b rr0 + c

 (42)

with b and c variational parameters. To see why this form
is reasonable, note first that it obeys the required condition
ϕ(r0) = R0. Next, the elastic strain must go to zero in the
limit of large r so the theory of linearized elasticity should
become valid in this limit. It is a textbook problem to show
that, within linear elasticity, the displacement field u(r) sur-
rounding a pressurized spherical cavity embedded in an in-
finite volume has the form ulin(r) = A(r0/r)

2 with ampli-
tude A = (R0 − r0) [24]. For the present non-linear case,
the asymptotic amplitude A is expected to have a different,
“renormalized” value. For r >> r0 the displacement field
u(r) ≡ ϕ(r) − r of the variational deformation map goes to
zero as 1/r2 with amplitude A = (R0 − r0)(1 + b + c). If
b + c > 0 then the amplitude of the asymptotic strain field
exceeds that of linear elasticity theory while for b+ c < 0 it is
reduced. Next, mass conservation requires that, as the cavity
expands, material is pushed radially outwards, which could
produce and excess density at the cavity surface (snowplow
effect). On the other hand lateral stretching could produce a
density deficit (balloon effect). The density at r = r0 is given

by

ρ(r0)

ρ0
=

(r0/R0)2

ϕ′(r0)

=
(r0/R0)2[

1− (R0 − r0) 2+b
1+b+c

] . (43)

If 2 + b is positive then the surface density is increased with
respect to ρ0 while it is decreased if 2 + b is negative. The
variational Ansatz thus allows the density at the cavity surface
and the asymptotic amplitude far from the surface to act as
separate parameters in the variation.

The variation parameters b and c were obtained by numer-
ical minimization of the elastic energy F [ϕ]. Figure 4 shows
the results.

FIG. 4. (color online) Top: (black line) u(r)/r0 = (ϕ(r)−r)/r0 for
a cavity radial extension of 6 as obtained by the variational method.
The result is compared with u(r)/r0 obtained by the Finite Element
Method (FEM) for cavity radial extensions of 5.52 (blue), respec-
tively, 6.16 (gold), as carried out on a spherical sample with outer
radius of 100r0. Bottom: same data but plotted on a log-log scale.
The red dashed line has the slope of a 1/r2 power law.

The dimensionless displacement u(r)/r0 = (ϕ(r)− r)/r0

is shown as a function of r/r0 on a linear-linear scale (top,
black line) and on a log-log scale (bottom, black line) for the
case of λ = 6. These variational results are compared with the
outcomes of a numerical solution of the equation for mechan-
ical equilibrium (see Eq.A5) using the Finite-Element Method
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(FEM). This was done for cavity radial extensions of 5.52
(blue) and 6.16 (gold) that straddled λ = 6. The linear-linear
plot shows that the agreement is reasonable for r/r0 less than
about five. The log-log plot shows that for 5 . r/r0 . 50
the FEM radial extension is also consistent with a 1/r2 power
law. However, the FEM results have a negative off-set with re-
spect to the variational results, which means that the values of
the asymptotic amplitudes A do not agree. Finally, the FEM
result has an upturn for the largest values of r.

Starting with the last issue, the FEM analysis necessarily
had to be done for a finite system. Stress-free boundary con-
ditions were imposed at an outer radius R2, which was set
to 100r0. In order to obey this outer boundary condition, the
large r displacement field must – according to linear elasticity
– have the form u(r) = ar + b/r2 where a = b/R3

2 [24].
The linear term ar becomes comparable with the b/r2 term
when r is of the order of the outer radius R2, which explains
the upturn in the deformation map for r ' R2. The reason
for the negative offset of the FEM has to be different because
introducing a stress-free boundary condition should produce
a larger, not a smaller radial extension. It is discussed in Ap-
pendix B that the FEM software package appears to be less
reliable for large values of κ/µ.

Using the variational deformation map one can construct
other physical quantities. The density profile, obtained
through the relation ρr = r2

ϕ(r)2ϕ′(r) , is shown in Fig.5.

FIG. 5. (color online) Relative density ρ/ρ0 versus distance from
cavity surface for the neo-Hookean model for various values of the
ratio κ/µ: κ/µ = 0.1 (blue, solid), κ/µ = 0.5 (yellow, dashed),
κ/µ = 1 (green, dashed), κ/µ = 5 (red, dotted), and κ/µ = 10
(purple, dash-dotted). The final cavity radius was twice that of the
initial radius.

In all cases there is a density deficit, indicating that the bal-
loon effect overcomes the snowplow effect. For increasing
values of κ/µ the density deficit decreases and the density
profiles approach the limit ρr = 1 of incompressible materi-
als (the FEM method produces a density excess at the cavity
surface, see Appendix B).

Next, the relation between pressure P and radial extension
is obtained by inserting the variational deformation map into
the elastic free energy density of Eq.27. After integration over
the volume to obtain Fel[φ] the total free energy F [φ] is min-
imized with respect to R0. The result is shown in Fig.6. Cav-

FIG. 6. Radial extension ratio versus dimensionless cavity pressure
P/µ for the neo-Hookean model for various values of the ratio of
bulk and shear moduli: κ/µ = 0.1 (blue, solid), κ/µ = 0.5 (yel-
low, dashed), κ/µ = 1 (green, dashed), κ/µ = 5 (red, dotted), and
κ/µ = 10 (purple, inverted triangles). The solid black curve is the
incompressible solution, while the dashed black line shows the criti-
cal pressure P∞ = 5

2
µ.

itation is encountered for all values of κ/µ. The cavitation
critical pressure is significantly reduced for lower values of
κ/µ. Compressibility effects thus enhance cavitation. In con-
trast, for low pressures the radial extension of the cavity is
practically independent of the κ/µ ratio.

Figure 7 shows the effect of varying the surface tension for
κ/µ = 1. The plots are quite similar to the case of incom-

FIG. 7. (color online) Radial extension ratio versus dimensionless
cavity pressure P/µ for the neo-Hookean model for κ/µ = 1 and
various values of the dimensionless surface tension γ̄ = γ/µr0:
γ̄ = 0 (blue, circles), γ̄ = 0.5 (yellow, triangles), γ̄ = 1 (green,
diamonds), and γ̄ = 1.5 (red, squares). There is no shear hardening.

pressible materials, apart from the fact that the critical pres-
sure is reduced. Just as for incompressible materials, surface
tension can transform cavitation into nucleation-and-growth
above a threshold value of the dimensionless surface tension
γ̄, except that this threshold value now is less than one.

Figure 8 shows what happens if one includes shear-
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hardening for η = 0.1 and no surface tension. The plots

FIG. 8. (color online) Radial extension ratio versus dimensionless
cavity pressure P/µ for the neo-Hookean model for shear hardening
parameter η = 0.1, no surface tension and various values of κ/µ:
κ/µ = 0.1 (blue, circles), κ/µ = 0.5 (yellow, triangles), κ/µ = 1
(green, diamonds), κ/µ = 5 (red, squares), and κ/µ = 10 (purple,
inverted triangles). The solid black curve represents the incompress-
ible solution, while the dashed black line shows the critical pressure
P∞ = 5

2
µ.

of Fig.8 show cavitation behavior in the presence of strain
hardening for the case that the κ/µ ratio is less than about
one. Recall that for incompressible systems, cavitation was
suppressed even for a shear hardening parameter that was ten
times smaller than the current value of η = 0.1. Once again
one sees that compressibility promotes cavitation.

IV. CAVITATION IN POLYMER GELS WITH
TWO-COMPONENT SOLVENTS.

With this experience, we now can turn to the actual case of
interest, namely cavitation in polymer gels. From the view-
point of finite-strain elasticity theory, there is an important
new ingredient. A cross-linked polymer gel placed in a one-
component solvent can swell or shrink by absorbing or releas-
ing solvent. On the one hand, in good solvent the free energy
associated with volume interactions between the monomers
and the solvent molecules decreases under swelling. On the
other hand, swelling stretches the polymer chains, which re-
duces entropic configurational entropy. In the state of swelling
equilibrium the swelling pressure is balanced by the elastic
stress of the stretched polymers [16, 30]. The state of swelling
equilibrium is not stress-free so it cannot serve as the refer-
ence frame. In the theory of gel elasticity, the stress-free ref-
erence state is the dry, solvent-free gel with no solvent and
hence no stretching of the polymer chains [31] and no surface
energy.

Now, let the solvent be a two-component binary liquid
where the majority component of is a good solvent for the
monomers of the gel while the minority component is a poor
solvent. In the absence of the gel, the thermodynamic work

of formation of a minority phase droplet in a homogeneous
supersaturated binary solution equals W = −N∆µ + Fex.
Here, N = V/v0 is the number of molecules in the droplet,
V is the volume of the droplet, v0 is the molecular volume of
the minority phase molecules, and N the number of minority
molecules in the droplet. Next, ∆µ is the difference between
the chemical potential of minority phase molecules in the ho-
mogeneous mixture and those inside the drop. Finally, Fex is
the increase of the free energy of the surrounding environment
due to the presence of the drop. In classical nucleation theory
(CNT) only the interfacial energy of the droplet is included in
Fex so Fex = γA where γ is the interfacial energy per unit
area and A the surface area of the drop. The radius R∗ of
the droplet in a stationary state in which the droplet neither
grows nor shrinks is determined by the condition that the vir-
tual work δW associated with an infinitesimal change of the
droplet radius is equal to zero [32]. The positive work by the
chemical potential is given by δN∆µ = δV (∆µ/v0) where
Π = ∆µ/v0 can be interpreted as an osmotic pressure that
drives droplet swelling. The total work δW associated with
an infinitesimal change δR of the radius R of the droplet is
then

δW = γδA−ΠδV (44)

where δA = 8πRδR and where δV = 4πR2δR. The ra-
dius of the stationary droplet is then R∗ = (2γ/Π), which is
known as the critical droplet size in CNT. A stationary point
with δW = 0 represents a thermodynamically stable state
only if the derivative of osmotic pressure Π with respect to
the cavity volume is positive. The state δW = 0 is unstable
so smaller droplets shrink and disappear while larger drops
grow without limit.

Next, assume that the droplet nucleates in a solvent-filled
cavity inside a gel that is originally in a state of swelling equi-
librium. Let the initial radius be r0. Once the radius of the
growing droplet exceeds that of the cavity, the work of elas-
tic deformation of the gel by the growing droplet must be
included as an additional excess free energy term Fex. The
condition δW = 0 for a stationary corresponds to the station-
ary state of the variational free energy expression F [φ] (see
Eq.29) provided P is interpreted as an osmotic pressure and
γ as an interfacial free energy (below, we will use P for the
osmotic pressure of the drop.).

A. Flory-Huggins Theory and Cavitation

To compute the elastic deformation energy F [φ] of the gel
we will use the FH mean-field theory of gels in which the
polymer chains are treated as ideal Gaussian chains composed
of Nx identical segments [31]. It has been established that the
physical properties of gels composed of flexible polymers are
well described by FH theory, which also can be extended to
include liquid-liquid phase separation [33]. In FH theory, the
free energy density is the sum of the entropic elasticity free
energy of the Gaussian chains and the mixing free energy of
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the monomers [16, 30]:

fFH =
1

2
C1(φ)

(
3∑
i=1

λ2
i − 3

)

+
kbT

w
[(1− φ) ln(1− φ) + χφ(1− φ)]

(45)

where we followed the notation of refs.[16, 31]. Here, φ is
the volume fraction of monomers where φ = 1 is the state of
the dry, solvent-free gel. Next, C1(φ) equals kBTφ

wNx
where w

is the volume per Kuhn segment of the polymer chains. The
quantities λi are, as before, the three principal stretch ratios
such that in the dry state the stretching parameters are equal
to one. For a uniformly swollen gel, the stretch parameters are
equal to each other and to φ−1/3 because of mass conserva-
tion. Finally, χ is the Flory χ parameter. For good solvents,
the Flory parameter is less than 1/2. Note that this is the free
energy density in the deformed space. Note also that, unlike
the neo-Hookean elastic energy, the FH free energy density is
not the sum of separate shear and compression/swelling terms
since the first term of fFH describes simultaneously the en-
ergy cost of stretching the polymers both under shear strain
and under isotropic swelling.

The state of swelling equilibrium is found by minimizing
f/φ with respect to φ. The appearance of the factor 1/φ is
understood here by noting that the volume element dV in the
physical space of the swollen gel transforms to the the volume
element dv = φdV in the dry gel so f/φ is the free energy
density in the coordinate system of the dry gel. Minimizing
f/φ with respect to φ gives, for Nx >> 1, the result that
φeq ' [(1/2− χ)Nx]

−3/5. This same result is obtained if
one sets the osmotic pressure Π(φ) = φ2 d(f/φ)

dφ of the gel to
zero, where

Π(φ) = −kBT
w

[
(χφ+ 1)φ+ log (1− φ) +

φ1/3

Nx

]
(46)

If the deformation away from the state of swelling equilib-
rium is infinitesimal then the free energy density associated
with the deformation has the same form as the elastic energy
density of uniform materials that obey linear elasticity (see
Eq. 26). The shear modulus is given by

µ =
kBT

wNx
φ1/3 (47)

and the osmotic modulus κ = φdΠ
dφ by

κ =
kBT

w

((
1

1− φ
− 2χ

)
φ2 − φ1/3

3Nx

)
(48)

(see ref. [31]). For an FH gel, shear and bulk moduli are thus
replaced as control parameters by the number of polymer seg-
mentsNx per link and the Flory χ parameter, the latter a mea-
sure of the solubility of the polymers in terms of the majority
component of liquid.

B. Cavitation without strain hardening or surface tension.

The density profile in an FH gel surrounding a minority
phase droplet under osmotic pressure is found in the same way
as for neo-Hookean materials. Results for the case of no in-
terfacial energy and no strain hardening are shown in Fig.9.
This density profile has a maximum near the cavity surface.

FIG. 9. (color online) Relative density ρ/ρswl versus distance from
cavity surface for the Flory-Huggins model, with final cavity radius
twice that at swelling equilibrium, cross-link separation Nx = 10,
and various values of the Flory χ parameter. The values of χ are
χ = −0.4 (solid, blue), χ = −0.2 (dashed, yellow), χ = 0 (dashed,
green), χ = 0.2 (dotted, red), and χ = 0.4 (dash-dotted, purple).

For FH gels, the snowplow effect apparently overcomes lat-
eral stretching, just the opposite of what we found for neo-
Hookean materials. The density profile is quite dependent on
the Flory χ parameter. The excess density at the surface in-
creases as the solubility of the polymers for the mixed phase
decreases (i.e., for more negative values of χ), which agrees
with physical intuition.

Figure 10 shows the dependence of radial extension on cav-
ity pressure. The radial extension plots for different values of
Nx and χ are surprisingly similar and close to that of incom-
pressible materials (black line). Differences become visible
only for dimensionless pressures close to the critical 5/2 ratio
for incompressible materials.

A plot of the ratio of bulk and shear moduli of the FH model
as a function of χ is shown in Fig. 11. For Nx large compared
to one, the ratio of bulk and shear moduli approaches 5/3 for
χ less than 1/2, independent of either χ or Nx. Since the ra-
tio of the shear and bulk moduli of an FH gel near swelling
equilibrium is of the order of one, one would have expected a
significant reduction of the critical cavitation pressure as com-
pared to that of incompressible materials, based on the earlier
results for the neo-Hookean model, but this is not the case.
Another surprise is the persistent lack of dependence of the
radial extension on the Flory χ parameter and Nx outside the
regime where linear elasticity holds. Recall that the density
profile did not show this “universality”.

Figure 12 shows the effect of surface tension on the radial
extension vs pressure plot and compares it with incompress-
ible materials. The effect of surface tension on cavitation in



11

FIG. 10. (color online) Radial extension ratio with respect to the
equilibrium state versus dimensionless cavity pressure P/µswl for
the Flory-Huggins model with µswl the shear modulus at swelling
equilibrium. The cross-link separation is Nx = 10 and there is nei-
ther surface tension nor shear hardening. The values of the Flory χ
parameter are χ = −0.4 (blue, circles), χ = −0.2 (yellow, trian-
gles), χ = 0 (green, diamonds), χ = 0.2 (red, squares), and χ = 0.4
(purple, inverted triangles). The black line shows the relation be-
tween radial extension and pressure for an incompressible material.

FIG. 11. (color online) Dependence of the ratio of shear and bulk
moduli of the FH model at swelling equilibrium on the Flory χ pa-
rameter for different values of Nx: Nx = 1 (blue), Nx = 10 (yel-
low), Nx = 100 (green), and Nx = 1000 (red).

FH gels is practically the same as the effect of surface tension
on cavitation for incompressible systems.

Next, we include strain hardening. Because in the FH free
energy density shear strain and expansion/compression strain
both contribute to the first term, we cannot include strain hard-
ening only in the shear strain. We included strain hardening
by replacing the first term of fFH by

C1(φ)tr U
(
1 + η tr U + η2 (tr U)2 + ...

)
. (49)

where trU = 1
2

(∑3
i=1 λ

2
i − 3

)
. Fig.13 shows the effect of

FIG. 12. (color online) Radial extension ratio versus dimensionless
cavity pressure P/µswl for the FH model, with cross-link separation
Nx = 10, Flory χ parameter χ = −0.2, no shear hardening, and
various values of dimensionless surface tension γ̄ = γ/µswlrswl. The
values of γ̄ are γ̄ = 0 (blue, circles), γ̄ = 0.5 (yellow, triangles),
γ̄ = 1 (green, diamonds), and γ̄ = 1.5 (red, squares). The black
dashed line shows the critical pressure for the incompressible solu-
tion, P∞ = 5

2
µswl. The solid lines show the corresponding radial

extension curves of an incompressible material according to Eq.38.

this term on plots of the radial extension as a function of pres-
sure. For a strain hardening parameter η = 0.01 there is no

FIG. 13. (color online) Radial extension ratio versus dimensionless
cavity pressure P/µswl for FH gels with µswl the shear modulus
at swelling equilibrium, cross-link separation Nx = 10, no surface
tension, shear hardening parameter η = 0.01, and various values of
the Flory χ parameter: χ are χ = −0.4 (blue, circles), χ = −0.2
(yellow, triangles), χ = 0 (green, diamonds), χ = 0.2 (red, squares),
andχ = 0.4 (purple, inverted triangles). The solid black curve shows
the radial extension/pressure plot of an incompressible material for
the same amount of strain hardening and the same shear modulus
(see Eq.40).

cavitation, just a somewhat higher rate of radial expansion for
higher pressures. Strain hardening suppresses cavitation in
FH gels even more effectively than in incompressible systems
with the same shear modulus. Next, the radial expansion plots
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are now significantly dependent on the Flory χ parameter for
higher pressures: the suppression of cavitation becomes more
pronounced as the solubility of the polymers for the mixed
solvent is reduced. Similarly, if the cross-link separation Nx
is increased then the cavitation is suppressed more effectively.
This plot must be compared with Fig.8 for neo-Hookean mate-
rials. There, compressibility significantly enhanced cavitation
for an η value that was ten times higher than for the present
case. Strain hardening suppresses cavitation very effectively
for FH gels.

V. CONCLUSION

We applied finite-strain elasticity theory to cavitation in
compressible FH gels in order to explore the effects of strain
hardening and droplet surface/interfacial tension on cavita-
tion. The results for FH gels were compared with those for
neo-Hookean materials with comparable elastic moduli. In
this conclusion we briefly review these results and then dis-
cuss parameter parameter ranges for different cases and im-
plications for experiment.

The effect of surface tension on cavitation is described by
the dimensionless parameter γ̄ = γ

µr0
. If γ̄ is less than a

number close to one then the effects of surface tension on
cavitation are secondary but if γ̄ is greater than that num-
ber then cavitation is replaced by activated droplet nucleation-
and-growth. What are reasonable values for γ̄? Biomolecular
condensates in aqueous environments have interfacial ener-
gies in the range of 10−4 mN/m to 100 mN/m [34]. If the
cavity radius r0 for the dry gel is estimated to be of the order
of the size of a monomer of a synthetic flexible polymer (of
the order of one nm) and µ is taken to be of the order of the G’
modulus of hydrogels (about 103 Pa) then γ̄ falls in the range
of 0.1 to 103. However, the estimate of the cavity radius of a
dry gel is uncertain and it probably will be larger for less flexi-
ble polymers so this parameter may have to be used as a fitting
parameter. Despite this uncertainty, the estimate indicates that
both cases are possible. It may be possible to distinguish the
two cases experimentally on the basis of the statistically broad
range of waiting times associated with activated growth kinet-
ics for γ̄ greater than one versus the case of continuous cavity
swelling for γ̄ less than one.

This transition between discontinuous, activated bursting
for γ̄ > 1 and continuous cavitation if γ̄ < 1 has an inter-
esting similarity with the tricritical point encountered in the
theory of phase-transitions when a line of continuous phase
transitions transforms into a line of first-order phase transi-
tions [35]. It would be interesting to investigate experimen-
tally the regime γ̄ ' 1 and P/µ ' 5/2 in more detail to see if
there is a tri-critical point for phase separation in polymer gels
near the transition point between cavitation and nucleation.

Our second important result is that compressibility signifi-
cantly reduces the critical cavitation pressure of neo-Hookean
materials provided the compressional modulus is comparable
to (or less than) the shear modulus. For FH gels on the other
hand, the critical cavitation pressure is practically the same as
that of incompressible materials. Because the shear and com-

pressional moduli of an FH gel are comparable at swelling
equilibrium, this was surprising. Actually, the elastic proper-
ties of FH gels were also in other respects more similar to in-
compressible materials than to a compressible materials with
similar elastic moduli. We encountered this for the case of sur-
face tension, strain hardening, and density profile. The fact the
deformation map of an incompressible material is a reason-
able approximation for that of a gel with a pressurized cavity
is convenient. It allows one to easily include effects such as
strain hardening and surface tension (see Eq.40). The obser-
vation that FH gels behave in some respects as incompress-
ible materials was actually made before in an experimental
study of the response of hydrogels to externally applied os-
motic pressure [36]. The proposed explanation there was that
this effect is due to the pre-stress in the state of swelling equi-
librium. The hydrogel did not respond significantly to exter-
nal pressures that were small compared to the internal stress.
In general, pre-stressed materials (like pre-stressed concrete)
are much less responsive to external stress than materials that
are stress-free prior to the application of the external stress.
While the response of biogels to shear stress has been ex-
tensively studied, there is little literature on measurements of
pre-stress in biogels, though in-vitro observations on thermal
fluctuations of biogel filaments would suggest that pre-stress
is small. Active gels, such as in-vitro actin-myosin solutions
in the presence of ATP, certainly do have significant internal
stresses and it would be very interesting to know how such
systems respond to osmotic pressure and whether they show
cavitation when placed in a two-component solvent.

Our key result is that cavitation in FH gels is very sensitive
to strain hardening. We found that cavitation is suppressed
for strain hardening parameters η as small as 0.01. Typical
synthetic polymer gels composed of highly flexible polymers
with a low level of cross-linking densities show no observ-
able strain hardening [18]. Next, synthetic biomimetic gels
show various levels strain hardening depending on the ma-
terial but, for example, synthetic gels composed of tri-block
copolymers [20] have effective η values in the range of one.
Similarly biomimetic DA/PDA hydrogels have η values in the
range of ten [18]. Next, for a sequence of actin, collagen, fib-
rin, vimentin and neurofilaments biopolymer networks, mea-
sured η values decrease from about ten (actin) to about 0.1
(neurofilaments) [17]. Shear hardening in biogels strongly de-
pends on the cross-linking density. For collagen gels, the η
value increased from about 101 to about 103 under increasing
cross-linking density [37]. All of these η values are well above
0.01. This would mean that none of these systems ought to
show cavitation according to our results. It could be countered
that biogels are composed of semi-flexible flexible, whose os-
motic properties may differ from FH gels. The experimental
literature on the osmotic properties of biomimetic gels com-
posed of semi-flexible polymers is quite small, but the osmotic
properties of gels composed of cross-linked DNA appear to
obey FH [38]. This question will have to be addressed exper-
imentally.

If our claim is confirmed, then this would seem to indi-
cate that cavitation is not relevant for biogels. In actuality, the
biopolymer networks of the cell are transiently cross-linked.
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The shear modulus and strain hardening properties of visco-
elastic materials such as these are dependent on the time-scale
on which they are measured: they become increasingly more
fluid-like on longer time-scales. A slow-motion, visco-elastic
version of cavitation thus seems quite possible and we hope to
investigate this question in the future.

We finish by noting that cavitation-like phenomena may in-
volve mechanisms that we did not discuss. Reference [39]
discusses the effects of finite segregation strength. If the dif-
ference ∆γ between the interfacial energies per unit area of
the polymer material with minority and majority solvent com-
ponents is sufficiently small then it is expected that, instead of
cavitation, growing droplets may permeate the polymer net-
work. The authors argue that cavitation requires the so-called
permeo-elastic number given by p = 2φ∆γ/(rµ) to be larger
than a number of the order of one (r is here the polymer radius
and µ the shear modulus). They estimate that for synthetic
biogels, like silicone gels in an oil-water mixture, p is large
compared to one while p is small compared to one for the cy-
toplasm. For the interior of the nucleus p may be or may not

be large compared to one. It should be noted though that even
if a droplet permeates the polymer matrix then this still in-
duces strains in the polymer matrix. These strains could well
be large compared to one for small φ. It would be interesting
to investigate if one could have a hybrid form of permeation
and cavitation. Finally, the elastic stress at the surface of the
cavity may exceed the fracture stress of the polymer network,
producing cavitation-like effects.

True cavitation is however of fundamental interest as a phe-
nomenon that is present in non-linear, finite-strain elasticity
theory but that is absent in conventional linear elasticity. Syn-
thetic biogels now seem to provide us with the opportunity
for precision experimental studies of cavitation that allow us
to test finite-strain elasticity theory at small length scales.
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Appendix A: Cauchy and First Piola-Kirchhoff Stress Tensors.

The definition of a stress tensor starts from the surface el-
ement d~S = dS N̂ in the deformed space with normal unit
vector N̂ . If a force (or “traction”) ~T is acting on this surface
element, then the Cauchy stress tensor σ at the location ~X of
this element is defined such that

T i = σijdS
j (A1)

The Cauchy stress tensor is defined in the deformed space,
the physical space in which the force is being applied. When
external stresses or pressures are applied to the surface of
the material then the Cauchy stress tensor provides a direct
approach to implement boundary conditions. However,
within the Lagrangian formalism that we use it is useful to
also construct a stress tensor in terms of the coordinates of
the undeformed space with ~X = ϕ(~x) the deformation map.

Let ~B represent a body force per unit volume, and ~t = σN̂
represent a contact force per unit area acting on the surface
of the body. Applying Newton’s second law to a body in me-
chanical equilibrium – in the deformed space – gives:∫

B
dV Bi +

∫
∂B
dS σijN

j = 0 (A2)

Using the divergence theorem, one can write this in local form
as.

Dσij

DXj
+Bi = 0 (A3)

Changing variables in the integral equation to those of the un-
deformed space gives∫

B0

dv JBi +

∫
∂B0

ds J
(
A−1

)α
j
nασ

ij = 0 (A4)

Define the First Piola-Kirchoff stress tensor Siα ≡
J
(
A−1

)α
j
σij . Using the divergence theorem, this can be ex-

pressed as a local equation for mechanical equilibrium:

DSiα

Dxα
+ JBi = 0 (A5)

The deformation map ϕ is obtained by solving this equation.
Summarizing the definitions:

Deformation Map: ~X = ϕ (~x)

Deformation Gradient Matrix: Aiα = ∂ϕi

∂xα

Green-Lagrange Strain Tensor: Uαβ ≡ 1
2

(
AiαAiβ − δαβ

)
Jacobian: J = ρ0

ρ = detA

Non-linear Shear Strain Tensor:
Ūαβ = 1

2

(
J−2/3AiαAiβ − δαβ

)
= J−2/3Uαβ + 1

2

(
J−2/3 − 1

)
δαβ

Cauchy Stress Tensor: σij
Piola-Kirchoff Stress tensor: Siα = J

(
A−1

)α
j
σij
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Appendix B: Finite Element Method and the Variational Ansatz

We used the FEBio Studio [41] software package to per-
form a finite element analysis for a sphere with a concentric
spherical cavity made up of a compressible neo-Hookean ma-
terial. The simulations were force-controlled i.e. the pressure
acting on the surface of the cavity was an input and displace-
ments of the nodes of the finite element mesh were the out-
put. We used 20-node quadratic hexahedral elements. Tak-
ing advantage of the spherical symmetry of the problem, we
modeled only one-eighth of the sphere with appropriate sym-
metry boundary conditions. We chose the outer radius of the
sphere to be 102 times the radius of the cavity. We checked
for convergence by comparing the critical pressure for a mesh
with 3552 elements and a mesh with 24057 elements. The
resulting deformation map was shown in the main text and
compared with the map obtained by the variational method.
The density profile and radial extension / pressure profiles ob-
tained by the FEM are shown in Fig. 14. According to the top

FIG. 14. (Top) Radial density profiles obtained from the finite-
element method (FEM) for different values of the ratio κ/µ between
bulk and shear moduli. (Bottom) Cavity extension versus dimen-
sionless cavity pressure P/µ using the FEM, for the same values of
κ/µ. The values of κ/µ are 0.5 (blue circles), 1 (yellow triangles),
5 (green diamonds), and 10 (red squares).

figure, there is a density excess instead of the density deficit
that was obtained by the variational method. According to the
bottom figure, there is qualitative agreement between the ra-
dial expansion/pressure plots of the FEM and the variational
methods. However, the critical cavitation pressure produced
by the FEM is significantly smaller than the one predicted by
the variational method and appears to be only weakly depen-
dent on κ/µ. In particular, the FEM critical cavitation pres-
sure does not approach the known critical cavitation pressure
P/µ = 2.5 of incompressible systems for large values of κ/µ
as it should.

The density at the surface of the cavity is determined by
the slope ϕ′ (r0) of the deformation map through ρ(r0)

ρ0
=

1
λ2
0ϕ

′(r0)
. A density excess will occur at the cavity surface

if 0 < ϕ′ (r0) < 1
λ2
0

while a density deficit occurs when

ϕ′ (r0) > 1
λ2
0

. For λ0 = 6, the variational method gives
ϕ′ (r0) ≈ 0.1763, which exceeds 1/λ2

0, corresponding to
a density deficit. The FEM analysis gives λ0 = 5.52 and
ϕ′ (r0) ≈ 0.0187, which is less than 1/λ2

0, and for λ0 = 6.16,
ϕ′ (r0) ≈ 0.0119 which is also less than 1/λ2

0. Both corre-
spond to a surface density excess. So, even though the de-
formation map of the variational and FEM methods appear
to be similar in the region of smaller r, there is a substan-
tial difference between the slopes of the deformation maps at
the cavity surface. This difference produces the difference in
sign of the change in density at the cavity surface. The ori-
gin of the discrepancy is not clear but because the FEM does
not reproduce for large κ/µ the exact result for incompress-
ible systems, we believe that the variational method is more
reliable in this case.


