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We investigate the avalanche temporal statistics of the Susceptible-Infected-Susceptible (SIS) model when
the dynamics is critical and takes place on finite random networks. By considering numerical simulations on
annealed topologies we show that the survival probability always exhibits three distinct dynamical regimes.
Size-dependent crossover timescales separating them scale differently for homogeneous and for heterogeneous
networks. The phenomenology can be qualitatively understood based on known features of the SIS dynamics on
networks. A fully quantitative approach based on Langevin theory is shown to perfectly reproduce the results
for homogeneous networks, while failing in the heterogeneous case. The analysis is extended to quenched
random networks, which behave in agreement with the annealed case for strongly homogeneous and strongly
heterogeneous networks.

I. INTRODUCTION

Systems undergoing continuous absorbing-state phase-
transitions are, exactly at the critical point, infinitely suscep-
tible to local perturbations. This implies that, introducing a
single active seed in the absorbing state, the subsequent evo-
lution leads to an avalanche of activation events that may span
the whole range of temporal and spatial scales. Examples of
this avalanche dynamics abound, both in the realm of physics
and in other biological, social and technical domains [1–7].

The multiscale nature of these phenomena is quantita-
tively characterized by the size and duration distributions of
avalanches. If the control parameter is subcritical (i.e., in the
absorbing phase) size and duration of avalanches are exponen-
tially distributed, extending up to well defined and finite tem-
poral and spatial scales. In the supercritical domain, instead,
a finite fraction of them spans the whole system, leading (in
infinite systems) to a stationary active state. In the critical
case all avalanches end in a finite time, but the distributions
have power-law tails so that events of any size and duration
are possible. Denoting with z the size of an avalanche and
with t its duration, we can in general write for the probability
distributions of size z and duration t [8]

P(z) ∼ z−τF (z/z×) and P(t) ∼ t−αG(t/t×), (1)

where τ and α are universal critical exponents, F and G are
scaling functions and the cutoff scales z× and t× depend at crit-
icality only on the system size. Averaging the avalanche size
at a fixed duration t it is possible to define another exponent
〈z〉 ∼ tθ, which is related to the others as [9]

θ =
α − 1
τ − 1

. (2)

The branching process (BP) model [10] provides the natural
framework for describing (at least approximately) a large class
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of systems undergoing continuum absorbing phase transitions.
In the simplest case, when the distribution of offsprings (i.e.,
the probability for an active element to activate a given num-
ber of new elements) has finite variance, BP theory predicts

τ = 3/2, α = 2, and θ = 2. (3)

This kind of mean-field behavior is expected to occur when
the system dynamics takes place on a homogeneous network,
where the second moment of the degree distribution is fi-
nite. The phenomenology changes when the distribution of
offsprings in the BP has infinite variance, as it happens for
processes taking place on heterogeneous networks with de-
gree distribution P(k) ∼ k−γ and 2 < γ ≤ 3. In such a case BP
theory predicts anomalous, γ-dependent, exponents [11–14]

τ =
γ

γ − 1
, α =

γ − 1
γ − 2

, and θ =
γ − 1
γ − 2

. (4)

While standard BP behavior is observed for many sys-
tems on homogeneous networks [15–18], recent work has cast
doubts over the applicability of this theoretical framework to
many avalanche phenomena in heterogeneous networks [19].
In all cases considered, apart from a possible preasymptotic
regime valid for short duration and small size, the distributions
decay with exponents in agreement with standard BP values,
with no dependence on γ. Possible causes of this violation of
the BP predictions have been put forward in Ref. [19]. One
possible reason for such violation is the existence of loops in
networks, possibly allowing for nodes that are already active
to be reached again by the infection, which is an explicit vio-
lation of the mapping between spreading models and the BP.
Further, finite networks always have a finite second moment
of the degree distribution, which prevents the anomalous ex-
ponents (4) to be asymptotically observed even in a pure BP.
It was also noted in Ref. [19] that the spreading mechanism of
certain models, such as the contact process (CP), do not really
involve all the neighbors of a node and hence avalanches are
not impacted by unbounded fluctuations of the network degree
distribution. These hypotheses, however, call for more de-
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tailed investigations of the origin of the breakdown of anoma-
lous BP exponents in specific systems and for the formulation
of alternative theoretical approaches such as the one presented
in Ref. [20]. Also, the way avalanches depend on the system
size in finite systems, which is an issue of crucial importance
for the analysis of real systems, is still largely unexplored.

In this work we consider Susceptible-Infected-Susceptible
(SIS) dynamics [21], one of the most fundamental (and sim-
ple) models deemed to be described by BP, and perform such
an investigation in complex networks of variable size. Apart
from the intrinsic importance of SIS dynamics, an additional
motivation for our study is that it has been realized that the
interplay between heterogeneous topology and SIS dynamics
gives rise to highly nontrivial phenomena, such as the vanish-
ing of the threshold in the large-network limit [22–24], the
interplay between distinct subextensive subgraphs [25] and
long-range percolation effects [26]. Whether and how these
nontrivial properties of the stationary state are reflected also
in the avalanche statistics and its dependence on the system
size are other aspects deserving to be analyzed.

Our investigation is inspired by the work of Ref. [27] that
deals with critical properties of the CP, a model akin to SIS,
but exhibiting simpler critical dynamics characterized by a fi-
nite threshold for any value of γ. For CP, avalanche exponents
are nonanomalous also for 2 < γ ≤ 3, but this is easily recon-
ciled with the BP phenomenology, as the effective distribution
of the number of offsprings does not depend on the network
substrate and is always homogeneous. Yet, Ref. [27] presents
a detailed analytical investigation of CP based on a Langevin
approach, which constitutes the natural basis also for the an-
alytical approach to SIS avalanches and in particular for their
temporal properties.

In this paper we perform numerical simulations of the crit-
ical SIS model on annealed and quenched networks, both
homogeneous and heterogeneous, generated according to the
configuration model (CM) [28]. We further develop a theoret-
ical approach based on the use of Langevin equations to study
the probability that avalanches have duration at least t. The
theoretical approach explicitly makes use of the annealed net-
work approximation, but we show that it further provides with
a partial understanding of the avalanche behavior on quenched
networks. The rest of the paper is organized as follows. In
Section II, the dynamics of the SIS model and the statistical
features of the networks we consider are briefly introduced.
In Section III, we summarize the phenomenology we observe
on different network structure, and offer a clear physical inter-
pretation of the avalanche behavior. In Section IV, numerical
results for annealed networks are discussed. In Section V, the
theoretical approach is presented and its predictions are com-
pared with the results of the previous section. In Section VI,
results for quenched networks are shown and compared to the
theoretical predictions of the previous section. We discuss our
results Section VII.

II. MODEL DEFINITIONS

Spreading dynamics

We consider the continuous-time Susceptible-Infected-
Susceptible (SIS) dynamics on networks. Each node can be
either infected (I) or susceptible (S). Infection events, i.e.,
I + S → I + I, occur according to a Poisson process with
rate λ ≥ 0. Recovery events, i.e., I → S , obey a sponta-
neous Poisson process with rate µ. We set µ = 1, with no loss
of generality. The configuration where all nodes are in the S
state is an absorbing configuration: once such a configuration
is reached the system will remain in it forever, as no new infec-
tions can arise. In a network of infinite size, if the dynamics is
started from a configuration different from the absorbing one,
a critical value λc of the control parameter λ separates a phase
where the system unavoidably reaches the absorbing configu-
ration (i.e., λ ≤ λc) from a phase where a stationary state with
a finite fraction of infected nodes exists ( λ > λc).

On a network with finite size N, the SIS model does not un-
dergo a true phase transition. As long as the rate of infection
λ is finite, the system necessarily ends up in the absorbing
configuration in a finite time. Nonetheless, it is still possi-
ble to identify a pseudo-critical point λc(N), distinguishing a
phase where the system reaches the absorbing configuration
in a time that, on average, grows at most logarithmically with
the system size (i.e., λ < λc(N)), and a phase where the ab-
sorbing configuration is reached in an average time that grows
exponentially with the system size (i.e., λ > λc(N)).

In this paper, we are interested in characterizing SIS spread-
ing on networks of finite size N in their pseudo-critical regime,
i.e., λ = λc(N). We perform a large-scale numerical analysis
and develop a theoretical approach valid for a specific initial
setup where i0 � N infected nodes are surrounded by a com-
pletely susceptible system. Our main goal is understanding
in detail the behavior of the survival probability S (t), i.e., the
probability that the system has not yet reached the absorbing
configuration by time t, connected to the duration distribution
as P(t) = −dS (t)/dt. To avoid verbosity, we refer to the crit-
ical regime even if a network has finite size. Also, we make
use of the compact notation λc instead of λc(N) to indicate the
pseudo-critical point of a network with finite size N.

Networks

As interaction patterns, we consider networks built accord-
ing to the CM [28]. The properties of a network generated ac-
cording to the CM are specified by its degree distribution, i.e.,
the probability P(k) that a randomly selected node has degree
k. Each quenched network realization of the CM is obtained
by sampling the degree sequence ~k = (k1, k2, . . . , kN) from
P(k) and pairing nodes in a completely random manner, while
preserving the degree sequence. The only constraint we set
on the pairing procedure is that multiedges and self-loops are
prohibited. The q-th sample moment of the degree sequence
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is given by

〈kq〉 =
1
N

N∑
i=1

(ki)q . (5)

The annealed version of the CM model implies that a new
pairing is generated at each time step, still keeping the de-
gree sequence fixed. In the annealed scenario one can usefully
define the annealed adjacency matrix as the average over all
possible pairings: Ā(k, k′) = kk′/(〈k〉N). Its elements equal
the probability that a node of degree k is connected to a node
of degree k′ [29].

In this work, we focus on power-law degree sequences gen-
erated by selecting random variates from the distribution

P(k) ∼
{

k−γ if k ∈ [kmin, kmax]
0 otherwise . (6)

In the following, without loss of generality, we set kmin = 3,
however, results are qualitatively similar for kmin ≥ 3, as long
as kmin is independent of N. We assume that the maximum
degree kmax is growing as a power of N, i.e.,

kmax = N1/ω , (7)

with

ω ≥ max{2, γ − 1} . (8)

This specific setting of the CM model is known as the uncor-
related configuration model (UCM) [30]. Imposing the con-
straints of Eqs. (7) and (8) provides several advantages. For
example, one can safely assume that the effective maximum
degree observed in the sequence sampled from P(k) is actu-
ally kmax if N is sufficiently large [27]. Also, quenched UCM
networks have negligible degree-degree correlations.

Using the above constraints, one finds that the q-th moment
of a large but finite network scales approximately as

〈kq〉 ∼


const. if q < γ−1
log kmax = 1/ω log N if q = γ−1
kq−γ

max = N(q−γ)/ω if q > γ−1
. (9)

For 2 < γ ≤ 3, the power-law degree distribution of Eq. (6)
has diverging second moment, i.e., 〈k2〉 → ∞ for N → ∞.
We refer to networks in this class as heterogeneous networks.
For γ > 3 instead, 〈k2〉 is finite, and we refer to this class as
homogeneous networks.

III. SUMMARY OF THE RESULTS

We consider SIS dynamics on a finite network of size N
initialized with i0 � N infected nodes. The sum of the de-
grees of the i0 seeds is k0. The survival function S (t) turns
out to be characterized by three main regimes describing re-
spectively short, intermediate and long avalanches. We denote
the point of transition between the first two regimes as t∗ and
the point of transition between the second and third regime as

t×. The transitions between the various regimes are not sharp,
rather the survival function displays smooth crossover behav-
iors. This qualitative behavior is valid irrespectively of the
exponent γ of the degree distribution in Eq. (6). Also, both
the quenched and the annealed versions of the UCM exhibit
this qualitative behavior. However, fundamental differences
between homogeneous and heterogeneous networks exist as
the actual values of the transition points depend on the degree
exponent γ.

A. Regime of short avalanches

For t < t∗, in the regime of short avalanches, the survival
function of each of the i0 avalanches is characterized by an ex-
ponential decay. This is due the immediate recovery of each
of the i0 initial spreaders. The characteristic time scale of the
exponential decay is equal to 1 because we set the rate of re-
covery as µ = 1. If the i0 avalanches are small enough not to
interact one with the other, we can write S (t) = 1− (1− e−t)i0 ,
i.e., the survival probability equals the probability that at least
one of the i0 avalanches is still active at time t. Such expres-
sion behaves as

S (t) ∼ i0 e−t . (10)

if t is sufficiently large. In particular, the above expression
must be at most 1 so it can hold only if t ≥ log(i0).

The relative weight of the regime of short avalanches com-
pared to the other regimes valid for longer avalanches, which
ultimately determines the transition point t∗, strongly depends
on the initial condition of the dynamics and the topology of
the underlying network. If γ > 3, then t∗ does not display
any dependence on the network size; if, instead, 2 < γ ≤ 3, a
logarithmic divergence of t∗ with the system size appears. For
2 < γ ≤ 3, the fraction of trajectories that ends in this regime
also depends on the initial condition. If the spreading is initi-
ated by spreaders with a sufficiently large k0, then t∗ ' 0 and
the regime is barely visible, while t∗ grows as k0 diminishes.

B. Regime of intermediate avalanches

The range t∗ < t < t× is known as the adiabatic regime [19,
27]. This regime describes avalanches that are sufficiently
long to have lost any memory of the initial conditions. The
survival function decays as

S (t) ∼ t−1 . (11)

The power-law decay with exponent −1 is typical of critical
spreading on networks with finite second moment of the de-
gree distribution [15, 19, 20]. Here we find that the same de-
cay describes intermediate avalanches in finite networks char-
acterized by degree distributions with diverging second mo-
ment.
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Figure 1. Survival probability for critical SIS avalanches in ho-
mogeneous annealed networks. We set γ = 5.3, ω = 4.3, k0 =

bkmin(γ − 1)/(γ − 2)c = b〈k〉c and we consider 107 realizations of the
process for each value of N. Different curves show the survival prob-
ability S (t) as N is varied. The black dashed line scales as t−1. In
the inset, the same data as in the main panel are rescaled to make
the various curves collapse one on the top of the other. The abscissa
values are rescaled as t/t×(N) with t×(N) = N1/2, and the ordinate
values are rescaled as tS (t).

C. Regime of long avalanches

Finally, avalanches that last t > t× are sufficiently large to
feel the finite size of the network. An exponential cutoff char-
acterizes the decay of the survival function in this regime, i.e.,

S (t) ∼ e−t/t× . (12)

In particular, we have that the typical time of the exponen-
tial cutoff diverges as a power of the network size, i.e.,

t×(N) ∼ N1/σν . (13)

The specific value of σν depends on γ and ω only if γ ≤ 3;
σν = 2 otherwise.

IV. NUMERICAL RESULTS FOR ANNEALED
NETWORKS

In this section, we consider the case of uncorrelated an-
nealed networks [27]. We consider the critical dynamics, set-
ting λ = λc = 〈k〉/〈k2〉, the exact epidemic threshold for
uncorrelated networks. We consider networks of finite size,
and therefore the scaling of 〈k〉 and 〈k2〉 with N, is the one in
Eq. (9). It follows that, for 2 < γ ≤ 3, λc → 0 for N → ∞;
instead, λc does not vanish for N → ∞ if γ > 3 [21].

A. Homogeneous networks

Figure 1 shows results obtained by simulating critical SIS
dynamics on homogeneous networks generated via the CM

with P(k) ∼ k−γ, γ = 5.3 and ω = γ−1 = 4.3. All realizations
have been initiated with a single infected node, i.e., i0 = 1, of
degree k0 = bkmin(γ−1)/(γ−2)c = b〈k〉c, where b·c is the floor
function. This choice is motivated by the need of having an
initial condition that is independent of the system size.

The three regimes anticipated in the summary above are
clearly visible. Given the homogeneity of the network, short
avalanches do not display any dependence on the network
size. This is the standard behavior of the continuous-time
BP [31] and hence it is not surprising to observe it on ho-
mogeneous networks. In particular, we observe t∗ ' 1. In
the regime of intermediate avalanches, the survival probabil-
ity shows the power-law decay of Eq. (10). The exponential
cutoff emerges after a time

thom
× (N) ∼ N1/2 . (14)

This is apparent from the finite-size scaling analysis shown
in the inset of Fig. 1. This fact is consistent with what one
finds for other critical spreading processes on homogeneous
networks via a standard mean-field description [32].

The standard mean-field picture emerging from the anal-
ysis of the SIS model on homogeneous networks is further
confirmed by the fact that the probability distribution of the
avalanche size scales with exponent 3/2 and shows a cutoff

diverging linearly with the system size, see Appendix A. Both
these results are consequences of the behaviour of S (t) and of
the scaling law that relates the average avalanche size with its
duration [15].

B. Heterogeneous networks

Results for heterogeneous networks with degree exponent
2 < γ ≤ 3 are shown in Figure 2. Also in this case, all realiza-
tions have been initiated with i0 = 1 infected node of degree
k0 = bkmin(γ − 1)/(γ − 2)c = b〈k〉c. Despite Eq. (9) predicts
〈k〉 ∼ const. for any γ > 2, in small systems such as the ones
that can be considered numerically, 〈k〉 has not yet reached
its limit value and displays a slow dependence on N. The
three qualitative regimes are still present, but the crossovers
between the various regimes strongly depend on ω and γ, in
stark contrast with the homogeneous problem.

Short avalanches are described by the exponential decay of
Eq. (10). We observe that t∗ grows as N increases. The reason
for such a behavior is quite intuitive. The critical value of the
epidemic threshold goes to zero as the system size increases.
However, the initial condition of the dynamics is unaffected
by the network size, as we are still considering spreading pro-
cesses initiated by i0 = 1 nodes with degree k0. Many configu-
rations generate short avalanches just because the probability
of observing spreading events instead of recoveries becomes
negligible as the size of the network increases. For exam-
ple, the probability that the first event is a spreading event is
k0λc/(1 + k0λc), which clearly goes to zero as the system size
increases.

This physically intuitive picture can be made more precise
by studying the dependence of the survival function in the
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Figure 2. Survival probability for critical SIS avalanches in heterogeneous annealed networks. We set ω = 2, k0 = bkmin(γ− 1)/(γ− 2)c = b〈k〉c
and we consider 109 realizations of the SIS process for each value of the system size N. (a) We display the survival probability for γ = 2.1.
The inset displays the same data as in the main panel with the abscissa rescaled as t/t×(N) and with the ordinate rescaled as tS (t)kmax. (b) Same
as in panel (a), but for γ = 2.5. (c) Same as in panel (a), but for γ = 2.9.

regime of short avalanches on the initial condition of the dy-
namics. Our main finding in this regard is that the crossover
from the exponential to the power-law decay starts when the
survival probability has dropped by an amount that we infer
to scale as kmax/k0 ∼ N1/ω/k0. This finding is deduced from
the combination of the results of Figs. 3a, 3b and 3c. In
Fig. 3a, we start the dynamics from a single initial seed, i.e.,
i0 = 1 with variable degree k0. Simulations are all performed
on the same network, thus kmax is constant. The drop of S (t) is
proportional to 1/k0, as apparent from the inset of Fig. 3a. In
Fig. 3b instead, we consider networks of different size to keep
the ratio kmax/k0 constant. In the regime of short avalanches,
the different curves collapse with no rescaling. Finally, in
Fig. 3c, we vary the number of initially infected nodes i0, but
keep constant the sum of their degrees: k0 = 60. The value
of the initial drop of S (t) is once again constant, as the ratio
kmax/k0 is not varied. The value of the time t∗ appears the
same for all settings. For t ≥ log(i0), the functional form of
S (t) depends linearly on i0, as described by Eq. (10).

The scaling kmax/k0 of the initial drop of the survival func-
tion S (t) together with the known exponential decay charac-
terizing S (t) in the regime of short avalanches, i.e., Eq. (10),
and the imposed N dependence of the maximum degree, i.e.,
Eq. (7), allow us to write that

t∗(N) ∼ log
kmax

k0
∼

1
ω

log N − log k0 , (15)

thus a logarithmic growth of the time distinguishing short
from intermediate avalanches.

Intermediate avalanches are perfectly described by the
power law of Eq. (11). Our finite-size scaling analysis indi-
cates that

thet
× (N) ∼ N(ω+1−γ)/2ω . (16)

The scaling of Eq. (16) is clearly different from the one pre-
dicted for homogeneous networks, i.e., Eq. (14). It can be,
however, linked to the same physical interpretation behind

Eq. (14) using the known fact that in the SIS model on an-
nealed networks, at criticality, the subset of nodes with largest
degree plays a crucial role [21]. For 2 < γ ≤ 3, this set is
subextensive, and contains the Nh ∼ N1+(1−γ)/ω nodes with
largest degree [33]. The subgraph of the Nh nodes with largest
degree is also known to be homogeneous, in the sense that the
smallest, largest and average degree of this subgraph all scale
in the same way with the system size, as in homogeneous net-
works [33]. As a matter of fact, we can interpret the finding of
Eq. (16) as thet

× (N) ∼ thom
× (Nh) ∼ N1/2

h , thus as the cutoff time
valid for a homogeneous graph, i.e., Eq. (14), with Nh nodes.
Note that Eqs. (15) and (16) explicitly depend on ω [see also
Eq. (7)]. The validity of these expressions as ω is varied is
assessed in Appendix B.

V. LANGEVIN THEORY FOR ANNEALED NETWORKS

The striking differences between the two cases of homo-
geneous and heterogeneous networks call for an analytical
investigation. A natural choice for this task is to develop a
theory based on a Langevin equation for the order parameter.
The general theory of stochastic processes [34] provides with
an exact protocol to compute S (t) given a Langevin equation
for the order parameter and such a protocol has been success-
fully employed to describe the behaviour of avalanches in the
CP [27]. Inspired by Ref. [27], we develop a theoretical ap-
proach for the SIS model on annealed networks.

For annealed networks the degree sequence fully deter-
mines the network properties: nodes with the same degree
have exactly the same dynamical behavior. It is therefore con-
venient to define the variables nk(t) and ρk(t) = nk(t)/[NP(k)]
which represent, respectively, the number of infected nodes
with degree k at time t and the probability that a randomly
selected node among those with degree k is infected at time
t. The epidemic phase transition can be described through
the order parameter ρ =

∑
k nk/N =

∑
k ρkP(k), representing

the probability that a random node is infected, or through the
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Figure 3. Survival probability for critical SIS avalanches in heterogeneous annealed networks. We set ω = 2, γ = 2.1 and we consider 109

realizations of the process for each curve. The process is started from i0 seeds; the sum of the degrees of these seeds is k0. (a) The process is
started from i0 = 1. Different curves correspond to different values of k0. Here the network size is N = 108. The inset displays the same data as
in the panel with the ordinate rescaled as tS (t)/k0. (b) We start the process from i0 = 1 seed. We consider different k0 values, but also different
network sizes N. The values of these two parameters are chosen such that the ratio kmax/k0 = 100. The inset displays the same data as in the
main panel with the abscissa rescaled as t/t×(N), with t×(N) given in Eq. (16). We rescale also the ordinate as tS (t)kmax/k0. (c) We start the
process from variable values of i0 all with the same degree, but we keep k0 = 60. The inset displays the same data as in the main panel with
the ordinate rescaled as S (t)/i0. The solid black line is the exponential decay with unitary rate e−t.

order parameter Θ =
∑

k kρkP(k)/〈k〉, representing the proba-
bility that a random neighbor of a node is infected.

The theoretical approach is based on the observation that
the variables nk, and hence ρk, are sums of a large number
of binary random variables, which for annealed networks are
independent [27]. Appealing to the central limit theorem,
the temporal evolution of these variables can be described by
means of suitable Langevin equations.

Following closely the approach of Ref. [27] valid for the
CP, we find the Langevin equation valid for the critical SIS
model is

Θ̇ = −
〈k〉〈k3〉

〈k2〉2
Θ2 +

√
2Θ

N
〈k3〉

〈k〉〈k2〉
ξ , (17)

where ξ is a Gaussian white noise of zero mean and unit vari-
ance. The derivation of this result is in appendix C, and is
based on three main hypotheses. We assume that the dynam-
ics takes place on an annealed uncorrelated network, the vari-
ables ρk evolve in time subjected to Gaussian white noise and,
importantly, the adiabatic approximation is valid.

Such an approximation consists in replacing the value of
the microscopic variables ρk in the equation for the evolution
of the order parameter Θ with quasi-stationary, Θ-dependent,
values, obtained by setting the time derivative to zero in their
evolution equations. This is based on the fact that Θ evolves
slowly at criticality, while the ρk relax exponentially fast. (see
Appendix C). Only sufficiently long avalanches may be cor-
rectly described by our theory. In particular, the Langevin
theory can not explain the regime of short avalanches, where
the exponential decay is observed. This happens because the
adiabatic approximation is not yet valid.

Eq. (17) can be recast as a partial differential equation for
S (t), which in turn can be used to compute the finite-size prop-
erties of the survival function. Explicit calculations are shown

in Appendix D. At criticality, the theory predicts

S (t) = 1 − e−t̄/t (18)

where

t̄ = k0〈k2〉/〈k3〉 , (19)

and with a cutoff for long times, due to the finite size of the
network, scaling as

t×(N) ∼
√

N〈k2〉

(
〈k2〉

〈k3〉

)2

. (20)

For t � t̄, Eq. (18) predicts that S (t) ∼ t−1. This prediction
is valid for all networks, homogeneous and heterogeneous,
and is in agreement with the results of numerical simulations.
We stress that t̄ does not represent the same quantity as t∗: the
regime of short avalanches is not described under the adiabatic
approximation which we do not expect to be valid during the
regime of short avalanches. Indeed, the cumulative probabil-
ity of Eq. (18) equals one for t = 0, as expected for a con-
ditional probability such as the present one. S (t) in Eq. (18)
is conditioned on t being larger than the adiabatic relaxation
time. The fact that t̄ tends to zero in heterogeneous networks
signals that the power-law decay begins immediately after the
adiabatic relaxation time while it happens after a time that
grows with k0 in homogeneous networks.

For homogeneous networks, Eq. (19) predicts t̄ of order k0
and Eq. (20) tells us that t×(N) ∼ N1/2. These predictions
are perfectly consistent with the numerical results presented
in section III.

Predictions, however, are only partially in agreement with
numerical simulations for heterogeneous networks. The scal-
ing t̄ ∼ k0/kmax predicted in Eq. (19) is consistent with the
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fact that tS (t)kmax/k0 is constant, see Fig. 2 and Fig. 3b. The
theory, however, incorrectly predicts the scaling of the cut-
off for large times t×. Indeed, for 2 < γ ≤ 3 both 〈k2〉

and 〈k3〉 diverge as described in Eq. (9), and Eq. (20) gives
t×(N) ∼ N(ω−γ−1)/2ω, which diverges with N only if ω > γ + 1
and limits to zero otherwise. This latter finding is not only
in stark contrast with the results of the numerical simulations,
but is also unphysical, denoting some underlying shortcom-
ing of the theory. We believe that the Langevin approach fails
because it assumes the whole system to be involved in the crit-
ical dynamics and it does not capture the special role played
by the subextensive graph of nodes with highest degree, as
explained in the previous section. Hence, we can recover a
correct scaling of t× by heuristically replacing N with Nh and
using the scaling of the homogeneous problem.

VI. NUMERICAL RESULTS FOR QUENCHED
NETWORKS

The comprehension of the phenomenology on annealed
networks allows us to interpret what happens in spreading ex-
periments on quenched networks.

The main limitation to study large-scale networks is the
computational cost of estimating the critical threshold of a net-
work. At odds with the case of annealed networks, λc is not
simply given by the ratio between first and second moment of
the degree sequence, rather it requires to be numerically es-
timated [35]. We use the standard practice of identifying λc
as the λ value corresponding to maximum of the susceptibil-
ity associated to ρ, see Appendix E. Numerical estimates of
λc require high accuracy, up to six decimal digits1, and these
estimations are computationally demanding even though the
maximization is performed using the efficient quasi-stationary
method [35]. We have been able to study networks of size at
most N = 107. Once, the value of λc is estimated, spreading
experiments for λ = λc can be performed at a relatively small
computational cost.

Results of our analysis are shown in Fig. 4. We first validate
our method on random regular graphs, whose phenomenol-
ogy is expected to be perfectly consistent with the standard
mean-field picture, i.e., consistent with the predictions of the
Langevin theory for homogeneous networks and the findings
for homogeneous annealed networks (Fig. 1). Numerical re-
sults, shown in Figure 4a, confirm this expectation as S (t)
obeys Eq. (18) and the cutoff is given by Eq. (20). Interest-
ingly, the scaling function displays a hump just before the
cutoff. The hump is sufficiently large to be observed even
in the non-rescaled data and hinders the direct observation of
the exponent −1 for relatively small systems, a fact that often
happens when scaling functions display large peaks [9].

The results for small values of γ are perfectly analogous to
those obtained for heterogeneous annealed networks. For ex-

1 The number of digits required to have satisfactory results depends on the
network.

ample, in the case γ = 2.1, Fig. 4b, one finds that the rescal-
ing used for annealed networks leads to the clean data collapse
shown in the inset. This finding is not surprising, as the theory
of annealed networks suits well SIS on quenched networks as
long as γ < 5/2 [33, 35]. In Appendix E we show that the
maximization of the susceptibility is a necessary step in order
to obtain clean-cut results as the ones shown in Fig. 4.

The rescaling used for annealed networks works quite well
also for γ = 2.7 (see Fig. 4c). Also in this case we find that
the drop of S (t) at small t is proportional to kmax/k0 and the
cutoff is again given by Eq. (16). However, this agreement is
valid for the relatively small network sizes we can simulate,
i.e., N ≤ 107. Based on the findings of Refs. [26, 33, 35], we
expect that, for any value γ > 5/2, the theory for annealed
networks is no longer able to describe critical SIS avalanches
on sufficiently large quenched networks, and that a scaling
different from Eq. (16) holds for N → ∞.

VII. CONCLUSIONS

In this paper we have performed a thorough analysis of SIS
critical avalanche dynamics on random networks of finite size.
While for annealed homogeneous networks the theoretical un-
derstanding is complete and quantitative, when the dynamics
takes place on annealed heterogeneous substrates we have to
resort to heuristic arguments to correct some shortcomings of
the Langevin approach. In particular, it is necessary to assume
that nodes play different roles depending on whether they are
part of the subextensive subgraph of size Nh which includes
high-degree nodes. Such a network subset is where the prin-
cipal eigenvector of the adjacency matrix gets localized [33].
For stationary properties of the SIS dynamics, this localization
determines the position of the epidemic threshold, but it does
not affect the probability that a node is infected, which is pro-
portional to the degree for any value of k. Our results show
instead that for nonstationary properties, such as avalanche
statistics, localization matters: nodes outside the subset play
no role in the evolution of long avalanches and as a conse-
quence the Langevin approach, which treats all nodes on the
same footing, fails.

This failure is in stark contrast with what happens for the
CP. Physically, the CP differs from the SIS model as node i
spreads activity with rate λ regardless of its degree, rather than
spreading with rate λki. As a consequence, the critical point of
the CP is λCP

c = 1, i.e., is network independent while the criti-
cal point of the SIS is not and, in particular, it vanishes in het-
erogeneous networks. However, the structure of the Langevin
equations describing the two processes is quite similar. The
equations for the variables ρk are the same, with the only dif-
ference that the order parameter Θ appearing in Eq.( C2) is
replaced by the factor ρ/〈k〉 and Eq.( C3) has the same struc-
ture as of the equation for ρ in the CP, with the fundamen-
tal difference that the non-linear term involves

∑
k kP(k)ρk in

the CP, while it involves
∑

k k2P(k)ρk in the SIS. This differ-
ence reflects the physically different spreading mechanisms of
the two models. Furthermore, the analogy between the equa-
tions for the ρk and for the order parameters allows to perform
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Figure 4. Survival probability for critical SIS avalanches in quenched networks. We set k0 = bkmin(γ − 1)/(γ − 2)c = b〈k〉c. (a) Simulations are
performed on a random regular graph with degree k = 10. We consider 108 realizations of the spreading process for each value of N. The inset
displays the same data as the main panel with the abscissa rescaled as t/t̄(N) and with the ordinate rescaled as tS (t). (b) Same as in panel (a)
but on configuration model networks with γ = 2.1 and ω = 2. We consider 109 realizations of the SIS process for each value of N. The inset
displays the same data as in the main panel with the abscissa rescaled as t/t̄(Nh) and with the ordinate rescaled as tS (t)kmax. (c) Same as in (b),
but for γ = 2.7 and ω = 2.

the adiabatic approximation in both cases and the stationary
values of the ρk have indeed the same form. It follows that
the closed-form expressions of the Langevin equations are the
same for both processes. The physical difference between the
two processes, however, is reflected by a different scaling of
the drift and diffusion coefficients with the system size. In par-
ticular, in the limit of small order parameter, the SIS model in-
volves moments of P(k) up to the third (see Eq. (17)) while the
highest moment in the CP is the second. Once the Langevin
equations are obtained, writing the partial differential equation
for S (t), its limit for large N and its integration for the calcula-
tion of t× proceeds analogously for both models. It was found
that the CP is always characterized by a t∗ that does not scale
with the system size regardless of the network (as λCP

c is fi-
nite on any network). The cutoff time t×, however, is correctly
predicted for the CP but not for the SIS. A solid mathematical
framework to explore this regime is still to be found.

We have verified that, for γ < 5/2, the avalanche statis-
tics on quenched networks is practically identical to the case
of annealed networks, in agreement with what occurs for sta-
tionary properties [35]. For larger values of γ the stationary
properties of SIS on quenched networks (such as the value
of the epidemic threshold) are governed by the interplay of
hubs which effectively “interact at distance” giving rise to
long-range percolation patterns [26]. The investigation of
how these highly nontrivial effects influence critical avalanche
statistics for quenched networks with γ > 5/2 remains a very
challenging open problem both from the numerical and from
the analytical point of view.
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Appendix A: Avalanche size distribution

Figure 5 displays the avalanche size distribution obtained
on annealed networks. As explained in the main text,
the power-law exponent τ = 3/2 is easily understood
from Eq. (11) and from the quadratic growth of the aver-
age avalanche size with the avalanche duration [15]. The
avalanche size cutoffs z× for both classes of networks are un-
derstood again using θ = 2 and in particular they are the
square of the cutoffs of the survival probability. The drop of
P(z) for small values of z in heterogeneous networks mirrors
the exponential decay of the first temporal regime. During
such a decay, avalanche size and duration scale linearly as, for
short avalanches, an infection event increasing z by 1 gener-
ally increases t only of the healing time of the newly infected
node, i.e., 1/µ = 1 on average. Hence, for short avalanches
〈z〉 ∝ t/µ. It follows that the rescaling is the same for both
observables.

Appendix B: The role of the upper cutoff of the degree
distribution

The cutoff t× is predicted to depend only on N in homoge-
neous networks, Eq. (14), while it explicitly depends on γ and
ω in heterogeneous networks, Eq. (16). The relation between
t× and γ is explicitly assessed in Fig. 2. Figure 6 verifies the
relationship between t× and ω by keeping all parameters fixed
except for ω. For large γ values, networks are homogeneous
regardless of the ω value. For heterogeneous networks, in
turn, Nh depends on γ, ω and N [36].



9

102 105 108

10−6

10−4

10−2

100

N = 104

N = 105

N = 106

N = 107

N = 108

Z−1/2

101 103 105 107

Avalanche size

10−7

10−4

10−1

10−2 101

10−3

10−1

10−1 102

10−3

101

S
u

rv
iv

al
p

ro
b

ab
ili

ty

b

a

z/Nh

z/N

z3
/
2
S

(z
)k
m
a
x

z3
/
2
S

(z
)

Figure 5. Survival probability of the avalanche size for critical SIS
avalanches in annealed networks. (a) We set γ = 5.3, ω = 4.3, k0 =

bkmin(γ − 1)/(γ − 2)c = b〈k〉c and we consider 107 realizations of the
SIS process for each value of the system size N. The inset displays
the same data as in the main panel with the abscissa rescaled as z/N
and with the ordinate rescaled as z3/2S (z). (b) We set γ = 2.1, ω = 2,
k0 = bkmin(γ − 1)/(γ − 2)c = b〈k〉c and we consider 109 realizations
of the SIS process for each value of the system size N. The inset
displays the same data as in the main panel with the abscissa rescaled
as z/Nh and with the ordinate rescaled as z3/2P(z)kc.

Appendix C: Derivation of the Langevin equations

The derivation of the Langevin equations proceeds in the
same way as in [19, 27]. The Langevin equations for the vari-
ables nk are

ṅk = −nk + λ
k
〈k〉

(1 − ρk)
∑

k′
k′P(k′)nk′

+

√
nk + λ(1 − ρk)

k
〈k〉

∑
k′

k′P(k′)nk′ ξk ,

(C1)

Diving by NP(k) we obtain

ρ̇k = −ρk + λk(1 − ρk)Θ

+

√
1

NP(k)

[
ρk + λk(1 − ρk)Θ

]
ξk ,

(C2)
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Figure 6. Survival probability for critical SIS avalanches in annealed
networks. (a) We set γ = 5.3, N = 106, k0 = bkmin(γ − 1)/(γ − 2)c =

b〈k〉c and we consider 107 realizations of the SIS process for each
value of ω. The inset displays the same data as in the main panel
with the abscissa rescaled as t/tc(N) and with the ordinate rescaled as
tS (t). (b) We set γ = 2.1, N = 106, k0 = bkmin(γ − 1)/(γ − 2)c = b〈k〉c
and we consider 107 realizations of the SIS process for each value
of ω. The inset displays the same data as in the main panel with
the abscissa rescaled as t/tc(Nh) and with the ordinate rescaled as
tS (t)kmax.

and using the definition of Θ

Θ̇ = Θ

−1 + λ
∑

k

k2

〈k〉
(1 − ρk)P(k)


+

1
〈k〉

∑
k

kP(k)

√
1

NP(k)

[
ρk + λk(1 − ρk)Θ

]
ξk .

(C3)

Note that the leading order in Eq. (C2) is linear in ρk regard-
less of the value of λ, implying a fast exponential decay to-
ward their asymptotic (average) values, while linear terms are
suppressed in Eq. (C3) by setting λ = λc and hence Θ is a
slowly varying variable at criticality. Therefore, the adiabatic
approximation can be performed at the critical point. Setting
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ρ̇k = 0 and λ = λc yield

ρk =
λckΘ

1 + λckΘ

+
1

1 + λckΘ

√
1

NP(k)

[
ρk + λck(1 − ρk)Θ

]
ξk .

(C4)

In the above expression, the stochastic term vanishes in the
thermodynamic limit. Therefore we can rewrite Eq. (C4) by
replacing ρk in the square root with its leading (deterministic)
term, so to express ρk entirely as a function of Θ, obtaining

ρk =
λckΘ

1 + λckΘ
+

√
2λckΘ

NP(k)(1 + λckΘ)
ξk. (C5)

Replacing this expression in the deterministic term of Eq. (C3)
gives

Θ

−1 + λc

∑
k

k2P(k)
〈k〉

1
1 + λckΘ

−
λcΘ

∑
k

k2P(k)
〈k〉

√
1

NP(k)
2λckΘ

1 + λckΘ
ξk ,

(C6)

while the stochastic term takes the form∑
k

kP(k)
〈k〉

√
1

NP(k)
2λckΘ

1 + λckΘ
ξk . (C7)

The overall contribution to the new stochastic term in the
equation for Θ̇ is∑

k

kP(k)
〈k〉

√
1

NP(k)
2λckΘ

1 + λckΘ
(1 − λckΘ) ξk =√∑

k

k2P(k)
N〈k〉2

2λckΘ

1 + λckΘ

(
1 − λckΘ

)2
ξ .

(C8)

Note that, in inserting the sum into the square root, we also re-
place the individual noises ξk with an overall noise ξ by means
of the central limit theorem. Defining ∆ = λc

〈k2〉

〈k〉 − 1 and sum-

ming and subtracting the quantity λc
〈k2〉

〈k〉 Θ, the closed-form of
the Langevin equation for Θ is

Θ̇ = Θ(∆ − λcΩ[Θ]) +

√
2λcΘ

N
Λ[Θ] ξ , (C9)

where 
Ω[Θ] =

∑
k

k2P(k)
〈k〉

λckΘ

1 + λckΘ

Λ[Θ] =
∑

k

k3P(k)
〈k〉2

(1 − λckΘ)2

1 + λckΘ

. (C10)

The two summations above can be easily performed if Θ �

1/λckmax. Under this assumption we have Ω = λcΘ〈k3〉/〈k〉
and Λ = 〈k3〉/〈k〉2. Replacing these expressions in Eq. (C9)
we obtain Eq. (17). Figure 7 shows that the assumption Θ �

1/λckmax holds if the dynamics is initialized with sufficiently
small values of Θ, as we always do in our simulations.

0 250 500 750
Time

10−6

10−3

Θ

γ = 2.1

γ = 2.5

γ = 2.9

Figure 7. Trajectories of the order parameter Θ. We use here N = 108

and ω = 2. Each realization is initialized with k0 = bkmin(γ − 1)/(γ −
2)c = b〈k〉c. Solid lines correspond to a single trajectory of the order
parameter for different values of γ. Dashed lines correspond to the
bound 1/λckmax.

Appendix D: The survival probability function

From Eq. (17) an equation for S (t|Θ0) can be derived using
standard techniques [34]

∂

∂t
S (t|Θ0) = −

〈k〉〈k3〉

〈k2〉2
Θ2

0
∂

∂Θ0
S (t|Θ0)

+
〈k3〉

〈k〉〈k2〉

Θ0

N
∂2

∂Θ2
0

S (t|Θ0) ,
(D1)

with the boundary conditions

S (t|Θ0 = 0) = 0 and
∂

∂Θ0
S (t|Θ0)

∣∣∣∣∣
Θ0=1

= 0 , (D2)

expressing the absorbing nature of the barrier in Θ = 0 and the
reflecting nature of the barrier in Θ = 1. The initial condition
on Θ explicitly depends on the system size as Θ0 = k0/(N〈k〉).
We are interested in deriving the decay of S (t) over time
and this requires the thermodynamic limit to be taken, so we
need an initial condition that does not depend on the system
size [27]. We change variable from Θ0 to k0 = Θ0N〈k〉. In
this way, if we fix the initial condition to be such that only a
single node with degree k0 = 〈k〉 is infected, then Θ0 = 1/N.
We obtain

∂

∂t
S (t|k0) = −

〈k3〉

〈k2〉2

k2
0

N
∂

∂k0
S (t|k0) +

〈k3〉

〈k2〉
k0
∂2

∂k2
0

S (t|k0) . (D3)

where now the thermodynamic limit N → ∞ can be taken.
The coefficient of the drift term scales as

〈k3〉

〈k2〉2
N−1 ∼ kγ−(2+ω)

max (D4)

if 2 < γ ≤ 3 while it scales as k−ωmax if 4 < γ. Analogously, the
diffusion coefficient scales as

〈k3〉

〈k2〉
∼ kmax (D5)
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if 2 < γ ≤ 3 and it converges to a constant for γ > 4.
For γ > 4 we have a “standard” (in the sense of Ref. [15])

diffusive scenario where the drift term tends to zero (for any
ω > 0) and the diffusion coefficient converges to a constant.
For 2 ≤ γ < 3 the diffusion coefficient diverges and the drift
term again tends to zero unless γ > 2+ω, which is impossible
if ω ≥ γ − 1. This condition is always met in our numeri-
cal simulations when 2 < γ < 3. It follows that for large N
the dynamics is dominated by the diffusion term, for both ho-
mogeneous and heterogeneous networks, in complete analogy
with the CP [27]. In the limit of large but finite N the drift term
can be neglected and the solution to the resulting equation is
Eq. (18).

The finite-size cutoff of S (t) can be estimated from the av-
erage duration of avalanches [27]. For it to be computed, we
first need to compute T1(k0) =

∫ ∞
0 S (t|k0)dt. Integrating in

time Eq. (D3) we obtain

d2T1(k0)
dk2

0

−
k0

N〈k2〉

dT1(k0)
dk0

= −
〈k2〉

〈k3〉k0
, (D6)

with boundary conditions, obtained integrating Eqs. (D2),
given by T1(0) = 0 and T ′1(ktot) = 0, where ktot = N〈k〉/2
is the total number of edges. The solution is given by

T1(k0) =√
2N〈k2〉

∫ k0/
√

2N〈k2〉

0
du eu2

∫ √N〈k〉2/8〈k2〉

u

〈k2〉

〈k3〉

dv
v

e−v2
,

(D7)

as can be verified by direct substitution.
Defining T2(k0) = 2

∫ ∞
0 tS (t|k0) and integrating again

Eq. (D3) we get

d2T2(k0)
dk2

0

−
k0

N〈k2〉

dT2(k0)
dk0

= −
2
k0

〈k2〉

〈k3〉
T1(k0) . (D8)

The solution is given by

T2(k0) = 2N〈k2〉

∫ k0/
√

2N〈k2〉

0
dueu2

∫ √N〈k〉2/8〈k2〉

u
G(t)e−t2

dt ,

(D9)
with

G(t) = 2
(
〈k2〉

〈k3〉

)2

t−1
∫ t

0
eu2

du
∫ √N〈k〉2/8〈k2〉

u

dv
v

e−v2
. (D10)

For large N we can approximate the upper limit of the outer
integral in Eq. (D9) with 0 and noting that

√
N〈k〉2/8〈k2〉 di-

verges we get

T2(k0) ≈ k0

√
2N〈k2〉

∫ ∞

0
G(t)e−t2

dt , (D11)

so that the size-dependent cutoff time t×(N) scales according
to Eq. (14) if 〈k3〉 is asymptotically finite (γ > 4), while it
scales as Eq. (20) if 2 < γ ≤ 3.
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Figure 8. Critical point determination and its importance. (a) The
susceptibility for the random regular graph with N = 106 and k = 10
is computed for different values of λ, with a resolution 2.5 · 10−5. (b)
Rescaled survival probability for the random regular graph with k =

10. The abscissa is rescaled as t/tc(N) and the ordinate is rescaled as
tS (t). The inset shows the same data but the axes are not rescaled.
The two black curves represent N = 104 and N = 105. The red, blue
and green lines represent data for N = 106 obtained using the three
values of the λ marked by the dashed lines of the same color in panel
(a).

Appendix E: Determination of the critical point in quenched
networks

Figure 8 shows the importance of a precise estimation of
the critical point on quenched networks. Figure 8a shows the
susceptibility obtained on a random graph with N = 106 as λ
is varied. The critical point is determined as the value of the
spreading rate that maximizes the susceptibility, marked by
the blue dashed line. Figure 8b shows three curves obtained
using three different values of λ, the critical one and the two
closest values for which we studied the susceptibility (resolu-
tion set to 2.5·10−5). Despite the curves look extremely similar
(inset), the data collapse is strongly impacted by λ. Figure 8b
shows this by slightly increasing or decreasing λ with respect
to to the critical value.
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