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Using a simplified model for a non-Brownian suspension, we numerically study the response of
athermal, overdamped, frictionless disks in two dimensions to isotropic and uniaxial compression,
as well as to pure and simple shearing, all at finite constant strain rates ε̇. We show that isotropic
and uniaxial compression result in the same jamming packing fraction φJ , while pure shear and
simple shear induced jamming occurs at a slightly higher φ∗

J , consistent with that found previously
for simple shearing. A critical scaling analysis of pure shearing gives critical exponents consistent
with those previously found for both isotropic compression and simple shearing. Using orientational
order parameters for contact bond directions, we compare the anisotropy of the force and contact
networks at both lowest nematic order, as well as higher 2n-fold order.

I. INTRODUCTION

In a recent work [1] we considered isotropic vs uniaxial
compression, within a simple granular model of bidis-
perse non-Brownian spheres in suspension, as a means
for numerically studying the effect of stress anisotropy on
the jamming transition of frictionless particles. Isotropic
compression at a finite rate results in configurations with
an isotropic stress; there is a finite pressure but no shear
stress. Uniaxial compression at a finite rate results in
configurations with an anisotropic stress; there is both
a finite pressure and a finite shear stress, similar to the
case of sheared systems. Our analysis found that, in three
dimensions, jamming via isotropic and uniaxial compres-
sion display the same universal critical behavior, despite
the difference in stress symmetry.

In this work we consider more generally the differences
between isotropically compressed, uniaxially compressed,
pure sheared, and simple sheared configurations, when
driven at a finite strain rate ε̇, as one approaches and
goes above the jamming transition [2–4]. For simplicity
we consider the case of circular disks in two dimensions,
using the same simple idealized model of a non-Brownian
suspension as we used previously [1, 5].

We compare the pressure p and shear stress σ arising
from such deformations. Just below the jamming φJ , we
find the pressure from isotropic and uniaxial compression
to be equal within some range of φ depending on the ini-
tial sample preparation. The pressure from pure shearing
and simple shearing are also roughly equal. However the
pressure from pure/simple shearing is roughly an order
of magnitude smaller than that from compression. The
pressures in all four cases converge as φ increases above
φJ . For the shear stress σ, we again find pure and simple
shearing to give the same result. Below φJ , the shear
stress for uniaxial compression becomes greater than for
pure shear as φ decreases, while above φJ it is reversed.
From a comparison of the stress for these four deforma-
tions, we infer that the jamming φJ , and the critical ex-
ponents at jamming, are the same for isotropic and uni-

axial compression. However we argue that the jamming
φ∗J for pure and simple shearing is slightly larger than
the φJ for compression. A critical scaling analysis for
the case of pure shear, presented in Appendix B, gives
a value for φ∗J consistent with that previously found for
simple shearing, while the critical exponents are consis-
tent with those found for both simple shearing and for
isotropic compression.

We also consider geometrical measures of the configu-
rational contact network, particularly the average num-
ber of contacts per particle Z, and the fraction of contacts
between the different types of particles in our bidisperse
system. We find that, comparing the four types of de-
formation, these geometrical measures show small differ-
ences when one is below the jamming φJ , but that they
become equal above φJ .

Finally, we compare the system anisotropy that re-
sults from uniaxial compression, pure shearing, and sim-
ple shearing. We show that the stress tensor anisotropy,
measured by the macroscopic friction µ = σ/p, behaves
quite differently when comparing uniaxial compression
with pure and simple shearing. For pure/simple shear-
ing µ is monotonically decreasing as φ increases, while
for uniaxial compression µ has a sharp minimum at φJ .
The anisotropy of the contact network, as measured by
the fabric tensor, shows similar behavior. We generalize
these anisotropy measures to higher order orientational
order parameters of both the force and contact network.
Comparing uniaxial compression to pure shearing, we
find that the main difference in anisotropy is the relative
magnitude of the isotropic to nematic terms; higher or-
der orientational moments behave similarly. In contrast,
comparing simple shearing to pure shearing, we find that
the isotropic and nematic terms are roughly equal, while
the difference is in the higher order moments, which be-
come equal as one approaches and goes above jamming,
but become increasingly different as one goes below jam-
ming.

The remainder of our paper is organized as follows.
In Sec. II we present our model and numerical meth-
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ods. In Sec. III we present our results for the the sys-
tem stress, for uniaxial compression, isotropic compres-
sion, pure shearing, and simple shearing. In Sec. IV we
present a discussion of the anisotropy of the configura-
tional contact and force networks in these cases. In Sec. V
we summarize our results. In Appendix A we provide a
more complete discussion of the compression ensembles
we use, discussing the dependence of the stress on the
initial packing fraction φinit from which compression be-
gins, and considering the φinit → 0 limit. In Appendix B
we provide a more detailed discussion of pure shearing,
including a critical scaling analysis.

II. MODEL AND METHODS

Our model has been described in detail elsewhere [1, 5].
We simulate athermal (T = 0), bidisperse, frictionless
soft-core disks in two dimensions, with equal numbers of
big and small disks with diameter ratios db/ds = 1.4 [3].
Particles, with centers of mass at positions ri, interact
with a one-sided harmonic contact repulsion,

U(rij) =


1
2ke

(
1− rij

dij

)2

, rij < dij

0, rij > dij

(1)

where ke is a stiffness constant, rij = |ri − rj | and dij =
(di + dj)/2. The elastic force acting on particle i due to
its contact with j is then,

f elij = −dU(rij)

dri
. (2)

As a simplified model for particles in solution, we add a
dissipative force due to the viscous drag on the particle
with respect to the local velocity of the suspending host
medium [4, 6, 7],

fdisi = −kdVi
[
dri
dt
− vhost(ri)

]
, (3)

where kd is a dissipative constant, Vi is the area of parti-
cle i, and vhost(r) is the velocity of the host medium at
position r. Particle motion is then determined from these
forces using Newton’s equation. We take particle masses
to be proportional to their area, mi ∝ Vi. Because our
particles are circular and frictionless, we ignore particle
rotations.

For the linear deformations we consider in this work,
the background host velocity can be expressed in terms
of the strain rate tensor ε̇,

vhost(r) = ε̇ · r. (4)

We will consider the particular cases of uniaxial compres-
sion (uni), isotropic compression (iso), pure shear (ps),

and simple shear (ss), with respective strain rate tensors,

ε̇uni = −
[
ε̇ 0
0 0

]
, ε̇iso = −1

2

[
ε̇ 0
0 ε̇

]
, (5)

ε̇ps = −1

2

[
ε̇ 0
0 −ε̇

]
, ε̇ss =

[
0 ε̇
0 0

]
. (6)

For uniaxial compression, we compress along the x̂ direc-
tion holding the ŷ direction fixed, while for pure shearing
we compress along x̂ while expanding along ŷ at the same
rate. Note, the factor of 1/2 in ε̇iso is so that the rate of
area change is the same for ε̇iso as for ε̇uni. The factor of
1/2 in ε̇ps is so that we can then view uniaxial compres-
sion as a superposition of an isotropic compression plus
a pure shear,

ε̇uni = ε̇iso + ε̇ps. (7)

The simple shear can be viewed as a pure shear of rate
ε̇ with compression along the (1,−1) diagonal, com-
bined with a rotation of the system with angular velocity
−(ε̇/2)ẑ [8].

Our particles are placed in a rectangular box with side
lengths L = (Lx, Ly), centered at r = 0. For uniaxial
compression, isotropic compression, and pure shear, as
we make our elastic deformations, the box lengths vary
according to

dL

dt
= ε̇ · L. (8)

At each integration step, particles that would fall out-
side the system box are returned to the box using pe-
riodic boundary conditions [1]. For simple shear, the
box lenghts (Lx, Ly) stay constant, and the box skews to
a rhomboidal shape at a fixed rate, with Lees-Edwards
boundary conditions being applied [9]. A sketch showing
the geometry of our four linear deformations is shown in
Fig. 1.

To carry out our numerical simulations, we recast our
model in terms of three dimensionless parameters [10].
The first is the packing fraction φ,

φ =
1

LxLy

∑
i

Vi. (9)

For both isotropic and uniaxial compression, φ increases
with time as the system gets compressed. For the area-
preserving pure and simple shear deformations, φ stays
constant.

The second is the quality factor Q, which measures
the strength of the dissipative force relative to the elastic
force. If τd = ms/kdVs and τe =

√
msd2s/ke are the time

scales associated with the dissipative and elastic forces
[10], we have,

Q =
τd
τe

=

√
mske

kdVsds
(10)
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(a) (b) 

(c) (d) 

FIG. 1. The geometry of the four linear deformations de-
scribed by the strain rate tensors of Eqs. (5) and (6): (a) uni-
axial compression, (b) isotropic compression, (c) pure shear,
and (d) simple shear.

As Q decreases, inertial effects decrease. For Q suffi-
ciently small, behavior becomes independent of the par-
ticular value of Q and one enters the overdamped limit
corresponding to massless particles, ms → 0 [10, 11]. For
our simulations we will use Q = 1, which is sufficiently
small to put us in this overdamped limit [10].

In the ms → 0 overdamped limit both τe and τd → 0,
however we can define a time scale that remains finite
[10],

τ0 =
τ2e
τd

=
τe
Q

=
kdVsd

2
s

ke
. (11)

Our third dimensionless parameter is then the dimen-
sionless strain rate,

ε̇τ0. (12)

Henceforth we will take our unit of length to be ds = 1,
and our unit of time to be τ0 = 1. Quoted values of ε̇
are therefore the same as ε̇τ0. We consider strain rates
spanning the range ε̇ = 10−8.5 to 10−4.

We use LAMMPS [12] to integrate the equations of
motion, using a time step of ∆t/τ0 = 0.1. Unless oth-
erwise noted, we use N = 32768 total particles. Our
simulations for isotropic and uniaxial compression start
with an initial configuration at low packing φinit = 0.4,
constructed as follows. We place particles down one by
one at random, but making sure that there are no parti-
cle overlaps; if an overlap occurs, we discard that parti-
cle and try again until all N particles are placed in the
box. For isotropic compression, we use a square box with
Lx = Ly. For uniaxial compression we start at φinit with
a rectangular box with Ly < Lx, such that the box be-
comes roughly square by the time we have compressed
to the jamming φJ . For uniaxial and isotropic compres-
sion we average our results over 20 independent initial

configurations. For our pure shear simulations we start
at each φ with a configuration generated by our uniaxial
compression protocol, using the same strain rate ε̇. For
each ε̇ we shear to a total strain ε ∼ 1, dropping an initial
ε ∼ 0.2 to reach the sheared steady-state, and then aver-
aging over the remainder of the run (see Appendix B for
details). We then average our results over 10 indepen-
dent initial configurations, except for our slowest rates
ε̇ ≤ 10−7, where we use only a single initial configura-
tion. For simple shear, we start at each φ with a totally
random initial configuration, and energy relax the system
without shearing for a time 106∆t to remove any initial
unphysically large particle overlaps. We then shear the
system, discarding the first ε ∼ 1 to reach the sheared
steady-state, and then average over an additional strain
of ε ∼ 9.

III. RESULTS: STRESS

In this section we consider the stress generated in the
system by the elastic deformations. We consider only
the stress arising from the elastic forces, since this is the
dominant term at low strain rates. The stress tensor can
be expressed in terms of the force moments as [3],

P =
1

LxLy

〈∑
i<j

f elij ⊗ (ri − rj)

〉
, (13)

where 〈· · · 〉 denotes an average over our independent runs
for compression, and an average over both strain and
independent runs for shearing.

A dimensionless stress tensor can be defined as [10],

p =
τ2e
ms

P. (14)

The stress tensor may be written in the general form,

p =

[
p+ δp pxy
pxy p− δp

]
, (15)

where the pressure p is the isotropic part of the stress,
given by the average of the eigenvalues of p. The
anisotropic part of the stress is given by the deviatoric
stress σ, determined as half the difference of the eigen-
values,

σ =
√
δp2 + p2xy (16)

We will refer to σ as simply the shear stress.
For isotropic compression, symmetry gives that the

stress tensor is isotropic, and so σ = 0. For both uni-
axial compression and pure shear, as in Fig. 1, symmetry
requires the stress tensor be diagonal, so that pxy = 0
and the shear stress is σ = δp. For simple shearing, if
our system were a uniform elastic continuum one would
find δp = 0 and so σ = |pxy|. For our granular system we
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will find that, while pxy � δp, δp does not strictly vanish,
and so σ is given by the full expression of Eq. (16).

The pressure p and shear stress σ thus give two pa-
rameters characterizing the stress tensor. The third pa-
rameter needed to completely specify the stress tensor
can be taken to be the orientation of the maximal stress
axis, given by the eigenvector of the maximal eigenvalue
of p. We denote this by ϑ2, the angle of the maximal
stress axis with respect to the x̂ direction. For our uni-
axial compression and pure shear, where the maximal
stress direction is along x̂ (see Fig. 1(a)(c)), symmetry
requires ϑ2 = 0. For simple shear, since pxy � δp, we
have ϑ2 ≈ −π/4.

The area-preserving process of shearing at a finite rate
defines a steady-state ensemble of configurations that be-
comes independent of the initial starting configuration,
provided one shears sufficiently long. This has previously
been observed for the case of simple shearing [13], and in
Appendix B we confirm that it is also the case for pure
shearing. Our results below for p and σ for both pure and
simple shearing represent a time average over configura-
tions, once this steady-state limit has been reached. The
resulting values of p, σ and ϑ2 are determined solely by
the parameters φ, Q and ε̇.

For isotropic and uniaxial compression, however, the
situation is not as simple. As one compresses, φ in-
creases, and the ensemble of configurations one passes
through can depend on the ensemble of initial configura-
tions one starts the compression from. In our case, where
we start from configurations of non-overlapping particles
at an initial packing φinit, our values of p and σ can de-
pend not only on the parameters φ, Q, and ε̇, but also
on the additional parameter φinit. In Appendix A we
consider this dependence of the stress on φinit. We find
that as φinit decreases, the stress for both isotropic and
uniaxial compression approaches a well defined φinit → 0
limit. For φinit not too small, the resulting p(φ) and σ(φ)
approach this limiting curve as φ reaches the dense limit,
just below jamming. Since using very small φinit can be
computationally expensive for the large N = 32768 sys-
tem size that we wish to use, to avoid finite size effects
near jamming, here we use φinit = 0.4. We find that
this φinit is sufficiently small that our results are roughly
independent of φinit once φ & 0.80. Further details are
presented in Appendix A.

In Fig. 2(a) we plot p vs φ, for several different strain
rates ε̇, for our four types of deformation: uniaxial com-
pression, isotropic compression, pure shear, and simple
shear. The vertical dashed line in this figure shows
the jamming transition for isotropic compression, φJ =
0.8415, as we have determined previously [5]. As found
before [1, 4, 5, 7], we find here (not shown) that all four
deformations have a linear rheology, p ∝ ε̇, provided one
is below and not too close to jamming. Above jamming,
p approaches a constant as ε̇ → 0. Comparing the four
cases, for φ . φJ , we see that piso is equal to puni, pps is
equal to pss, but the shearing pressure is about a factor
10 smaller than that of compression. For φ & φJ , how-
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FIG. 2. (a) Pressure p, and (b) shear stress σ, vs packing φ
for uniaxial compression (�), isotropic compression (N), pure
shear (◦), and simple shear (�) of N = 32768 particles, at
different strain rates ε̇ = 10−4, 10−6 and 10−8. The ver-
tical dashed line indicates the isotropic compression-driven
jamming φJ = 0.8415. The estimated error in the data is
typically smaller than the size of each data point symbol. For
the shear stress in (b) σiso = 0 and is not shown.

ever, we see that the p for all four cases are becoming
equal as ε̇→ 0.

In Fig. 2(b) we similarly plot σ vs φ at different ε̇,
for uniaxial compression, pure shear, and simple shear
(σiso = 0 by symmetry). As with the pressure p, the
shear stress σ ∝ ε̇ if one is not too close to jamming,
while σ approaches a constant as ε̇→ 0 above jamming.
Here we see that that, as with the pressure, σps is equal
to σss. Comparing shearing to uniaxial compression, we
see that σuni and σps are generally of the same order of
magnitude, but σps < σuni for φ . φJ , while σps > σuni
for φ & φJ . As ε̇→ 0, σps/σuni → 1 at φ ≈ φJ .

Next we consider some geometrical properties of our
configurations. In Fig. 3(a) we plot the average number
of contacts per particle Z vs φ for our four types of de-
formation, at the two small strain rates ε̇ = 10−7 and
10−8. As was observed before for isotropic compression
[1] and simple shearing [14–16], we find that, as ε̇→ 0, Z
stays finite and varies roughly linearly with φ for φ < φJ ,
while at φJ and above we see the square root singular-
ity, (Z − ZJ) ∼ (φ − φJ)1/2 associated with jamming
[1, 3, 17]. Here our value of ZJ at jamming is slightly
below the isostatic value of Zisostatic = 2d = 4 since, for
simplicity, we have not excluded rattler particles when
computing Z [2, 3].

Our observation that Z approaches a constant as ε̇→ 0
indicates that, at low strain rates, the system forms a
well defined contact network at all packings, even below
φJ . The extent of the particle overlaps at these con-
tacts varies ∝ ε̇, giving rise to the linear rheology in p
below φJ , however the geometry of the contact network
remains the same. This is the hard-core limit. Similar
to p, the contact numbers Z for the four cases appear
to become equal for φ & φJ , but differ below φJ , where
Ziso is roughly equal to Zuni, while Zps= Zss is noticeably
smaller than the other two.

In Fig. 3(b) we plot the fraction of the particle con-
tacts that are between two small particles, two big par-
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FIG. 3. (a) Average number of contacts per particle Z vs φ
for uniaxial compression, isotropic compression, pure shear,
and simple shear at the two strain rates ε̇ = 10−7 and 10−8.
Rattler particles are included in the calculation of Z. (b)
Fraction of the contacts that are between two small parti-
cles, two big particles, and a big and small particle, vs φ for
uniaxial compression, isotropic compression, pure shear, and
simple shear at ε̇ = 10−7. The vertical dashed line indicates
the isotropic compression-driven jamming φJ = 0.8415. The
system has N = 32768 particles. The estimated error in the
data is typically smaller than the size of each data point sym-
bol.

ticles, and between one small and one big particle vs φ
for the strain rate ε̇ = 10−7. Similar to Z and p, we
see that above φJ these fractions become equal for all
cases. Below φJ we see that pure and simple shearing
produce more small-small contacts and fewer big-big con-
tacts than does isotropic or uniaxial compression. Our
above results thus show that, in the jammed state above
φJ , it is only the shear stress σ that clearly distinguishes
between compressive vs shearing deformations.

Next we consider whether all four cases jam at exactly
the same critical packing fraction φJ . To investigate
this we compute the stress ratios between the different
cases. In Fig. 4(a) we compare uniaxial with isotropic
compression, plotting puni/piso vs φ, for several differ-
ent strain rates ε̇. We see no particular features as φ
passes through φJ . Since, as ε̇ → 0, the bulk viscosity
ζ ≡ p/ε̇ ∼ (φJ − φ)−β diverges at φJ with the critical
exponent β, the absence of any features in puni/pps near
φJ strongly suggests that puni and piso jam at exactly the
same φJ and their ζ diverge with the same exponent β.
This conclusion is in agreement with what we explicitly
demonstrated for three dimensions in an earlier work [1].

In Fig. 4(b) we compare pure with simple shearing,
plotting pss/pps vs φ. We similarly see no particular fea-
tures as φ passes through φJ . The same behavior is found
if we look at σss/σps. This suggests that pure and simple
shearing jam at the same packing, with the same critical
exponent β.

In Fig. 4(c) we compare compression with shearing,
plotting puni/pps vs φ. Here we see a very different be-
havior. We find that puni/pps develops a peak just be-
low the isotropic compression-driven φJ ; as ε̇ decreases,
the height of this peak increases and the location of the
peak moves closer to φJ . The same behavior is found for
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FIG. 4. Stress ratios comparing uniaxial compression,
isotropic compression, pure shear, and simple shear. Pressure
ratios (a) puni/piso, (b) pss/pps, (c) puni/pps, and (d) shear
stress ratio σuni/σps vs φ for different strain rates ε̇. The ver-
tical dashed line indicates the isotropic compression-driven
jamming φJ = 0.8415. The system has N = 32768 particles.

σuni/σps in 4(d).

Two possible explanations for such behavior are: (i)
Shearing jams at a slightly higher φ∗J than the φJ for
compression. In this case we would expect, in the limit
ε̇→ 0, that puni/pps diverges as φ→ φJ from below, stays
infinite for φJ < φ < φ∗J , and approaches a finite constant
for all φ > φ∗J . (ii) Shearing jams at the same φJ as does
compression, but with a smaller exponent β∗ < β. In this
case we would expect, in the limit ε̇ → 0, that puni/pps
diverges as φ → φJ from below, but approaches a finite
constant for all φ > φJ . Our data is more consistent with
the possibility (i), since we see that there remains a small
interval above the compressive φJ where the stress ratio
continues to increase as ε̇ decreases. Prior work [7, 18] has
demonstrated that for simple shearing our model jams at
the packing φ∗J = 0.8435 > φJ = 0.8415, and that the
exponent β is the same as found for compression [5]. In
Appendix B we present a detailed critical scaling analysis
of our pure shearing data that confirms that pure shear-
ing indeed behaves the same as simple shearing, with the
same φ∗J > φJ , and the same exponent β.

We have previously noted in Eq. (7) that, with regard
to the strain rate tensor ε̇, uniaxial compression can be
regarded as a superposition of isotropic compression plus
pure shearing. It is therefore natural to wonder whether
a similar superposition holds for the resulting stresses
in these flowing states, if one is in the region where the
rheology is linear. Our results in Fig. 4, however, show
that it does not. Were a superposition of stress to hold,
we would expect puni = piso + pps and σuni = σps (since
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σiso = 0). Our results in Fig. 4, as well as our earlier
results in Ref. [5] (see Fig. 1(b) of that work), show that
for ε̇ ≤ 10−7 we remain in the linear rheology region
for φ up to at least ∼ 0.82. However below φ = 0.82
we see from Figs. 4(a) and 4(d) that puni ≈ piso and
σuni ≈ 2.5σps. In general, we see from Fig. 4(d) that
σuni = σps only at an isolated point close to φJ . Thus
there is no principle of superposition for stress in the
flowing states below φJ .

IV. RESULTS: ANISTROPY

In this section we consider the three elastic deforma-
tions that result in stress anisotropic systems, uniaxial
compression, pure shearing, and simple shearing, and
compare different measures of that anisotropy.

A. Stress and Fabric Anisotropy

We first consider the anisotropy of the stress tensor,
parameterized by the macroscopic friction µ ≡ σ/p. In
Fig. 5(a) we plot µ vs φ, for different strain rates ε̇, for
these three cases. In all cases µ approaches a limiting,
finite valued, curve as ε̇→ 0. We see that both pure and
simple shearing give equal results, µps = µss, except at
the smaller φ below jamming, where µps is slightly larger.

However, as we noted previously for three dimensions
[1], we find a distinct difference comparing uniaxial com-
pression with shearing. For both pure and simple shear-
ing the ε̇→ 0 limiting curve is monotonically decreasing
as φ increases, as was seen previously for simple shear-
ing [19]. In contrast, for uniaxial compression, this curve
develops a cusp-like minimum at φJ . For shearing we
find the value of µ at φJ to be, µJshear ≈ 0.1, while for
uniaxial compression we find µJuni ≈ 0.02. Thus the ratio
µJshear/µ

J
uni ≈ 5. However, the key point is that in all

cases µJ stays finite; the system remains anisotropic at
jamming and above.

For φ < φJ , the smaller value of µuni for uniaxial com-
pression is primarily due to the much larger pressure
present in uniaxial compression compared to shearing.
As seen in Fig. 4(c), close below φJ we have puni/pshear ≈
10. In contrast, as seen in Fig. 4(d), the shear stress is
σuni/σshear ≈ 2.7. So µshear/µuni ≈ 3.7; upon approach-
ing φJ , this ratio increases. Above φJ , we see from
Fig. 4(c) that puni/pshear ≈ 1, while σuni/σshear ≈ 0.5.
Thus, above φJ we have µshear/µuni ≈ 2, and this dif-
ference is now due entirely to the difference in the shear
stress.

Finally we can ask about the direction ϑ2 of the maxi-
mal stress axis. As noted earlier, for uniaxial compression
and pure shear, symmetry requires ϑ2 = 0; the maximal
stress axis is located along the compressive x̂ direction.
For simple shear we find (details below, see Fig. 17) that
ϑ ≈ −π/4.
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FIG. 5. (a) Stress tensor anisotropy µ = σ/p, and (b) fabric
tensor anisotropy ∆λ vs φ for different strain rates ε̇, for uni-
axial compression (◦), pure shearing (�) and simple shearing
(×). The strain rates vary from ε̇ = 10−4 to 10−8.5 as the
curves go from top to bottom; for simple shear the slowest
rate is 10−8. The vertical dashed line indicates the isotropic
compression-driven jamming φJ = 0.8415. The system has
N = 32768 particles. The estimated error in the data is typ-
ically smaller than the size of each data point symbol.

It is interesting to ask how much of the difference in
anisotropy, comparing uniaxial compression to shearing,
is due to anisotropy in the force network, as measured by
the stress tensor, vs how much is due to the geometrical
anisotropy of the contact network. We therefore consider
the behavior of the fabric tensor [20]. If r̂ij = (ri−rj)/rij
is the unit vector pointing along a bond connecting two
particles in contact, and Mb = NZ/2 is the total number
of contact bonds in the configuration, the fabric tensor
can be defined as,

F =

〈
1

Mb

∑
(i,j)

r̂ij ⊗ r̂ij

〉
, (17)

where the sum is over all bonds (i, j) in the contact net-
work. Since, for circular particles, the elastic contact
force f elij = f elij r̂ij is always parallel to r̂ij , if we define

the force-moment as hij ≡ f elij rij , we can rewrite the
stress tensor of Eq. (13) as,

P =

〈
1

LxLy

∑
(i,j)

hij r̂ij ⊗ r̂ij

〉
. (18)

We thus see that the fabric tensor is similar to the stress
tensor, but without weighting each bond by its force-
moment. The fabric tensor is thus a purely geometric
measure of the contact network.

If we define θij as the angle r̂ij makes with respect to
x̂, then we can write,

F =

 〈cos2 θij〉 〈cos θij sin θij〉

〈cos θij sin θij〉 〈sin2 θij〉

 (19)

=
1

2
I +

1

2

[ 〈cos 2θij〉 〈sin 2θij〉

〈sin 2θij〉 −〈cos 2θij〉

]
(20)
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where I is the identity tensor, and now 〈· · · 〉 represents
a combined average over both bonds within a given con-
figuration and over different independent configurations.
The first piece I/2 is the isotropic part of F , while the
second piece gives the anisotropic part.

The eigenvalues of F are then,

λ± =
1

2
(1±∆λ) , (21)

where

∆λ =
λ+ − λ−
λ+ + λ−

=
√
〈cos 2θij〉2 + 〈sin 2θij〉2. (22)

The quantity (λ+ + λ−)/2 = 1 is the analog of the pres-
sure p, while (λ+−λ−)/2 is the analog of the shear stress
σ. Thus we see that ∆λ for the fabric tensor is analo-
gous to µ = σ/p for the stress tensor. The angle of the
maximal eigenvector with respect to x̂ we will denote by
θ2.

For uniaxial compression and pure shearing, the reflec-
tion symmetry of the deformations y ↔ −y, implies the
symmetry θij ↔ −θij . This leads to the conclusion that
〈sin 2θij〉 = 0. Thus ∆λ = |〈cos 2θij〉| and θ2 = 0. For
simple shearing, there is no such symmetry and one must
use the full expression of Eq. (22). Similar to the stress
tensor, we find that for simple shearing θ2 ≈ −π/4.

In Fig. 5(b) we plot ∆λ vs φ for different strain rates
ε̇, for uniaxial compression, pure shearing, and simple
shearing. We see qualitatively the same behavior as
found for µ. We find ∆λps = ∆λss, with some small de-
viations at the lower φ. Both ∆λps and ∆λss are mono-
tonically decreasing as φ increases, while ∆λuni has a
cusp-like minimum at φJ , and ∆λJps/∆λ

J
uni ≈ 5. The

close correspondence of the behavior of ∆λ with that of
µ suggests that the geometry of the contact network is
the primary mechanism for the anisotropy in the systems.

B. Orientational Order Parameters

The fabric anisotropy ∆λ of Eq. (22) can also be
viewed as the magnitude of the nematic order param-
eter for contact bond directions [21]. Here we generalize
to higher order moments of the anisotropy, by consider-
ing the full angular distribution of bond forces and di-
rections. Henceforth, we will refer to the set of contact
bond directions {r̂ij} as the “contact network.” We will
refer to the set of force-moments {hij r̂ij} as the “force
network.”

Let P(θ, h) be the joint probability distribution that
a given contact bond is in direction θ and has a force-
moment h. Because of the symmetry, r̂ij = −r̂ji and
hij = hji, this distribution has the periodicity P(θ +
π, h) = P(θ, h). We therefore define P(θ, h) as a func-
tion on the range θ ∈ [−π/2, π/2) only, and normalize it
appropriately. We can then define,

P(θ) =

∫ ∞
0

dhP(θ, h) (23)

as the probability density to have a contact bond at angle
θ, independent of its force-moment h, and,

h̃(θ) =

∫ ∞
0

dhP(θ, h)h (24)

as the average force moment per radian at angle θ.
The function h̃(θ) incorporates in its definition the

probability that there will indeed be a contact bond at
angle θ. Alternatively we can ask, what is the average
force-moment on a bond at angle θ, independent of the
likelihood that there is a bond at that orientation. Writ-
ing the joint distribution as P(θ, h) = P(h|θ)P(θ), where
P(h|θ) is the conditional probability to find a force-
moment h, given that there is a bond at θ, we can then
define,

h(θ) =

∫ ∞
0

dhP(h|θ)h =
h̃(θ)

P(θ)
. (25)

To illustrate the difference between h(θ) and h̃(θ), im-
age that all bonds had the same force-moment h; then
we would have h̃(θ) = hP(θ), while h(θ) = h would be
constant.

We can then expand P(θ) in terms of a Fourier series
[22]. We have,

P(θ) =
1

π
+

2

π

∑
n=1

[
An cos 2nθ +Bn sin 2nθ

]
(26)

=
1

π
+

2

π

∑
n=1

S2n cos(2n[θ − θ2n]) (27)

where the Fourier coefficients are given by,

An =

∫ π/2

−π/2
dθP(θ) cos 2nθ = 〈cos 2nθ〉 (28)

Bn =

∫ π/2

−π/2
dθP(θ) sin 2nθ = 〈sin 2nθ〉 (29)

S2n =
√
A2
n +B2

n =
√
〈cos 2nθ〉2 + 〈sin 2nθ〉2 (30)

and θ2n is given by,

tan(2nθ2n) =
Bn
An

=
〈sin 2nθ〉
〈cos 2nθ〉

. (31)

The magnitude and orientation (S2n, θ2n) is just the 2n-
fold orientational order parameter for the bond directions
of the geometrical contact network [21]. Odd order ori-
entational order parameters (i.e., S2n+1) all vanish due
to the symmetry P(θ) = P(θ + π).

Comparing with Eq. (22), we see that S2 ≡ ∆λ; the
fabric tensor anisotropy ∆λ is the same as the magnitude
of the nematic order parameter S2 of the contact network.
The higher moment S4 gives the tetratic order, while S6

gives the hexatic order, etc. Considering the distribution
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P(θ), and its Fourier coefficients S2n, thus generalizes the
fabric tensor to higher order orientational moments.

We can similarly expand h̃(θ) in a Fourier series, to
get,

h̃(θ) =
C0

π
+

2

π

∑
n=1

[
Cn cos 2nθ +Dn sin 2nθ

]
(32)

= C0

[
1

π
+

2

π

∑
n=1

S2n cos(2n[θ − ϑ2n])

]
, (33)

where the Fourier coefficients are given by,

Cn =

∫ π/2

−π/2
dθ h̃(θ) cos 2nθ = 〈h cos 2nθ〉 (34)

Dn =

∫ π

−π/2
dθ h̃(θ) sin 2nθ = 〈h sin 2nθ〉. (35)

Note, C0 = 〈h〉 is just the average force-moment. The
magnitude S2n is then given by,

S2n =

√
C2
n +D2

n

C0
=

√
〈h cos 2nθ〉2 + 〈h sin 2nθ〉2

〈h〉
,

(36)
and the orientation ϑ2n is given by,

tan(2nϑ2n) =
Dn

Cn
=
〈h sin 2nθ〉
〈h cos 2nθ〉

. (37)

The magnitude and orientation (S2n, ϑ2n) therefore gives
the 2n-fold orientational order parameter for the force
network.

We can now relate the above to the stress tensor. Us-
ing the definition of p in Eq. (18), and making the cor-
responding steps that led to Eq. (20), we can write,

p =
Mb

2LxLy

 〈h〉+ 〈h cos 2θ〉 〈h sin 2θ〉

〈h sin 2θ〉 〈h〉 − 〈h cos 2θ〉

 . (38)

Comparing with Eq. (15) we then have,

p = Mb

2LxLy
〈h〉, δp = Mb

2LxLy
〈h cos 2θ〉,

pxy = Mb

2LxLy
〈h sin 2θ〉,

(39)

and so, from Eq. (16), we get,

µ =
σ

p
=

√
〈h cos 2θ〉2 + 〈h sin 2θ〉2

〈h〉
= S2. (40)

Thus S2 ≡ µ is the nematic order parameter of the force
network. The higher moments S2n give higher order
force-orientational information. Considering h̃(θ), and
its Fourier coefficients S2n, thus generalizes the stress
tensor to higher order moments.
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FIG. 6. Probability density P(θ) for the system contact
network to have a bond directed at angle θ with respect to the
compressive direction x̂. Results are plotted vs θ for several
different packing fractions φ at strain rate ε̇ = 10−7. (a) is
for uniaxial compression, while (b) is for pure shearing. The
solid horizontal black line at P = 1/π represents the average
value. The system has N = 32768 particles.

1. Uniaxial Compression vs Pure Shearing

We will first apply the above to the two cases of uni-
axial compression and pure shearing, since they share
the same symmetries. From Figs. 1(a) and 1(c), we see
that these both have the maximal stress axis in the x̂
direction, and the minimal stress axis in the ŷ direction.
The reflection symmetry of the deformations y ↔ −y,
implies the symmetry θij ↔ −θij , and thus we have

P(θ, h) = P(−θ, h). Consequently, P(θ), h̃(θ), and h(θ)
are all symmetric about θ = 0, and so in the plots below
we show results restricted to the range θ ∈ [0, π/2).

In Figs. 6(a) and 6(b) we plot P(θ) vs θ for several
different packing fractions φ at the strain rate ε̇ = 10−7,
for uniaxial compression and pure shearing respectively.
In Figs. 7(a) and 7(b) we similarly plot the corresponding

h̃(θ)/〈h〉; we normalize h̃(θ) by 〈h〉 so that all curves
have a common average of 1/π. We use a common scale
for the vertical axes of both the uniaxial and pure shear
cases, so as to allow an easy visual comparison between
the two. From Figs. 6 and 7 one see that the anisotropy
decreases as one approaches φJ ≈ 0.84. Pure shearing
results in greater anisotropy than uniaxial compression.
The anisotropy of the contact network, given by P(θ),
involves larger, higher order, Fourier components than
does the force network, given by h̃(θ), particularly for
pure shearing.

In Figs. 8(a) and 8(b) we plot h(θ)/π〈h〉 vs θ for the
same parameters as in Figs. 6 and 7. We normalize h(θ)
by π〈h〉 so that all curves have the same average 1/π

as the h̃(θ) curves in Fig. 7. Comparing to h̃(θ) we see
that h(θ) has a somewhat smaller anisotropy, yet the
anisotropy in the force-moments remains sizeable. As
φ → φJ , we see, as might be expected, that the forces
are greater than average for 0 ≤ θ . π/4, and less than
average for π/4 . θ ≤ π/2.

We now quantify the trends seen in Figs. 6 and 7 by
computing the orientational order parameters (S2n, θ2n)
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FIG. 7. Average force-moment h = fel
ij rij per radian at con-

tact bond angle θ, h̃(θ), normalized by the average force mo-
ment 〈h〉, vs θ for several different packing fractions φ at
strain rate ε̇ = 10−7. (a) is for uniaxial compression, while
(b) is for pure shearing. The solid horizontal black line at

h̃/〈h〉 = 1/π represents the average value. The system has
N = 32768 particles.
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FIG. 8. Average force-moment on a contact bond at angle
θ, h(θ) = h̃(θ)/P(θ), normalized by π〈h〉, vs θ for several
different packing fractions φ at strain rate ε̇ = 10−7. (a) is for
uniaxial compression, while (b) is for pure shearing. The solid

horizontal black line at h̃/π〈h〉 = 1/π represents the average
value. The system has N = 32768 particles.

and (S2n, ϑ2n). Because of the symmetry θ ↔ −θ, we
must have Bn = 〈sin 2nθ〉 = 0 and Dn = 〈h sin 2nθ〉 = 0.
From Eqs. (30) and (36) we therefore have,

S2n = |〈cos 2nθ〉| and S2n = |〈h cos 2nθ〉|/〈h〉, (41)

and from Eqs. (31) and (37) we have for the orientations,

tan(2nθ2n) = 0 and tan(2nϑ2n) = 0. (42)

We therefore have θ2n = 0 when 〈cos 2nθ〉 > 0, and θ2n =
π/2n when 〈cos 2nθ〉 < 0, and similarly for ϑ2n.

Because θ2n and ϑ2n are restricted to only these two
possible values, we will drop the absolute value sign in
the definitions of S2 and S2n and henceforth, for uniaxial
compression and pure shear, adopt the notation,

S2n ≡ 〈cos 2nθ〉,
{
θ2n = 0 when S2n > 0
θ2n = π/2n when S2n < 0.

(43)

and

S2n ≡
〈h cos 2nθ〉
〈h〉

,

{
ϑ2n = 0 when S2n > 0
ϑ2n = π/2n when S2n < 0.

(44)
In Fig. 9(a) we plot the order parameters for the con-

tact network, S2n vs φ, for n = 1, 2, 3, and 4, at the
fixed strain rate ε̇ = 10−7. Closed symbols represent
pure shear, while open symbols give uniaxial compres-
sion. The n = 1 nematic order parameter S2 is the same
as the fabric anisotropy ∆λ previously shown in Fig. 5(b).
We see that the n = 2 tetratic order parameter S4 is com-
parable in size to the n = 1 nematic order, |S4| ≈ |S2|,
while the n = 3 hexatic ordering S6 is noticeable but
smaller. S8 and higher order terms are generally quite
small. That S2, S6 > 0 indicates that the nematic and
hexatic orderings are oriented at θ2, θ6 = 0, while S4 < 0
means that the tetratic ordering is at θ4 = π/4, along
the diagonal. This tetratic ordering is responsible for the
shoulder seen in P(θ) at θ = π/4 in Fig. 6. These re-
sults indicate the expected conclusion that bonds prefer
to orient along the compressive direction x̂, and are least
likely to orient along the transverse direction ŷ [23]. As
noted earlier for the nematic ordering, we see that for all
moments the orientational ordering of pure shearing is
greater than for uniaxial compression, |Sps

2n| > |Suni
2n |.

In Fig. 9(b) we show the corresponding plot of the
order parameters for the force network, S2n. S2 is the
same as µ previously shown in Fig. 5(a). Comparing to
the S2n from the contact network, we see that S2n is
generally smaller than S2n for n > 1, and thus the domi-
nant mode of anisotropy in the force network is from the
S2 = µ nematic term. This indicates that weighting the
contact bonds by their force moment hij serves to reduce
the non-nematic components of the anisotropy present in
the contact network geometry. As with S2n, we see that
S4 is generally negative while S6 is positive.

From our above results, shown in Figs. 5 and 9, it is
clear that the difference in anisotropy, comparing the two
cases of uniaxial compression and pure shearing, is to a
great extent due to the difference between the relative
magnitudes of the isotropic part to the anisotropic part
of the stress and fabric tensors. It is therefore interesting
to subtract off the isotropic part, and to see how only the
anisotropic parts compare with each other. Subtracting
off the leading isotropic term from Eqs. (27) and (33),
and normalizing by the magnitude of the nematic term,
we consider,

∆P(θ)

S2
=

2

π

∑
n=1

S2n

S2
cos(2n[θ − θ2n]) (45)

∆h̃(θ)

〈h〉S2
=

2

π

∑
n=1

S2n
S2

cos(2n[θ − ϑ2n]). (46)

In Figs. 10(a) and 10(b) we plot ∆P(θ)/S2 vs θ for
different φ at strain rate ε̇ = 10−7, for uniaxial compres-
sion and pure shearing, respectively. In Figs. 11(a) and
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FIG. 9. (a) Orientational order parameter S2n for the con-
tact network, and (b) orientational order parameter S2n for
the force network, vs φ for strain rate ε̇ = 10−7. Results are
shown for nematic (n = 1), tetratic (n = 2), hexatic (n = 3),
and 8-fold (n = 4) orientational order. S2 = ∆λ is the same
as the fabric tensor anisotropy, while S2 = µ is the same as the
stress tensor anisotropy. Closed symbols denote pure shearing
while open symbols denote uniaxial compression. The ver-
tical dashed line indicates the isotropic compression-driven
jamming φJ = 0.8415. The system has N = 32768 particles.

11(b) we make similar plots of ∆h̃(θ)/〈h〉S2. In both
Figs. 10 and 11 the solid black line is the functional
form, (2/π) cos 2θ, that one would have if only the ne-
matic (n = 1) term was present (since θ2 = ϑ2 = 0).
In Fig. 10 we see that ∆P(θ) involves significant higher
order terms beyond the nematic, however, qualitatively,
there does not appear to be much difference between the
two cases of uniaxial compression and pure shearing. In
contrast, Fig. 11 shows that the nematic term does give
a reasonable approximation, and so higher order terms
are relatively small. Again, there is little qualitative dif-
ferences between uniaxial compression and pure shear.
We thus conclude that there is little difference in the
anisotropic parts of either the contact network or the
force network, when comparing the two cases of uniax-
ial compression and pure shearing. The main difference
between these two cases lies in the relative magnitude of
the anisotropic term to the isotropic term, i.e., ∆λ = S2

and µ = σ/p = S2.

To quantify these observations, in Fig. 12(a) we plot
the ratios S2n/S2 vs φ, at the fixed strain rate ε̇ = 10−7,
for tetratic (n = 2), hexatic (n = 3), and 8-fold (n = 4)
order. In in Fig. 12(b) we show the corresponding plot
for S2n/S2. We see from these plots that there is now rel-
atively little difference between uniaxial compression and
pure shearing, and that the magnitudes of these higher
order orientational terms are relatively small for the force
network at all φ, though not for the contact network.
We thus conclude that the main difference in anisotropy,
comparing uniaxial compression with pure shearing, is
due to differences in the magnitude of the nematic order-
ing.
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FIG. 10. Anisotropic part of the contact network bond ori-
entation probability ∆P(θ) = P(θ)− 1/π, normalized by the
magnitude of the nematic order Fourier coefficient S2, vs θ for
several different packing fractions φ at strain rate ε̇ = 10−7.
(a) is for uniaxial compression, while (b) is for pure shearing.
The solid black line gives the functional form for the purely
nematic term, (2/π) cos 2θ. The system has N = 32768 par-
ticles.
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FIG. 11. Anisotropic part of the average force-moment ori-
entation ∆h̃(θ) = h̃(θ)−〈h〉/π, normalized by the magnitude
of the nematic order Fourier coefficient 〈h〉S2, vs θ for several
different packing fractions φ at strain rate ε̇ = 10−7. (a) is for
uniaxial compression, while (b) is for pure shearing. The solid
black line gives the functional form for the purely nematic
term, (2/π) cos 2θ. The system has N = 32768 particles.
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FIG. 12. (a) Ratio of orientational order parameters S2n/S2

for the bond directions in the geometrical contact network,
and (b) ratio of orientational order parameters S2n/S2 for
the force network, vs φ for strain rate ε̇ = 10−7. Results are
shown for tetratic (n = 2), hexatic (n = 3), and 8-fold (n = 4)
orientational order. Closed symbols denote pure shearing
while open symbols denote uniaxial compression. The ver-
tical dashed line indicates the isotropic compression-driven
jamming φJ = 0.8415. The system has N = 32768 particles.
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2. Simple Shearing

We now consider the case of simple shearing. Unlike
uniaxial compression and pure shearing, now there is no
symmetry in θ ↔ −θ, and so we will show our results
for the full range of θ ∈ [−π/2, π/2). A simple sheared
elastic continuum would have its maximal stress axis ori-
ented in the (1,−1) direction. As we noted in connection
with Fig. 5, and as we will show explicitly below, for
our granular system we do find θ2, ϑ2 ≈ −π/4.

One might therefore think that distributions might be
symmetric about θ = −π/4. But we find this is not in
general the case. Unlike uniaxial compression and pure
shear, where the orthogonal principle axes of the stress
tensor are the only unique directions in the problem, for
simple shear we have as well the average flow direction
(in our case x̂), which may contribute to the orientation
of the order parameters S2n and S2n.

In Fig. 13 we plot P(θ) vs θ for simple shearing, for
several different packings φ at strain rate ε̇ = 10−7. As
was seen for both uniaxial compression and pure shear-
ing, the degree of anisotropy decreases as the packing φ
increases. We see a minimum near θ = π/4, which might
be expected as this is close to the direction of the min-
imal stress axis. However, for φ < φ∗J = 0.8435, we see
no maximum at φ = −π/4, close to the direction of the
maximal stress. There is no symmetry about θ2 ≈ −π/4.
Instead we see a relatively sharp maximum at θ = 0,
along the flow direction x̂, which may be viewed as an
analog of the peak at θ = π/4 seen in Fig 6(b) for pure
shearing. Looking above jamming at φ > φ∗J = 0.8435,
this peak at θ = 0 goes away. Although it is difficult to
see in the plot due to the compressed range of P(θ) at the
larger φ, for φ > φ∗J , P(θ) does become approximately
symmetric about θ = −π/4, with a broad maximum at
θ ≈ −π/4, and a sharper minimum at θ ≈ π/4; the
shape of P(θ) now looks quite similar to that found for
pure shearing in Fig. 6(b), only shifted by −π/4.

In Fig. 14 we show the corresponding plot of the force-
moment per radian, h̃(θ). The shape of h̃(θ) is simi-
lar to that of P(θ), except there is now a peak just
below θ = −π/4 from the large forces at the contacts
along the maximal stress direction. In Fig. 15 we show
h(θ) = h̃(θ)/P(θ), which measures the average value of
the force-moment on bonds at angle θ, independent of the
probability for there to be a bond at θ. With P(θ) fac-
tored out, the behavior of h(θ) is more easily understood:
force-moments are largest along the maximal stress direc-
tion at θ = −π/4, and smallest along the minimal stress
direction at θ = π/4. The distribution h(θ) is symmetric
about its maximum for all packings φ. For φ = 0.85 and
0.90, above jamming, h(θ)/〈h〉 are essentially equal.

To make the above observations more quantitative, in
Figs. 16(a) and 16(b) we plot the magnitude of the con-
tact network and force network orientational order pa-
rameters S2n and S2n vs φ for n = 1, 2, 3, and 4, at the
fixed strain rate ε̇ = 10−7, and compare those against
the corresponding values for pure shearing. Note, here
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FIG. 13. Probability density P(θ) for the contact network
to have a bond directed at angle θ with respect to the flow
direction x̂, in simple shearing. Results are plotted vs θ for
several different packing fractions φ at strain rate ε̇ = 10−7.
The solid horizontal black line at P = 1/π represents the
average value. The system has N = 32768 particles.
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FIG. 14. Average force-moment per radian h̃(θ), normalized
by the average force moment 〈h〉, in simple shearing. Results
are plotted vs bond angle θ for several different packing frac-
tions φ at strain rate ε̇ = 10−7. The solid horizontal black
line at h̃/〈h〉 = 1/π represents the average value. The system
has N = 32768 particles.
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FIG. 15. Average force-moment h(θ) = h̃(θ)/P(θ), normal-
ized by π〈h〉, in simple shearing. Results are plotted vs bond
angle θ for several different packing fractions φ at strain rate
ε̇ = 10−7. The solid horizontal black line at h̃/π〈h〉 = 1/π
represents the average value. The system has N = 32768
particles.
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we take S2n and S2n to be strictly positive, rather than
use the sign convention of Eqs. (43) and (44), since for
simple shear there is no a priori restriction on the values
of 2nθ2n and 2nϑ2n to just two values as in the case of
pure shear and uniaxial compression.

From Fig. 16(a) we see, as found previously in
Fig. 5(b), that when comparing simple and pure shear-
ing, the n = 1 nematic terms S2 are roughly equal for the
whole range of φ shown. However, looking at the higher
moments, we see that S2n for simple and pure shearing
are essentially equal only once φ & 0.82. For φ . 0.82
there is a pronounced difference. As φ decreases, the dif-
ference in orientational ordering between simple and pure
shearing, increases. From Fig. 16(b) we see that the same
is true for the S2n of the force network. It is interesting
to note that, for the contact network, S4 for the n = 2
tetratic order is greater than S2 for the n = 1 nematic
order, at the smaller packings φ. This is related to the
strong peak in P(θ) at θ = 0, seen in Fig. 13. As was true
for both pure shearing and uniaxial compression, we find
that the higher order moments (n > 1) for the force net-
work, S2n, are smaller than the corresponding contact
network moments, S2n, when measured relative to the
n = 1 moment. The variation of the force-moments with
bond direction in the force network tends to suppress the
higher order moments of anisotropy as compared to the
purely geometric contact network.

In Fig. 17 we show the angles θ2n and ϑ2n of the ori-
entation order parameters for the contact and force net-
works. Results are plotted vs φ for simple shearing at
strain rate ε̇ = 10−7. We see, as mentioned before, that
the nematic order is oriented at θ2, ϑ2 ≈ −π/4. The
tetratic order is oriented at θ4, ϑ4 ≈ 0, though for the
force network ϑ4 increases as φ decreases. Comparing
to pure shear, where θps2 , ϑ

ps
2 = 0 and θps4 , ϑ

ps
4 = π/4,

we see that our results for simple shear, θss2 , ϑ
ss
2 ≈ −π/4

and θss4 , ϑ
ss
4 ≈ 0, represent a simple clockwise rotation of

S2,S2 and S4,S4 by π/4 when going from pure shear to
simple shear, the same rotation as for the principle stress
axes. However, no such simple explanation applies to
the higher moments, where the orientations of S6,S6 and
S8,S8 for simple shearing seem to have no clear relation
to those for pure shearing.

Finally, as we did in Figs. 10 and 11 for pure shear and
uniaxial compression, we can look at just the anisotropic
parts of P(θ) and h̃(θ) for simple shear. In Fig. 18
we plot ∆P(θ)/S2, defined in Eq. (45). In Fig. 19 we

plot ∆h̃(θ)/〈h〉S2, defined in Eq. (46). Results are plot-
ted vs θ for several different packings φ at the strain
rate ε̇ = 10−7. In both figures, the solid black curve
represents (2/π) cos 2(θ + π/4), which is what we would
have if only the nematic term were present (here we take
θ2, ϑ2 = −π/4). As was seen for pure shear and uniaxial
compression, we find also for simple shear that the con-
tact network ∆P(θ)/S2 retains significant higher order
moments even as one goes above φ∗J , whereas the force

network ∆h̃/〈h〉S2 becomes well described by just the
nematic term.
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FIG. 16. (a) Orientational order parameter S2n for the
contact network, and (b) orientational order parameter S2n

for the force network, for simple shearing (closed symbols)
compared to pure shearing (open symbols). Results are plot-
ted vs the packing φ for strain rate ε̇ = 10−7, showing ne-
matic (n = 1), tetratic (n = 2), hexatic (n = 3), and 8-fold
(n = 4) orientational order. The vertical dashed line indi-
cates the shear-driven jamming φJ = 0.8435. The system has
N = 32768 particles.
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FIG. 17. Orientation angles θ2n and ϑ2n of the order param-
eters S2n and S2n for simple shearing. Results are plotted vs
the packing φ for strain rate ε̇ = 10−7. The vertical dashed
line represents the shear-driven jamming φ∗

J = 0.8435. The
horizontal dashed line is at θ = −π/4. For the 8-fold ordering
(n = 4) we do not show results for φ > 0.83 since then S8 and
S8 are too small to determine θ8 and ϑ8 reliably. The system
has N = 32768 particles.

V. SUMMARY

We have carried out numerical simulations of athermal,
frictionless, overdamped, bidisperse circular disks in two
dimensions, within a simple model for a non-Brownian
suspension, as the packing fraction is increased though
the jamming transition. We compare the stresses that
result when the system is deformed by isotropic com-
pression, uniaxial compression, pure shearing, and simple
shearing, all applied at a fixed strain rate ε̇.

Below jamming, the pressure p arising from uniaxial
compression is found to be roughly equal that of isotropic
compression, while the pressure from pure shearing is
roughly equal to that of simple shearing. However the
shearing pressure is about an order of magnitude smaller
than that from compression. Above jamming, all four
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FIG. 18. For simple shearing: Anisotropic part of the contact
network bond orientation probability ∆P(θ) = P(θ) − 1/π,
normalized by the magnitude of the nematic order Fourier
coefficient S2, vs θ for several different packing fractions φ at
strain rate ε̇ = 10−7. The solid black line gives the functional
form for the purely nematic term, (2/π) cos 2(θ − θ2), where
we take θ2 = −π/4. The system has N = 32768 particles.
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FIG. 19. For simple shearing: Anisotropic part of the aver-
age force-moment orientation ∆h̃(θ) = h̃(θ)− 〈h〉/π, normal-
ized by the magnitude of the nematic order Fourier coefficient
〈h〉S2, vs θ for several different packing fractions φ at strain
rate ε̇ = 10−7. The solid black line gives the functional form
for the purely nematic term, (2/π) cos 2(θ − ϑ2), where we
take ϑ2 = −π/4. The system has N = 32768 particles.

cases approach roughly the same pressure as the strain
rate ε̇ decreases. The shear stress σ for isotropic compres-
sion is, by symmetry, equal to zero. The shear stress of
pure shearing is roughly equal to that of simple shearing,
while the shear stress for uniaxial compression is greater
than that of pure/simple shearing below jamming, but
smaller than pure/simple shearing above jamming. How-
ever the shear stress from uniaxial compression is of the
same order of magnitude as the other cases.

By comparing the stress ratios of the four types of de-
formation we have argued in Fig. 4(a) that isotropic com-
pression and uniaxial compression have the same jam-
ming packing φJ , with bulk viscosities ζ = p/γ̇ that di-
verge with the same critical exponent β. Similarly, in
Fig. 4(b) we argued that pure and simple shearing have
the same jamming packing and critical exponent. How-
ever, in Figs. 4(c) and (d) we argued that the jamming

packing for shearing φ∗J is slightly larger than the φJ
for compression. In Appendix B we provide a detailed
critical scaling analysis of our pure shearing results that
finds that the pure shearing φ∗J is indeed greater than
φJ , and that this φ∗J is equal to the jamming packing
previously found for simple shearing [7]. We further find
that pure shearing has the same critical exponents, for
example β, as previously found for compression [5] and
for simple shearing [7]. Thus stress-isotropic jamming is
in the same critical universality class as stress-anisotropic
jamming in two dimensions.

The strain rate tensor for uniaxial compression can be
viewed as a superposition of the strain rate tensors for
isotropic compression plus pure shearing, ε̇uni = ε̇iso+ε̇ps.
We have therefore asked if there is any similar superposi-
tion for the resulting stresses in the linear rheology region
below jamming. Our conclusion is that there is no such
superposition for stresses.

Finally, we have considered the three deformations
that result in an anisotropic stress tensor, uniaxial com-
pression, pure shearing, and simple shearing, and com-
pared the anisotropy of the corresponding configurations,
considering both the contact network of bonds and the
force network of bonds weighted by their force-moment.
We have considered both the stress tensor anisotropy
µ = σ/p and the anisotropy of the fabric tensor ∆λ of
the contact network. Both parameters approach a fi-
nite limiting curve as ε̇ → 0, demonstrating that the
systems remain anisotropic both at jamming and above.
We find that µ behaves qualitatively the same, as a func-
tion of packing φ and strain rate ε̇, as ∆λ, indicating
that anisotropy is driven primarily by the geometry of
the contact network. However we found that there is a
big difference comparing pure/simple shearing with uni-
axial compression. The anisotropy parameters µ and ∆λ
are smaller for uniaxial compression than for shearing, by
a factor of order 3 – 5. For pure/simple shearing, µ and
∆λ are monotonically decreasing as φ increases, while for
uniaxial compression there is a kink with a sharp mini-
mum at φJ .

We have shown that ∆λ can be viewed as the nematic
order parameter for bond directions in the contact net-
work, while µ can be viewed as the nematic order param-
eter of force weighted bonds in the the force network. We
have then generalized these to higher order, 2n-fold ori-
entational order parameters (tetratic, hexatic, etc.) for a
more complete parameterization of the anisotropy of the
configurations. We find that, for n > 1, these 2n-fold
orientational order parameters tend to be smaller for the
force network as compared to the contact network, when
compared relative to the n = 1 nematic moment. The
adjustment of the forces on each bond tends to reduce
higher order anisotropies.

We then compared uniaxial compression to pure shear-
ing, which both share the same geometric symmetry; the
maximal and minimal stress axes for these two cases are
in the same direction, and there is no other unique di-
rection specified in the system. We find that, while the
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nematic order parameters for these two cases are both
quantitatively and qualitatively different (see Fig. 5), if
we consider the higher order orientational moments mea-
sured relative to the nematic moment, then the two cases
look quite similar (see Figs. 10 – 12). We thus conclude
that, comparing uniaxial compression to pure shearing,
the main difference in system anisotropy is due to the
nematic ordering.

Finally, we compared pure shearing with simple shear-
ing. For our geometry, our simple shearing can be re-
garded as a superposition of pure shearing along the di-
agonal direction plus a system rotation. In this case we
found (see Fig. 5) that the nematic order parameters for
these two cases are essentially equal. However we found
that the magnitude of the higher order orientational mo-
ments, while becoming equal as φ increases towards φ∗J
and goes above, become increasingly different as φ de-
creases below φ∗J (see Fig. 16). Moreover, the flow di-
rection in simple shearing creates an additional special
direction in the system, that can effect the orientations
θ2n, ϑ2n of the order parameters. While the lowest order
moments n = 1, 2 for simple shearing have orientations
θ2, ϑ2, θ4, ϑ4 that are just rotated by −π/4 from those of
pure shearing, the higher order moments seem to have
no obvious relation between the two cases, even as one
goes above jamming (see Fig. 17). It would be interest-
ing to see if experiments on photoelastic disks [23] could
detect the differences in the anisotropies of the contact
and force networks, such as we find here.
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APPENDIX A: COMPRESSION ENSEMBLES

In this appendix we describe in greater detail our
compression ensemble and its limiting behaviors. Our
compressions start from random configurations of non-
overlapping disks, constructed as described at the end
of Sec. II, at a given initial packing φinit. Here we will
use smaller systems of N = 8192 particles since the ef-
fect of varying φinit is greatest at smaller φ, where finite
size effects become negligible. We will focus on a single
strain rate ε̇ = 10−7, since at this rate one is in the linear
rheology region (p, σ ∝ ε̇) for φ . 0.82, which covers the
region of our primary interest.

In Fig. 20(a) we plot the resulting p vs φ for isotropic
compression, for values of φinit = 0.01 to 0.50. In
Fig. 20(b) we replot these results as p vs φinit at several
different values of φ. Fitting the data of p vs φinit to a cu-

FIG. 20. (a) Pressure p vs packing φ at a strain rate ε̇ =
10−7, for isotropic compression of N = 8192 particles starting
from different initial packings φinit. The vertical dashed line
indicates the compression-driving jamming φJ = 0.8415. The
width of each curve indicates the estimate error. (b) Data of
panel (a) replotted as p vs φinit, at several different packings φ.
The solid lines are cubic polynomial fits. The black dots and
dashed line in (a) are the extrapolated values of p as φinit → 0,
obtained from such fits. (c) and (d) are analogous plots of p
for the case of uniaxial compression, while (e) and (f) are the
analogous plots of shear stress σ for uniaxial compression.

bic polynomial (shown as the solid curves in Fig. 20(b)),
we then extrapolate to determine the φinit → 0 limit-
ing value of p(φ); these are shown as the black dots and
dashed line in Fig. 20(a). The corresponding plots for
uniaxial compression are shown in Figs. 20(c) and 20(d)
for the pressure p, and in Figs. 20(e) and 20(f) for the
shear stress σ.

We see that in all cases the stress (whether p or σ)
approaches a well defined limiting curve as φinit → 0.
There is a clear dependence of the stress on the particular
value of φinit at small φ, however this dependence goes
away as φ increases, and the curves for all φinit approach
the limiting curve as one enters the dense region just
below jamming. As φ decreases from this dense region,
the curves for different φinit start to peel away from this
liming curve, vanishing as φ→ φinit; the smaller is φinit,
the wider is the range of φ over which the finite φinit
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FIG. 21. (a) Average contact number Z (including rattlers)
vs packing φ at a strain rate ε̇ = 10−7, for isotropic compres-
sion of N = 8192 particles starting from different initial pack-
ings φinit. The vertical dashed line indicates the compression-
driving jamming φJ = 0.8415. The width of each curve indi-
cates the estimate error. (b) Data of panel (a) replotted as
Z vs φinit, at several different packings φ. The solid lines are
cubic polynomial fits. The black dots and dashed line in (a)
are the extrapolated values of Z as φinit → 0, obtained from
such fits. (c) and (d) are analogous plots of Z for the case of
uniaxial compression.

curve is a good approximation for the φinit → 0 limiting
curve.

In Fig. 21 we show similar plots of the average contact
number per particle Z for different φinit. We include rat-
tler particles in our computation of Z so that it remains
well defined even at low φ. We see the same qualitative
behavior as we found for the stress. Z approaches a well
defined limit as φinit → 0, and the curves for finite φinit
all approach this limiting curve as φ increases towards
jamming. From Figs. 20 and 21 we see that, for the
φinit = 0.40 that we use in the main body of this work,
effects due to the finite value of φinit should be rather
small once φ & 0.80. The behaviors shown in Figs. 20
and 21 suggest that φinit is an irrelevant variable in the
sense of critical scaling, and that using a finite value for
φinit will not effect the critical behavior at jamming, pro-
vided one restricts data to be sufficiently close to φJ .

Such a conclusion is supported by earlier works by
Ozawa et al. [24] and Charbonneau and Morse [25], who
study inherent structures in systems of strictly hard-core
spheres. Starting from thermally equilibrated initial con-
figurations at a packing φinit, they carry out a rapid com-
pression of the system to determine the value φJ(φinit) at
which the hard-core particles jam. They find that, for ini-
tial packings below some threshold, φinit < φth, the jam-
ming φJ(φinit) is independent of φinit and agrees with the

random close packing value. φJ(φinit) starts to increase
above this constant value only when φinit increases above
φth. The threshold φth is associated with the glass tran-
sition found in mode coupling theory for the thermalized
hard-core system; in two dimensions φth ≈ 0.7. All the
φinit considered in our work are below this value.

The ensemble of thermalized equilibrium configura-
tions from which [24, 25] start their compressions is ex-
actly the same as we use to start our compressions; for
hard-core particles in thermal equilibrium at a fixed φinit,
all configurations in which there are no particle overlaps
are equally likely. However there are several differences
between the models of [24, 25] and our own, that might
make one wonder how well their conclusions apply to our
system. They use hard-core particles, while we use soft-
core particles. Their system has a finite temperature T ,
while we are athermal with T = 0. They do a rapid com-
pression, while we compress at fixed rates ε̇, with jam-
ming occurring in the quasistatic ε̇ → 0 limit. However,
we will now argue that these two different approaches do
indeed describe the same jamming critical point.

As shown in [26], for soft-core particles thermalized at
a temperature T , and undergoing a strain deformation at
a fixed rate ε̇, the dynamics of overdamped particles can
be expressed in terms of the dimensionless parameters
ke/T (the normalized particle stiffness) and kdVsd

2
s ε̇/T

(the Péclet number). For the strictly hard-core particles
considered in [24, 25], ke → ∞ and hence the only fi-
nite parameter is the Péclet number. When these works
compress rapidly, with the goal of avoiding thermaliz-
ing effects during compression, they are essentially doing
simulations at large Péclet number, where the strain rate
is much larger than the thermal relaxation rate.

In our model we are dealing with athermal soft-core
particles. Here ke is finite but T → 0. Hence both the
stiffness, ke/T , and the Péclet number, kdVsd

2
s ε̇/T , di-

verge. The ratio of these two, however, remains finite and
gives the dimensionless strain rate, kdVsd

2
s ε̇/ke = ε̇τ0.

The hard-core limit, where particle overlaps become neg-
ligible, is thus obtained by taking ε̇ → 0. Note, in the
athermal soft-core model, the jamming critical point oc-
curs at (φJ , ε̇ → 0), and hence jamming is a property
of this hard-core limit. Thus, in both [24, 25] and our
present work, jamming is determined by the hard-core
limit at large Péclet number. Hence, the conclusions of
[24, 25], that φJ is independent of the φinit of the start-
ing configurations, should imply that we get the correct
critical jamming in our athermal soft-core model, for any
φinit that is not too big.

The results shown in Figs. 20 and 21 show qualitatively
similar behavior, with respect to the dependence on φinit,
for both isotropic and uniaxial compression. However we
find an interesting result if we directly compare the pres-
sure of the two cases. In Fig. 22 we plot the uniaxial to
isotropic pressure ratio puni/piso vs φ, for different values
of φinit. Just below φJ and above, we find puni/piso = 1,
within the estimated errors, as we reported in Sec. III.
However, as φ decreases, we see that puni/piso eventually
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FIG. 22. Pressure ratio puni/piso vs packing φ, comparing
uniaxial to isotropic compression, at a strain rate ε̇ = 10−7

for N = 8192 particles starting from different initial packings
φinit. (b) An expanded view of (a), looking closer in the vicin-
ity of the jamming transition φJ . The vertical dashed lines
indicate the compression-driving jamming φJ = 0.8415. For
clarity, data points are shown only at intervals of ∆φ = 0.01
and representative error bars are shown only on a subset of
those points.

increases above unity. This increase from unity shifts
down to lower packings the smaller is the value of φinit.
We conjecture that puni = piso for all φ, as φinit → 0.

APPENDIX B: CRITICAL SCALING FOR PURE
SHEARING

In this appendix we provide more details of our pure
shearing simulations, defined by the strain rate tensor of
Eq. (6). Most prior work studying the effect of shearing
on the jamming transition has considered simple shearing
[4, 7, 10, 14, 16, 18, 19, 27–32], where the strain rate
tensor for flow in the x̂ direction is given by ε̇ = ε̇x̂⊗ ŷ.
Simple shearing can be viewed as a superposition of pure
shearing plus a system rotation with angular velocity ε̇/2.
Both simple and pure shearing preserve the system area.

To pure shear, we compress the system in the x̂ direc-
tion, while expanding it in the ŷ direction, both at the
same rate ε̇/2. Unlike simple shear, where the system
can be sheared indefinitely via the use of Lees-Edwards
boundary conditions [9], we can only pure shear to a cer-
tain total strain ε = ε̇t before the system becomes too
narrow in the x̂ direction and finite size effects become
important. For our system size of N = 32768 particles,
however, we find that we can always shear to at least
ε = 2 with no apparent finite size effects, and that this is
sufficient to reach steady-state behavior.

For the results reported in the main text, we pure
sheared from an initial configuration obtained from uni-
axial compression at the same rate ε̇. For ε̇ > 10−7 we
averaged results over 10 independent initial configura-
tions, while for ε̇ ≤ 10−7 we used only a single initial
configuration. In all cases, the reported steady-state val-
ues were obtained by averaging results over some strain
interval (ε1, ε2) within the steady-state region. In con-
trast, to illustrate the evolution of the stress under pure
shearing, in Fig. 23 we show instantaneous results vs ε

for configurations sheared at ε̇ = 10−7, averaged over 10
independent initial configurations. We compare the case
where the initial configurations were obtained from uni-
axial compression, and so have some finite initial shear
stress σ > 0, to the case where the initial configurations
were obtained from isotropic compression, and so have
σ = 0.

In Figs. 23(a), 23(b), and 23(c) respectively, we plot p,
σ and the contact number Z (rattlers included) vs strain ε
for ε̇ = 10−7, at φ = 0.80 below jamming. In Figs. 23(d),
23(e), and 23(f) we plot the same quantities at φ = 0.86
above jamming. For the case of φ < φJ , where the stress
is due entirely to the finite strain rate, i.e., p, σ ∝ ε̇, we
find that the initial discontinuous change in the defor-
mation (from uniaxial or isotropic compression to pure
shear) results in an essentially instantaneous change in
p, σ, and Z. Following this initial instantaneous change,
these parameters show a non-monotonic behavior as ε
increases and the system relaxes to its steady state. We
find this non-monotonic behavior to be limited to a fairly
narrow window of φ below φJ .

For the case φ > φJ , where there remains a finite stress
even as ε̇ → 0, the initial change in p, σ and Z is still
relatively rapid, though it is now smooth and continu-
ous. For φ both above and below jamming, we see that,
as ε increases, the system reaches a steady state, where
these quantities plateau to roughly constant values. The
time needed to reach the steady state increases, and in
principle diverges, as one approaches the jamming crit-
ical point, φ = φJ and ε̇ → 0. We also see in Fig. 23
that the values in the steady-state are independent of
the starting initial configuration, as has been previously
noted for simple shearing [13].

In Fig. 4 of Sec. III we argued that the jamming pack-
ing fraction φ∗J for pure shearing is slightly larger than
the φJ = 0.8415 for uniaxial or isotropic compression.
We now give further evidence for this. A main char-
acteristic of the jamming transition is that as ε̇ → 0,
then below φJ the stress p, σ → 0 vanish, while above
φJ the stress p, σ → p0, σ0 stays finite. Thus, at small
ε̇, curves of p and σ vs ε̇ will be concave for φ < φJ ,
but convex for φ > φJ . In Fig. 24 we plot the steady-
state values of p and σ from pure shearing vs ε̇ for sev-
eral different values of φ near jamming. Applying the
above criterion to the pressure p in Fig. 24(a), we clearly
see that the jamming point for pure shearing satisfies
0.842 < φ∗J < 0.844, and is thus larger than the jam-
ming φJ = 0.8415 found by us previously [5] for isotropic
compression. The curves of shear stress σ in Fig. 24(b)
similarly argue for 0.842 < φ∗J < 0.844, even though
drawing conclusions from σ can be complicated by larger
corrections to scaling than exist for p [1, 7, 11].

To determine the specific value of φ∗J we can fit our
data to the assumed critical scaling equation. Since
corrections-to-scaling have been found to be smaller for
p than for σ, we fit our data for pressure to the leading
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FIG. 23. (color online) (a) Pressure p, (b) shear stress σ,
and (c) average contact number Z (including rattlers) vs net
strain ε = ε̇t, as the system is pure sheared at φ = 0.80 <
φJ with the rate ε̇ = 10−7. Panels (d), (e), and (f) show
similar results at φ = 0.86 > φJ . Results are averaged over
10 independent initial configurations. The thicker blue lines
show results starting from initial configurations obtained from
uniaxial compression, and so have a finite initial shear stress
σ > 0; the thinner red lines show results starting from initial
configurations obtained from isotropic compression, and so
have an initial σ = 0. The system has N = 32768 particles.
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FIG. 24. (a) Pressure p and (b) shear stress σ vs strain rate
ε̇, in steady-state pure shearing, for several different values
of packing φ near jamming. The system has N = 32768
particles.
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FIG. 25. (a) Pressure p vs packing φ in steady-state pure
shear, for different strain rates ε̇. The vertical dashed line
locates the jamming φ∗

J = 0.84319. (b) Scaled pressure p/ε̇q

vs scaled packing difference (φ−φ∗
J)/ε̇1/zν , for different strain

rates ε̇, according to the scaling Eq. (47). The scaling collapse
is obtained using φ∗

J = 0.84319, q = 0.305, and 1/zν = 0.268.
The system has N = 32768 particles.

scaling form [1, 7, 11],

p(φ, ε̇) = ε̇qf

(
φ− φ∗J
ε̇1/zν

)
, (47)

using the same fitting methods as detailed in Refs. [1, 7,
11]. Plotting p/ε̇q vs x ≡ (φ−φ∗J)/ε̇1/zν should then lead
to a scaling collapse of the data to a common curve for
different values of ε̇.

Since the scaling Eq. (47) holds only asymptotically
close to the jamming critical point (φ∗J , ε̇ → 0), we wish
to restrict the data used in the fit to small values of ε̇
and values of φ near φ∗J . We therefore use a data window
similar to what we previously used [5] for isotropic com-
pression, with ε̇ ≤ 10−6 and 0.838 ≤ φ ≤ 0.848. Since
our fitting procedure involves a polynomial expansion of
the unknown scaling function f(x), we also restrict the
data used in the fit to |x| ≤ 1.

In Fig. 25(a) we plot our raw data p vs φ for all our
different values of ε̇. In Fig. 25(b) we show the resulting
scaling collapse, using the critical parameters obtained
from our fit, q = 0.305 ± 0.005, 1/zν = 0.268 ± 0.003,
and φ∗J = 0.8432± 0.0001. These result in [1] the related
exponent for the diverging bulk viscosity below jamming,
limε̇→0[p/ε̇] ∼ (φ∗J − φ)−β , with β = (1 − q)zν = 2.60 ±
0.05, and the exponent for the vanishing pressure above
jamming, limε̇→0[p] ∼ (φ− φ∗J)y, with y = qzν = 1.14±
0.02. We find that the values of these parameters do not
appreciably change if we slightly increase the window of
data used for the fit, as shown in Fig. 26.

We see that a good scaling collapse results from these
parameters, that extends beyond the range of the data
|x| ≤ 1 used to construct the fit. Just as we found previ-
ously for isotropic compression [1, 5], the fit is excellent
for φ > φ∗J , but as φ decreases below φJ we see that the
data splays away from the ε̇ → 0 limiting curve as ε̇ in-
creases. This is presumably due to corrections-to-scaling
that become significant the further one moves from the
jamming critical point [1, 5, 7].
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FIG. 26. Critical parameters obtained by fitting the data
of Fig. 25(a) to the scaling form of Eq. (47), for different
windows of data. Data windows are defined by ε̇ ≤ ε̇max and
φ ∈ [φmin, φmax]. (a) The critical jamming packing φ∗

J , (b) the
χ2 per degree of freedom nf of the fit, (c) critical exponent
q, (d) critical exponent 1/zν, (e) bulk viscosity exponent β =
(1− q)zν, and (f) yield pressure exponent y = qzν.

We can compare the above critical parameters with
those found previously for isotropic compression and
for simple shearing. For isotropic compression in two
dimensions we found previously [5] β = 2.63 ± 0.09,
y = 1.12 ± 0.04, and φJ = 0.8415 ± 0.003. For sim-
ple shearing, the most accurate simulations [7, 18] (in
our opinion) give β = 2.77 ± 0.20, y = 1.08 ± 0.03, and
φJ = 0.84347 ± 0.00020. We thus find that the criti-
cal exponents β and y (and so also q and 1/zν) agree
in all cases, within the estimated error; stress-isotropic
jamming via isotropic compression has the same critical
behavior as stress-anisotropic jamming via pure or simple
shearing. We also find that φ∗J for pure shearing agrees
with that found for simple shearing, and is slightly larger
than the φJ found for compression.
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