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Abstract

We study the nanoscale patterns that form on the surface of a rotating sample of an elemental

material that is bombarded with a broad noble gas ion beam for angles of incidence θ just above

the critical angle for pattern formation θc. The pattern formation depends crucially on the ion

energy E. In simulations carried out in the low energy regime in which sputtering is negligible,

we find disordered arrays of nanoscale mounds (nanodots) that coarsen in time. Disordered arrays

of nanodots also form in the high energy regime in which there is substantial sputtering, but no

coarsening occurs close to the threshold angle. Finally, for values of E just above the sputter yield

threshold, nanodot arrays with an extraordinary degree of hexagonal order emerge for a range of

parameter values, even though there is a broad band of linearly unstable wavelengths. This finding

might prove to be useful in applications in which highly ordered nanoscale patterns are needed.
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I. INTRODUCTION

Bombardment with a broad ion beam is a widely employed means of producing nanoscale

patterns on solid surfaces [1]. A variety of patterns, including surface ripples and arrays of

nanodots or nanoholes, can be fabricated in a single process step without using a mask or

photoresist [1–11]. Nanoscale surface ripples in particular will form on virtually any solid

target material if the angle of ion incidence θ exceeds a critical value. The formation of

ripples, however, is undesirable in various applications in which solids are bombarded with

broad ion beams, e.g., secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy

(AES), and ion milling. In the simplest kind of SIMS or AES apparatus, the primary ions are

obliquely incident on the stationary surface of the sample. As sputtering proceeds, ripples

can form, and this leads to rapid degradation of the depth resolution.

Zalar first demonstrated that this problem can often be overcome by rotating the sample

with a constant angular velocity about its surface normal as the depth profiling proceeds

[12]. Zalar rotation has subsequently been used by numerous other groups, who found that

in many cases, the surface actually becomes flatter as the solid is eroded [13]. As a result,

ion sputtering with concurrent sample rotation has also been used as a means of preparing

ultra-smooth surfaces for optical applications [14].

If the angle of ion incidence θ exceeds a critical value θc that depends on the target

material and the choice of ion species and energy, sample rotation does not prevent surface

roughening and nanoscale patterns form [13, 15, 16]. A theory that describes the time

evolution of the surface of a rotating sample that is sputtered by a broad ion beam was

advanced by Bradley and Cirlin [17]. This theory applies only in the early-time, linear

regime. Subsequently, Bradley [18] incorporated nonlinear terms into the theory and found

that equation of motion (EOM) is the isotropic Kuramoto-Sivashinsky (KS) equation to a

good approximation if θ exceeds θc and the rotational angular velocity ω is sufficiently large

[19]. The surface roughness asymptotes to a finite steady-state value and the topography is

a disordered array of mounds in that event. In the opposite limit of slow rotation, Bradley

argued that if the surface is unstable, ripples with their wave vector lying parallel to the

projected beam direction will be present in the steady state. This has since been confirmed

by experiments and simulations [20].

Experimental studies of the nanoscale patterns produced by ion bombardment of station-
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ary and rotating targets have typically been done with noble gas ions that have energies on

the order of 1 keV. In this regime, sputter yields are normally of order unity. For a given

target material, ion species and angle of incidence, the feature size of the nanostructures is

found to be an increasing function of the ion energy [1]. To produce smaller feature sizes,

therefore, ions of lower energy should be employed.

When the energy of the incident ions is on the order of a few tens of electron volts,

sputtering is negligible. Experiments in this low energy regime are few and all have been

done with a stationary target. These experiments reveal that nanoscale patterns do form:

surface ripples as well as disordered arrays of nanostructures elongated along the projected

beam direction have been observed [21–24]. In addition to its intrinsic scientific interest,

the low energy regime may become important in applications since the feature size of the

nanostructures can be below 50 nm.

In the low energy regime, mass redistribution (MR) takes place: momentum transfer

from the incident ions to atoms near the solid surface leads to inelastic displacement of the

atoms [25–27]. Depending on the ion energy and target material, dozens of atoms can be

displaced even though there is essentially no sputtering. MR is important at ion energies

on the order of 1 keV, a regime in which sputter yields are relatively high [28]. It plays an

even more crucial role in the low energy regime in which sputtering is negligible [24].

Ions can be implanted in the low energy regime. However, when an ion is incident on the

solid surface, the result can be at most one implanted ion whereas, as noted above, dozens

of atoms can be displaced. In addition, noble gas ions penetrate only a few nanometers

into the solid, are highly mobile, and usually desorb when they reach the solid surface

[29]. Implantation of noble gas ions can therefore be neglected [30]. This is confirmed

by estimates of the curvature coefficients in the linearized EOM obtained using molecular

dynamics simulations and the crater function formalism [24].

When sputtering and implantation are neglected, the mass of the solid is conserved. This

makes the low energy limit fundamentally different than the higher energy regime in which

sputtering is significant. The EOM that is valid for a rotating target in the high energy

regime, the isotropic Kuramoto-Sivashinsky equation [18], cannot be valid in the low energy

regime because it does not conserve mass. In addition, while MR and curvature-dependent

sputtering can both contribute to the surface instability in the high energy regime, the

instability is entirely due to MR in the low energy regime.
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In this paper, we will study the patterns formed on the surface of a rotating sample of

an elemental material that is bombarded with a noble gas ion beam for angles of incidence

θ just above the critical angle for pattern formation θc. The EOM can be rigorously derived

in this limit if nonlocal effects like redeposition of sputtered material are neglected. We

find the EOM not just in the high energy regime in which there is substantial sputtering,

but also in the low energy regime in which the ion energy is below the sputtering threshold

and consequently no sputtering occurs. In addition, we derive the EOM for ion energies

just above the sputter yield threshold. For brevity, we will call this the intermediate energy

regime.

In simulations carried out in the low energy regime, we find disordered arrays of nanoscale

mounds (nanodots) that coarsen in time. Disordered arrays of nanodots also form in the high

energy regime, but no coarsening occurs close to the threshold angle. Typically, a pattern

with a high degree of order forms only if there is a narrow band of linearly unstable wave-

lengths [31], and this is the case in the high and low energy regimes. Surprisingly, however,

our simulations show that in the intermediate energy regime, highly ordered hexagonal ar-

rays of nanodots or nanoholes can emerge as the sample is bombarded, even though there is

a broad band of unstable wavelengths. This finding might prove to be useful in applications

in which patterns with a high degree of order are desirable or essential.

The behavior in the low and intermediate energy regimes is strongly influenced by the

presence of a term in the EOM that is approximately proportional to the Gaussian curvature

of the surface. This term has important effects on the dynamics but has invariably been

neglected even though it is of the same order as other terms that are typically included in

the EOM.

This paper is organized as follows. In Sec. II, we derive the equations governing the

surface dynamics in the three regimes we have discussed and see that all three are special

cases of a more general EOM. Various special cases of this general EOM are discussed in

Sec. III, and it is recast in dimensionless form. We also show that certain special cases of

this EOM are variational, i.e., the dynamics tends to minimize an effective free energy. This

yields important insights into the dynamics. Simulations of the behavior in the low and

intermediate regimes are carried out in Sec. IV. (The EOM that applies in the high energy

regime is already well understood.) We close the paper with a discussion of our results in

Sec. V.
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II. EQUATIONS OF MOTION

Consider a solid elemental material that is bombarded with a broad beam of noble gas

ions with angle of incidence θ. The material may be amorphous or crystalline. However,

if the material is initially crystalline, we assume that a layer at the surface of the solid

is amorphized by the ion bombardment. We will make the customary assumption that the

effect of ion implantation is negligible [30]. We will also take nonlocal effects to be negligible.

Examples of effects of this kind include redeposition of sputtered material and sputtering

by reflected ions. In past theoretical work, nonlocal effects have typically been neglected

without comment.

We take the sample surface to be nominally flat before the irradiation begins. The unit

vector ẑ will be chosen to be normal to the macroscopic surface and to point away from

the solid. The sample is rotated about the z axis with constant angular velocity ω. We will

find it convenient to work in a co-rotating frame of reference with coordinates x, y and z in

which the sample is stationary. ω will be taken to be large enough that the effect of the ion

bombardment is to an excellent approximation the same as if the sample were bombarded

from all azimuthal angles φ simultaneously.

For polar angles of incidence θ less than the critical value θc, the solid surface is stable

and it remains flat as the irradiation proceeds. Conversely, for θ > θc, the surface is unstable

and a nanoscale pattern develops as time passes. Note that θc will in general depend on the

ion energy E.

The goal of this section is to find the EOM for the surface for an angle of incidence θ just

above the threshold value θc. This will be accomplished by carrying out systematic expan-

sions in the small parameter ǫ ≡ (θ − θc)
1/2. The three cases of high, low and intermediate

energies E will be considered in turn.

Let h(x, y, t) be the height of the solid surface above the point (x, y) in the x−y plane at

time t. The partial derivative of h with respect to x will be denoted by hx, and hy and ht are

defined analogously. We will evaluate ht(0, 0, t), the time rate of change of h at x = y = 0.

Because the point x = y = 0 can be placed at an arbitrary location, this will yield the EOM

for the surface.

5



A. High energy regime

Suppose that only ions with azimuthal angles of incidence between −dφ/2 and dφ/2 were

incident on the surface of the solid. ht(0, 0, t) depends on the polar angle of incidence θ. It

also depends in principle on the shape of the entire surface, or, equivalently, on all of the

spatial derivatives of h(x, y, t) evaluated at x = y = 0. We will write

ht =
1

2π
f(θ; hx, hy, hxx, hxy, hyy, hxxx, hxxy, hxyy, hyyy, hxxxx, . . .)dφ. (1)

The partial derivatives of h that appear in Eq. (1) are all to be evaluated at x = y = 0 and

time t. The factor of 1/2π was inserted on the right-hand side of Eq. (1) merely because

this will make our final result neater.

The function f includes the effects of sputtering and MR. It also includes either the

effect of thermally activated surface diffusion or ion-induced viscous flow near the surface of

the solid, depending on which of these two processes is active for the given ion energy and

sample temperature.

In writing Eq. (1), we have assumed that inertial effects are negligible. This is completely

reasonable, since even if there is ion-induced viscous flow near the surface of the solid, the

viscosity is so high that the flow is in the Stokes regime. In addition, because the EOM

must be invariant under the transformation h → h + const., the function f cannot depend

on h itself, although it certainly does depend on the spatial derivatives of h.

Let the coordinate axes obtained by rotating the x, y and z axes through an angle φ about

the z axis be denoted by x′, y′ and z′. When ions with all azimuthal angles of incidence φ

impinge on the solid, Eq. (1) is replaced by

ht =
1

2π

∫ 2π

0

f(θ; hx′, hy′, hx′x′ , hx′y′ , hy′y′ , hx′x′x′, . . .)dφ. (2)

Because

x′ = x cosφ+ y sinφ, (3)

y′ = −x sin φ+ y cosφ (4)

and

z′ = z (5)

the integrand on the right-hand side of Eq. (2) has an implicit dependence on φ and cannot

simply be factored out from under the integral.
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Although Eq. (2) gives ht and so completely specifies the dynamics of the surface, it is

an exceedingly complicated integro-differential equation. In addition, we only have limited

knowledge of the nature of the function f . Fortunately, Eq. (2) becomes much simpler when

ǫ ≡ (θ− θc)
1/2 is small and positive. Let v0 = −f(θ; 0, 0, . . .) be the rate the surface recedes

if it is perfectly planar, and set h(x, y, t) = −v0t+ u(x, y, t). We seek solutions to Eq. (2) of

the form

u(x, y, t) = ǫ2U(X, Y, T ), (6)

where

X ≡ ǫx, Y ≡ ǫy and T ≡ ǫ4t. (7)

X, Y and T are the so-called “slow” variables and x, y and t are the corresponding “fast”

variables. Heuristically speaking, Eq. (6) says that close to the critical angle θc, the am-

plitude of the surface disturbance is small and it varies slowly in space and time. An a

posteriori justification for adopting the scaling given by Eqs. (6) and (7) will be obtained

once we have arrived at an EOM that is well-behaved in the ǫ → 0 limit.

We now insert Eq. (6) into f(θ; ux, uy, uxx, uxy, uyy, . . .), expand in powers of ǫ and retain

terms up to order ǫ6. Such an expansion is possible because we are neglecting nonlocal effects

[32]. Terms that are not invariant under the transformation y → −y must have coefficients

equal to zero and are discarded. So that we can write the result of this expansion succinctly,

we define

f0(θ) ≡ f(θ; 0, 0, . . .), (8)

f1(θ) ≡
∂

∂ux

f(θ; ux, 0, 0, . . .)
∣

∣

∣

ux=0
, (9)

f2(θ) ≡
∂

∂uy
f(θ; 0, uy, 0, 0, . . .)

∣

∣

∣

uy=0
, (10)

f3(θ) ≡
∂

∂uxx
f(x, y, θ; 0, 0, uxx, 0, 0, . . .)

∣

∣

∣

uxx=0
, (11)

and so on. Similarly, for positive integers n and m, fn,m(θ) will denote the partial derivative

of f(θ; ux, uy, uxx, uxy, . . .) with respect to the nth and mth arguments that appear after

the semicolon, evaluated for all the arguments after the semicolon set equal to zero. For

example,

f1,3(θ) ≡
∂

∂ux

∂

∂uxx
f(θ; ux, 0, uxx, 0, 0, . . .)

∣

∣

∣

ux=uxx=0
. (12)
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We obtain

f(θ; ux, uy, uxx, uxy, uyy, . . .) = f0 + ǫ3f1UX + ǫ4f3UXX + ǫ4f5UY Y + ǫ5f6UXXX

+ǫ5f8UXY Y + ǫ6f10UXXXX + ǫ6f12UXXY Y + ǫ6f14UY Y Y Y

+
1

2
ǫ6f1,1U

2
X +

1

2
ǫ6f2,2U

2
Y . (13)

All of the spatial derivatives of U that appear on the right-hand side of Eq. (13) are evaluated

at X = Y = 0. Using the fact that v0 = −f0, we may rewrite Eq. (2) as

ǫ6UT =
1

2π

∫ 2π

0

dφ
(

ǫ3f1UX′ + ǫ4f3UX′X′ + ǫ4f5UY ′Y ′ + ǫ5f6UX′X′X′

+ǫ5f8UX′Y ′Y ′ + ǫ6f10UX′X′X′X′ + ǫ6f12UX′X′Y ′Y ′ + ǫ6f14UY ′Y ′Y ′Y ′

+
1

2
ǫ6f1,1U

2
X′ +

1

2
ǫ6f2,2U

2
Y ′

)

, (14)

where X ′ ≡ ǫx′ and Y ′ ≡ ǫy′. Equation (14) is valid to sixth order in ǫ.

We will next do some preparatory work that will allow us to efficiently evaluate the

integrals over azimuthal angles φ that appear in Eq. (14). These methods will also be used

in the next subsection.

From Eqs. (3) and (4), we have

∂X′ = (cosφ)∂X + (sinφ)∂Y (15)

and

∂Y ′ = −(sin φ)∂X + (cosφ)∂Y . (16)

If we simply inserted these results into the right-hand side of Eq. (14), we would be faced

with computing integrals of products of up to four sines and/or cosines. Instead, we let

Z ≡ X + iY so that Z∗ = X − iY . We immediately find that

∂Z =
1

2
(∂X − i∂Y ) (17)

and hence

∂Z∗ =
1

2
(∂X + i∂Y ) (18)

Writing cosφ and sinφ as linear combinations of eiφ and e−iφ in Eqs. (15) and (16), we

readily obtain

∂X′ = eiφ∂Z + e−iφ∂Z∗ (19)
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and

∂Y ′ = i(eiφ∂Z − e−iφ∂Z∗). (20)

When we insert these expressions for ∂X′ and ∂Y ′ into the right-hand side of Eq. (14), we

only have to compute integrals of complex exponentials. For example,

1

2π

∫ 2π

0

UX′X′dφ =
1

2π

∫ 2π

0

(eiφ∂Z + e−iφ∂Z∗)2Udφ

=
1

2π

∫ 2π

0

(e2iφUZZ + 2UZZ∗ + e−2iφUZ∗Z∗)dφ

=2UZZ∗ =
1

2
∇2

XU, (21)

where Eqs. (17) and (18) have been used in the final step and ∇2
X ≡ ∂2

X + ∂2
Y . Once all of

the integrals on the right-hand side of Eq. (14) have been evaluated, we are left with

ǫ6UT = −Aǫ4∇2
XU − Bǫ6∇2

X∇
2
XU + λǫ6(∇XU)2, (22)

where ∇X ≡ ∂X x̂+ ∂Y ŷ,

A ≡ −
1

2
(f3 + f5), (23)

B ≡ −
3

8
(f10 − f12 + f14), (24)

and

λ ≡
1

4
(f1,1 + f2,2). (25)

As the angle of incidence θ passes through the critical value θc, an instability sets in and

the coefficient A must change sign from negative to positive. Thus, close to the transition,

A ∼= A1(θ− θc), where A1 is a positive constant that does not depend on θ. Just above the

transition, A ∼= A1ǫ
2. The equation of motion (22) is therefore

UT = −A1∇
2
XU − B∇2

X∇
2
XU + λ(∇XU)2 (26)

for θ just above θc. Notice that ǫ does not appear in Eq. (26). Thus, the scaling we posited

in Eqs. (6) and (7) leads to a well-behaved EOM in the small ǫ limit.

In terms of the original variables, Eq. (26) is

ut = −A∇2u− B∇2∇2u+ λ(∇u)2. (27)

Equation (27) is the isotropic two-dimensional Kuramoto-Sivashinsky (KS) equation. Note

that we must have B > 0 for the solutions to Eq. (27) to be well defined. For θ > θc, the
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constant A is positive and a flat initial surface is unstable. The surface width 〈w〉 grows

exponentially at early times. At longer times, 〈w〉 tends to a constant and the surface

exhibits spatio-temporal chaos.

The term proportional to ∇2u in Eq. (27) comes from curvature dependent sputtering

and MR. The term −B∇2∇2u, on the other hand, describes the effect of thermally activated

surface diffusion or ion-induced viscous flow near the surface of the solid. The origin of the

term λ(∇u)2 is the slope dependence of the sputter yield.

B. Low energy regime

We now turn our attention to the case in which the energy per incident ion E is below the

sputtering threshold and sputtering is therefore negligible. Because ion implantation can be

neglected, the mass of the solid is conserved and the continuity equation applies. Let J be

the total surface current and set u = h. The continuity equation is then

ut = −Ω∇ · J , (28)

where Ω is the atomic volume.

Suppose that only ions with azimuthal angles of incidence between −dφ/2 and dφ/2 were

incident on the surface of the solid. The resulting surface current, which we will denote

by 1
2π
j(0)dφ, depends on the polar angle of incidence θ. It also depends in principle on

the shape of the entire surface, or, equivalently, on all of the spatial derivatives of u(x, y, t)

evaluated at x = y = 0. We will write

ji(0) = ji(θ; ux, uy, uxx, uxy, uyy, uxxx, . . .) (29)

for i = x and y. Similarly, we let 1
2π
j(φ)dφ denote the surface current if only ions with

azimuthal angles of incidence between φ− dφ/2 and φ+ dφ/2 are incident on the surface of

the solid. In analogy with Eq. (29), we have

ji(φ) = ji(θ; ux′, uy′, ux′x′, ux′y′ , uy′y′ , ux′x′x′, . . .) (30)

for i = x′ and y′.

When ions with all azimuthal angles of incidence impinge on the solid surface, the surface

current is

J =
1

2π

∫ 2π

0

j(φ)dφ. (31)
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The continuity equation (28) becomes

ut = −
Ω

2π

∫ 2π

0

[∂x′jx′(φ) + ∂y′jy′(φ)]dφ

= −
Ω

2π

∫ 2π

0

[∂x′jx′(θ; ux′, uy′, ux′x′, . . .) + ∂y′jy′(θ; ux′, uy′, ux′x′ , . . .)]dφ (32)

The partial derivatives of u that appear in Eq. (32) are all to be evaluated at x = y = 0.

We seek solutions to Eq. (32) of the form

u(x, y, t) = U(X, Y, T ), (33)

where

X ≡ ǫx, Y ≡ ǫy and T ≡ ǫ4t. (34)

Once again, X, Y and T are the slow variables and x, y and t are the corresponding fast

variables. Heuristically speaking, Eq. (33) says that close to the critical angle θc, the surface

disturbance varies slowly in space and time. An a posteriori justification for adopting the

scaling given by Eqs. (33) and (34) will again be obtained when we have arrived at an EOM

that is well-behaved in the ǫ → 0 limit. Note that Eq. (33) differs from Eq. (6): different

scaling ansatzes are needed in the high and low energy regimes, as in the case in which the

sample is not rotating [33, 34].

We now insert Eq. (33) into Eq. (32) and expand in powers of ǫ. We retain terms up to

order ǫ4. Once that has been done, the integrals over the azimuthal angle must be evaluated.

The calculation is lengthy and arduous, but it is simplified by using Eqs. (19) and (20), as

before. The partial derivatives jx,n(θ) and jy,n(θ) are defined in complete analogy with the

definition of fn(θ). In addition, for positive integers n and m, jx,n,m(θ) will denote the

partial derivative of jx(θ; ux, uy, uxx, uxy, . . .) with respect to the nth and mth arguments

that appear after the semicolon, evaluated for all the arguments after the semicolon set

equal to zero. Naturally, jy,n,m(θ) is defined in an exactly parallel fashion. The end result is

the EOM

ǫ4UT =−Aǫ2∇2
XU − Bǫ4∇2

X∇
2
XU

+βǫ4(UXXUY Y − U2
XY ) + rǫ4∇2

X(∇XU)2 + νǫ4∇X · [(∇XU)2∇XU ], (35)

where

A ≡
1

2
Ω(jx,1 + jy,2), (36)
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B ≡
3

8
Ω(jx,6 − jx,8 + jy,9 − jy,7), (37)

β = −
1

4
Ω(jx,1,3 + 3jx,1,5 − jx,2,4 + jy,2,5 + 3jy,2,3 − jy,1,4), (38)

r = −
1

16
Ω(3jx,1,3 + jx,1,5 + jx,2,4 + 3jy,2,5 + jy,2,3 + jy,1,4), (39)

and

ν = −
1

16
Ω(jx,1,1,1 + jx,1,2,2 + jy,2,2,2 + jy,1,1,2). (40)

Arguing just as we did in Sec. IIA for the high energy regime, we find that A ∼= A1ǫ
2 for

θ just above θc. Here A1 is a positive constant that does not depend on θ. The equation of

motion (35) is therefore

UT =−A1∇
2
XU − B∇2

X∇
2
XU

+β(UXXUY Y − U2
XY ) + r∇2

X(∇XU)2 + ν∇X · [(∇XU)2∇XU ], (41)

for θ just above θc. Notice that ǫ does not appear in Eq. (41). Thus, the scaling we posited

in Eqs. (33) and (34) leads to a well-behaved EOM in the small ǫ limit.

In terms of the original variables, Eq. (41) is

ut = −A∇2u− B∇2∇2u+ β(uxxuyy − u2
xy) + r∇2(∇u)2 + ν∇ · [(∇u)2∇u]. (42)

Once again, we must have B > 0 for the solutions to Eq. (42) to be well defined. In addition,

the constant ν must be positive; if it is negative or zero, the surface slope will grow without

bound.

It is not immediately apparent that Eq. (42) conserves mass. However, using the identity

uxxuyy − u2
xy =

1

2
∇ · [(∇2u)∇u]−

1

4
∇2(∇u)2, (43)

we see that Eq. (42) may be written in the form of a continuity equation

ut = −Ω∇ · J̄ , (44)

where the approximate surface current J̄ is given by

ΩJ̄ = A∇u +B∇∇2u+

(

1

4
β − r

)

∇(∇u)2 −
1

2
β(∇2u)∇u− ν(∇u)2∇u. (45)

Mass is therefore conserved. Equation (43) also makes it clear that Eq. (42) is invariant

under rotations about the z axis, as it must be.
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In the low energy regime, there is no sputtering, and so only MR contributes to the term

−A∇2u in Eq. (42). As in the high energy regime, the term −B∇2∇2u describes the effect

of thermally activated surface diffusion or ion-induced viscous flow near the surface of the

solid. The term r∇2(∇u)2, on the other hand, is the conserved Kuramoto-Sivashinsky (CKS)

nonlinearity. Although this term was first encountered in molecular beam epitaxy [35, 36], it

plays a role in ion-induced pattern formation even when a surface layer of the target material

is amorphized by the ion bombardment [37–39]. The CKS nonlinearity tends to produce

coarsening of the surface patterns, i.e., the characteristic lateral and vertical length scales

increase with time [37–40]. Because coarsening is commonly observed when solid surfaces

are bombarded with broad ion beams, it is believed that the CKS nonlinearity must in

general be included in the EOM.

A term similar to the term ν∇· [(∇u)2∇u] in Eq. (42) appears in the EOM that describes

the mounding instability that can occur during molecular beam epitaxy. In that context,

the term results from the Ehrlich-Schwoebel (ES) effect, is anisotropic, and can lead to the

formation of a faceted surface [36]. In our problem, the term ν∇ · [(∇u)2∇u] is isotropic

and it appears in the EOM (42) as a result of the slope dependence of the surface current

produced by MR.

It remains to discuss the term β(uxxuyy − u2
xy) that appears in Eq. (42). The Gaussian

curvature K is given by

K =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
. (46)

To fourth order in ǫ, the factor of uxxuyy − u2
xy in Eq. (42) can be replaced by K. There

is therefore a contribution to the surface velocity ut that is approximately proportional to

the Gaussian curvature. The effects of a term proportional to K have not previously been

included in simulations of the dynamics of a solid surface subjected to ion bombardment.

However, it is of the same order in ǫ as the other terms in the EOM (42) and so it must be

retained for the sake of consistency.

In their derivation of an EOM that models the deposition of amorphous thin films, Raible

et al. at first included a Gaussian curvature term [41]. At this stage of their derivation, their

EOM was Eq. (42) with ν set to zero. However, Raible and coworkers then argued that the

Gaussian curvature term is negligible in the case of thin film deposition and discarded it.

The effects of the Gaussian curvature term (GCT) on the surface dynamics will be ex-
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plored in detail in this paper. As we shall see, it can have an important influence on the

dynamics and cannot be omitted from the EOM, at least in the case of ion bombardment

of a solid.

C. Intermediate energy regime

We now turn to the intermediate energy regime, i.e., to ion energies just above the

sputtering threshold. In this regime, we divide the contributions to the surface velocity ht

into two parts: one from surface currents, and the other from sputtering. We choose the

ion energy to be above the sputtering threshold but close enough to it that the contribution

from sputtering is of order ǫ2. Thus, in analogy with Eqs. (2) and (32), we have

ht =−
Ω

2π

∫ 2π

0

[∂x′jx′(θ; hx′, hy′ , hx′x′, . . .) + ∂y′jy′(θ; hx′, hy′ , hx′x′, . . .)]dφ

+
1

2π
ǫ2
∫ 2π

0

f(θ; hx′, hy′, hx′x′, hx′y′ , hy′y′, hx′x′x′ , . . .)dφ, (47)

where the O(ǫ2) magnitude of the contribution to ht from sputtering has been explicitly

displayed.

We once again set h(x, y, t) = −v0t + u(x, y, t) and seek solutions to Eq. (47) of the

form given by Eq. (33) and (34). We retain terms up to order ǫ4. The required expansions

for the two terms on the right-hand side of Eq. (47) were carried out in the preceding two

subsections, although the expansion for the second term on the right-hand side of Eq. (47)

must be modified because there is a prefactor of ǫ2 on the right-hand side of Eq. (6) but not

on the right-hand side of Eq. (33). We obtain

UT =−A1∇
2
XU − B∇2

X∇
2
XU + λ(∇XU)2

+β(UXXUY Y − U2
XY ) + r∇2

X(∇XU)2 + ν∇X · [(∇XU)2∇XU ] (48)

Because ǫ does not appear in Eq. (48), this equation has a well defined ǫ → 0 limit. In terms

of the original variables, Eq. (48) is

ut =−A∇2u− B∇2∇2u+ λ(∇u)2

+β(uxxuyy − u2
xy) + r∇2(∇u)2 + ν∇ · [(∇u)2∇u]. (49)

It is perhaps not surprising that all of the nonlinear terms on the right-hand side of the high

energy EOM (27) and the low energy EOM (42) appear on the right-hand side of Eq. (49),

the EOM that applies in the intermediate energy regime.
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If β = r = λ = 0, Eq. (49) is invariant under the transformation u → −u. If, on the other

hand, β, r or λ is nonzero, then the u → −u symmetry is broken. Since there is vacuum

above the surface and solid below, there is no reason that such a symmetry should exist.

A term proportional to K appears in the EOM in the intermediate energy regime, just as

in the low energy regime. In the intermediate energy regime, however, the term proportional

to K could contain a contribution that comes from sputtering. Monte Carlo simulations have

shown that a term proportional to K makes an non-negligible contribution to the yield in

nanoparticle sputtering, albeit for ion energies well in excess of the sputtering threshold

[42]. This again suggests that the term proportional to K cannot simply be omitted when

studying the dynamics of a surface that is bombarded with a broad ion beam.

III. PRELIMINARY DISCUSSION OF THE SURFACE DYNAMICS

We have seen that the EOM is Eq. (49) in the high, low and intermediate energy regimes.

In the high energy regime, β = r = ν = 0 and the EOM is the isotropic KS equation.

This equation has been studied extensively, and so this regime will not be discussed further.

In the low energy regime, λ = 0 and the mass of the solid is conserved. Finally, in the

intermediate energy regime, λ, β, r and ν could all be nonzero.

Various special cases of Eq. (49) with the coefficient of the Gaussian curvature term

β equal to zero have already been studied. For β = ν = 0, Eq. (49) reduces to the so-

called extended KS equation. Solutions to this equation exhibit interrupted coarsening:

the characteristic lateral and vertical length scales grow at first, but ultimately saturate

[37, 38, 40, 43]. For β = r = 0, on the other hand, Eq. (49) is a special case of a model

that governs the faceting of growing, thermodynamically unstable crystal surfaces [44, 45].

Finally, for β = λ = 0, Eq. (49) is a special case of a model that describes the epitaxial

growth of a crystal [36]. In the second and third special cases just mentioned, the ES term

is isotropic. In contrast, the ES term for the surface of a crystal is in general anisotropic.

The novel feature of Eq. (49) is the presence of the Gaussian curvature term, and so we

will focus on the case in which β is nonzero in this paper. Because the GCT vanishes in one

dimension, we will confine our discussion to the two-dimensional case in which u depends

on both x and y. We introduce the dimensionless quantities x̃ ≡ (A/B)1/2x, ỹ ≡ (A/B)1/2y,

t̃ ≡ A2t/B, ũ ≡ βu/B, λ̃ = Bλ/(βA), r̃ ≡ r/β and ν̃ = Bν/β2. After dropping the tildes,
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Eq. (49) becomes

ut = −∇2u−∇2∇2u+ uxxuyy − u2
xy + λ(∇u)2 + r∇2(∇u)2 + ν∇ · [(∇u)2∇u]. (50)

For r = ν = 0, Eq. (50) is a special case of a partial differential equation that was employed

as a model of combustion fronts and the solidification of a hypercooled melt in Ref. [46]. That

particular special case of the model, however, was not studied in Ref. [46] or in subsequent

work.

We wish to highlight the effects of the GCT in Eq. (50). Therefore, we will also consider

the surface dynamics given by the EOM

ut = −∇2u−∇2∇2u+ λ(∇u)2 + r∇2(∇u)2 + ν∇ · [(∇u)2∇u], (51)

i.e., Eq. (50) with the GCT omitted. Comparisons will be made between the behavior

predicted by Eqs. (50) and (51) with the same values of the parameters λ, r and ν.

To understand the effects of the ES term ν∇ · [(∇u)2∇u] that appears in both Eqs. (50)

and (51), let us consider the behavior of solutions to Eq. (51) with λ = r = 0 on the domain

in which 0 ≤ x ≤ L and 0 ≤ y ≤ L and apply periodic boundary conditions. We introduce

the effective free energy

FES ≡

∫ L

0

∫ L

0

[

f(ux, uy) +
1

2
(∇2u)2

]

dxdy, (52)

where

f(ux, uy) ≡ −
1

2
(∇u)2 +

1

4
ν(∇u)4 (53)

will be referred to as the effective potential. For λ = r = 0, Eq. (51) can be written

ut = −
δFES

δu
, (54)

where δFES/δu denotes the variational derivative of FES with respect to the surface height

u. Equation (54) implies that dFES/dt ≤ 0, i.e., the effective free energy can never increase.

The dynamics therefore tends to minimize the value of FES. The effective potential f is

minimized for |∇u| = ν−1/2, and, as a result, the surface will tend toward a state in which

most of the surface has a gradient of magnitude close to ν−1/2. The term ν∇ · [(∇u)2∇u]

in Eqs. (50) and (51) therefore tends to prevent the development of large surface slopes.

Spatial variations of the direction of ∇u have an energy cost because of the second term in

the integrand in Eq. (52).
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To illustrate the conclusions of the previous paragraph, we carried out a simulation of

Eq. (51) with λ = r = 0 and ν = 1 starting from a low amplitude spatial white noise

initial condition. (Our simulation method is described in Sec. IV.) The surface at time

t = 1000 is shown in Fig. 1 (a). The heat map of |∇u| in Fig. 1 (b) demonstrates that by

time t = 1000, |∇u| is close to the predicted value ν−1/2 = 1 over much of the surface, but

there are intervening, nearly straight regions in which the surface slope is near zero. The

distribution of surface gradients given in Fig. 1 (c) shows more clearly that by this time, |∇u|

is close to one at most points on the surface. Finally, Fig. 1 (d) shows that the probability

distribution of |∇u| has a peak that moves toward the expected value of 1 as time passes.

To gain insight into the effect of the GCT, consider Eq. (50) with all of the terms on

the right-hand side omitted except the GCT. Thus, we will study the partial differential

equation

ut = uxxuyy − u2
xy. (55)

To fourth order in ǫ, this may be replaced by

ut =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
3/2

. (56)

The normal velocity of the surface is vn = (1 + u2
x + u2

y)
−1/2ut. Making use of this formula

and of Eq. (46), Eq. (56) becomes

vn = K. (57)

The surface dynamics given by this equation is known as motion by Gaussian curvature.

Remarkably, Eq. (57) can be written in variational form [47]. We introduce the effective free

energy for motion by Gaussian curvature,

FH =

∫

S

HdA, (58)

where S is the surface of the solid, dA is an element of surface area, and H is the mean

curvature of the surface. We adopt the sign convention that H is positive where the surface

is concave, so that

H =
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy

2(1 + u2
x + u2

y)
3/2

. (59)

As shown in Ref. [47], Eq. (57) may be recast as

ut = −
δFH

δu
. (60)
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FIG. 1. Results from a simulation of Eq. (51) with λ = r = 0 and ν = 1 starting with a low

amplitude spatial white noise initial condition. The surface height at time t = 1000 is shown in (a),

along with its power spectral density in the inset. Panel (b) shows the magnitude of the gradient of

the surface shown in (a). In (c), the 2D gradient distribution is plotted for the surface shown in (a).

Figure (d) shows the probability distribution of the gradient’s magnitude at three different times:

t = 100 in blue, t = 250 in green, t = 1000 in magenta and t = 1500 in black. The simulation

parameters were N = 512 and L = 30π.

This means that value of the effective free energy FH can never increase, i.e., motion by

Gaussian curvature tends to minimize the total mean curvature. By the Gauss-Bonnet

theorem, Eq. (57) conserves mass, and so this minimization process occurs subject to the

constraint that the total mass is conserved.

Although Eq. (57) has been studied in the past, the work done to date appears to have

18



been entirely analytical and to have been restricted to the time evolution of smooth, convex

surfaces [47–50]. Numerical integrations of Eq. (57) rapidly lead to pathological behavior

and show that this work is largely academic. To see why this is so, suppose that u is

small and work to second order in u. Equation (56) then reduces to Eq. (55). The surface

u(x, y, t) = −1
2
Cx2 ≡ u0(x) with C > 0 is a steady-state solution to Eq. (55). If we perturb

this solution to give u(x, y, t) = u0(x) + u1(x, y, t) and linearize in the perturbation u1,

we obtain u1,t = −Cu1,yy. As a consequence, the amplitude of a Fourier mode with wave

vector k = kyŷ grows exponentially in time with the growth rate Ck2
y. This growth rate

diverges as the wavelength of the mode 2π/ky tends to zero, which means that the continuum

description of the surface breaks down. To remedy this problem, instead of continuing to

study Eq. (55), we consider instead the partial differential equation

ut = uxxuyy − u2
xy −∇2∇2u. (61)

This EOM does not break down at short wavelengths and simply incorporates another term

that appears in Eq. (50).

Equation (61) is variational, as we now show. Inserting Eq. (59) into Eq. (58), using

dA =
√

1 + u2
x + u2

ydxdy, and retaining terms up to fourth order in ǫ, we obtain

FH
∼= −

∫

uxuyuxyd
2x ≡ F ′

H , (62)

where d2x ≡ dxdy. F ′

H is the free energy associated with Eq. (55), as is readily verified

by computing the variational derivative δF ′

H/δu directly. The free energy for Eq. (61) is

F ≡ F ′

H + FD, where

FD ≡
1

2

∫

(∇2u)2d2x. (63)

To explore the time evolution described by Eq. (61), we compute the effective free energy

F for the Gaussian surface profile

u(x, y) =
V

2πσ2
e−(x2+y2)/2σ2

. (64)

Here σ > 0 is the width of the Gaussian and V is the volume beneath it. A straightforward

calculation shows that for this variational trial function

F =
V 2

4π

(

1

σ6
−

V

πσ8

)

. (65)
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F is an increasing function of σ for σ less than the critical value σc ≡ (4V/3π)1/2 and is a

decreasing function for σ > σc. For σ > σc, therefore, σ will increase as time passes, i.e., the

Gaussian will become broader and its height will decline to reduce the effective free energy.

Conversely, the Gaussian will become narrower and higher as time passes for σ < σc. In

fact, we expect that σ will tend to zero in this case, i.e., the surface protrusion will evolve

into a singular spike.

The time evolution of a surface depression can be explored by replacing V by −V in the

trial function (64). The corresponding effective free energy

F =
V 2

4π2

(

1

σ6
+

V

πσ8

)

. (66)

is a decreasing function of σ. We conclude that a surface depression will become shallower

and broader with the passage of time.

The results of a simulation of Eq. (61) with a Gaussian initial condition of the form (64)

with width σ = 1 and height V/2π = 10 are shown in Fig. 2 (a). The figure shows u(x, 0, t)

versus x for three different times. The chosen value of σ is smaller than σc
∼= 5.16 and,

as predicted, the surface protrusion becomes higher and narrower with time. A simulation

for an inverted Gaussian initial condition with σ = 1 and V/2π = −10 yields a surface

depression that becomes shallower and broader as time passes: see Fig. 2 (b). This is again

in accord with our prediction.

We next turn our attention to Eq. (50) when λ = r = 0 and ν is positive. This EOM

is also variational, and it has the effective free energy Ftot ≡ FES + F ′

H . If ν is sufficiently

large in magnitude, we expect that runaway growth of spikes will be prevented by the

presence of the term ν∇ · [(∇u)2∇u], for, as we have seen, the latter term tends to suppress

the development of large surface slopes. This expectation is borne out by the simulations

discussed in Sec. IVA.

IV. SIMULATIONS

For the simulations, the surface was approximated by a N × N grid of points evenly

spaced on the spatial domain with −L ≤ x ≤ L and −L ≤ y ≤ L. Periodic boundary

conditions were employed. All of the simulations in this section were done with a low am-

plitude spatial white noise initial condition. (The amplitude of the noise was chosen to be
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FIG. 2. u(x, 0, t) versus x for two simulations of Eq. (61) at three different times. In (a), the initial

condition was an upright Gaussian of height 10 and width σ = 1. Blue is time t = 0; orange is

t = 0.17; and green is t = 0.178. In (b), the initial condition was an inverted Gaussian of depth

10 and width σ = 1. Blue is time t = 0; orange is t = 0.5; and green is t = 10. The simulation

parameters were L = 5, N = 128 and ∆t = 0.0001.

10−3.) The numerical integrations were carried out using fourth-order Runge-Kutta expo-

nential time differencing (ETDRK4) [51, 52]. In ETDRK4, the linear terms are evaluated

exactly in Fourier space, and the nonlinear terms are approximated using finite differencing

in real space. In particular, the KS and GCT terms were both evaluated only using finite

differencing. The CKS and ES terms were evaluated using both finite differencing and a

pseudo-spectral method. For example, the CKS term r∇2(∇u)2 was approximated by cal-

culating (∇u)2 in real space using finite differencing, but the the Laplacian of the result

was then evaluated in Fourier space. Unless otherwise noted, the simulation parameters in

the following results were L = 30π and N = 512, and the time step was ∆t = 0.01. We

checked numerical accuracy by verifying that increasing N and decreasing ∆t did not affect

the results substantially.

In the simulation results, we often include plots of the power spectral density (PSD)

as insets in plots of the surface height. The PSD was defined to be the square root of

the modulus of the Fourier transform of the surface height. This definition yields more

detail than if the PSD had been defined in the conventional way as the modulus of the
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Fourier transform squared. The region of k-space shown in each PSD is the one in which

−2.5 ≤ kx ≤ 2.5 and −2.5 ≤ ky ≤ 2.5.

A. The low energy regime

In the low energy regime, the EOM is Eq. (50) with λ = 0. The parameter r is an

arbitrary real number. The value of ν, on the other hand, must be positive to prevent the

formation of singularities, as we anticipated. To demonstrate this, we simulated Eq. (50)

with λ = r = 0 and small, positive values of ν. Figure 3 shows surfaces obtained for (a)

ν = 0.06, (b) ν = 0.05, and (c) ν = 0.04 starting from a low amplitude spatial white noise

initial condition. Corresponding 1D line profiles of surface height u, slope ux, and curvature

uxx of a representative spike from each are shown in Fig. 3 (a’) - (c’). These figures point to

the development of progressively taller spikes with sharper tips as the value of ν is reduced.

The curvature uxx near the tip of the spike has an approximately Gaussian profile. Fitting

(inverted) Gaussians to the data for uxx shows that the depth of the Gaussian increases and

its width decreases as ν approaches zero, as can be seen in Fig. 4. This provides additional

numerical evidence that a singularity in the curvature develops in the limit that ν → 0.

For values of ν smaller than 0.038, numerical blowup occurred for the choice of simulation

parameters N = 256 and L = 5π.

Simulations of the version of Eq. (50) that applies in the low energy regime all yield

disordered arrays of nanodots that coarsen with time; however, the coarsening speed and

mechanism depend on the value of the coefficient r of the CKS term. In Fig. 5, simulations

of Eq. (50) with λ = 0 and ν = 0.1 are shown with time progressing from left to right:

on the left, t = 50, in the middle, t = 150, and on the right, t = 1000. The rows show

snapshots of the surface taken from simulations with different values of the CKS coefficient:

r = 0.1 in row (a), r = 0 in row (b), r = −0.1 in row (c) and r = −1 in row (d). Although

at time t = 1000 the surfaces with r = 0 and r = −0.1, shown in Fig. 5 (b”) and (c”)

respectively, have undergone a similar amount of coarsening and appear to be similar, the

dynamics are quite different in the two cases. In the r = −0.1 case, the coarsening occurs

as some nanodots shrink and then disappear, allowing neighboring nanodots to grow and

occupy the area left behind by the now absent nanodot. On the other hand, in the r = 0

case, pairs of nanodots occasionally near one another, collide and coalesce to form one larger
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FIG. 3. Images taken from simulations of Eq. (50) at time t = 2000 with a low amplitude noise

initial condition and parameters λ = r = 0 and (a) ν = 0.06, (b) ν = 0.05, and (c) ν = 0.04. High

points are light and low points are dark. The blue horizontal lines indicate the directions of line

scans along which data is shown in (a’), (b’), and (c’). The graphs (a’)-(c’) show the surface height

u in blue, the slope ux in green, the curvature uxx in magenta, and the inverted Gaussian fits to

the curvature in black. For these simulations, N = 256 and L = 5π.

nanodot. This coalescence behavior is also observed for r = 0.1 [row (a)], but the rate at

which it occurs is faster than for r = 0. Likewise, the dynamics for r = −1 [row (d)] is

qualitatively similar to that observed for r = −0.1, but more rapid.

The tendency for nanodots to near one another and to coalesce is a consequence of the

GCT. To see this, note that the value of F ′

H for two widely separated Gaussian protrusions

that have volumes V and widths σ is −2V 3/(4π2σ8) = −V 3/(2π2σ8). If these two Gaussians

are combined to form a single Gaussian with volume 2V and width σ, then F ′

H becomes

−(2V )3/4π2σ8 = −2V 3/π2σ8. This is four times more negative than the value of F ′

H for the

two widely separated Gaussians. As a result, we could have anticipated that there would
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FIG. 4. Values of the (a) depth and (b) width of the Gaussian fits to the uxx profile along a line

passing through a spike for small values of ν. These results were obtained from simulations of

Eq. (50) starting with a low amplitude noise initial condition for the parameter values λ = r = 0,

the same values used in Fig. 3. The data displayed are for time t = 2000. For these simulations,

N = 256 and L = 5π.

be a tendency for two spikes to near one another and then fuse to form a single spike. The

GCT will therefore tend to produce coarsening of the surface morphology.

The CKS nonlinearity r∇2(∇u)2 that appears in Eq. (50) is not variational. It is known,

however, that it tends to produce coarsening of the surface morphology [37–40]. This term

is therefore expected to speed the coarsening that results from the GCT. That is indeed

what we see when we compare the behavior for r = 0.1 and r = −1 with the behavior for

r = 0 in Fig. 5.

The 2D gradient distributions for panels (a”) - (d”) of Fig. 5 are shown in Fig. 6. In each

case, the ES term serves to prevent the formation of high surface slopes, and essentially no

values of |∇u| are observed beyond a critical value that depends on r. For r = 0, there

is a pronounced peak centered at ux = uy = 0. This zero-slope peak is produced by the

GCT, which, as we have seen, tends to produce surfaces with sharp peaks separated by flat

regions. The peak at ux = uy = 0 is suppressed to an increasing extent if r is changed from

zero, and is entirely absent for r = −1, the r value of greatest magnitude represented in
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FIG. 5. Simulations of Eq. (50) starting from a low amplitude spatial noise initial condition for

the parameter values λ = 0 and ν = 0.1. The non-primed, single prime, and double primes refer

to times t = 50, t = 150 and t = 1000, respectively. The values of r were (row a) r = 0.1, (row b)

r = 0, (row c) r = −0.1 and (row d) r = −1. The insets show the PSD of the surface.

Fig. 6. The zero-slope peak is also absent in Fig. 1 (c), the 2D gradient distribution for a

simulation of Eq. (51), the EOM with no GCT.
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FIG. 6. 2D gradient distributions for panels (a”) - (d”) of Fig. 5. The values of r were (a”) r = 0.1,

(b”) r = 0, (c”) r = −0.1 and (d”) r = −1.

B. The intermediate energy regime

Figure 7 shows the results of a simulation in the intermediate energy regime. The chosen

parameter values in Eq. (50) were λ = −0.2, r = 0 and ν = 0.05. As can be seen clearly in

the figure, a remarkable degree of hexagonal order develops as time passes. This is evident

from both the real space images of the surface and from the PSDs. The PSDs display

both sharp first-order peaks and an impressive number of higher order peaks, both of which

are indicative of a very high degree of order. In fact, with these parameters, the surface

eventually evolves into a completely defect-free state. This state is shown in Fig. 8 (a). The
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FIG. 7. Results from a simulation of Eq. (50) with λ = −0.2, r = 0 and ν = 0.05 starting from a

low amplitude spatial white noise initial condition. The surface height with the PSD in the insets

is shown at times (a) t = 150, (b) t = 500, (c) t = 1000 and (d) t = 2000.

corresponding PSD, which displays a hexagonal arrangement of narrow peaks, appears in

Fig. 8 (b).

The development of the hexagonal order seen in Fig. 7 seems to stem in part from an

effective repulsion of neighboring nanodots which is caused by the KS nonlinearity λ(∇u)2.

This effective repulsion counterbalances the attraction between nearby nanodots that results

from the GCT, and this leads to an increase in the uniformity of the nanodot spacing. In

addition, as seen in Fig. 9, a nanodot with significantly larger height than its neighbors will

tend to split into two nanodots with reduced height. This tendency is the primary cause for

the decreasing surface width seen in Figs. 7 (b) to (d), and it helps to make the nanodot

sizes increasingly monodisperse as time passes. Finally, if a pair of nanodots gets too close

27



FIG. 8. Results at time t = 3000 from a simulation of Eq. (50) with the same parameters as in

Fig 7. The surface height is shown in (a) and the corresponding PSD in (b).

together, then they may coalesce to form a larger nanodot. Usually, however, this nanodot

is short-lived and soon splits into two smaller nanodots, as shown in Fig. 10. Over time, the

complex dynamics we have described leads to marked improvements in the hexagonal order.

The presence of the Gaussian curvature term in Eq. (50) plays an essential role in the

development of the highly ordered hexagonal arrays of nanodots observed in Fig. 7. To

demonstrate this, we simulated Eq. (51) with λ = −0.2, r = 0 and ν = 0.05. This EOM is

identical to the equation that yielded Fig. 7, except the Gaussian curvature term is omitted.

The result is shown in Fig. 11. No hexagonal order is evident in the real-space images of

the surface, and, correspondingly, there are no significant peaks in the PSDs aside from the

one at the origin. Additionally, the surfaces obtained without the Gaussian curvature term

are dominated by rather broad nanoholes rather than localized nanodots.

The influence of the GCT is also seen in the 2D gradient distributions shown in Fig. 12.

The 2D gradient distribution for Fig. 7 (d) is shown in panel (a). This is the result of

integrating Eq. (50), which includes the GCT, to time t = 2000 with λ = −0.2, r = 0

and ν = 0.05. There is a sharp peak in the 2D gradient distribution centered on the point

ux = uy = 0 and the star-like pattern exhibits clear sixfold symmetry. On the other hand,

panel (b) shows the 2D gradient distribution for Fig. 11 (d). This result was obtained with

the same values of λ, r and ν as panel (a), but the simulation was of Eq. (51), which has no

GCT. In the absence of the GCT, the peak at zero slope does not appear, and there is no

sixfold symmetry. This comparison demonstrates the important role that the GCT plays in
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FIG. 9. A zoomed in view of a simulation with the same parameters used in Fig. 7. The plotted

domain has a side length of 47.5. The surface height is shown at times (a) t = 500, (b) t = 510, (c)

t = 520 and (d) t = 530. Blue circles are included to indicate the region that shows the fission of a

nanodot into two nanodots.

producing flat regions and reaffirms its role in the emergence of a high degree of hexagonal

order.

Nanodot arrays with a high degree of hexagonal order similar to those seen in Fig. 7

form in simulations of Eq. (50) for a range of parameter values. In Fig. 13, the results of

four simulations of Eq. (50) with different choices of parameter values are shown at time

t = 2000.

In Fig. 13 (a), the parameter values were λ = −0.1, r = 0 and ν = 0.05. These values

resulted in a surface with a high degree of local hexagonal order, but the global hexagonal

order is not as strong as in Fig. 7 (d), as can be seen from the lack of distinct first-order
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FIG. 10. A zoomed in view of a simulation with the same parameters used in Fig. 7. The plotted

domain has a side length of 32.8. The surface height is shown at times (a) t = 500, (b) t = 510, (c)

t = 520 and (d) t = 530. Blue circles are included to indicate the region of interest. Two nanodots

merge into one between (a) and (b). This nanodot then splits into two between (b) and (c).

peaks in the PSD. In this case, regions of hexagonal order separated by grain boundaries

are evident in the real-space image of the surface. In simulations in which r = 0 and

ν = 0.05 and the value of λ was outside the range between −0.3 and zero, the nanodots

were disordered.

In Fig. 13 (b), the parameter values were λ = −0.2, r = 0 and ν = 0.04. The resulting

surface has a high degree of both local and global hexagonal order. The coefficient of the

isotropic ES term must be sufficiently small in order for strong hexagonal order to develop.

If ν > 0.09, the resulting surfaces did not exhibit strong hexagonal order. Conversely, as we

have seen, if ν is too small, singular spikes form.
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FIG. 11. Results from a simulation of Eq. (51) with λ = −0.2, r = 0 and ν = 0.05 starting from a

low amplitude spatial white noise initial condition. The surface height with the PSD in the insets

is shown at times (a) t = 150, (b) t = 500, (c) t = 1000 and (d) t = 2000.

In Fig. 13 (c) and (d), the parameter values were λ = −0.2, r = 0.3, ν = 0.04 and

λ = −0.2, r = −0.05, ν = 0.04, respectively. In both cases, there was a nonzero CKS

term. If the CKS coefficient is positive, strong local and global hexagonal order developed

up to r = 0.3. For r > 0.3, enhanced local hexagonal order still results, but the size of the

nanodots becomes too large to characterize the global order. This is because the larger the

value of r, the more coarsening occurs. On the other hand, if r is negative, its magnitude

must be quite small for good hexagonal order to develop. For example, in Fig. 13 (d), the

value of r was −0.05. If r < −0.1, then nanoholes form instead of nanodots, and they are

not well ordered.

In order to quantify how the degree of hexagonal order depends on the parameters λ, r
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FIG. 12. A comparison of 2D gradient distributions for a simulation with and without the GCT.

In (a), the 2D gradient distribution corresponding to Fig. 7(d) is shown. In (b), the 2D gradient

distribution corresponding to Fig. 11(d) is shown.

and ν, we performed a persistent homology analysis as described in detail in Refs. [53] and

[54]. In this analysis, we first found the xy coordinates of the local maxima of the surface

height. We then used these points to calculate the H1 sum, which, roughly speaking, is a

measure of the size of the gaps or “holes” in the hexagonal structure. We then divided the H1

sum by the number of points. Division by the number of points was carried out to address

the issue that some surfaces underwent more coarsening than others, which would cause

two equally ordered surfaces to have different raw H1 scores simply due to the difference in

length scale. Finally, we averaged these normalized H1 sums between the times t = 1900

and t = 2000 in order to reduce noise. Lower H1 scores correspond to a higher degree of

hexagonal order [54].

The persistent homology analysis was carried out for simulations in which the parameters

λ, r and ν were varied from the values that led to the well-ordered arrays shown in Fig. 7,

i.e., λ = −0.2, r = 0 and ν = 0.05. In Fig. 14 (a), the values r = 0 and ν = 0.05 were held

fixed while λ ranged from -1 to 1 in increments of 0.05. In Fig. 14 (b), the values λ = −0.2

and ν = 0.05 were kept constant while r ranged from -0.5 to 0.5 in increments of 0.05. In

Fig. 14(c), ν ranged from 0.04 to 0.3 in increments of 0.01 with the values λ = −0.2 and

r = 0 held fixed. The red horizontal lines correspond to the H1 score for simulations with
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FIG. 13. Results from four simulations of Eq. (50) with different values of λ, r and ν at time

t = 2000. The parameter values used were (a) λ = −0.1, r = 0 and ν = 0.05; (b) λ = −0.2, r = 0

and ν = 0.04; (c) λ = −0.2, r = 0.3 and ν = 0.04; and (d) λ = −0.2, r = −0.05 and ν = 0.04.

r = λ = 0 and ν = 0.05, which we use as a reference case in which a high degree of hexagonal

order is lacking.

The results in Fig. 14 (a) show that substantially improved hexagonal ordering is obtained

if −0.2 ≤ λ ≤ −0.05 with r = 0 and ν = 0.05. Slightly improved order was obtained for

λ = 0.45 and λ = 0.5, but otherwise positive values of λ led to reduced hexagonal order.

There are two interesting upward spikes in the graph at λ = −0.55 and λ = 0.65. The

large H1 sum at λ = −0.55 is due to the formation of well-ordered ripples instead of a

hexagonal array, as shown in Fig. 15. The H1 sum was about 100 for λ = 0.65, but we cut

it off this peak in Fig. 14 for clarity. The surface obtained with λ = 0.65 exhibited unusual

dynamics that appear to involve spatio-temporal chaos along with coarsening. The results
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FIG. 14. Normalized H1 values averaged over times t = 1900 to t = 2000 for simulations of Eq. (50)

in which the three parameters were varied separately. In (a), the values r = 0 and ν = 0.05 were

fixed while λ ranged from -1 to 1. In (b), the values λ = −0.2 and ν = 0.05 were fixed while r

ranged from -0.5 to 0.5. In (c), the values λ = −0.2 and r = 0 were fixed while ν ranged from

0.04 to 0.3. The red horizontal lines correspond to the normalized H1 sum for simulations with

r = λ = 0 and ν = 0.05.

in Fig. 14 (b) show that for λ = −0.2 and ν = 0.05, improved hexagonal order was obtained

for −0.05 ≤ r ≤ 0.5. Values of r smaller than −0.1 led to reduced hexagonal order. There

is no improved hexagonal order in simulations with λ = −0.2 and r = 0 if ν ≥ 0.1, as shown

in Fig. 14(c). In fact, the arrangement of nanodots becomes increasingly disordered as ν is

increased beyond 0.1.

V. DISCUSSION AND CONCLUSIONS

We have seen that a term proportional to the Gaussian curvature K appears in the

EOM that applies close to the threshold angle for pattern formation θc in both the low

and intermediate energy regimes. The GCT conserves mass, is rotationally invariant, and

is variational. The associated effective free energy F ′

H makes it energetically advantageous

for surface protrusions to grow increasingly high and narrow as time passes and for surface

depressions to grow broader and shallower. The GCT also introduces a tendency for pro-

trusions to approach one another and then coalesce, resulting in coarsening of the surface

morphology. If its effect is not moderated by an ES term with a sufficiently large coefficient,

the GCT leads to the formation of spikes that ultimately become singular.
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FIG. 15. Results from a simulation of Eq. (50) with λ = −0.55, r = 0 and ν = 0.05 starting from a

low amplitude spatial white noise initial condition. The surface height with the PSD in the insets

is shown at times (a) t = 150, (b) t = 500, (c) t = 1000 and (d) t = 2000.

In the high energy regime, a term proportional to K does not appear in the EOM that

applies for θ just above θc. However, this term could have a significant effect in the high

energy regime if θ is well above θc. This possibility was briefly considered in Ref. [42], but

was not investigated further.

In traditional, non-rigorous approaches to constructing the EOM in the high energy

regime, one considers u and ∇ to be small and then retains terms up to a selected order

in these quantities. The CKS nonlinearity r∇2(∇u)2 is frequently included in the EOM, in

part because it leads to coarsening, as observed experimentally [1, 37–40, 43]. The Gaussian

curvature term uxxuyy − u2
xy is of the same order in u and ∇ as the CKS nonlinearity.

Therefore, if the CKS term is included in the EOM, the Gaussian curvature term must also
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be included for the sake of consistency. In spite of this, the Gaussian curvature term has

universally been omitted from the EOM in studies in which the CKS term is incorporated

into the EOM.

It is natural to ask what the origin of the Gaussian curvature term is. It is well known

that the sputter yield of a surface depends on its curvature [2, 55]. For oblique incidence

bombardment of a rotating sample with ions that have an energy above the sputtering

threshold, the leading order correction to the sputter yield that comes from the curvature

dependence is proportional to the mean curvature H ∼= 1
2
∇2u. There is also a higher order

correction term proportional to K ∼= uxxuyy − u2
xy, though, and this contributes to the

coefficient β in the EOM that applies in the intermediate energy regime, Eq. (49) [42]. The

surface mass current J̄ is given by Eq. (45). The term A∇u is the lowest order contribution

that stems from MR; it is an uphill current if A > 0 and downhill if A < 0. The term

−1
2
β(∇2u)∇u is a correction to this current, and the prefactor −1

2
β(∇2u) plays the role of

a mobility. Thus, the mass current due to MR actually depends on the curvature of the

surface, and this dependence is encoded in the Gaussian curvature term. The Gaussian

curvature term also affects the strength of the CKS nonlinearity, because its coefficient β

appears in the prefactor of the CKS term (β/4− r)∇(∇u)2 in J̄ .

In the intermediate energy regime, the KS nonlinearity λ(∇u)2 appears in the EOM. This

term is not variational, and so there is no effective free energy associated with it. However,

the KS nonlinearity acts as if it produces an effective repulsion between nanodots and an

approximate steady state with a constant interdot spacing develops in which the GCT and

the KS term balance one another. For a range of parameter values, hexagonal arrays of

nanodots with an astonishing degree of hexagonal order form. This occurs even though

there is a broad band of unstable wavelengths.

Our simulations show that if a rotating elemental material is bombarded with a noble gas

ion beam just above the sputter yield threshold and critical angle, highly ordered hexagonal

arrays of nanodots may result. This suggests that ion bombardment of an elemental material

with concurrent sample rotation could be developed into a viable nanofabrication method.

However, significant challenges would have to be overcome. Both the threshold ion energy

for sputtering Ec and the threshold angle for pattern formation θc would have to be found

for the chosen combination of target material and of ion species and energy. Ec could be

determined either experimentally or using atomistic simulations. The threshold angle θc, on
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the other hand, would most likely have to be determined experimentally. However, even if an

experiment were carried out with E just above Ec and θ just above θc, there is no guarantee

that the three dimensionless parameters λ, r and ν in the EOM (50) would turn out to have

values that lead to a high degree of hexagonal order. Varying E and θ while still keeping

them close to their critical values might be sufficient to identify experimental conditions that

would lead to a high degree of order. Alternatively, the values of the parameters could be

determined using atomistic simulations and the crater function formalism [33, 34, 56], and

then simulations of Eq. (50) would show whether the chosen values of E and θ lead to an

ordered array of nanodots.

Ion bombardment can be used to produce highly ordered arrays of nanodots in other

ways besides the one proposed here. Arrays of this kind can, for example, form if certain

binary materials are bombarded with a noble gas ion beam [3, 4]. In contrast, our method

can be used in principle for any elemental target material. Highly ordered hexagonal arrays

of nanodots have also been observed when an elemental material was bombarded with a

beam of non-volatile ions [5–7] and when impurities were deposited during irradiation of an

elemental material with a noble gas ion beam [57, 58]. The resulting presence of a second

atomic species in a surface layer is undesirable in many applications, however.

Although our proposed method of producing nanodot arrays might prove challenging to

implement, our work suggests that it would be fruitful to study the effects of ion bombard-

ment with concurrent sample rotation at low to intermediate ion energies. Experiments of

this kind have not yet been carried out, and, as we have seen, they are expected to lead to

behavior that is not seen at the ion energies that are usually employed.
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