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We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent
to which the transient part of the stress strain curves is invariant when the thermodynamic state
point is varied along an isomorph. Shear deformations were carried out on glass samples of varying
stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass.
Density changes up to and exceeding a factor of two were made. We investigated several different
methods for generating isomorphs but none of the previously developed methods could generate
sufficiently precise isomorphs given the large density changes and non-equilibrium situation. Instead,
the temperatures for these higher densities were chosen to give state points isomorphic to the starting
state point by requiring the steady state flow stress for isomorphic state points to be invariant in
reduced units. In contrast to the steady state flow stress, we find that the peak stress on the stress
strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase
in density, although the differences decrease with increasing density. Analysis of strain profiles and
non-affine motion during the transient phase suggests that the root of the changes in peak stress is
a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities.
We suggest that this reflects the effective steepness of the potential; a higher effective steepness
gives a greater tendency to form shear bands.

I. INTRODUCTION

In recent years it has been realized that many model
systems for simulating liquids and glasses have a hidden
scale invariance, whereby curves in the phase diagram
can be identified along which many structural and dy-
namical properties are invariant when expressed in an
appropriate scaled-unit system. These curves are called
isomorphs [1]. Isomorphs have been studied extensively
using computer simulations [1–5] of many different model
systems [6, 7], and experimental consequences have also
been tested [8, 9]. Reviews of the overall theoretical
framework and the many interesting consequences arising
from its basic assumptions can be found in Refs. 10–12.
An example of the use of isomorph concept as a theoret-
ical tool is a method for efficient calculation of melting
curves [13, 14]. While exact isomorphs exist only in cer-
tain model systems, they can nevertheless help to explain
a great deal of the behavior of realistic systems.

More recently, the consequences of hidden scale in-
variance in non-equilibrium situations, especially aging,
have begun to be studied [15]. An important class of
non-equilibrium phenomena involves shear deformation
and plastic flow. The first study of isomorphs in a
sheared system was already in 2013 [16], where the single-
component Lennard-Jones fluid and the Kob-Andersen
binary fluid[17–19] were studied in planar Couette flow
in steady-state conditions. In 2019 we published work
studying deformation of Kob-Andersen glasses under
steady state flow with relatively modest density changes,
up to 10% [20]. There we showed that the statistics of
the steady state rheology are isomorph invariant: the flow

stress, its fluctuations and autocorrelation, as well as dis-
tributions of stress changes over small strain intervals, at
varying strain rates.

The aim of the present work is to study isomorphs in
a true out-of-equilibrium context, focussing on the tran-
sient behavior of sheared glasses, specifically the initial
part of the stress strain curve, characterized by an (ap-
proximately) linear stress rise corresponding to (approx-
imately) elastic behavior, followed by a stress peak, and
then relaxation towards the steady state. The transition
from non-flowing to a flowing state represents complex,
non-linear behavior, while the steady state flow is also
non-linear in that it exhibits shear-thinning (the flow
stress rises more slowly than linearly with strain rate),
as discussed in Appendix A. Plasticity of glasses is thus
both highly non-linear and highly non-equilibrium and
thus offers a stringent test of isomorph invariance. Iso-
morph invariance of linear transport coefficients has al-
ready been investigated in detail, at least in the liquid
state, see for example Refs. 21 and 22. We are inter-
ested in to what extent the stress-strain curve collapses
along a given isomorph (with given cooling and strain
rates), and will focus particularly on the peak stress in
the transient phase, and the flow stress for comparison.
These two quantities (in reduced form) are convenient
to plot as a function of density along isomorphs, giving
a quick overview of the degree of invariance. We are
also interested in attempting larger density changes than
before. The model studied is the usual Kob-Andersen
binary Lennard-Jones system [17–19].

For the prior work on the steady-state behavior the
main thermodynamic parameters were density, tempera-
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ture and strain rate. Since the first two were linked along
an isomorph, there were effectively two parameters: a
parameter labelling the isomorph (in principle the excess
entropy[1]), and the reduced-unit strain rate. A feature
of the transient state regime is that the thermal history
of the glass prior to deformation becomes relevant. Our
glasses are prepared by cooling at a fixed cooling rate,
from a temperature near the melting point at the lowest
density considered. Each deformation simulation is thus
characterized by four parameters: the density ρ, temper-
ature T , cooling rate Rc,0 and strain rate ε̇. Since we
focus on trying to identify isomorphs, density and tem-
perature are varied according to the (putative) isomorph,
and cooling rate always refers to the initial (low) density
in real units (hence the subscript 0), while strain rate
is referred to using reduced units (see Sec II; isomorph
invariance can only be expected when the strain rate is
fixed in reduced units [16]). For shearing simulations at
densities higher than that of the cooling runs, configura-
tions were scaled uniformly to the desired density (after
cooling but before shearing) and the kinetic energy set
to that appropriate for the corresponding (isomorphic)
temperature. In this way the thermal histories of start-
ing configurations at different points along the isomorph
are identical by construction.

Our primary interest is to determine whether the
stress-stress curve in its entirety is invariant along iso-
morphs. A crucial part of this is the question of how to
determine isomorphs in non-equilibrium situations: that
is, given an initial temperature and density (Ti, ρi), we
need to find a new temperature Tf for a desired ρf for
which the system properties are isomorphic. There are
several ways identified in prior work to find Tf , and
here we show that these methods all identify similar
but nonetheless different values for Tf when the den-
sity change (ρf/ρi) is large. More troubling, these meth-
ods lead to slightly different values of the (reduced) flow
stress and peak stress, that is, these quantities are not
isomorphically invariant using these prior methods for
finding Tf . In order to proceed we therefore adopt a
pragmatic approach and identify an isomorph candidate
by requiring the flow stress to be invariant. The temper-
ature Tf thus identified falls in the middle of those pre-
dicted by the prior methods. Having an isomorph candi-
date defined this way we then investigate the full stress-
strain curves, and find that an invariant flow stress does
not ensure that the whole curve is invariant: the peak
stress tends to decrease with increasing density along
the isomorph candidate. This is our main result: that
there do not exist ρ, T curves along which the reduced
stress-strain curves are invariant. Analysis of the parti-
cle motions suggests a cause: a tendency to develop shear
bands despite the use of a SLLOD algorithm which fa-
vors homogeneous flow. This tendency varies according
to density.

II. THE ISOMORPH APPROACH

The heart of the existence of isomorphs is that a phase
space trajectory at one density and temperature can be
scaled to another density (corresponding to a scaling
of space) and another temperature (corresponding to a
scaling of time, and thereby velocities and kinetic en-
ergy) and be, in fact, a valid trajectory at the new state
point. Alternatively, trajectories can be found at the two
isomorphic state points which are identical apart from
rescaling space and time, and equally probable in their re-
spective ensembles. This means considering the reduced
position coordinates r̃i ≡ ρ1/3ri; i.e., scaling essentially
by the average interparticle spacing, using ρ = N/V ,
the number density of the system with N particles in a
volume V . The reduced time is t̃ = tρ1/3

√
kBT/〈m〉;

i.e., scaling essentially by the time for a particle with
the mean mass 〈m〉 to cross an interparticle spacing with
the thermal velocity. This is sometimes called the “same
movie” principle [23]. It follows that a correct compari-
son of isomorphic trajectories involves putting all quanti-
ties into dimensionless form, called “putting into reduced
units,” by scaling lengths and times as above, and con-
sistent with these, energies by kBT . Masses are simply
scaled by the average particle mass (a non-dynamical,
non-thermodynamic quantity, which in our model is set
to unity). This unit system was introduced by Rosenfeld
[24]; the scaling for all other quantities can be derived
from these [1]. As an example the flow stress, having
units of energy density, has the reduced form

σ̃f ≡
σf

ρkBT
. (1)

When we talk of “invariant flow stress” or small devi-
ations therefrom, it must be remembered that we refer
always to the dimensionless, reduced-unit form. The real
flow stress in our simulations varies by over a factor of a
hundred (2 from the density and 50 from the tempera-
ture).

In practice, it is well known that isomorphic invariance
is imperfect in many situations [11]. Inverse power law
(IPL) systems are notable for which isomorphic curves
(ρ, T ) can be analytically calculated and the isomor-
phic properties are exact; here the phase space trajec-
tories are mathematically identical along the isomorph
curves. However, in systems like the Kob-Andersen bi-
nary Lennard-Jones system that we study, isomorphic in-
variance is not exact. As one moves along the isomorph
curve ρ, T , even in reduced units the peak height of the
pair correlation function g(r) could vary by 1-2%, for
example. The definition of a successful isomorph, then,
is similar to many physics theories and approximations:
while not exact, one wants the isomorph description to
“explain” most of the observed behavior. Rather than
needing to understand a system at all values of ρ, T ,
one could know the properties of a system at a given
ρ and a variety of T and then know, to some degree
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of confidence, what happens at other ρ and isomorphi-
cally matched T . As a richer example, consider the ag-
ing of glassy materials. Aging occurs when an equili-
brated liquid is quenched (by decreasing T , increasing ρ,
or both) to a nonequilibrium glassy state. As the state
is out of equilibrium, the sample properties slowly evolve
with time. If one can identify isomorphically matched
states in the glassy regime, then a simulation of a sample
temperature-quenched at constant density could predict
the aging behavior of a sample density-quenched at con-
stant temperature, as long as the final state is on the
same isomorph ρ, T curve [25].

Thus, a successful isomorph strategy will identify a
curve ρ, T over which all sample properties of interest (in
reduced units) are similar, perhaps with variations of no
more than a few percent. In this work, our properties
of interest are the stress-strain curves of glassy samples
deeply out of equilibrium. We demonstrate that it is
impossible to match both the peak stress and steady-
state flow stress in this isomorphic sense. In particular,
matching the steady-state flow stress (variations less than
one percent) results in the peak stress varying by about
20% from the lowest to highest densities studied.

To end this section, we point out that isomorph invari-
ance is distinct from the concept of time-temperature
superposition, according to which certain glass-forming
liquids have frequency-dependent responses whose spec-
tral shape is invariant[26, 27]. Isomorph invariance is
both a weaker claim, in that it relates quantities along a
given isomorph and not throughout the phase diagram,
and a stronger claim, in that it specifies how the over-
all timescale varies along an isomorph, which TTS does
not. The relation between the two has been discussed in
Ref. 28 (who refer to “isochronal scaling”, rather than
“isomorph invariance”).

III. MODEL, STARTING PARAMETERS,
BASIC PROCEDURES

In this section we give a brief overview of the model
we use, how we cool, and how we deform. We work with
the standard Kob-Andersen 80-20 binary Lennard-Jones
system with the only slight difference being that we use a
shifted-force cutoff [29]. This is imposed at distance 2.5
σ for each interaction type. When expressing in ordinary
(non-reduced) units we use the unit system defined by the
energy parameter of the AA interaction, εAA, the length
parameter of the AA interaction, σAA and the particle
mass (common to both A and B particles). For brevity
we refer to these as “Lennard-Jones” units. A challenge
with investigating the transient part of the stress and
strain curve is that the fluctuations cannot just be aver-
aged out by running longer. Consider the example shown
in Fig. 1; the fluctuations in panel (a) are quite severe
and avalanche-like, even though the temperature is not
as low as in our last paper [20]. To manage the fluctu-
ations we use fairly large system sizes (N = 10000) and
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FIG. 1: Examples of reduced-unit shear stress (top pan-
els) and potential energy per particle (bottom panels) ver-
sus strain, from shear deformation of a binary Lennard-Jones
glass with density 1.183 at temperature 0.3. The glass was
prepared by cooling at the rate 10−7 (LJ units), while the de-
formation was carried out at reduced strain rate 10−5, mean-
ing the real strain rate was 10−5ρ1/3(T )1/2 ' 5.8×10−6. The
left panels show curves from a single run, while the right pan-
els show the average of 40 independent runs.

multiple independent runs, starting from an ensemble of
configurations generated by separate cooling runs. There
are 40 members in this ensemble. Studying the run-to-
run deviations also allows us to determine errors on flow
stress and peak stress quite precisely.

A. Cooling

The lowest density we consider is 1.183, close to the
density 1.2 studied by Kob and Andersen and most of-
ten by others. At this density we run a liquid simulation
involving N = 10000 particles at the relatively high tem-
perature of 1.0 (close to the melting temperature for this
composition[30]). Forty independent configurations were
sampled from this NVT run and used as the start of the
cooling runs. We have cooled at rates 10−5, 10−6, and
10−7 in Lennard-Jones units down to temperature 0.3,
deep in the glassy state. The cooling is done at constant
density.

B. Shear deformation

For shear deformation simulations we employ the
SLLOD[31, 32] equations of motion and Lees-Edwards
boundary conditions [33, 34]. The direction of shearing
is the x-direction with the gradient in the y-direction,
therefore the relevant component of stress is xy. As is
common in SLLOD-based simulations the temperature
is controlled using an isokinetic thermostat, which main-
tains a fixed kinetic energy, chosen[59] to be 3/2(N −
1)kBT . We choose the shear rate to be fixed in reduced
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units [16] to the value 10−3, 10−4, or 10−5. We also
choose the time step to be fixed in reduced units, which is
practical–it automatically ensures that a time step which
is stable at one density and temperature will be stable
along the isomorph. We choose a real time step of 0.004
(LJ units) at the lowest density 1.183 and temperature
0.3; thus the real time step is smaller at higher densities
and temperatures, proportional to ρ−1/3T−1/2. Note, the
Reynolds number of the flow in our simulations is ex-
tremely low, of order 5×10−4 for our highest strain rate.
Thus problems associated with highly sheared liquids,
such as non-linear profiles and string phases[35], non-
unique or anisotropic temperature[36], and anisotropic
stress[37], are not relevant here and more advanced tech-
niques such as profile-unbiased thermostats [35, 38] are
not required. As an extra check, though, we have re-
peated some of our simulations with a modified thermo-
stat which does not couple to the velocities in the flow
(x) direction, and found essentially identical results.

In the following it turns out best to use the flow stress,
defined as the mean stress during the steady state regime,
to determine isomorphs. For this purpose we define
strains greater than 2 (200%) as the steady state for all
shear simulations. This choice originates from inspection
of the potential energy versus strain curve; we find that
the potential energy of the slowest cooled configuration
under slowest shear gradually reaches the steady state
value at a strain between 1 and 2, see Fig. 1 (and also
Fig. 14), which shows examples of stress-strain curves
and potential energy-strain curves. In this case the cool-
ing rate for the glasses was 10−7 in LJ units and the re-
duced shear rate was 10−5, corresponding to a real shear
rate of about 5.8×10−6. By eye the shear stress seems to
be essentially at its steady-state value by strain 0.5, but
for this slowly cooled system the potential energy has not
converged to the steady-state value until around strain
2.0[39].

We need to analyze the stress and strain data to ex-
tract mean values as well as uncertainties, so it is worth
briefly giving the details of these calculations. Given the
many independent runs, the total strain for each shear-
ing run can be relatively modest, specifically 4 (400%),
of which the last 200% is used for determining the flow
stress. We find the mean reduced stress in this steady
state strain regime for each shear simulation, giving 40
independent estimates. We then use the average of 40
shear runs as the flow stress at the corresponding den-
sity, temperature, strain rate, and cooling rate. Error
bars are computed using the usual formula for the stan-
dard error on the mean[40]: dividing the sample standard

deviation of the 40 data points by
√

40. For the stress
peak height (preceding the steady state), each individ-
ual stress-strain curve is too noisy to determine accurate
values; accordingly, we take the 40 independent runs and
average them 8 at a time to give five independent stress-
strain curves. We then find the peak stress height for one
curve by fitting the region of the averaged stress-strain
curve around the peak to a fourth-degree polynomial.

The interval for fitting is the strain with the numerically
largest shear stress, plus or minus 0.05. Taking these
five groups each averaged over 8 simulations, we average
those five stress peak values to define the measured peak
stress height. The uncertainty of this value is then the
sample standard deviation of the 5 estimates divided by√

5.

IV. IDENTIFYING CANDIDATE ISOMORPHS

Determining isomorphs, or candidates for isomorphs,
in non-equilibrium situations, is a crucial task and the
subject of the section. Dyre has presented a general
framework extending isomorph theory to non-equilibrium
situations [15]. The first ingredient is the concept of sys-
temic temperature, Ts which can be defined for an indi-
vidual configuration. Given the potential energy of that
configuration, Ts is the temperature at which (for the
same density) the equilibrium potential energy is that
configuration’s potential energy. Given a change in den-
sity, and assuming perfect hidden scale invariance, the
dynamics will be invariant as long as the ratio of the bath
(i.e. thermostat) temperature to the system temperature
is the same. Thus the question of identifying the correct
bath temperature at the new density is the question of
determining by what factor the systemic temperature of
the initial configuration changes when its density is scaled
uniformly.

The definition is not a practical way to determine Ts in
a glassy system because determining the equilibrium po-
tential energy as a function of temperature is not feasible.
Instead we turn to another recent work, by Schrøder, who
has developed a method for predicting isomorphic tem-
pratures by comparing the forces on particles in a con-
figuration before and after uniform scaling. This method
gives a temperature ratio corresponding to a change of
density of a single configuration from ρi to ρf as

Tf
Ti

=

(
ρi
ρf

)1/3 |Ff |
|Fi|

(2)

Moreover we can argue (see appendix B) that this corre-
sponds to the change in systemic temperature, and there-
fore is the factor by which the bath temperature should
be changed.

In the rest of this section we determine candidate iso-
morphic temperatures using the force method and other
methods based on those used for equilibrium isomorphs.
We show that none of them yield invariant flow stresses,
and instead we generate a candidate isomorph by con-
structing it to have an invariant flow stress. The starting
point in all cases is a shearing simulation with a cooling
rate Rc,0 = 10−5 and (reduced) strain rate 10−3, at the
lowest density (1.183), which is referred to as the refer-
ence density.
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A. Force method and fluctuation methods

In this subsection we show that the force method for
generating candidate isomorphs, along with other fluc-
tuation methods, give different temperatures from those
required for invariant flow stress. Different methods dis-
agree by increasingly large amounts as the density factor
increases, although the rate of increase decreases with
increasing initial density. To compare different meth-
ods, we use as a test case glasses cooled at Rc,0 = 10−5

(LJ units) and sheared at ˜̇ε = 10−3 (reduced units), and
consider mostly the case of a density increase of 10%
from 1.183 to 1.301. The results for the temperature ra-
tio (Tf/Ti) and corresponding estimated temperature at
the latter density are summarized in Table I. Since the
force method only requires a single configuration to give
a temperature ratio Tf/Ti, it can be applied repeatedly
throughout a simulation at the reference density, giving
an immediate estimate of statistical errors and possible
systematic changes (for example as a function of strain).

Figure 2(a) shows the temperature ratio for the force
method, along with that from a modified version

Tf = Ti

(
ρi
ρf

)1/3
Fi · Ff

Fi · Fi
(3)

The modified force method is based on simple linear re-
gression of the scaled forces as a function of the unscaled
forces, and gives a slightly lower temperature estimate.
In the figure, there is a clear but small systematic de-
crease in the estimated temperature ratio, (about 0.25%
and 0.6% for the force method and its modification, re-
spectively, as the strain increases from zero to steady
state conditions). It is also clear that the statistical fluc-
tuations are rather small in the steady state, so that the
estimate from a single configuration would indeed give a
precise estimate of the ensemble average. The estimate
from the modified force method is systematically lower
by about 0.7% in the steady-state.

The other panels in Figure 2 illustrate estimation
of isomorphic temperatures by other methods, based
on fluctuations in both NVT (unstrained) simulations,
and the steady state part of sheared simulations (SSS).
Fig. 2(b) shows U,W fluctuations, both NVT and SSS,
from which a density scaling exponent γ can be found as
the regression slope. For Lennard-Jones potentials an an-
alytic expression for the shape of isomorphs can be found;
as detailed in Appendix C 4, the single free parameter can
be fixed using the measured γ, allowing the temperature
ratio for a given density change to be determined. We
show data for a glass cooled at the fastest rate; using the
slowest cooled glasses gives a difference less than 0.1% in
the resulting temperature ratio. We refer to this method
in table and figure legends as UW/analytic. The NVT
value for γ is 2.5% lower than the value from the steady
state fluctuations, giving a temperature ratio 1% lower
for the 10% density increase; the difference will increase
with larger density jumps.

Method Ensemble T -ratio Tf

FM NVT 1.653 0.4959

FM SSS 1.649 0.4947

FM-mod NVT 1.647 0.4940

FM-mod SSS 1.637 0.4911

WU/analytic NVT 1.593 0.4779

WU/analytic SSS 1.609 0.4828

DIC-pe NVT 1.593 0.4779

DIC-pe SSS 1.609 0.4827

DIC-sts NVT 1.595 0.4786

DIC-sts SSS 1.597 0.4791

Matching flow stress SSS 1.623 0.4869

TABLE I: Comparison of methods for identifying isomorphic
temperature upon raising density by 10% from ρi =1.183 to
ρf =1.301, for glasses cooled at rate 10−5 to Ti = 0.3. SSS
refers to steady state shearing at ρi, Ti, data taken between
strains 2 and 4, with reduced strain rate 10−3; NVT refers
to NVT simulations of 107 steps at ρi, Ti. The temperature
ratio that best matches the flow stress is 1.623, listed in the
last line of the table.

Fig. 2(c) shows the direct isomorph check (DIC)
whereby potential energies from scaled configurations
are plotted against those from unscaled configurations
(i.e. drawn from the simulation at the reference den-
sity). Determining the slope gives a direct estimate of
the temperature factor, 1.609 from the steady-state and
1.593 in NVT. These are equal to the estimates from
UW/analytic, consistent with γ being essentially the DIC
in the limit of infinitesimal density changes[1]. Fig. 2(d)
shows a DIC-like method based on shear-stress fluctua-
tions. The observed slope when plotting the scaled versus
unscaled shear stresses is not the temperature ratio, but
includes also a factor of the density ratio ρf/ρi = 1.1.
After dividing the latter out, the temperature ratio es-
timate from steady state fluctuations is slightly lower
(0.7%) than the corresponding energy-based DIC esti-
mate, see Table I. Interestingly, the correlation is much
higher for the stress-based DIC than for the energy-based
DIC, and the difference between NVT and SSS estimates
is much smaller than for the energy-based DIC, at only
0.1%. These two estimates are also very close to the NVT
energy-based DIC estimate.

To summarize the above results, the largest tempera-
ture factor is given by the force method in the sheared
(NVT) system, while the smallest is given by either the
γ method or DIC using NVT data or the stress-based
DIC using either NVT or SSS data. The spread be-
tween highest and lowest SSS values is 3.5%. We next
consider how this variation depends on the size of the
density jump. Fig. 3(a) shows the temperature ratios
from the aforementioned methods versus density. For
small density changes, all these methods return simi-
lar results with little discrepancy. This discrepancy in-
creases with larger density spans, indicating the challenge
of identifying isomorphs in these situations. Other cool-
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FIG. 2: The five methods to obtain the temperature ratio
Tf/Ti used to identify the state point ρf , Tf isomorphic to
state point ρi, Ti from simulations at the latter. The example
here uses reference density and temperature ρi = 1.183 and
Ti = 0.3 and a starting configuration cooled at Rc,0 = 10−5.
We consider a new density ρf = 1.1ρi = 1.301. Black indi-
cates results from NVT simulations and red is for the steady
state from a shear simulation with the highest (reduced) strain
rate ˜̇ε = 10−3. For (a), (c) and (d) the system was sam-
pled at regular intervals during the simulation and configu-
rations uniformly scaled to ρf ; the potential energy, forces,
and shear stress were calculated on the scaled configurations,
denoted with subscript f . (a) Temperature ratio given by the
force method FM (blue), Eq. (2), and modified force method
(green), Eq. (3) from the same shear simulation. The dot-
ted horizontal lines indicate the corresponding temperature
ratios from the NVT simulation. (b) Scatter-plot of the virial
W versus potential energy U . The slopes (correlation coef-
ficient) of the two fits are 5.014 (0.869) and 5.143 (0.859)
respectively, where the slopes can be considered estimates of
the density scaling exponent γ, which yields the temperature
factor via Eqs. (C4) and (C6). (c) Scatter-plot of Uf against
Ui (DIC-pe). The slopes (correlation coefficient) are 1.593
(0.975) and 1.609 (0.972) respectively. Here the slopes corre-
spond directly to the temperature ratios. (d) Scatter-plot of
σf against σi. The slopes (correlation coefficient) are 1.755
(1.00) and 1.757 (0.999). Here the temperature ratio is the
slope divided by the density ratio (1.1). Table I gives the re-
sults of the different methods.

ing rates and strain rates were also checked and found to
return almost the same results, in particular the order of
temperature-estimates is identical. On the other hand,
the same calculation of temperature ratios (TR) but at
a 10% higher starting density shows much less difference
between various methods, as shown in Fig. 3(b). The
virial-potential energy correlation coefficient R gives a
general indication of the quality of hidden scale invari-
ance, with 0.9 being a conventional criterion for good
isomorphs[1]; for our lowest density R is lower than is,
around 0.86-0.87 (Fig. 2(b)), therefore it is not surpris-
ing that the methods give diverging estimates. For the
next lowest density, 1.301, the value of R is 0.972, sub-
stantially higher, and therefore one can expect less diver-
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FIG. 3: Top panel: temperature ratios from different meth-
ods against density for starting density 1.183. Solid lines are
for NVT simulation (NVT) 107 steps and dashed lines are for
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ties. Bottom panel: the ratio between the highest and lowest
temperature factors of the SSS from the top panel versus den-
sity. Solid line starts at ρ = 1.183, and dashed line starts at
ρ = 1.301.

gence between the different methods, as the potential en-
ergy landscape becomes increasingly well approximated
by that of an inverse power law (IPL) particle interaction.

B. Matching the flow stress

Since the different methods yield a spread of poten-
tial isomorphic temperatures for a given density change,
the question is then which of the above methods actu-
ally yields invariant quantities of interest. Considering
the flow stress, Fig. 4(a) shows for density 1.301 the re-
duced flow stress obtained by simulating at several tem-
peratures, corresponding to some of the temperature es-
timates based on fluctuations. Panel (b) of the figure
shows a similar plot for the highest simulated density;
here the trial temperatures were not those given by the
other methods, but chosen to span a similar range. The
negative linear dependence of the reduced flow stress on
temperature reflects that barriers to flow can be crossed
more easily at higher temperature. The arrows indi-
cate the temperatures determined by the various meth-
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FIG. 4: The reduced flow stress σ̃f and reduced peak stress
σ̃p against temperature near the point of matching stress at
ρ1 = 1.301 (left two panels) and ρ9 = 2.789 (right two panels).
Glasses cooled (at lowest density) at rate Rc,0 = 10−5 and
sheared at reduced strain rate ˙̃ε = 10−3. Solid black lines are
linear fits. Gray horizontal lines indicate the σ̃f in panel (a)
and (b), and σ̃p in (c) and (d) at the reference density with
shaded region indicating error. Arrows in panel (a) and (b)
point to T estimated using: (i) DIC stress method; (ii) DIC
PE method; (iii) WU/analytic; (iv) FMMOD; (v) FM.

ods, which clearly do not match the reference flow stress
within errors. The method that comes closest is the mod-
ified force method. The linear fits to the temperature de-
pendence of the flow stress can, however, be used to accu-
rately identify the temperature at which the σ̃f matches
its reference value.

Panels (c) and (d) of Fig. 4 show the measured re-
duced peak stresses at the same two densities and and
the same temperatures as the flow stress in panels (a)
and (b). Like the flow stress, the peak stress also has
a negative linear correlation with temperature, although
the larger errors combined with the limited temperature
range reduce the apparent correlation in panel (c). Com-
parison with the value at the reference density indicated
by the grey bars presages one of our main results, that for
high density changes no temperature can be found which
matches both the flow and peak stresses with their val-
ues at the reference state point. The main presentation
of this result is in the next section (see Fig. 6).

Our pragmatic approach to determining a candidate
isomorph is to find the curve along which the reduced
flow stress is invariant. This can always be determined,
much like in equilibrium a curve of constant excess en-
tropy can always be determined; further analysis then
addresses the degree to which other quantities of interest
are also invariant. The procedure of simulating several
temperatures at each density in order to make a linear
fit would be very time consuming if it should be done
at each density of interest. To save work we can instead
use the analytic expressions for Lennard-Jones isomorphs
presented in Appendix C 4, Eqs. (C4) and (C7). For
studying the isomorphs we consider from now on ten dif-

FIG. 5: The isomorph determined by matching flow stress
again on glasses cooled (at lowest density) at rate Rc,0 = 10−5

and sheared at ˙̃ε = 10−3. The large black diamond indicates
the reference state point. The two black squares represent
points whose temperatures were identified by matching the
reduced flow stress to that of the reference, using the linear
fits in Fig. 4, and the red diamonds are points whose tem-
peratures have been determined by interpolation between the
black squares, using Eq. (4).

ferent densities, labelled with subscripts starting from
zero, as ρ0 = 1.183, ρ1 = 1.1ρ0, . . . , ρ9 = (1.1)9ρ0. In
applying the analytic expression for isomorphs, we have
to treat ρ0 separately. Related to its somewhat low value
of the correlation coefficient R (Fig. 2) and the fact that
methods for determining isomorphic temperature start-
ing from this density diverge rather quickly (Fig. 3), it
turns out that no parameterization of the analytic for-
mula can match the reduced flow stress over the full range
from ρ0 up to ρ9. Such a parameterization can be found
for the range ρ1 to ρ9, however. Thus we work as fol-
lows: Given the reduced flow stress at ρ0 (and T0 = 0.3)
we use the linear fits in Fig. 4(a,b) to determine the tem-
peratures of matching reduced flow stress at densities ρ1
and ρ9, respectively. From Eq. (C7) with ρ2 replaced by
ρ9, and using these fit-determined temperatures T1 and
T9 we fix the parameter B/A. Finally for the remaining
densities ρ2, . . . , ρ8 we determine the isomorphic temper-
atures from Eq. (C4) in the form

Ti = T1
h(ρi)

h(ρ1)
= T1

ρ4i − (B/A)ρ2i
ρ41 − (B/A)ρ21

. (4)

Figure 5 illustrates the construction of the isomorph.
The resulting densities and temperatures are listed in
Table II. These values were determined by matching the
flow stress using the highest strain rate (reduced value
10−3) (and fastest cooling-rate, though that should not
matter for the flow stress). Rather than separately re-
peat this procedure for identifying isomorphic temper-
atures for the other strain rates we take as a working
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Density Temperature

1.183 0.3

1.301299 0.487031

1.431428 0.774540

1.574571 1.208396

1.732028 1.859225

1.905231 2.831010

2.095754 4.276669

2.305330 6.420943

2.535863 9.593855

2.789449 14.279829

TABLE II: The densities and temperatures along the iso-
morph identified through matching the flow stress at the
first, second, and last densities, and then using the analyt-
ical method to obtain the temperatures in between.

hypothesis that the isomorphs in the ρ− T plane deter-
mined by matching reduced flow stress do not depend on
which reduced strain rate was used. This is consistent
with empirical results of Separdar et al.[16] and theoreti-
cal arguments of Dyre[15]; its validity will be investigated
in the following. The next step is the shearing deforma-
tion simulations. These are still very time-consuming,
because at each density, and the corresponding tempera-
ture determined by the above procedure, 40 independent
runs were carried out. This was repeated for all three
cooling rates and all three strain rates. The stress-strain
curves shown below are averages over the 40 runs in each
case.

V. ANALYSIS OF STRESS-STRAIN CURVES
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= 2.789

FIG. 6: Reduced stress-strain curves along isomorph deter-
mined by the procedure illustrated in Fig. 5. Glasses cooled
(at lowest density) at rate Rc,0 = 10−5 and sheared at re-
duced strain rate ˙̃ε = 10−3.
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FIG. 7: (a) σ̃f and (b) σ̃p against density along the iso-
morph for Rc,0 = 10−5, 10−6, 10−7 (black, red, blue), and
˜̇ε = 10−3, 10−4, 10−5 (circle, square, triangle). Each point
in (a) is an average of 40 shear simulations (on 40 individ-
ual configurations, or 30 for ˜̇ε = 10−5) and the uncertainties
are computed as described in Sec. III B. For the peak stress
[panel (b)], we first divide the 40 shear runs into 5 groups
and obtain 5 averaged stress and strain curves. We then fit
the data for 10% strain around the maximum stress using a
fourth-degree polynomial and identify the maximum of the
fit as the σ̃p. The error is the standard deviation of the 5
values divided by

√
5. The three families in (a) correspond

to ˜̇ε = 10−3, 10−4, 10−5 from top to bottom respectively. The
errors are all smaller than the marker size. The position of
the gray bars in (a) are the reference σ̃f (at ρ1 cooled with
Rc,0 = 10−5 and sheared with ˜̇ε = 10−3) and the width of the
bar indicates the reference σ̃f plus or minus the uncertainty.

A. Non-invariance of stress peaks

With the protocol for determining the putative iso-
morph established, we now present our main results. Fig-
ure 6 shows the full (reduced) stress strain curves for all
densities along the isomorph generated as described in
Sec. IV B, using reduced strain rate 10−3 and initial con-
figurations cooled at rate Rc,0 = 10−5. The initial elastic
parts of the curves overlay, showing that the elastic shear
modulus is invariant in reduced units along the isomorph.
In particular, a closer inspection of the data (not shown
here) shows collapse within the noise for the initial 1%
or so of strain. Also it is clear that the steady state
flow stresses match, at least within the fluctuations–this
is expected since the isomorph was constructed to have
invariant flow stress. Nevertheless it serves as a check
that the analytic formula for constructing the isomorph
is reliable. However, the peak in the stress-strain curve is
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˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

Rc,0 = 10−5 0.204± 0.011 0.213± 0.014 0.114± 0.009

Rc,0 = 10−6 0.211± 0.006 0.243± 0.008 0.236± 0.012

Rc,0 = 10−7 0.207± 0.010 0.242± 0.006 0.236± 0.008

TABLE III: Fractional change of σ̃p between the highest- and
lowest-density isomorph points for different Rc,0 and ˜̇ε com-
binations.

˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

Rc,0 = 10−5 1.87 1.67 1.31

Rc,0 = 10−6 2.16 1.99 1.71

Rc,0 = 10−7 2.43 2.37 2.04

TABLE IV: Ratio of σ̃p to σ̃f for the lowest-density isomorph
points for different Rc,0 and ˜̇ε combinations.

clearly not invariant–it decreases systematically with in-
creasing density, by about 20%, as the density rises to 2.8.
Thus we have a clear deviation from isomorph invariance
when the transient response to shearing is considered.
We remind the reader that the real (i.e. non-reduced)
shear stress involves a factor of ρkBT which changes by
over two orders of magnitude over the density range stud-
ied here.

We find similar results for the other strain rates and
cooling rates (details given in Appendix D). Rather than
show all of those stress-strain curves here, we instead
extract the flow stress and peak stress from each stress
strain curve, and plot these as a function of density in
Fig. 7(a) and (b), respectively; the curves themselves can
be found in Appendix D. Before considering the isomor-
phic behavior, we note that as expected, slower strain
rates decrease both the peak stress and the flow stress;
and slower cooling rates increase the peak stress but leave
the flow stress unchanged. The isomorphic behavior is
evaluated through the dependence (or non-dependence)
of these quantities on density along the isomorph. In
part (a) of the figure we see that the flow stresses are
indeed flat within errors, as they have been constructed
to be (the errors are comparable to, though smaller than,
the symbol sizes). This plot also confirms our hypothesis
that the isomorph determined by requiring invariant flow
stress at one cooling rate and reduced strain rate is valid
also for the others.

Part (b) of the figure shows the evolution of the re-
duced peak stress as a function of density along the iso-
morph. The trend is similar for all cooling and strain
rates, with more or less similar relative drops of peak
stress as density increases. In all cases the bulk of the
drop occurs over densities ρ1 ' 1.3 to ρ5 ' 1.9, after
which the change in reduced peak stress for each 10%
increase in density is reduced. Interestingly the change
between densities ρ0 and ρ1 is also smaller. Above den-
sity 1.9, σ̃p apparently continues to decrease linearly, and
does not seem to have levelled off even at our largest den-
sity, though this must happen eventually as the Lennard-

Jones potential becomes dominated by the repulsive IPL-
term.

To summarize the influence of density on reduced peak
stress, Table III gives the magnitudes of the relative
stress drops over the full density range for all strain and
cooling rates. The only apparent trend here is that both
faster cooling and faster shearing tend to give slightly
smaller drops, around 20% instead of around 24%. An
apparent outlier is the value for the highest cooling rate
and the lowest strain rate (black triangles), where the
change in reduced peak stress is only 11%. This case
corresponds to the least stable glass being very slowly
deformed, and has the lowest peak stress to start with.
To provide a different view of the influence of cooling
rate and strain rate, Table IV shows the ratio between
peak stress and flow stress at the lowest density. This
indicates indeed that the same case of lowest strain rate
and fastest cooling has the lowest ratio of peak to flow
stress at the lowest density, 1.31. However there does not
seem to be, upon comparing Tables III and IV, a general
correlation between fractional drop of peak stress with
increasing density, and initial ratio of peak to flow stress.
The most that can be said probably is that when the lat-
ter ratio is very low, there is less contrast between the
non-flowing and flowing states, in the sense that the mi-
croscopic barriers to be crossed are not much different to
start with and therefore there is less room for variation
along the isomorph.

When quantifying the observed deviations in peak
stress, the crucial question is whether they are sufficiently
large to warrant declaring them a breakdown of the iso-
morph theory, or sufficiently small to be able to say that
approximate isomorph invariance is a good approxima-
tion for the observed behavior. We can compare the de-
viations along an isomorph to the differences visible in
Fig. 13 due to variations in cooling and strain rates. In
particular, the variation in peak stress along an isomorph
is comparable to the difference associated with an order
of magnitude change in cooling rate, as can be seen in
Figs. 15-17. In this sense the variations are not “small”
and therefore we can speak of a breakdown of approxi-
mate isomorph invariance.

B. Equivalent configurations in stress peak?

In attempting to understand the failure of the peak
stresses to collapse, an important question is whether the
configurations sampled near the stress peak at different
densities are equivalent. Equivalent means (statistically)
indistinguishable after scaling to match densities. The
simplest way to answer this question is to take configu-
rations from near the peak in a simulation at one den-
sity, scale them to a different density and calculate the
shear stress at the new density, thus generating a fic-
tional stress-strain curve based on scaling configurations
statically. This is similar to what is done in the stress-
DIC method proposed above, but rather than use it to
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FIG. 8: Comparison between stress-strain curves obtained
from shearing at the lowest density (blue), computing the
stress from the same configurations scaled to the highest den-
sity (green), and actually shearing at the highest density (or-
ange) with ˙̃ε = 10−3 and Rc,0 = 10−7.

generate an isomorph we use it to compare the potential
energy surface sampled by the same reduced configura-
tions at different densities. If the “fake” high-density
stress-strain curve matches that actually simulated at
high density then the conclusion would be that config-
urations at high stress are essentially equivalent to the
corresponding ones at low densities but that the interac-
tions are softened more at high densities and high stress
than for high densities at lower stress (i.e. the steady
state). If they do not match then something different
must be happening in the microscopic dynamics during
the stress peak. Fig. 8 shows the result of this check. The
curve generated from configurations sampled at the refer-
ence density ρ0 and scaled ρ9 (green) matches the curve
at the reference density well, except for a small difference
in normalization, and does not match the curve obtained
from simulating at the high density ρ9, which has the
lower stress peak. This shows that the second possibility
mentioned above must be the case: the particles undergo
non-equivalent motion when simulated at the higher den-
sity. We examine what this non-equivalence is in the next
section.

VI. MICROSCOPIC BEHAVIOR

The results of the previous section concern macroscopic
mechanical properties. In this section we study variation
of microscopic struture and dynamics, both at the par-
ticle level and at slightly larger length scales where we
study inhomogeneities in the strain profile. The results
of these different analyses suggest an explanation for the
failure of the stress peak to collapse.

A. Invariance of pair structure and single-particle
dynamics in the steady state
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FIG. 9: Collapse of (a) 〈∆r̃2yz(t̃)〉 and (b) g(r̃) (for AA pairs)
for steady state only along an isomorph containing 10 points
in the phase diagram calculated using the method described in
subsection IV B. The starting configuration is at ρ0 = 1.183
and T0 = 0.3 and was cooled with Rc,0 = 10−5. Shearing for
all state points was with reduced strain rate ˙̃ε = 10−4. The
inset in (b) shows a close-up of the first peak.

In this subsection we consider particle-level measures
of structure and dynamics properties, in particular self-
diffusion and pair-structure. To investigate self-diffusion
we plot in Fig. 9(a) the mean squared transverse displace-
ment (MSD) in reduced units, as a function of reduced
time, for all densities along the isomorph at reduced shear
rate 10−4. By transverse we mean that only components
of displacement orthogonal to the shearing direction are
included. The quality of the collapse is extremely good,
so that it is not obvious to the eye that there are in fact
ten curves plotted. This plot is based on data from a sin-
gle run for each density, since there is sufficient averaging
over particles to get good statistics for single-particle dy-
namics.

Fig. 9(b) shows the radial distribution function (RDF)
for AA pairs along the same isomorph. The collapse
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here is also very good, similar to what is seen in equi-
librium liquids, including the slight deviations in the sec-
ond peak[1]. The collapse for AB pairs (see Fig. 18 in
the appendix) is poorer, with about a 15% decrease in
first peak height with increasing density, but it is still
consistent with previous results, given the large density
change involved. Both the MSD and RDF are deter-
mined from configurations drawn from the steady state.
The quality of the invariance apparent in Fig. 9 confirms
that the isomorph has been well determined. The non-
invariance evidenced by the failure of the peak stress to
collapse seems therefore to be restricted to the transition
from non-flowing to flowing states. This will be discussed
more below.

B. Variation in spatial homogeneity

We now present results of analyzing strain profiles and
local measures of plastic activity in order to determine
whether the variation of peak stress can be associated
with some systematic difference in the spatial organiza-
tion of the initiation of flow, for example if flow is more
or less localized in the peak at higher densities compared
to lower densities.

The first indicator we consider is the non-affine dis-
placement at the particle level. Recall that shearing mo-
tion occurs in the x-direction, while the gradient is in the
y-direction. We first define the affine displacement ∆~rA,i
for particle i as ∆~rA,i = ∆ε yix̂, where yi is the position
of particle i in the gradient direction and x̂ is the ve-
locity direction. This is simply the displacement associ-
ated with the macroscopic strain imposed on the system,
which is known. Under shear, local rearrangements cause
deviations from this affine motion. We define such devi-
ation as the non-affine motion ∆~̃rNA,i = ∆~̃rreal,i−∆~rA,i,

where ∆~̃rreal,i is the full displacement of particle i [41–
43]. We expect that each component of the non-affine
displacement is symmetrically distributed about zero,
but it is possible that the distributions for the differ-
ent components could be different. Figure 10 shows the
variance of the non-affine displacement for each compo-
nent, in reduced units. The data in part (a) of the fig-
ure are for displacements between undeformed configu-
rations (strain 0) and corresponding configurations de-
formed to strain 0.12. The figure thus contains informa-
tion about particle motions during the transition from
the non-flowing to the flowing state, specifically those
associated with the stress peak. As a function of increas-
ing density the variance for each component increases,
indicating a non-isomorph invariant behavior. In part
(b) of the figure, data for a similar strain interval, but
taken from the steady state regime is shown. Here little
systematic variation as a function of density is apparent.
Systematic differences between components are visible,
with the variance for the x-component of non-affine dis-
placement being highest both in the transient case and in
the steady state. Chen et al. studied distributions of non-

affine motion in experiments on colloids[43]; their Fig. 8
shows PDFs of non-affine motion in the three different
directions. The distribution for the out-of-plane direc-
tion (their y-direction, corresponding to our z-direction)
is slightly narrower than for the other two directions,
which is consistent with what we see.
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FIG. 10: Comparison of non-affine particle motion over 12%-
strain intervals between (a) transient state with ε ∈ [0, 0.12]
and (b) steady state with ε ∈ [3.65, 3.77]. Data is averaged
over all particles and 40 independent runs. Color indicates
the three components of the nonaffine motion squared and
shown in the legend in (a).

Another, related measure of spatial inhomogeneity is
to consider the displacement profiles obtained by bin-
ning particles according to their y-coordinate and aver-
aging the x-displacement for all particles in a bin. This
gives a probe of systematic variation in the gradient di-
rection, while averaging over other directions. An exam-
ple is shown in Fig. 11 for a 12% strain interval from the
steady state in a particular run. A clear systematic devi-
ation from the affine profile is visible: the system exhibits
two distinct regions with the strain differing by a factor of
two as indicated by the linear fits (note that the region of
the left is connected to that on the right via the periodic
boundary conditions). This coexistence of regions with
differing strain (rates) is termed shear-banding[44–47].

Profiles for different runs exhibit somewhat similar
shapes, with mostly a single region of higher strain, more
or less sharply delimited from the rest of the system, with
varying contrast (i.e., difference in strain). To quantify
this contrast and look for systematic variations along the
isomorph we take the mean squared deviation of each
point from the affine line, yielding a norm of the (non-
affine) displacement profile. For the example in Fig. 11
the norm is 0.022; a histogram of norms for that density
is shown in the inset, and exhibits a somewhat broad dis-
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FIG. 11: Example of a displacement profile exhibiting shear-
banding. Displacement is calculated in steady state be-
tween ε = 3.65 and ε = 3.77 from a shear simulation at
˙̃ε = 10−4 from a configuration at ρ = 1.301 originally cooled
at Rc,0 = 10−5, by averaging the x-component of the parti-
cles’ displacements over all particles within a bin defined by
their y-coordinate. The straight line is the affine displacement
following the applied strain. Dotted red lines are linear fits
at different regions with two distinct slopes (treating the left-
most and rightmost regions together due to periodic boundary
conditions). The norm, defined as the root mean square de-
viation of the bin values from the linear profile, is 0.022. The
inset shows the histogram of norms of all 40 configurations at
the corresponding density, cooling rate, and shear rate. The
vertical dashed line indicates the mean value of the norm.

tribution. Note this measure of non-affine motion differs
from that presented in Fig. 10 in the initial averaging
within a y-bin before squaring and further averaging over
bins. We calculate the mean norm from the 40 runs at
each density, and plot these as a function of density in
Fig. 12. As with Fig. 10 we see a clear trend in the
transient data, and no discernible trend in the steady
state data. This suggests that at lower density there is a
greater tendency for quasi-shear-banding to occur during
the stress peak. This decreases with increasing density,
particularly over the first four densities. The steady-state
values in panel (b) are mostly below the low-density tran-
sient values; there are a couple of exceptions to this but
no overall trend. We have only looked at a specific in-
terval covering 12% of strain in all cases; an interesting
question for future work is to what extent a given quasi-
shear-band persists over longer amounts of strain. In-
terestingly, and apparently counterintuitively, the trend
visible for the red data points in Fig. 12 is in the opposite
direction to those shown in Fig. 10(a). What these two
results tell us is that there is a increase of “incoherent
non-affine motion” (i.e., measured at the particle level)
as density increases, while there is a decrease of “coher-
ent non-affine motion” (i.e., the signal that remains after
averaging over displacements within a horizontal slice).
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FIG. 12: Comparison of norm of non-affine motion in velocity
direction averaged of 40 configurations over 12%-strain inter-
vals between transient state with ε ∈ [0, 0.12] and steady state
with ε ∈ [3.65, 3.77]. Errors are the standard deviation of 40
divided by square root of 40. The definition of norm is the
mean squared deviation of the displacement profile in Fig. 11.

VII. DISCUSSION

The first part of this work was concerned with identi-
fying candidate isomorphs in non-equilibrium situations.
The force method, and other methods inspired by those
for determining isomorphs in equilibrium, generate can-
didate isomorphs along which the reduced-unit flow stress
is reasonably constant, within a few percent, for mod-
erate density changes, but can vary up to ± 20% for
extreme density changes (over a factor of two), corre-
sponding to an uncertainty in the estimated isomorphic
temperature of ± 10%. The 20% should be compared
to an overall variation of over a factor of 100 in the real
flow stress, however, and a factor of 50 in the overall
temperature change. Clearly, obtaining a precise esti-
mate of isomorphic temperatures for such large density
jumps is asking too much. Given these difficulties our
strategy has been to require the reduced flow stresses to
match at all densities as a practical method of identi-
fying the isomorph. This can be considered somewhat
analogous to choosing contours of the excess entropy in
equilibrium, and has the advantage of being well-defined
and straightforward to calculate in simulations of glasses,
unlike Dyre’s systemic temperature [15], for example. In
both cases a choice is made to identify isomorphs as con-
tours of one particular quantity, while the rest of the work
involves investigating the invariance of other quantities.

Because of intrinsic fluctuations in the shear stress dur-
ing steady state deformation[20], an accurate determina-
tion of the flow stress requires a combination of long runs
and/or many independent runs, and is therefore compu-
tationally demanding. This is even more the case when
one considers the extra work of doing so at several tem-
peratures in order to identify the matching temperature.
But by hypothesizing that this only needed to be done for
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one or two densities, other than the starting density, by
applying the analytic formulas that describe the shape
of isomorphs for Lennard-Jones systems, and moreover
doing this only for one combination of strain and cooling
rates, we save a lot of work. These assumptions were jus-
tified by the resulting flat plots of reduced flow stress as a
function of density. Further evidence of the quality of our
choice of determining isomorphic temperatures for given
density jumps is given by the invariance of microscopic
dynamics and structure, Fig. 9.

The fact that the force and fluctuation-based methods
diverge for large density jumps is in the end not surprising
since isomorph invariance is only approximate for most
potentials. Moreover, trying to understand the differ-
ences in terms of systematically different ways in which
different parts of the potential energy surface – for exam-
ple those relevant for vibrational motion versus barrier-
crossing flow events – would probably not be fruitful.
Some insight might be gained, however, by investigating
the barriers to flow explicitly using barrier finding tech-
niques on small systems to trace the way a typical energy
barrier scales with increasing density.

The second main result of this work is the failure of the
(reduced) peak stress under shear deformation to collapse
along the isomorph determined by forcing collapse of the
flow stress. Simply put, no temperature can match both
peak and flow stress, meaning that the relevant energy
barriers apparently scale differently with density. This
is despite that not just the flow stress (by construction)
but also the initial linear part of the stress-strain curve
are invariant, along with the particle motions and most
pair correlations during the steady state. The analysis
of section V B shows that the variation in peak stress
is not simply a question of the same trajectories (in re-
duced coordinates) experiencing different potential ener-
gies, forces and stresses, but rather the trajectories are
non-equivalent in the region of the stress peak, as evi-
denced by the analysis of non-affine motion. For differ-
ent (reduced-unit) trajectories to result, the (reduced-
unit) forces have to be different, of course. But subtle
differences in the forces can lead to macroscopic differ-
ences in the trajectories, in particular the degree of shear-
banding, which then leads to pronounced differences in
the observed stresses. A possible explanation for a vari-
ation in the tendency for shear-banding could be that it
depends sensitively on the steepness (effective IPL ex-
ponent) of the potential, something that has apparently
not been tested before in the literature. This could be
tested by running IPL simulations with different expo-
nents and studying the tendency to create shear bands.
A connection between shear banding and non-invariance
of the macroscopic stress strain curve would be analogous
to the case of the melting curve, which is only approxi-
mately an isomorph[13]. In that case the two co-existing
phases, having different densities, cannot be expected to
scale identically. Likewise here, one could the presence of
co-existing shear bands is a plausible source of a break-
down in isomorph invariance for the whole system. It is

not due to differing densities, though: We have not found
a significant difference in density between the differently
shearing coexisting regions.

The range of effective IPL exponents is quite limited
for Lennard-Jones systems, varying from around 18 at
low pressures to approaching 12 at the highest pressures.
Potentials which exhibit more dramatic variation of effec-
tive exponent include the exponential pair potential [48]
and the many-body effective medium theory potential
for metallic systems[49]. Studying these systems would
give additional insight, by potentially exhibiting an even
more pronounced variation in the peak stress along iso-
morphs; it might for example be noticeable at relatively
small density changes.

A technical point should be raised here. Our approach
using the SLLOD algorithm is predicated on an assumed
linear strain profile, i.e. a single global strain rate, and
is thus technically inconsistent with the occurrence in
practice of a certain degree of shear-banding. This is in
principle problematic because the velocities used to de-
fine the kinetic energy are defined with respect to the
assumed linear streaming velocity profile. Therefore in
principle some of the (fixed) total kinetic energy goes
into the deviations of the streaming velocity from a lin-
ear profile[35, 50] and less is available for thermal mo-
tion. We note, however, that the typical deviation of the
real streaming velocity from the linear profile is of or-
der 0.1% of the thermal velocity, so any effects on the
effective temperature are negligible. To confirm that the
observed behavior is not an artifact of the thermostat,
we have carried out some simulations with a modified
thermostat by which only the kinetic energy associated
with velocities in the non-flow directions (y and z) is
thermostatted, while the part associated with velocities
in the flow direction (x) is free to fluctuate. We find the
same behavior, in particular the trends noticed in Fig.
12 are even clearer with the modified thermostat.

Finally, we note that since Fig 12 indicates that shear
banding occurs also in the steady state, a varying ten-
dency towards shear banding depending on density (via
the effective IPL exponent) could actually be present in
the steady state. Since we have chosen the isomorph tem-
peratures to match the reduced steady-state shear stress
we do not see this in our data (essentially because tem-
peratures have been adjusted to compensate for it), but
it could potentially underlying the failure of the fluctua-
tion methods to predict the steady-state stress. Compar-
ing different IPL systems under steady state shear could
also shed light on this.
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Appendix A: Effects of strain rate and cooling rate
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FIG. 13: Reduced peak stress σ̃p and flow stress σ̃f as func-
tion of reduced strain rate ˜̇ε (a,c) and cooling rate Rc,0 (b,d).
Black, red, and blue are for Rc,0 = 10−5, 10−6, 10−7; sphere,
square, and up triangle are for ˜̇ε = 10−3, 10−4, 10−5. The flow
stress σ̃f is within errors independent of Rc,0 but increases
with ˜̇ε. See the text for a discussion of the uncertainties of
these measurements, which for these data are smaller than
the symbol size. The three horizontal lines in panel (d) are
the average of the corresponding three points of the same ˜̇ε.

In this appendix we present an overview of the basic
rheological properties of our system; specifically we show
flow stress and peak stress for different strain rates and
cooling rates. We restrict attention to a single density-
temperature state point, namely ρ0 = 1.183, T = 0.3
which in the main text is our initial, or reference state
point for constructing isomorphs.
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FIG. 14: Reduced potential energy against strain sheared
with ˜̇ε = 10−3, 10−5 for the three cooling rates Rc,0 = 10−5

(blue and orange), 10−6 (green and red), 10−7 (purple and
brown) at ρ = 1.183 and T = 0.3. Each curve is an average
of 40 simulations.

Since we do not expect perfect isomorphs, both be-
cause isomorphs are never perfect, especially over large
density changes, and because the intrinsic fluctuations in
the stress can obscure the degree of collapse, we need
to be able to compare potential “approximate invari-
ance” with the variation observed when non-isomorphic
changes of parameters are considered. In equilibrium sit-
uations one can, for example, vary the temperature and
density separately while keeping the other fixed. In the
non-equilibrium case more interesting possibilities arise,
namely varying the cooling and strain rates. To show
how much variation in rheological properties results from
varying these rates we plot the peak and flow stresses
in Fig. 13, first as a function of strain rate for different
cooling rates, and then as a function of cooling rate for
different strain rates. It can be seen that an order of mag-
nitude increase in strain rate increases the peak stress by
25-30% [panel (a)] and the flow stress by 5-15% [panel
(c)] while an order of magnitude increase in cooling rate
decreases the peak stress also 15-20% [panel (b)] but has
no effect on the flow stress [panel (d)]. These dependen-
cies are expected in glassy rheology[51]. In particular a
lower cooling rate generates a more stable glass, which
requires a larger stress to initiate deformation (i.e. it has
a larger yield stress).

Fig. 14 shows the potential energy versus strain up to
strain 2 for the three cooling rates and the fastest and
slowest strain rates. The potential energy can be rather
slow in converging to its steady state value, especially
for the highest strain rate and lowest cooling rate, where
it appears to converge around strain 2 (we can be sure
the purple curve has converged since it must converge to
the same value as the other curves for the same strain
rate). This is despite that the shear stress has typically
converged before strain 1. The fact that potential energy
must also be monitored to ensure steady state conditions
was discussed by Singh et al. [39].

Appendix B: Connecting the force method to the
systemic temperature

We start with the definition of systemic temperature,
Ts, from Dyre [15, 52], where the function U(ρ, Sex)
should, initially, be taken as the equilibrium thermody-
namic relation between potential energy, density and ex-
cess entropy:

Ts(R) ≡ ∂U(ρ, Sex(R))

∂Sex
(B1)

Here the microscopic definition of the excess entropy
Sex(R) for individual configurations is also based on the
same equilibrium relation between the thermodynamic
quantities, and the potential energy of a given configu-
ration (it is the excess entropy for the thermodynamic
state whose mean potential energy is equal to the config-
uration’s potential energy).
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To get a different expression for Ts, consider the deriva-
tive of U with respect to R̃, at fixed ρ. If we consider a
small change, at fixed density, of one of the reduced re-
duced coordinates, say atom i, spatial coordinate α, then
by the chain rule, we have

∂U(ρ, Sex)

∂R̃i,α
=
∂U(ρ, Sex)

∂Sex

∂Sex(ρ, R̃)

∂R̃i,α
(B2)

The first factor on the right is just Ts; but before we solve
for it we wish to involve all coordinates. Noting that Ts
is the same independent of which coordinate we choose,
we square Eq. (B2), sum over i and α, and finally take
the square root, giving

√√√√∑
i,α

∣∣∣∣∣∂U(ρ, Sex)

∂R̃i,α

∣∣∣∣∣
2

= Ts

√√√√∑
i,α

∣∣∣∣∣∂Sex(ρ, R̃)

∂R̃i,α

∣∣∣∣∣
2

(B3)

So our new expression for Ts is

Ts =

√∑
i,α

∣∣∣∂U(ρ,Sex)

∂R̃i,α

∣∣∣2√∑
i,α

∣∣∣∂Sex(ρ,R̃)

∂R̃i,α

∣∣∣2 . (B4)

This is still an exact expression. Moreover the depen-
dence of U on Sex can be dropped by reinterpreting the
function U as the microscopic potential energy: thus, the
numerator can be written as ρ−1/3|F| where F is the 3N-
dimensional force vector for the whole system. If we now
consider the ratio of Ts at two different densities, ρ1 and
ρ2, for the same reduced coordinates, we have

T
(2)
s

T
(1)
s

=

[(
ρ1
ρ2

)1/3 |F2|
|F1|

] √∑
i,α

∣∣∣∂Sex(ρ1,R̃)

∂R̃i,α

∣∣∣2√∑
i,α

∣∣∣∂Sex(ρ2,R̃)

∂R̃i,α

∣∣∣2 (B5)

The first factor (in square brackets) on the right side
is exactly the expression for the temperature ratio given
by Schrøder’s force method[53]. What about the second
factor, involving the derivatives of Sex, with respect to
reduced coordinates, at different densities? For perfect
hidden scale invariance where Sex does not depend on
ρ, this factor is unity, and in that case, not surprisingly,
the ratio of systemic temperatures is the ratio given by
the force method (or any other method). In the case of
imperfect scaling, we can argue that this factor is nearly
unity: we take a derivative with respect to R̃i,α, so even
if changes in Sex accumulate over large density changes,
these changes will almost all cancel when we compare
two nearby values of R̃i,α. Thus the derivatives depend
much less on density, and we can assume that this factor
is well approximated by unity, giving the desired result.

Appendix C: Methods for identifying isomorphs in
equilibrium

There are several methods currently in use for identi-
fying isomorphs in equilibrium. We review these meth-
ods here for two reasons. Firstly because we attempt
to extend these methods to the out-of-equilibrium sys-
tems of interest (discussed in Sec. IV). Secondly, because
our final procedure involved the use the analytic method
(Sec. C 4) to interpolate our isomorph curve in our out-
of-equilibrium system.

1. Integration using the density scaling exponent γ

In equilibrium the slope of isomorphs in the ln ρ, lnT
plane is given by the so-called density scaling exponent γ,
defined generally as the slope of configurational adiabats–
curves along which the excess entropy is constant[1]:

(
∂T

∂ρ

)
Sex

= γ(ρ, T ) =
〈∆U∆W 〉
〈(∆U)2〉

(C1)

where the second equality indicates how γ is determined
from fluctuations at a particular state point. Angle
brackets represent NVT ensemble averages, and the last
expression is simply the linear regression slope of a scat-
ter plot of W against U . The virial W can be defined
as the derivative of U for a configuration with respect to
ln ρ, where ρ ≡ N/V is the number density of the sys-
tem. When taking the derivative it should be understood
that the number and relative positions of the particles are
kept fixed and only a uniform scaling is involved. Thus
W contains information about how the potential energy
surface changes under (infinitesimal) uniform scaling and
therefore is naturally relevant for the identification of
isomorphs. From the same linear regression fit a cor-
relation coefficient R may be extracted, which is used to
gauge the expected quality of the isomorphs. By deter-
mining γ from fluctuations an isomorph in equilibrium
may be traced by simple numerical integration (explicit
Euler method) of Eq. (C1), taking small steps in den-
sity (typically 1%, although larger jumps are possible
with higher order integration techniques[54]). For sys-
tems with interactions described by an inverse power law
(IPL) with a particular exponent n, exact isomorphs ex-
ist and the density scaling exponent is n/3; otherwise
it depends mainly on density, though it does have some
temperature dependence[2].

2. Direct isomorph check

An early formulation of isomorphism involves the pro-
portionality of Boltzmann factors of corresponding mi-
croscopic states. Here “corresponding” means all par-
ticles being the same in reduced coordinates, i.e., one
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configuration is obtained from the other by a uniform
scaling. A consequence of this proportionality, obtained
simply by taking logarithms, is a proportionality between
scaled and unscaled potential energies

Uf (Rf ) =
Tf
Ti
Ui(Ri) + const., (C2)

where subscripts i and f indicate potential energies eval-
uated at initial and final densities, respectively for any
configuration with given reduced coordinates. Here we
use the upper case boldface R to represent the entire
3N -vector of particle coordinates, for convenience, and
the equality of scaled coordinates can be expressed as

R̃f ≡ ρ
1/3
f Rf = ρ

1/3
i Ri ≡ R̃i. Eq. (C2) was origi-

nally considered a simple check of the basic isomorph
concept of proportional energy fluctuations, hence the
name direct isomorph check (DIC)[1], but it also sug-
gests a method for identifying isomorphs: Given densi-
ties ρi and ρf , and the temperature Ti, the temperature
Tf such that state point ρf , Tf is isomorphic to state
point ρi, Ti may be identified by (1) sampling configura-
tions from an equilibrium simulation at ρi, Ti, (2) scaling
them to density ρf , (3) calculating the potential energies
of the scaled configurations, and (4) making a scatter plot
of the scaled versus unscaled potential energies. With-
out requiring proportionality of Boltzmann factors one
can also derive the DIC by considering configurational
adiabats[55]. Furthermore, when considering infinitesi-
mal density changes the DIC reduces to the method of
integrating Eq. (C1).

3. Stress-based direct isomorph check

One can interpret the DIC as choosing the tempera-
ture T2 by requiring the reduced-unit energy fluctuations
to be as close as possible between the two state points,
where “as close as possible” involves a linear regression
fit. One can in principle make a similar requirement for
other quantities, for example the virial, whose fluctua-
tions should also be related by being the same in reduced
units. Or indeed the shear stress (configurational part).
The latter leads to an alternative version of the direct iso-
morph check where the (configurational part of) the shear
stress for scaled configurations is plotted against that for
the unscaled ones. In this case, in view of Eq. (1), the
slope of the linear regression should be ρfTf/ρiTi. This
suggests an alternative method for identifying an isomor-
phic temperature which may be relevant in deformation
simulations. The shear stress given by our code includes
the (small) kinetic part by default; we have checked in
one case that its presence make a negligible difference to
the fitted slope.

4. Analytic isomorph formula for LJ potentials

For pair potentials an analytic formula describing the
shapes of isomorphs is available[56, 57], which for the
Lennard-Jones potential takes the form T (ρ) ∝ h(ρ),
where the density scaling function h(ρ) is given by

h(ρ) = Aρ4 −Bρ2 (C3)

The analytic form of h(ρ) is directly related to that of the
potential (indeed it is essentially the second derivative of
the pair potential, evaluated at r = ρ−1/3 and expressed
in reduced units)[57]. The overall normalization of h(ρ)
is undefined since there is a proportionality constant in
the relation between it and the temperature, so there is
in fact only one free parameter, which can be taken to be
the ratio B/A. If this is known then given two densities,
ρi and ρf , and a temperature Ti corresponding to density
ρi, the temperature Tf corresponding to density ρf is
given by

Tf = Ti
h(ρf )

h(ρi)
= Ti

ρ4f − (B/A)ρ2f
ρ4i − (B/A)ρ2i

(C4)

To fix the parameter B/A two options are available. One
can note that the logarithmic derivative of h(ρ) must also
be equal to the density scaling exponent γ,

γ(ρ) =
d lnh(ρ)

d ln ρ
=

4ρ4 − 2(B/A)ρ2

ρ4 − (B/A)ρ2
, (C5)

where we assume explicitly that γ depends only on den-
sity. Considering a particular reference density ρref at
which γ is to be evaluated (for example by simulation),
isolating B/A gives

B

A
=

(γ(ρref )− 4)ρ2ref
(γ(ρref )− 2)

(C6)

In principle, if isomorph theory was exact, one could
run a single simulation at the reference density, evalu-
ate γ from the U,W fluctuations there, use Eq. (C6) to
determine B/A and generate the whole isomorph using
Eq. (C4). This works reasonably well for small density
jumps, say 10% – so certainly better than the integration
method with steps of 1% – but it does not give accurate
temperatures for very large density jumps. Rather, the
greatest utility of the analytic isomorph expression is its
use in interpolating between points known to be isomor-
phic to get the points between[58]. That is, if both den-
sities and temperatures for two state points, ρi, Ti and
ρf , Tf are known, Eq. (C4) can be solved for B/A, giv-
ing

B

A
=
ρ4f − ρ4i

Tf
Ti

ρ2f − ρ2i
Tf
Ti

(C7)
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FIG. 15: Stress and strain curves of glasses cooled at three
rates and sheared at reduced strain rate ˙̃ε = 10−3. We only
show strain up to 1 so that the peak is more visible; only 4
densities are shown for clarity. The black horizontal dashed
lines indicate the flow stress. These curves are where the data
of Fig. 7 are derived from.
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FIG. 16: Same as in Fig. 15 but now for glasses cooled at
three rates and sheared at reduced strain rate ˙̃ε = 10−4.

Then isomorphic temperatures for densities between ρi
and ρf can readily be found using Eq. (C4) (replacing ρf
and Tf with the intermediate values). This is the manner
in which we use the analytical formula in this work – note
that it does not explicitly depend on having equilibrium.

Appendix D: Stress strain curve collapse for other
cooling and (reduced) strain rates

We present here for completeness the full set of strain
curves for all cooling and strain rates. Figs. 15, 16 and
17 show data for reduced strain rates 10−3, 10−4 and
10−5, respectively. The individual panels show data for
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FIG. 17: Same as in Fig. 15 but now for glasses cooled at
three rates and sheared at reduced strain rate ˙̃ε = 10−5.

the different cooling rates. By comparing panels within
one figure one can see the effect of the changing cool-
ing rate on the initial peak, while the effect of different
strain rates can be seen in the flow stress–constant within
each figure—varying from one figure to another. In all
cases the behavior discussed in the main text, namely the
decrease of reduced peak stress as a function of density
along an isomorph, is clearly visible.

Appendix E: Radial distribution functions for other
types.
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FIG. 18: Collapse of g(r̃) for AB and BB pairs as compliment
to Fig. 9(b).

Fig. 18 shows the collapse of the AB and BB radial
distribution functions along the isomorph. The collapse
here is noticeably worse than for the AA one (Fig. 9(b));
specifically the first peak in the AB case decreases 15%
as opposed to less than 2%. Some decrease can be ratio-
nalized since the behavior at small r is dominated by the
pair potential which becomes effectively softer at higher
densities (or, a given value of the reduced-unit r̃ corre-
sponds to a smaller value of the real distance as density
increases, and the effective IPL exponent of the LJ po-
tential decreases with decreasing r, approaching 12 in
the limit r → 0). A softer pair potential allows the first
peak to extend to shorter distances, and the peak de-
creases correspondingly to keep the number of neighbors
constant.
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