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Abstract

Diffusivity in some soft matter and biological systems changes with time, called the fluctuating

diffusivity. In this work, we propose a novel origin for fluctuating diffusivity based on stochastic

simulations of binary gas mixtures. In this system, the fraction of one component is significantly

small, and the mass of the minor component molecule is different from that of the major component.

The minor component exhibits fluctuating diffusivity when its mass is sufficiently smaller than that

of the major component. We elucidate that this fluctuating diffusivity is caused by the time scale

separation between the relaxation of the velocity direction and the speed of the minor component

molecule.
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I. INTRODUCTION5

Brownian motion is widely observed in soft matter systems, and standard Brownian mo-6

tion is described by a simple stochastic process known as the Wiener process[1, 2]. In this7

process, the mean square displacement (MSD) increases linearly with time and is accompa-8

nied by a Gaussian displacement distribution[3, 4]. Although this simple Brownian motion9

is fully understood, a new type of Brownian motion has been recently reported; although10

the MSD is proportional to time, the displacement distribution deviates from the Gaussian11

distribution[5–8]. This motion is known as Brownian (or Fickian) yet non-Gaussian diffu-12

sion and cannot be described by the simple Wiener process. This process can be successfully13

described by the Langevin equation with the time-dependent fluctuating diffusivity[8].14

dR(t)

dt
=
√

2D(t)ξ(t), (1)

where R(t) denotes the position of the Brownian particle, D(t) denotes the fluctuating15

diffusivity, and ξ(t) is Gaussian white noise. The fluctuating diffusivity obeys a stochastic16

process independent of R(t). The first and second order statistical moments of ξ(t) are17

given as 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = Iδ(t− t′), where 〈. . . 〉 represents the statistical average18

and I is the unit tensor.19

The origins of the fluctuating diffusivity in soft matter and biological systems can be clas-20

sified into two categories[9]. The first origin is a spatially and/or temporally heterogeneous21

environment[10, 11]. For instance, particles in supercooled liquids (glass formers)[12–14],22

colloidal suspensions [7, 15, 16], biological systems [5, 6, 17, 18], and active matter [19, 20]23

exhibit fluctuating diffusivities, owing to their heterogeneous environments. The second24

origin is the fluctuation in the conformational degrees of freedom. That is, the diffusiv-25

ity can fluctuate depending on the fluctuations of the conformation or orientation of a26

molecule[8, 21, 22]. Examples include the center of mass of an entangled polymer[8] and27

rod-like particle solution[22].28

Here, one question may arise: are there only two origins of fluctuating diffusivity? In this29

study, we demonstrate that the third origin of fluctuating diffusivity exists by investigating30

simple gas systems, i.e., binary gas mixtures comprising hard spheres with different masses,31

in which the fraction of one component is sufficiently small. These systems do not possess32

a heterogeneous environment nor conformational degrees of freedom, which are known to33

be the origins of fluctuating diffusivity. The gas molecules are assumed to be spherical and34
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do not have any internal degrees of freedom. They are randomly distributed in space, and35

there is no spatial correlation. Even in such systems, the fluctuating diffusivity causing36

Brownian yet non-Gaussian diffusion emerges under specific conditions. We elucidate that37

the observed fluctuating diffusivity originates from the separation of time scales of two38

relaxation processes of the minor component; the velocity direction relaxation and speed39

relaxation.40

II. SYSTEM41

The dynamics of a single molecule A in another gas molecule B is investigated as a model42

of binary gas mixtures, where the fraction of molecules of gas A is sufficiently small. The43

molecules A and B have different masses, mA and mB, and sizes σA and σB, respectively.44

The system is in equilibrium with inverse temperature β, and the number density of molecule45

B is ρ. Molecule A moves ballistically until it collides with molecule B. Molecule A instan-46

taneously changes its velocity by collision based on the conventional hard-sphere interaction47

[23, 24] as follows:48

v′A = vA −
2mB

mB +mA

(vA − vB) · r̂ABr̂AB. (2)

Here, v′A is the velocity of molecule A after collision, vA and vB are the velocities of molecules49

A and B before collision, respectively, and r̂AB is the unit vector connecting the centers of50

molecules A and B. Here, it should be mentioned that this collision protocol is not crucial51

for the following results; similar data will be obtained for other interaction potentials such52

as the Weeks-Chandler-Andersen potential.53

In gas systems, the dynamics of a molecule can be approximately described as a Marko-54

vian stochastic process because the dynamic correlations are weak[23, 25, 26]. Therefore,55

we employ the kinetic Monte Carlo (KMC) method [27, 28] to simulate the dynamics of56

molecule A. Collision statistics are required for implementing the KMC method. In hard-57

sphere gas, the probability density of molecule A colliding with molecule B with vB at r̂58

and time interval s for a given vA becomes59

P (vB, r̂AB, s|vA)

=ρσ2(vB − vA) · r̂AB
(
βmB

2π

)3/2

exp

(
−βmBv

2
B

2

)
× exp[−F (vA)s]Θ[(vA − vB) · r̂AB].

(3)
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Here, σ = (σA + σB)/2, F (vA) is the average collision frequency of molecule A with velocity60

vA, and Θ(x) is the Heaviside step function (collision does not occur for (vA−vB) · r̂AB < 0).61

Here, we emphasize that Eq. (3) does not depend on the spatial position nor time; the62

statistics depend only on the velocity of molecule A. The explicit expression of F (vA),63

derivation of Eq. (3), and numerical scheme are explained in Appendix A and B. The64

dynamics of molecule A can be characterized only by the mass ratio µ = mA/mB. We65

employ dimensionless units by setting mB = 1, β−1 = 1, and 1/ρσ2 = 1.66

III. NUMERICAL RESULTS67

Figure 1 shows the MSD 〈∆R2(∆t)〉, where ∆R(∆t) = R(∆t) −R(0) and ∆t denotes68

the time lag. For comparison, we have included the prediction by the Enskog theory[26, 29]:69

〈∆R2(∆t)〉 =
3τ 2
c

2µ

[
−1 +

2∆t

τc
+ e−2∆t/τc

]
, (4)

where τc is the crossover time from ballistic to diffusive regions defined as follows:70

τc =
√

9µ(µ+ 1)/32π. (5)

The results obtained from the KMC simulations exhibit simple ballistic and diffusive be-71

haviors in the simulated µ range, and these results are almost perfectly reproduced by the72

Enskog theory. We naively expect that the dynamics of molecule A is simple Brownian73

motion with constant diffusivity for any µ.7475

However, the dynamics of molecule A is not simple Brownian motion for small µ. Figure 276

shows the trajectories of molecule A for sufficiently large and small mass ratios µ = 102 and77

10−4. The observation time is T = 106τc, and the trajectories are mapped onto the xy78

plane. The colors express the magnitude of the scaled temporal displacement for a time lag79

∆t = 10τc. For µ = 102, the fast (red) and slow (blue) areas are homogeneously distributed;80

this is consistent with simple Brownian motion. By contrast, for µ = 10−4, large clusters81

of fast and slow areas are clearly observed. This implies that the dynamics of molecule A82

deviates from a simple Brownian motion when µ is small. In what follows, we present the83

results with typical mass ratios, µ = 102 and 10−4, as the representative cases of simple84

Brownian motion and non-trivial diffusion, respectively. Data for other mass ratios are85

summarized in Appendix C.8687
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FIG. 1. Mean square displacements (MSDs) of the molecule A for several mass ratios µ. The

symbols are the KMC simulation data, and the black solid curves represent the prediction by the

Enskog theory (Eq. (4)).

To examine whether the dynamics of molecule A is Gaussian, we calculate the self-part of88

the van Hove correlation functions, which is defined as Gs(∆X,∆t) = 〈δ[∆X−(X(t+∆t)−89

X(t))]〉, where X(t) is the position of molecule A in the x direction at time t. Figure 3 shows90

Gs(∆X,∆t) for various ∆t. For µ = 102, Gs(∆X,∆t) is Gaussian within the simulated ∆t91

range. In contrast, for µ = 10−4, Gs(∆X,∆t) deviates from the Gaussian distribution within92

an intermediate time lag, 101 . ∆t/τc . 104. This deviation disappears for a sufficiently93

large time lag ∆t/τc & 105. Therefore, Brownian yet non-Gaussian diffusion appears for94

µ = 10−4 at the intermediate time scale. This behavior is commonly observed for µ < 195

as shown in Fig. C.1 in Appendix. The non-Gaussian behavior can be also observed in96

the non-Gaussian parameter (NGP) shown in Fig. C.2 in Appendix. The NGP exhibits97

non-negligible peaks for µ < 1.9899

To analyze the non-Gaussian behavior in detail, we calculate the ergodicity breaking (EB)100

parameter[8, 30] defined as follows:101

EB(∆t, T ) =

〈[
δ2(∆t, T )

]2〉
〈
δ2(∆t, T )

〉2 − 1. (6)

Here, δ2(∆t, T ) denotes the time-averaged MSD for the time lag ∆t and finite observation102
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FIG. 2. Typical trajectories of the molecule A during 0 ≤ t ≤ 106τc for (a)µ = 102 and (b)10−4

from the KMC simulation. The trajectories are mapped onto the xy plane. The colors represent

the reduced temporal displacement |R(t+ ∆t)−R(t)|/
√
〈∆R2(∆t)〉 with ∆t = 10τc.

time T :103

δ2(∆t, T ) =
1

T −∆t

∫ T−∆t

0

[R(t+ ∆t)−R(t)]2dt. (7)

The dependence of the EB parameter on ∆t was theoretically proven to be weak when104

T � ∆t [8]. Therefore, we set ∆t/τc = 10 and calculate the EB parameter as a function of105

T for T/τc ≥ 102. Figure 4 displays the observation time dependence of the EB parameter,106
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FIG. 3. Self-part of the van Hove correlation functions of the molecule A for different time lags

∆t from the KMC simulation. (a) µ = 102 and (b) 10−4. For convenience, the displacement

is normalized using the root MSD
√
〈∆X2(∆t)〉. The solid black curves represent the Gaussian

distribution.

which simply exhibits a decay EB ∝ T−1 in the entire T range for µ = 102. This implies107

that the dynamics of molecule A follows a Gaussian process. In contrast, for µ = 10−4,108

the EB parameter exhibits a shoulder before the Gaussian decay EB ∝ T−1. This is also109

observed for other sufficiently small mass ratios, µ� 1, as shown in Fig. C.3 in Appendix.110
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The existence of this shoulder can be attributed to the fluctuating diffusivity [8], and the111

characteristic crossover time τEB from the shoulder to the EB ∝ T−1 decay can be interpreted112

as the relaxation time of the fluctuating diffusivity[8]. The crossover time τEB for µ = 10−4 is113

estimated from the two curve fittings EB ∝ T−α where 0 < α < 1 for short T and EB ∝ T−1
114

for long T regions. The obtained τEB for µ = 10−4 is approximately equal to the time scale115

at which the van Hove correlation function becomes Gaussian.116
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FIG. 4. Ergodicity breaking (EB) parameters corresponding to µ = 102 and 10−4 from the KMC

simulation. The time lag is set as ∆t = 10τc. The dotted lines indicate the fitting results to the

power-laws EB ∝ T−α and EB ∝ T−1.

117

118

IV. ORIGIN OF THE FLUCTUATING DIFFUSIVITY119

When µ is sufficiently small, i.e., µ � 1, the velocity of molecule A is significantly

larger than that of molecule B, i.e., |vA| � |vB|. Under such a condition, the motion of

molecule A is similar to that in a matrix of immobile obstacles such as Lorentz gases[23, 31–

34]. The speed of molecule A is nearly unchanged by a few collisions, whereas the velocity

direction is randomized. Therefore, we expect that the relaxation times of the speed and

velocity direction of molecule A will be considerably different if µ is small. We calculate the

correlation functions corresponding to the velocity direction Cd(∆t) and speed Cs(∆t):

Cd(∆t) =

〈
V (∆t)

|V (∆t)|
· V (0)

|V (0)|

〉
, (8)

Cs(∆t) =
〈|V (∆t)||V (0)|〉 − 〈|V |〉2

〈|V |2〉 − 〈|V |〉2
. (9)
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Figure 5 displays Cd(∆t) and Cs(∆t) obtained from the KMC simulations. The figure clearly120

reveals that the relaxation of Cs(∆t) (filled red symbols) is significantly slower than that121

of Cd(∆t) for µ = 10−4 (open red symbols). This behavior is commonly observed if µ is122

sufficiently small as shown in Figs. C.4 and C.5. The relaxation times of the direction τd and123

speed τs can be estimated from Cd(∆t) and Cs(∆t), respectively. The estimates scaled by124

τc (Eq. (5)) are summarized in Fig. C.6. For µ = 10−4, τd is found to be comparable to τc,125

whereas τs is much longer than τc. In addition, τs is of the same order as τEB, which strongly126

implies that the relaxation of the fluctuating diffusivity in the binary gas mixtures is related127

to that of the speed of the molecule A. Here, it should be emphasized that such a timescale128

separation between the velocity direction and speed is not present without ballistic motion.129

Thus, the mechanism of the fluctuating diffusivity observed for purely diffusive motions in130

some heterogeneous environments[5, 7, 17, 35] is different from that in our system.131
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FIG. 5. Correlation functions of the velocity direction Cd(∆t) and speed Cs(∆t) of molecule A

(Eqs. (8) and (9)) for µ = 10−4 and 102 from the KMC simulation.

Based on the above results, we propose a possible scenario for the emergence of fluctuating132

diffusivity in our binary gas mixture with µ� 1. At the intermediate time scale τd . T . τs,133

molecule A diffuses because its velocity direction changes randomly. The speed of molecule134

A remains approximately constant, |vA(t)| ≈ vA, and thus the diffusion coefficient can be135

described by a function of constant as D(t) = D(vA). At the long timescale T & τs, D(t)136

starts to fluctuate temporarily owing to the fluctuations of |vA(t)|. At the very long time137

scale T � τs, the fluctuation of the diffusivity is smeared out and the Gaussian normal138

diffusion with the effective diffusion coefficient Deff = 〈D〉 is observed. Therefore, the origin139

of the fluctuating diffusivity in our system is the separation of the relaxation timescales of140

the velocity direction and speed. This scenario also explains the clusters observed in Fig. 2;141
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they reflect the persistence of the molecule A speed within the timescale τs.142

To validate the proposed scenario, we theoretically calculate the van-Hove correlation143

function of the molecule A with µ � 1. At the intermediate timescale τd . T . τs, the144

dynamics of the molecule A can be virtually described as a mobile particle in dilute fixed145

spherical obstacles. Then the diffusion coefficient is calculated as D(|vA|) = |vA|/3π [23].146

The probability density of the displacement of the molecule A under a given speed vA = |vA|147

is Gaussian:148

P (∆X; ∆t|vA) =
1√

4πD(vA)∆t
exp

(
− ∆X2

4D(vA)∆t

)
. (10)

In equilibrium, vA obeys the Maxwell-Boltzmann distribution: PMB(vA) = 4πv2
A(2π)−3/2 exp(−v2

A/2).149

By taking the equilibrium average of Eq. (10) with respect to vA, we have the van-Hove150

correlation function Gs(∆X,∆t) at the intermediate timescale τd . ∆t . τs:151

Gs(∆X; ∆t) =

∫ ∞
0

dvAP (∆X; ∆t|vA)PMB(vA). (11)

We numerically calculate Eq. (11) and show the result in Fig. 6. The theoretical prediction152

by Eq. (11) reasonably agrees with the KMC simulation result. This result supports our153

scenario on the fluctuating diffusivity; the fluctuating diffusivity in our system originates154

from the separation of the relaxation timescales between the velocity direction and the speed.155

The tail of Gs(∆X; ∆t) from the Gaussian distribution has been observed in several systems.156

The tail in Eq. (11) can be approximately calculated using the saddle point method:157

Gs(∆X; ∆t) =

√
3

4π

|∆X|
∆t

exp

[
−3

(
3∆X2

8
√

2∆t

) 2
3

]
(for ∆X � 1). (12)

Thus we find that the tail is not the exponential nor the stretched Gaussian distributions,158

which are often observed in glass-forming liquids[12, 13, 36, 37] or some biological systems[6,159

10, 17, 19, 20].160

V. RELATION TO OTHER SYSTEMS161

The motion of molecule A with µ � 1 can be considered to be similar to that in the162

Lorenz gas model[31], which has been widely investigated as a dynamic model for light gas163

molecules in spatially fixed obstacles [23, 32–34]. In the Lorentz gas model, only the velocity164

direction changes and the speed remains unchanged at any timescale. Thus, the mechanism165
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FIG. 6. Theoretical prediction of the scaled self-part of the van-Hove correlation function

Gs(∆X,∆t) of the molecule A (ochre curve). For comparison, the KMC simulation results with

µ = 10−4 for different time lags (Fig. 3(b)) are shown with symbols and the Gaussian distribution

is displayed with the black curve.

that causes the fluctuating diffusivity observed in our system cannot be realized in Lorentz166

gas systems.167

Our results suggest that fluctuating diffusivity emerges if the mass contrast is large:168

µ� 1. To the best of our knowledge, there is no experimental report on the non-Gaussian169

behavior and fluctuating diffusivity in gas systems. However, we speculate that fluctuating170

diffusivity can be realized in experiments for binary gas mixtures. For instance, in the binary171

gas mixture of helium and radon[38], the mass ratio is µ ≈ 0.018. For such a mass ratio,172

the non-Gaussian behavior originating from fluctuating diffusivity can emerge as shown173

in Fig. C.2 in Appendix. We expect that the non-Gaussian behavior will be observed if174

elaborated and precise measurements are performed. Although the kinetics of gases[26] may175

be considered as almost fully understood, our results imply that they are not yet understood.176

VI. CONCLUSION177

In this study, we identified a novel origin of fluctuating diffusivity, which is neither en-178

vironmental heterogeneity nor conformational degrees of freedom. Fluctuating diffusivity179
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emerges in simple binary gas mixtures with mass and fraction contrasts when the mass180

of the minor component molecule is sufficiently small in comparison to that of the major181

component. We showed that fluctuating diffusivity originates from the timescale separation182

between the relaxation times of the velocity direction and the speed of the minor component183

molecule. Our findings open a new modeling path for fluctuating diffusivity. They will also184

shed light on the kinetic behavior of gas systems from a new aspect. We hope that the185

predicted non-Gaussian behavior and fluctuating diffusivity will be experimentally observed186

in the future.187
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Appendix A: Collision statistics192

The kinetic Monte Carlo (KMC) method requires collision statistics as inputs. In the193

present case, the probability density of a collision for molecule A is required, which can be194

derived based on the gas kinetic theory[23, 39, 40]. We employ the following assumptions195

on our system:196

1. The dynamics of molecule A obeys a Markovian stochastic process.197

2. Molecule B is homogeneously distributed in space.198

From assumptions 1 and 2, the collision rate at which molecule A with velocity vA collides199

with molecule B with velocity vB can be expressed as follows:200

ρσ2(vA − vB) · r̂ABΘ[(vA − vB) · r̂AB], (A1)

where Θ(x) denotes the Heaviside step function (no collision occurs when (vA−vB)·r̂AB < 0).201

The required probability density for collision P (vB, r̂AB, s|vA) can be decomposed into202

the product of three factors. The first factor is the cumulative waiting-time distribution of203

molecule A with velocity vA. Owing to the Markovian nature of the dynamics, this factor204

becomes an exponential distribution. The second factor is the probability density of the205

velocity of the colliding molecule B, which is the Maxwell-Boltzmann velocity distribution.206
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The third factor is the collision rate, given by Eq. (A1). For the calculation of the first207

factor, the probability density of the waiting time s is required:208

P (s|vA) = F (vA)e−F (vA)s. (A2)

Here, F (vA) is the average collision frequency and is expressed as follows:209

F (vA) =

∫
dvBdr̂AB ρσ

2(vB − vA) · r̂ABΘ((vB − vA) · r̂AB)PMB(vB;mB)

=
ρπσ2

√
α

[(√
α|vA|+

1

2
√
α|vA|

)
erf(
√
α|vA|) +

1√
π

exp
(
−α|vA|2

)]
,

(A3)

where α = βmB/2. The first factor is the probability of no collisions occurring during time210

s, which is calculated as follows [41]:211

Ψ(s|vA) =

∫ ∞
s

ds′ P (s′|vA) = e−F (vA)s. (A4)

The second factor is simply expressed as212

PMB(vB;mB) =

(
βmB

2π

)3/2

exp

(
−βmBv

2
B

2

)
. (A5)

The probability density P (vB, r̂AB, s|vA) can be expressed as213

P (vB, r̂AB, s|vA) = Ψ(s|vA)PMB(vB;mB)ρσ2(vA − vB) · r̂ABΘ[(vA − vB) · r̂AB]. (A6)

Equations (A6), (A4), and (A5), give Eq. (3) in the main text.214

Appendix B: Numerical scheme for KMC simulation215

The collision-based dynamics of molecule A can be simulated using the KMC method[27,216

28] with Eq. (A6) as the input. The initial velocity of molecule A is sampled based on217

Maxwell-Boltzmann distribution. The probability density of the initial velocity represented218

in dimensionless units is219

PMB(vA;µ) =
( µ

2π

)3/2

exp

(
−µv

2
A

2

)
. (B1)

where µ is the mass ratio mA/mB, the same as in the main text. Since Eq. (B1) is a Gaussian220

distribution, vA can be sampled using the Box-Muller method[? ].221

For the time evolution of the system, sampling of the stochastic variables vB, r̂AB, and s222

are required. However, the simultaneous sampling of these variables is technically difficult.223
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Therefore, we decompose the probability density P (vB, r̂AB, s|vA) into several conditional224

probability densities as follows:225

P (vB, r̂AB, s|vA) = P (r̂AB|vB, s,vA)P (vB|s,vA)P (s|vA), (B2)

where P (r̂AB|vB, s,vA), P (vB|s,vA), and P (s|vA) are defined as follows226

P (s|vA) =

∫
dvBdr̂AB P (vB, r̂AB, s|vA) = F (vA)e−F (vA)s, (B3)

227

P (vB|s,vA) =

∫
dr̂AB

P (vB, r̂AB, s|vA)

P (s|vA)
=
ρπσ2|vA − vB|PMB(vB;mB)

F (vA)
, (B4)

228

P (r̂AB|vB, s,vA) =
P (vB, r̂AB, s|vA)

P (vB|s,vA)P (s|vA)
=

1

π

vA − vB
|vA − vB|

· r̂ABΘ[(vA − vB) · r̂AB]. (B5)

F (vA) in dimensionless units becomes229

F (vA) = π (|vA|+ 1/|vA|) erf(|vA|/
√

2) +
√

2π exp
(
−|vA|2/2

)
. (B6)

Based on these decomposed probability densities, s, vB, and r̂AB can be sampled sequen-230

tially. s can be sampled using the inversion method[? ] with Eqs. (B3) and (B6), respec-231

tively.232

Equation (B4) can be rewritten with the relative velocity, vr = vB − vA. Without loss233

of generality, the relative velocity can be expressed by spherical coordinates according to234

vr = vr cosφ sin θex + vr sinφ sin θey + vr cos θez. Here, ex, ey and ez are orthonormal basis235

vectors and ez is set to ez = vA/|vA|. Subsequently, Eq. (B4) is reduced to236

P (vr, θ, φ|s,vA) =
1

4(2π)3/2F (vA)
v3
r sin θ exp

[
−(v2

r/2 + |vA|2/2 + |vA|vr cos θ)
]
. (B7)

Because φ is not included in Eq. (B7), φ can be sampled from the uniform distribution. The237

conditional probability density of vr is obtained by integrating Eq. (B7) over θ and φ as238

follows:239

P (vr|s,vA) =

∫
dθdφP (vr, θ, φ|s,vA)

=

[
π

(2π)3/2|vA|F (vA)
exp

(
−|vA|

2

2

)]
v2
r exp

(
−v

2
r

2

)
sinh (|vA|vr) .

(B8)

vr can be sampled using the rejection method[? ] with Eq. (B8). The conditional probability240

density of θ is:241

P (θ|vr, φ, s,vA) =

∫
dφ

P (vr, θ, φ|s,vA)

P (vr|τ,vA)

=

[
|vA|vr

2 sinh (|vA|vr)

]
sin θ exp (−vr|vA| cos θ) .

(B9)
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Subsequently, θ can be sampled using the inversion method. vB is obtained from sampled242

vr, θ, and φ.243

In a similar manner, Eq. (B5) can be simplified using spherical coordinates. Without loss244

of generality, r̂AB can be expressed as r̂AB = cosφ′ sin θ′ex′ +sinφ′ sin θ′ey′ +cos θ′ez′ . Here,245

ex′ , ey′ , and ez′ are orthogonal basis vectors and ez′ is set to ez′ = −vr/|vr|. Subsequently,246

Eq. (B5) can be expressed as:247

P (θ′, φ′|vB, s,vA) =
1

π
cos θ′ sin θ′Θ(cos θ′). (B10)

Equation (B10) does not depend on φ′. Therefore, φ′ can be sampled from a uniform248

distribution, and θ′ can be sampled using the inversion method with Eq. (B10). r̂AB can be249

constructed from θ′ and φ′.250

Appendix C: Additional Simulation Data251

In the main text, we showed the representative simulation data only with mass ratios µ =252

10−4 and 102. In this Appendix, we show the results with different mass ratios 10−4 ≤ µ ≤253

102. The self-part of the van-Hove correlation functions of the molecule A with µ =(a)100,254

(b)10−1, (c)10−2, and (d)10−3 are displayed in Fig. C.1. The non-Gaussian parameters255256

against time lag with various µ are shown in Fig. C.2. Fig. C.3 displays the EB parameters257258

with various µ. Figs. C.4 and C.5 show the time-correlation functions of the direction and259260

the speed of the molecule A. From the data in Figs. C.3-C.5, we estimate the characteristic261

timescales for EB, direction, and speed. The characteristic timescale for EB can be estimated262

as the crossover time, as explained in the main text. The characteristic time scales for the263

direction and time are estimated as264

τγ =

∫ ∞
0

d∆t∆tCγ(∆t)∫ ∞
0

d∆t Cγ(∆t)

, (C1)

with γ = d, s. These estimates are displayed in Fig. C.6.265266
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FIG. C.1. The self-part of the van Hove correlation function of molecule A for (a) µ = 100, (b) 10−1,

(c) 10−2, and (d) 10−3 from the KMC simulation. The displacement is normalized using the root

mean square displacement
√
〈∆X2(∆t)〉. The solid curves represent the Gaussian distribution.
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FIG. C.2. The non-Gaussian parameter of the molecule A defined as 3〈∆R4(∆t)〉/5〈∆R2(∆t)〉2−1

with various mass ratios from the KMC simulation.

 

!
"#

$%

%

&

 

!
"#

$"

%

'
(

"#
%

"#
)

"#
&

"#
*

 +  
!

!" +  ! , "#
--"

-"#.&

-"#.)

-"#.%

-"#."

-"##

-"#"

-"#%

-/011023

FIG. C.3. The ergodicity breaking (EB) parameter of molecule A for various µ from the KMC

simulation. The dotted lines represent the curve fittings according to the power laws EB ∝ T−α

and EB ∝ T−1 at the short and long-time regions. The shoulder and the crossover behavior can

be observed only for µ = 10−3 and 10−4.
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FIG. C.4. Direction correlation function of molecule A, Cd(∆t), for various mass ratios µ, from

the KMC simulation.
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FIG. C.5. The speed correlation function of the molecule A, Cs(∆t), for various mass ratios µ,

from the KMC simulation.
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FIG. C.6. The direction and speed relaxation times τd and τs, and the crossover time τEB from

the KMC simulation data in Figs. C.3-C.5. τEB is estimated only for µ = 103 and 104.
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