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Experiment, theory, and simulation are employed to understand the dispersion of colloidal parti-
cles in a periodic array of oscillating harmonic traps generated by optical tweezers. In the presence
of trap oscillation, a non-monotonic and anisotropic dispersion is observed. Surprisingly, the stiffest
traps produce the largest dispersion at a critical frequency, and the particles diffuse significantly
faster in the direction of oscillation than those undergoing passive Stokes-Einstein-Sutherland diffu-
sion. Theoretical predictions for the effective diffusivity of the particles as a function of trap stiffness
and oscillation frequency are developed using generalized Taylor dispersion theory and Brownian
dynamics simulations. Both theory and simulation demonstrate excellent agreement with the exper-
iments, and reveal a new “slingshot” mechanism that predicts a significant enhancement of colloidal
diffusion in dynamic external fields.

I. INTRODUCTION

Dispersion – the coupling between stochastic and de-
terministic forces that drive particle motion – is fun-
damental to transport in potential-energy fields. At
long times and under dilute conditions, colloidal parti-
cles acted upon by an external potential move diffusively.
Numerous studies have analyzed the effective diffusivity
of isolated particles under static potentials [1–4], includ-
ing porous media [5, 6], block copolymers [7], corrugated
and patterned substrates [8–10], and colloidal crystals
[11, 12]. Experimentally, optical tweezers provide a con-
venient method to trap particles in a two-dimensional
(2D) periodic array of potential wells [11–15]. Although
trapping in static, periodic potentials tends to hinder
particle diffusion [1–3, 16–19], various investigators have
also reported diffusion enhancement due to broken spa-
tial symmetry – e.g., using tilted potentials [8, 9, 20–22]
or convective flow [13, 15].

Dynamic (i.e., time-varying) potential-energy fields
produce qualitatively different dispersive phenomena.
Time-oscillating optical and magnetic fields have been
shown to significantly enhance particle diffusion via the
“ratchet effect” [23–29]. Conceptually, this enhanced dis-
persion can be rationalized as a coupling between Brow-
nian motion, a spatially modulated potential, and a
time-varying, convective flow. Several studies of one-
dimensional (1D) potentials report a maximum diffusiv-
ity as a function of oscillation frequency [25, 28]; by
comparison, 2D potentials are far less studied [26, 27].
To date, the impact of potential strength and oscilla-
tion frequency on 2D dispersion has not been rigorously
quantified. Consequently, the extent (and mechanism)
of diffusion enhancement across a broad parameter space
remains elusive. Such insight could aid in the design of
systems for manipulating and controlling particles using
dynamic potential-energy fields.
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In this article, we combine optical tweezer experiments,
Taylor dispersion theory, and Brownian dynamics sim-
ulations to investigate the dispersion of colloidal parti-
cles in a time-oscillating, 2D array of mobile potential
wells. Our main objective is to systematically measure
and predict the effective diffusivity across a broad range
of potential strengths and oscillation frequencies, thereby
identifying the conditions under which diffusion is max-
imally enhanced. In addition, we seek to provide sim-
plified and intuitive predictions for the diffusivity under
various limiting circumstances. Our results reveal sev-
eral distinct types of 2D dispersion, including (i) random
walking, (ii) trapping-and-hopping, and (iii) facilitated
hopping or “slingshotting.” In this third regime, we find
that diffusion is anisotropic and maximally enhanced at
a critical oscillation frequency. Somewhat surprisingly,
the extent of diffusion enhancement is exaggerated by
increasing the potential strength, which would ordinar-
ily hinder diffusion under stationary (i.e., non-oscillating)
conditions. We rationalize this effect based on a simpli-
fied model of a particle in an isolated potential well and,
incidentally, deduce a scaling relation for the critical fre-
quency as a function of the potential strength.

The remainder of this article is organized as follows. In
§II, we present a high-level overview of our experimental
and theoretical methods. In §III, we discuss our mea-
surements and predictions of the particle diffusivity for
stationary traps and traps oscillated at a finite frequency.
Concluding remarks and suggestions for future work are
then given in §IV.

II. MATERIALS & METHODS

A. Experimental

Experimentally, we use an optical tweezer (Tweez 305,
Aresis) with an infrared laser (wavelength 1064 nm) to
generate a 16 × 16 lattice of harmonic traps spaced a
distance L = 6 µm apart along a 2D plane (see Fig. 1 for
a schematic of our experimental system). The interaction
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FIG. 1. Schematic of a Brownian particle diffusing in a two-
dimensional (2D), oscillating array of harmonic traps with
potential-energy field V (r) and velocity u(t) given by Eqs. (1)
and (2), respectively. The harmonic well has curvature κ and
depth ∆V = 1

8
κW 2

trap. Inset: Experiment snapshot of radius
a = 1.25 µm silica particles diffusing in an array of traps
created by optical tweezers.

of a colloidal particle with each trap is well-modeled by
the piecewise potential,

V (r) =

{
1
2κr

2 for r ≤ 1
2Wtrap,

∆V for r > 1
2Wtrap,

(1)

where r is the particle position relative to the trap’s
center, κ is the trap stiffness, Wtrap is the trap width
(≈ 3.2 µm), and ∆V = 1

8κW
2
trap is the potential well

depth. Most optical tweezer applications employ very
stiff traps (large κ) to ensure that a trapped particle does
not hop out of a given potential well. However, in our
experiments, we tune the laser power from 0.05-0.5 W
to vary the trap stiffness from κ = 0.5-6 kT/µm2, where
kT = 4.046×10−21 J is the thermal energy. To study dis-
persion in dynamic potential-energy fields, we oscillated
all traps synchronously with the sinusoidal velocity,

u(t) = êxωA cos (ωt), (2)

where A is the amplitude and ω is the angular frequency.
In our oscillating-trap experiments, we fix the amplitude
A = 5 µm and vary the frequency ω/2π = 0-66 mHz.

Silica microspheres of radius a = 1.25 µm (Bangs Lab-
oratories) were fluorescently labeled by coating a sup-
ported lipid bilayer (SLB) containing a minority frac-
tion of fluorescently tagged lipid. The lipid mixture
comprised DOPC, 5% DOPS (Avanti Polar Lipids), and
0.5% DOPE-Atto 647 (ATTO-TEC GmbH). Upon de-
positing a dilute concentration of particles to the bottom
of an imaging chamber, we observed oscillatory motion as
the particles moved in-and-out of neighboring harmonic
wells along the 2D plane. Fluorescence imaging was
carried out using an inverted Nikon Ti2-Eclipse micro-
scope (Nikon Instruments). A custom MATLAB script
based on the Crocker-Grier algorithm [30–32] was used to
track the particles’ trajectories and measure their long-
time self diffusivity. With the trapping field switched

off, we measure the Stokes-Einstein-Sutherland diffusiv-
ity D0 ≈ 0.105 µm2/s, corresponding to a particle-to-
wall spacing of about 0.5 µm [33]. Further details on our
experimental methodology can be found in the Supple-
mental Material [34].

B. Theoretical

We apply generalized Taylor dispersion theory [5] to
understand the coupling between oscillatory trap motion
and colloidal diffusion. For a Brownian particle that en-
ters an L × L cell occupied by a moving harmonic trap,
the normalized probability density g(r, t) of finding the
particle at a position r and time t is governed by the
Smoluchowski equation,(

∂

∂t
+ L

)
g(r, t) = 0, (3)

where

L ( · ) = u(t) ·∇r( · )− kT

γ
∇2

r( · )− 1

γ
∇r · [( · )∇rV (r)],

(4)
is the time-evolution operator, V (r) is the potential-
energy field given by Eq. (1), u(t) is the velocity of the
moving traps given by Eq. (2), and γ is the particle resis-
tivity. The terms on the right-hand side of Eq. (4) reflect
transport by convection, diffusion, and potential-energy
gradients. The ratio D0 ≡ kT/γ defines the Stokes-
Einstein-Sutherland diffusivity.

Particle density fluctuations give rise to an effec-
tive diffusivity that is distinct from the Stokes-Einstein-
Sutherland value. The strength and orientation of these
fluctuations are captured by the probability-weighted dis-
placement field d(r, t), which satisfies the inhomogeneous
equation,(
∂

∂t
+ L

)
d(r, t) =

2kT

γ
∇rg +

1

γ
[g∇rV − 〈g∇rV 〉 g],

(5)
where 〈 · 〉 ≡ L−2

∫
L2( · ) dr denotes the spatial average

over an L × L cell. Clearly, the evolution of d is one-
way coupled to the evolution of g through the terms
on the right-hand side of Eq. (5). These terms reflect
fluctuations in the probability current, which drive long-
wavelength disturbances to the number density of parti-
cles. Following Brady and coworkers [35–40], it can be
shown that the structure field g(r, t) is directly related
to the effective drift velocity of the particle,

U(t) = u(t)− 1

γ
〈g∇rV 〉 (t), (6)

while the displacement field d(r, t) is related to the ef-
fective diffusivity tensor,

D(t) =
kT

γ
I +

1

γ
〈d∇rV 〉 (t). (7)
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The last two expressions are the key results of the dis-
persion theory. They show that the enhancement (or
reduction) in drift and diffusion is driven by the average
particle flux down potential-energy gradients.

Eqs. (3) and (5) were solved numerically in an L × L
cell subject to periodic boundary conditions and the nor-
malization conditions 〈g〉 = 1 and 〈d〉 = 0. Our nu-
merical solutions were developed using the finite-element
method with implicit time-advancement in COMSOL
Multiphysics®. The resulting g- and d-fields were then
inserted into Eqs. (6)-(7) to compute the effective drift
and diffusivity of the particle as a function of time. We
validated the dispersion theory by developing Brown-
ian dynamics simulations of 10,000 freely draining (i.e.,
non-interacting) particles in HOOMD-blue [41] and cal-
culating their diffusivity from the long-time growth of
their mean-squared displacements. Further details on the
derivation of the relevant equations, numerical method,
and simulations can be found in the Supplemental Ma-
terial [34]. Below, we present the key results from the
theoretical calculations and compare them against the
experimental measurements.

III. RESULTS & DISCUSSION

A. Stationary Traps

When the traps are held stationary, the convective
term in Eq. (4) vanishes and the particle probability dis-
tribution achieves a steady state. The absence of a time-
dependent convective term in the Smoluchowski equa-
tion implies zero net drift, U = 0, and an isotropic,
time-independent diffusivity D with components Dxx =
Dyy = D. Figure 2a shows that the scalar diffusivity D
decreases monotonically with the trap stiffness κ, as re-
ported in previous studies using one-dimensional (1D)
potentials [7]. (Supplemental Movies S1-S2 [34] show
measured and simulated particle motion in stationary
traps of varying stiffness.) For “soft” traps (i.e., potential
well depths ∆V � kT ), a regular perturbation analysis
admits the following expansion for the diffusivity:

D =
kT

γ

(
1− 〈(V − 〈V 〉)

2〉
2(kT )2

+
〈(V − 〈V 〉)3〉+ 〈∇r(|∇rΦ|2) ·∇rV 〉

4(kT )3

+ · · ·
)
, (8)

where Φ(r) satisfies ∇2
rΦ(r) = 〈V 〉 − V (r) and 〈Φ〉 = 0.

Equation (8) indicates that the reduction in diffusivity
below the Stokes-Einstein-Sutherland value is propor-
tional to the spatial variance in the potential energy; both
the first and second corrections are plotted in Fig. 2a. In
this regime, the particle trajectories appear to follow a
random walk as in classical Brownian motion (see Fig. 2b,
top row).

For “stiff” traps (∆V � kT ) held in a fixed configura-
tion, the particles undergo activated-hopping dynamics
and their diffusivity is very nearly zero. Any given par-
ticle remains trapped in a local potential well for a long
time, punctuated by discrete transitions (“hops”) from
one well to another (see Fig. 2b, bottom row). Kramers’
theory [16–18] suggests that the effective diffusivity is
proportional to the characteristic “hopping frequency,”
which scales linearly with the curvature of the potential
well κ = 1

2 (∇2
rV )|r=0 and exponentially with the well

depth ∆V = 1
8κW

2
trap:

D ∝ L2

4πγ
e−∆V/kT (∇2

rV )|r=0. (9)

The last relationship is not exact. A constant of propor-
tionality, which would convert Eq. (9) into an equality,
depends upon the ratio Wtrap/L between the size and
spacing of the harmonic traps. For traps of diameter
Wtrap = 3.2 µm spaced a distance L = 6 µm apart, a pro-
portionality constant of 1.5 gives quantitative agreement

FIG. 2. Effective diffusivity D of particles in stationary traps
decreases monotonically with trap stiffness κ. (a) Results
from experiments (squares), Brownian dynamics simulations
(triangles), Smoluchowski theory (solid line), and asymptotic
limits [dashed lines, see Eqs. (8)-(9)]. A proportionality con-
stant of 1.5 was used in Eq. (9) to fit the numerical data. (b)
Particle trajectories from the experiments and simulations in-
dicate random walks for soft traps (top row, cool colors) and
activated, Kramers-like hopping for stiff traps (bottom row,
warm colors). See also Supplemental Movies S1-S2 [34].
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with the exact dispersion theory (see Fig. 2). [See the
Supplemental Material [34] for the derivation of Eqs. (8)
and (9).]

B. Oscillating Traps

The situation qualitatively changes when the traps are
not stationary, but oscillated synchronously with the ve-
locity prescribed by Eq. (2). After a sufficiently long
time, the system achieves a periodic steady state; one is
then only interested in time-averaged quantities over a
periodic cycle, ( · ) ≡ limτ→∞(2π/ω)−1

∫ τ+π/ω

τ−π/ω ( · ) dt. It
is straightforward to show that the time-averaged drift is
identically zero, U = 0, whereas the time-averaged dif-
fusivity D is generally non-zero and anisotropic (Dxx 6=
Dyy) due to the existence of a preferred direction along
the convection (x-)axis.

Figure 3a illustrates the non-monotonic dependence of
the time-averaged diffusivities Dxx and Dyy with the
driving frequency ω for three different trap stiffnesses
κ = 1, 3, and 5 kT/µm2 and a fixed amplitude A = 5
µm. The softest of these traps (κ = 1 kT/µm2) exhibits
the weakest coupling between convection and potential-
energy gradients: over a broad range of frequencies, dif-
fusion remains nearly isotropic and close to the Stokes-
Einstein-Sutherland limitD0 ≈ 0.105 µm2/s. As the trap
stiffness is increased to κ = 3 and 5 kT/µm2, the diffusiv-
ity becomes increasingly anisotropic with faster diffusion
in the oscillating direction relative to the transverse di-
rection (Dxx > Dyy). Tracking the particle trajectories,
depicted in Fig. 3b, visually confirms the anisotropic dis-
persion (Supplemental Movies S3-S4 [34] show measured
and simulated trajectories in oscillating traps of varying
frequency and fixed stiffness). Both Dxx and Dyy in-
crease to a maximum before decaying to an asymptotic
plateau as ω becomes infinitely large (“ultrafast cycling”).
Varying the oscillation amplitude A at fixed frequency ω
reveals a similar, non-monotonic trend (additional data
provided in the Supplemental Material [34]).

The high-frequency asymptote can be understood as
follows. Over a time increment much shorter than the
Brownian time, a particle samples the entire potential
range along the convection axis as the potential field is
rapidly cycled. Therefore, the effective potential that is
“felt” by the particle over one periodic cycle is approxi-
mated by averaging V over the convection axis:

v(y) =
1

L

∫ L/2

−L/2
V (x, y) dx. (10)

The quasi-steady diffusion of a Brownian particle in a 1D
potential v(y) is well established [2, 42], with diffusivities

FIG. 3. Oscillating array of harmonic traps generates a non-
monotonic, anisotropic dispersion of Brownian particles. (a)
Time-averaged effective diffusivities Dxx (filled symbols) and
Dyy (open symbols) plotted as a function of oscillation fre-
quency ω for different trap stiffnesses κ. Shown are results
from experiments (squares), Brownian dynamics simulations
(small triangles), Smoluchowski theory (small circles), and
asymptotic limits [dashed lines, see Fig. 2 and Eqs. (8), (9),
and (11)]. There are no fitting parameters in the theory. (b)
Experimental particle trajectories at the critical frequency
ωmax, where Dxx = Dxx,max, depict increasingly anisotropic
dispersion as the trap stiffness is increased. The field of view
is 100 µm × 100 µm. See also Supplemental Movies S3-S4
[34] for measured and simulated particle trajectories.

(derived in the Supplemental Material [34]),

Dxx =
kT

γ
, (11a)

Dyy =
kT

γ
〈e−v/kT 〉

−1
〈ev/kT 〉

−1
. (11b)

Equation (11) agrees well with the data plotted in
Fig. 3a at the highest of frequencies. Whereas diffu-
sion perpendicular to convection is hindered as though
the particle experienced a potential-energy field given by
Eq. (10), parallel diffusion is largely unaffected because
the potential-energy gradients along the x-direction have
essentially been “smeared out.” Put another way: since
the time required for a Brownian particle to diffuse from
one lattice site to another is much slower than the con-
vection time (γL2/kT � 2π/ω), the particle is unable
to quickly respond to the rapid motion of the traps as it
freely diffuses along the convection axis.
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C. Maximum Diffusivity

Both theory and experiment predict a maximum diffu-
sivity that exceeds the Stokes-Einstein-Sutherland value,
Dxx,max > D0, at a critical oscillation frequency ωmax
(see Fig. 3). Similar maxima have been previously re-
ported for 1D magnetic ratchets [25, 28]. Figure 4a,b
sketches the basic argument for this maximum. In a
stationary system, a strongly trapped Brownian particle
fluctuates with variance kT/κ about a local potential-
energy minimum until a sufficiently large, thermal “kick”
successfully propels the particle out of the potential well
and into the interstices of the lattice (see Fig. 4a, top
and Supplemental Movie S5 [34]). Oscillatory convection
displaces the particle along the x-axis with amplitude
A[1 + (κ/γω)2]−1/2 ≈ γωA/κ, bringing it towards the
edge of the trap at x = ± 1

2Wtrap and effectively lowering
the barrier to escape (see Fig. 4b, top and Supplemen-
tal Movie S6 [34]). Consequently, the particle is never
trapped for very long, but rather is catapulted between
lattice sites through the motion of the harmonic traps.
This “slingshot” mechanism is facilitated at a critical fre-
quency ωmax for which the fluctuating particle position
(with mean ∼ γωmaxA/κ and variance ∼ kT/κ) is con-
vected a distance 1

2Wtrap up the potential-energy gradi-
ent. By this argument, we make the following estimate
for ωmax (derived in the Supplemental Material [34]):

ωmax ≈
κ

γA

(
1
2Wtrap −

√
kT

κ

)
. (12)

This rough estimate qualitatively predicts the critical fre-
quency ωmax over a range of trap stiffnesses κ and quan-
titatively up to a relative error of about 5% above the
exact calculation (Fig. 4c).

The enhanced dispersion can also be rationalized by
plotting the two-dimensional iso-contours of the displace-
ment field density dx with and without convection (see
Fig. 4a,b, bottom and Supplemental Movie S7 [34]). Un-
der quiescent conditions, the dx-field is strongly localized
to the center of the potential well and admits a dipolar
profile. Oscillation convects the dx-field to the edge of the
trap, where the potential-energy gradient ∂V/∂x is max-
imized. Larger trapping forces are, therefore, weighted
more heavily in the force-displacement dyad 〈dx(∂V/∂x)〉
that appears in the xx-component of Eq. (7). This argu-
ment directly explains the maximum diffusivity Dxx,max
observed at the critical frequency ωmax.

The fact that dispersion along the convection axis in-
creases significantly with increasing trap stiffness may be
counter-intuitive, given that strong harmonic traps re-
duce the particle diffusivity under quiescent conditions.
A useful analogy is the classical Taylor-Aris dispersion of
a tracer in a pressure-driven fluid flow [43, 44], in which
smaller tracer diffusivities generate stronger dispersion
along the convection axis due to the coupling between
longitudinal convection and transverse diffusion. This
effect becomes more pronounced with increasing convec-

FIG. 4. “Slingshot” mechanism of enhanced dispersion in an
oscillating array of harmonic traps. (a) A particle trapped in
a stationary potential-energy well undergoes O(

√
kT/κ) po-

sitional fluctuations due to Brownian motion. Iso-contours
of the displacement field density dx reveal a dipolar profile.
(b) Oscillation at the critical frequency ωmax convects the
particle probability up the potential-energy gradient by an
O(γωmaxA/κ) distance, effectively lowering the barrier to es-
cape. The convected dx-field samples larger trapping forces,
resulting in enhanced dispersion along the convection axis.
Contour plots in (a,b) were generated for κ = 5 kT/µm2.
See also Supplemental Movies S5-S7 for simulated particle
trajectories and displacement field densities. (c) The critical
frequency ωmax plotted as a function of the trap stiffness κ
favorably agrees with the rough estimate given by Eq. (12).

tion strength. In our system, the strongest dispersion
occurs when convection, diffusion, and potential-energy
gradients are all in play and on equal footing. If the
traps are too stiff, then the particles remain confined to
their wells at the mercy of thermal forces; too strong a
convective velocity, and the particles are swept past the
wells and only sense transverse gradients in the potential-
energy landscape. The “optimal” rate of convection, for
a given trap stiffness, oscillation amplitude, and particle
size, is satisfactorily predicted by Eq. (12).
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IV. CONCLUSIONS

We have measured and predicted the effective diffu-
sivity of individual colloidal particles moving through a
2D oscillating array of harmonic traps in order to elu-
cidate the influence of trapping strength and oscillation
frequency. Our results revealed several distinct regimes
of dispersion. Under soft trapping (i.e., weak poten-
tials compared to kT ), particles undergo random walks
with a diffusivity given by Eq. (8). Stiff (but stationary)
traps leading to trapping-and-hopping kinematics with
Kramers-like diffusivity given by Eq. (9). Rapid oscil-
lation of the traps enhances diffusion parallel and per-
pendicular to the convection axis relative to a stationary
system of equal trapping strength. The high-frequency
diffusivity is given by Eq. (11) as though the particles ex-
perience an effective, 1D potential in the perpendicular
direction [Eq. (10)]. Finally, we showed that the maxi-
mum diffusivity in the parallel direction occurs by a facil-
itated hopping or “slingshotting” mechanism, whereby os-
cillatory convection of particles up steep potential-energy
gradients facilitates their escape. A scaling relation for
the critical frequency at which parallel diffusion is maxi-
mally enhanced is given by Eq. (12).

Our study focused on dispersion through a 2D array
of harmonic traps as a simple and tractable model for
a corrugated potential-energy landscape. However, it
is straightforward to draw connections to other physical
systems where trapping physics and nontrivial dispersive
phenomena may emerge. Examples include stick-slip dif-

fusion and Lévy flights [45, 46], active or directed motion
through convection rolls [47–49], and caging in concen-
trated suspensions [50, 51].

We end this article by providing several areas for fu-
ture investigation. First, one can easily adapt our experi-
mental system to generate other forms of time-dependent
trap motion. This study focused on 1D synchronous, si-
nusoidal motion for simplicity; asynchronous or anhar-
monic kinematics will likely give rise to different cou-
plings with the potential-energy field produced by the
traps. This, in turn, could either enhance or hinder dis-
persion and merits further study. Second, in addition
to changing the convective forcing, one could investi-
gate colloids with different packing densities and surface
chemistries to understand how dynamic external fields
impact multibody interactions (including hydrodynamic
interactions) and macroscopic suspension properties. Fi-
nally, the use of self-propelled colloids would generate
further couplings with the dynamic potential landscape,
producing nontrivial effects that could be relevant to the
field of active matter.
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