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We study the crossover from the macroscopic fluctuation theory (MFT) which describes 1D
stochastic diffusive systems at late times, to the weak noise theory (WNT) which describes the
Kardar-Parisi-Zhang (KPZ) equation at early times. We focus on the example of the diffusion in a
time-dependent random field, observed in an atypical direction which induces an asymmetry. The
crossover is described by a non-linear system which interpolates between the derivative and the stan-
dard non-linear Schrodinger equations in imaginary time. We solve this system using the inverse
scattering method for mixed-time boundary conditions introduced by us to solve the WNT. We
obtain the rate function which describes the large deviations of the sample-to-sample fluctuations
of the cumulative distribution of the tracer position. It exhibits a crossover as the asymmetry is
varied, recovering both MFT and KPZ limits. We sketch how it is consistent with extracting the
asymptotics of a Fredholm determinant formula, recently derived for sticky Brownian motions. The
crossover mechanism studied here should generalize to a larger class of models described by the
MFT. Our results apply to study extremal diffusion beyond Einstein’s theory.

I. INTRODUCTION

A. Overview and model

For one-dimensional stochastic systems with a dif-
fusive scaling at large time, such as the symmetric
exclusion process (SEP), the macroscopic fluctua-
tion theory (MFT) [1] provides a powerful frame-
work to describe the large deviations of the density
and current [2]. Upon introduction of an asymmetry
or driving, such as in the asymmetric exclusion pro-
cess (ASEP) [3], the diffusive scaling breaks down
above some scale, and the large scale behavior of
the model is usually described by the Kardar-Parisi-
Zhang (KPZ) universality class [4]. A paradigmatic
member of this class is the KPZ equation [5], which
can be obtained as the continuum limit of the ASEP
with a weak asymmetry [6]. The large deviations for
the KPZ equation at short time can be described us-
ing the so-called weak noise theory (WNT) [7–9]. It
is a close cousin of the MFT ; both reduce the cal-
culation of large-deviation rate functions to solving
saddle point partial non-linear differential equations,
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not always an easy task. A natural question is to un-
derstand, in presence of a small but relevant asym-
metry, the nature of the crossover from the MFT to
the WNT. We can expect that it should be some-
what subtle since the MFT describes the large de-
viations at large time, while the WNT describes the
large deviations for the KPZ equation at short time.

Recently, exact solutions of the WNT equations
were obtained by us [10, 11]. It required to extend
the inverse scattering method of [12, 13] to mixed-
time boundary conditions on the so-called {P,Q}
system, a close cousin of the non-linear Schrodinger
equation (NLS). In this paper we show on an exam-
ple that the crossover from the MFT to the WNT
can be realized as the crossover from the derivative
non-linear Schrodinger equation (DNLS) [14] to the
NLS equation. We focus on a model for the diffu-
sion of a particle (also called a tracer) at position
y(τ) convected by a centered Gaussian random field
η(y, τ) which is white noise in time and short-range
correlated in space, described by a Langevin equa-
tion

dy(τ)
dt =

√
2η(y(τ), τ) + χ(τ) , (1)

where χ is a standard white noise in time. In this
paper we consider the limit where η(y, τ) is white
noise also in space. Equivalently, the probability
density function (PDF) for the particle position in
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a given realization of η, qη(y, τ) = 〈δ(y(τ) − y)〉χ,
obeys the Fokker-Planck equation
∂τqη(y, τ) = ∂2

yqη(y, τ)−∂y(
√

2η(y, τ)qη(y, τ)) . (2)
This model, and its discrete random walk versions,

has been revisited recently [15–20]. The typical be-
havior is rather dull, and is given by the random
field average qη(y, τ) which yields standard diffu-
sion y ∼

√
τ . However, in the space-time direc-

tions which are atypical for the random walk, e.g.
y ∼ v τ , it exhibits interesting sample to sample
fluctuations related to the KPZ class [15]. In fact,
in the small v regime (more precisely for y ∼ τ3/4),
it maps to the KPZ equation itself (as predicted in
[16, 18] and proved in [20], see also [17]). These
predictions found interesting applications in quan-
tum models with noise, for the study of observables
dominated by atypical trajectories [21]. They also
lead to interesting predictions for extremal diffusions
[15, 16, 20, 22], i.e. for the position of the maximum
of N independent particles, see below. It turns out
that Eq. (2) also arises from a lattice gas model of
heat transfer, the Kipnis-Marchioro-Presutti (KMP)
model [23], to which the MFT has been applied
[1, 24–36]. Hence we anticipate a crossover from
the MFT to the WNT when focusing on less and
less typical directions. It is an interesting and open
question to understand how the large-time large de-
viations of this model match the short-time large
deviations of the KPZ equation.
In this paper we show that this crossover is de-

scribed by the so-called interpolating system, see
(11) below. Using inverse scattering methods we
provide the solution for this system and obtain the
large deviation function of a particular observable.
At the end we sketch how the result agrees with the
asymptotic behavior of a Fredholm determinant for-
mula for this observable obtained in [19] for a related
model of sticky Brownian motions.

B. Observables of interest

We consider a particle which is at position y = 0 at
time τ = 0 and study the statistics of the probability
Z(Y, T ) (quenched w.r.t η) that at time τ = T it is
found to the right of y = Y

Z(Y, T ) = P(y(T ) > Y |y(0) = 0) (3)

We also need to introduce H(Y, T ) the logarithm
of this probability, our observable of interest here.

It also equals

Z(Y, T ) = eH(Y,T ) =
∫ +∞

Y

dy qη(y, T ) (4)

with qη(y, 0) = δ(y). Note that H(Y, T ) ∈ [−∞, 0]
since Z = Z(Y, T ) ∈ [0, 1]. Z(Y, T ) is itself a random
variable that fluctuates depending on the realization
of η(y, τ), which from now on is a standard white
noise in space and time. We consider the diffusive
scaling so that Y, T are large, with Y = ξ

√
T , where

ξ = O(1) is fixed and plays the role of the asymmetry
parameter. We are interested in the tails of the PDF
of Z = Z(Y, T ), equivalently of H = H(Y, T ), which
take the large deviation forms for T � 1

P(Z) ∼ e−
√
T Φ̂(Z) , P(H) ∼ e−

√
TΦ(H) , (5)

where Φ(H) = Φ̂(Z = eH) is the rate function which
we want to compute, together with its (implicit) de-
pendence in ξ.

We perform a change of variable y = x
√
T , τ =

tT , and
√
Tqη(y, τ) = Qη̃(x, t) so that (2) becomes

∂tQη̃ = ∂2
xQη̃(x, t)− T−1/4∂x(

√
2η̃(x, t)Qη̃(x, t))

(6)
where η̃ is a standard white noise and Z(Y, T ) =∫ +∞
ξ

dxQη̃(x, 1). To obtain Φ(H) in (5) we will first
calculate the rate function Ψ(z) which is the cumu-
lant generating function with Laplace parameter z

exp(−z
√
TZ(Y, T )) ∼ exp(−

√
TΨ(z)) (7)

Since Z is a random variable taking values in [0, 1],
Ψ(z) is defined for any real value of the Laplace pa-
rameter z, with Ψ′(z) ∈ [0, 1], see Appendix D. Us-
ing (5) one can compute the expectation value in the
l.h.s of (7) for T � 1 via a saddle point method and
obtain the relation
Ψ(z) = min

H60
[Φ(H) + zeH ] = min

Z∈[0,1]
[Φ̂(Z) + zZ] (8)

which shows that Ψ(z) and Φ(H) are Legendre
transforms [37]. The minimum in (8) is attained
at H = H(z) which is a solution of Φ′(H) = −zeH .
As will be explained subsequently, a remarkable fea-
ture of the present problem is that for ξ >

√
8 this

equation has more than one solution, which leads to
different possible branches for Ψ(z). In that case, we
will call the "optimal" Ψ(z) the function defined from
(8) (and (7)), i.e. as a global minimum, which will
thus exhibit a first-order transition, with a jump in
Ψ′(z). Our strategy will be to compute all branches
of Ψ(z), which allow to reconstruct Φ(H) and Φ̂(Z).
As we will see below, both Φ(H) and Φ̂(Z) are
smooth functions. However they can develop non-
convex parts leading to a first order transition in
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Ψ(z), as in other large deviation problems [44].

C. Outline

The outline of the paper is as follows. We start
by showing that the problem is described by the in-
terpolating system in Section II. In Section III we
solve the interpolating system using the inverse scat-
tering method for mixed-time boundary conditions.
Section IV is devoted to the results as applied to
the present problem in MFT. In Section IVA we
give the main branch of Ψ(z) and in Section IVB
we show that there are other branches, we obtain
them as well as Φ(H). In Section IVC we discuss
the first order transition in Ψ(z) and in Section IVD
the structure in terms of solitons. In Section V we
study the large ξ limit and show that it matches the
known results from WNT for the KPZ equation at
short time. In Section VI we sketch an asymptotic
analysis of a Fredholm determinant formula. In Sec-
tion VIIA we apply our results to the problem of the
extremal diffusion. Finally, in Section VIIB we dis-
cuss other models such as the SEP. The derivations
in the main text have been streamlined, and all the
details are contained in a number of Appendices.

II. INTERPOLATING SYSTEM

To compute Ψ(z) we note that, as in [10], the l.h.s
of (7) can be represented as a path integral∫∫

DQDPe−
√
T (S[P,Q]+z

∫ +∞

ξ
dxQ(x,1)) (9)

where the associated dynamical action is

S[P,Q] =
∫ 1

0
dt
∫
R

dx[P (∂t − ∂2
x)Q−Q2(∂xP )2]

(10)
and P

√
T is the response field. In the large T

limit the path integral in (9) is controled by its sad-
dle point. Taking the functional derivatives w.r.t.
{P,Q}, introducing the field R(x, t) = ∂xP (x, t),
and performing a Galilean transformation x→ x−ξt
to bring ξ back to zero (see details in Appendix A),
we arrive at the system of coupled equations

∂tQ = ∂2
xQ+ 2β∂x(Q2R) + 2gQ2R

−∂tR = ∂2
xR− 2β∂x(QR2) + 2gQR2 (11)

with β = −1 [38] and g = −βξ/2 and with the
mixed-time boundary conditions
Q(x, t = 0) = δ(x) , R(x, t = 1) = Λδ(x) (12)

with βΛ = ze−
ξ2
4 [39]. Once this system is solved,

the value of Ψ(z) is obtained from the saddle point
via (see Appendix A)

Ψ′(z) =
∫ +∞

0
dxQ(x, 1)e− 1

2xξ−
ξ2
4 (13)

and Ψ(0) = 0, where Q(x, 1) is the z-dependent solu-
tion of the above system. This system interpolates
between (i) the {P,Q} system for β = 0 (with P
called R here), i.e. the cousin of the NLS equation
[12, 13] which controls the WNT of the KPZ equa-
tion [10, 11], and (ii) the cousin of the DNLS equa-
tion [14] for g = 0, which controls the MFT for this
model for ξ = 0 [40]. Thus as ξ = Y√

T
is increased,

g increases and in the limit of large ξ, which corre-
sponds to atypical directions, one recovers the large
deviations associated to the KPZ equation (see be-
low). Remarkably, this interpolating system is again
integrable [41]. We will thus extend the inverse scat-
tering analysis of our previous work [10, 11] on the
{P,Q} system. Note in passing that the functions
Q(x, t) and R(x, t) are not even for β 6= 0 but as in
the {P,Q} system they still enjoy the symmetry

R(x, t) = ΛQ(−x, 1− t) . (14)

III. INVERSE SCATTERING SOLUTION
OF THE INTERPOLATING SYSTEM

We now solve the problem using the inverse scat-
tering method. It is a simple generalization of our
previous works [10, 11] so we will sketch it. The Lax
pair of linear differential equation reads ∂x~v = U1~v,
∂t~v = U2~v where ~v = (v1, v2)ᵀ is a two component
vector (depending on x, t, k) where

U1 =

 − ik
2 −(g + iβk)R(x, t)

Q(x, t) ik
2

 , U2 =
(

A B
C −A

)
(15)

with A = k2

2 − (g + iβk)QR, B = −(g +
iβk)

(
(ik − ∂x)R+ 2βQR2), C = (∂x + ik)Q +

2βQ2R. One can check that the compatibility con-
dition ∂tU1 − ∂xU2 + [U1, U2] = 0 recovers (11). Let
~v = ek

2t/2φ with φ = (φ1, φ2)ᵀ and ~v = e−k
2t/2φ̄

be two independent solutions of the linear prob-
lem such that at x → −∞, φ ' (e−ikx/2, 0)ᵀ and
φ̄ ' (0,−eikx/2)ᵀ. Assuming from now on that
{Q,R} vanish at infinity, the x → +∞ behavior of
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these solutions defines scattering amplitudes

φ '
x→+∞

(
a(k, t)e− ikx

2

b(k, t)e ikx
2

)
, φ̄ '

x→+∞

(
b̃(k, t)e− ikx

2

−ã(k, t)e ikx
2

)
(16)

Plugging this form into the ∂t equation of the Lax
pair at x → +∞, one finds a very simple time de-
pendence, a(k, t) = a(k) and b(k, t) = b(k)e−k2t,
ã(k, t) = ã(k) and b̃(k, t) = b̃(k)ek2t. Another nor-
malization relation is obtained from the Wronskian
of the two solutions , a(k)ã(k) + b(k)b̃(k) = 1.
Integrating the ∂x equation of the Lax pair suc-

cessively for φ̄ and φ at t = 0 and at t = 1, using
(12), allows to obtain (see details in Appendix B)

b̃(k) = (g + iβk)Λe−k
2

, b(k) = 1 (17)
and

a(k) = 1− (g + iβk)ΛQ−(k) (18)
ã(k) = 1− (g + iβk)ΛQ+(k)

where we have defined the half-Fourier transforms

Q±(k) =
∫
R±

dxQ(x, 1)e−ikx (19)

where R± refers to the positive axis R+ or the neg-
ative axis R− respectively. From the normalization
relation one also obtains
a(k)ã(k) = 1− b(k)b̃(k) = 1− (g+ iβk)Λe−k

2
(20)

which Q±(k) must satisfy. For β = 0 this equa-
tion was first obtained by us in Ref. [10] and used
recently in [42]. As noted there, it is akin to the
Fourier transform of the Wiener-Hopf formulae ob-
tained in [35, Eqs. (S65)–(S66)]. Our Eq. (20) is
thus the natural extension to arbitrary g, β.
Taking these relations in the large k limit we ob-

tain that Q(x, 1) has a jump at x = 0, with some
relation between the right and left values Q(0±, 1).
We now follow similar manipulations as in the recent
work [40], the details are given in Appendix C. As
k →∞ one has

Q±(k) ' ± 1
ikQ(0±, 1) (21)

a(k) ' 1 + βΛQ(0−, 1) (22)
ã(k) ' 1− βΛQ(0+, 1) (23)

Equation (20) at k →∞ thus implies a first relation
(1− βΛQ(0+, 1))(1 + βΛQ(0−, 1)) = 1 (24)

The complete solution of (20) is given by (see Ap-
pendix C)

a(k) = (1 + βΛQ(0−, 1))eΦ+(k)

ã(k) = (1− βΛQ(0+, 1))eΦ−(k) (25)

where

Φ±(k) =±
∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
q − k ∓ i0+

=±−
∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
q − k

+ 1
2 log(1− (g + iβk)Λe−k

2
)

(26)

The first expression for Φ±(k) is valid for k in the
complex upper/lower half plane including the real
line, while the second is valid for real k only. In the
limit β → 0 one has Q(0+, 1) = Q(0−, 1) and one
recovers the same formula as first obtained in [10].
In the limit g → 0 one recovers the recent result in
[40].

We still need to determine the two unknown con-
stants Q(0±, 1) which are related by (24). Combin-
ing (18) and (25) we obtain the relation
(g+iβk)ΛQ∓(k) = 1−(1±βΛQ(0∓, 1))eΦ±(k) (27)

which is valid for =(k) ∈ R±. Taken at k = ig
β = −i ξ2

one obtains
1± βΛQ(0∓, 1) = e−Φ±(ig/β) (28)

where, for g/β 6= 0

Φ±(ig/β) = ±β
∫
R

dq
2π

log(1− (g + iβq)Λe−q2)
g + iβq

(29)
are opposite real numbers, so that (28) is compatible
with (24). As discussed below and in Appendix C,
Eqs. (26) and (29) are valid only for Λg < 1.

IV. SPECIALIZATION OF THE SOLUTION
TO THE MFT PROBLEM

A. Rate function Ψ(z): main branch

We now compute Ψ(z) from Eq. (13) and replace
β = −1, g = −β ξ2 and βΛ = ze−ξ

2/4. We note that
the r.h.s. of (13) is equal to

Ψ′(z) = Q+(k = −iξ2)e−
ξ2
4 = 1−Q−(k = −iξ2)e−

ξ2
4

(30)
where the second equality comes from the conser-
vation of probability (see (A13)). These quanti-
ties (Q±(k = −i ξ2 )) can be obtained by taking
derivatives. Taking a derivative w.r.t. k of (27) at
k = ig

β = −i ξ2 and using (28) one obtains (see details
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in Appendix E)

zΨ′(z) = −
∫
R

dq
2π

log(1− z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

+ zΘ(−ξ)

(31)
where here and below we use the convention that
Θ(0) = 1/2 and the principal part is needed only for
ξ = 0. Integrating over z one obtains

Ψ(z) = −−
∫
R

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

+ zΘ(−ξ)

(32)
where the last term guarantees analyticity of Ψ(z)
in ξ. Denoting here Ψξ(z) to indicate the depen-
dence in ξ and performing the change q → −q in the
integrand we see that it obeys the symmetry

Ψ−ξ(z) = Ψξ(−z) + z (33)
which is expected from the definition (7), since
upon the symmetry y → −y in (2) and (4), the
PDF of Z(Y, T ) must be the same as the PDF of
1 − Z(−Y, T ), see Appendix D. For ξ = 0 one can
check (see Appendix H 3) that (32) is consistent with
the result in [40].
Expanding (32) in series of z one predicts the cu-

mulants of the probability Z = Z(Y, T ) in (3). The
first one is the typical value Z = Ztyp(ξ) = eHtyp(ξ)

(i.e. in a typical random field η)

Ztyp(ξ)= Ψ′(0) = −−
∫
R

dq
2π

e−q
2− ξ

2
4

iq − ξ
2

+ Θ(−ξ)(34)

= 1
2Erfc

(
ξ

2

)
=
∫ +∞

ξ

dx√
4π
e−

x2
4

as expected since the mean (and typical) behavior
is standard diffusion. The second cumulant is pre-
dicted as Z(Y, T )2c ' −T−1/2Ψ′′(0) = 1

4
√

2πT e
− ξ

2
2 ,

as confirmed by a direct weak-noise expansion, see
Appendix H 4 (and Appendix H 5 for the cumulants
of H = logZ).

B. Branch cuts, branches of Ψ(z) and the rate
function Φ(H)

We will determine in this section the rate function
Φ(H) for ξ > 0 (for ξ < 0 we rely on the symmetry
(33)). From our expression for Ψ(z) a priori one can
now determine the rate function for the PDFs in (5)
by inverting the Legendre transform (8), which gives
the parametric representation

Φ(H) = Ψ(z)− zeH , Ψ′(z) = eH (35)

and in terms of Z,
Φ̂(Z) = Ψ(z)− zZ, Z = Ψ′(z) . (36)

As mentioned in the introduction, the parametric
representation (36) can lead to different branches,
i.e. a multi-valuation of Ψ(z). The "optimal" Ψ(z),
i.e. solution of the Legendre transform (8), is defined
as the minimum over the different branches.

The origin of these different branches can be
traced to the ambiguity which remains for Ψ(z) since
we have not specified the determination of the log-
arithm in Eq. (31). The functions log(1 − x), and
Li2(x) (which appeared in (32)), admit a branch cut
for x > 1. There are thus branch cuts in the com-
plex plane for q, which is the integration variable in
Eq. (31), and for some values of {z, ξ} one of these
branch cuts may cross the integration axis, see Fig-
ures in Appendix G (see also Appendix F for a recall
of the case of the KPZ equation). These branch cuts
originate from the values of q such that the argument
of the logarithm in Eq. (31) vanishes. Parameteriz-
ing the integration variable as q = ip, we then have
to find the solutions (i.e. the zeroes) of the following
equation

e−p
2+ ξ2

4 + z(p+ ξ

2) = 0 . (37)

For z > zc where zc = − 2
ξ e
ξ2/4 6 0, there is never

a branch cut crossing the real axis, see Appendix G,
hence Eqs. (31) and (32) are valid in this regime and
determine what we call the main branch (as detailed
in Appendix E).

For z < zc all real solutions of Eq. (37) for p are
negative and as consequence one branch cut crosses
the real axis, see Appendix G. It is then necessary to
obtain the analytical continuation of Eqs. (31) and
(32) to any z by deforming the contour of integration
for q to avoid this branch cut. In the easiest case this
is possible in the complex plane, and in other cases
one needs to consider the Riemann sheets, which
leads to more branches and multi-valuation. The
analysis is involved and detailed in Appendix G.
Here we summarize the main results. The general
formula for Ψ(z) takes the form

Ψ(z) = Ψ0(z) + ∆(z) (38)
where Ψ0(z) is the same integral as in (32) [43], and
∆(z) is the jump contribution from the branch cut,
which is discussed below. The convention ∆(z) = 0
defines the main branch of Ψ(z). The other branches
and the form of ∆(z) as a function of ξ and z are
shown in Table I.

To understand Table I one needs to first discuss
the behavior of the real zeroes of (37) which are
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ξ 0 6 ξ 6 ξ1
ξ1 6 ξ 6 ξ2
zc1 < zc2 < zc

ξ2 6 ξ
zc1 < zc < zc2

∆(z) =

{
0, zc < z

∆1(z), z < zc


0, zc < z

∆1(z), zc1 < z < zc

∆2(z), zc1 < z < zc2

∆3(z), z < zc2



0, zc < z

∆1(z), zc1 < z < zc

∆2(z), zc1 < z < zc

∆2(z)−∆1(z), zc < z < zc2

∆3(z)−∆1(z), zc < z < zc2

∆3(z), z < zc

Table I. Determination of the jump function ∆(z) in the different phases in the case ξ > 0. One has zc = − 2
ξ
eξ

2/4 6 0
and the points z = zc1 and z = zc2 are turning points which depend on ξ. In the interval z ∈ [zc1, zc2], the function
∆(z) is multi-valued (i.e. it has several branches) due to these turning points. The definition of ∆` is given in (39).

the relevant ones to determine Ψ(z). For zc 6 z 6
0, there is always one positive zero to (37) denoted
p1 = p1(z, ξ). For z < zc, the zeroes of (37) are all
negative and their number is:

1. for 0 < ξ < ξ1 =
√

8, there is one zero p1(z, ξ);

2. for ξ1 < ξ and z ∈]zc1, zc2[ there are three
zeroes p1(z, ξ) > p2(z, ξ) > p3(z, ξ). The ze-
roes degenerate, i.e. p1 = p2 for z = zc1 and
p2 = p3 for z = zc2 which define zc1, zc2. For
z > zc2, there is only one zero p1(z, ξ). For
z < zc1, there is only one zero p3(z, ξ).

Note that zc1 < zc2 < 0, with zc1 = zc2 at ξ = ξ1,
and their explicit expression and dependence on ξ is
given in the Appendix in Eq. (H2).
To come back to Ψ(z) we now define a jump func-

tion for ` = {1, 2, 3} as

∆`(z) = −
∫ zc

z

dz′
z′

4p`(z′, ξ)
ξ(2p`(z′, ξ) + ξ) (39)

see Eqs. (G14) (G17) in the Appendix for more ex-
plicit formula. Our result, as we now discuss, is that
the jump ∆(z) in Eq. (38) is always a linear combi-
nation of the ∆`(z).
Remarkably, the behavior of Ψ(z) exhibits three

"phases" depending on the value of ξ with respect
to the two critical values ξ1 =

√
8 and ξ2 ' 3.13,

Eq. (H1) in the Appendix, see Table I. The function
∆(z) is multi-valued (i.e. it has several branches)
for ξ > ξ1 and z ∈ [zc1, zc2]. Using the correspond-
ing expressions for Ψ(z) = Ψ0(z) + ∆(z) one can
compute Ψ′(z) for each branch, which is shown in
Fig. 1a . Using the parametric system (35) one ob-
tains the relation between z and H, which reads
Z = eH = Ψ′(z) and is shown in Fig. 1b. Note that
z(H) is single-valued butH(z) may not be. One also
obtains the rate function Φ(H), plotted in Fig. 1c

and Φ̂(Z), plotted in Fig. 1d. We now comment on
these plots.

We start with ξ < ξ1. In that case, see Fig. 1a, the
function Ψ′(z) is nicely decreasing from Ψ′(−∞) = 1
to Ψ′(+∞) = 0 and it leads to a functionH(z) which
is single-valued and monotonous. In Table I, the
appearance of ∆1(z) below zc is due to the fact that
the zero p1 becomes negative and the branch cut of
the logarithm in (31) crosses the real axis.

For ξ > ξ1 the function Ψ′(z) is multi-valued in
the interval z ∈ [zc1, zc2], as can be seen in Fig. 1a.
Outside of z ∈ [zc1, zc2], Ψ′(z) is monotonously de-
creasing and it still has the correct limits Ψ′(−∞) =
1 to Ψ′(+∞) = 0. As a consequence of the multi-
valuation of Ψ′(z), the corresponding function z(H),
shown in Fig. 1b, is not monotonous anymore, which
implies that H as a function of z ∈ [zc1, zc2] has
three branches, Hj(z), j = 1, 2, 3. These correspond
to the three extrema of Φ(H) + zeH , and among
these extrema only one is the absolute minimum. In
Table I, the appearance of ∆2(z) and ∆3(z) arise
from the fact that (i) at the turning point z = zc1
we stop following the first zero p1 and start following
p2 instead, (ii) at the turning point z = zc2 we stop
following the second zero p2 and start following p3
instead. The turning points are located where the
consecutive zeroes pi(z, ξ) coalesce.

For ξ > ξ2, the ordering between zc and zc2
changes. Hence to follow the second zero p2 until its
coalescence with p3, one needs to cross z = zc where
the branch cut of the logarithm in (31) crosses again
the real axis, requiring to take into account the jump
∆1(z) again.
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(a) (b)

(c) (d)

Figure 1. For ξ = (0, 1, 2, 3, 4, 5) we plot the following. (Top Left - (a)) The derivative rate function Ψ′(z) from
Table I as a function of z, with Ψ′(+∞) = 0 and Ψ′(−∞) = 1 (all the branches are shown). For ξ > ξ1 and
z ∈ [zc1, zc2] the function is multi-valued (see text). (Inset) First order transition: at z = z∗ such that the areas of
the two shaded regions become equal the value of (the optimal) Ψ′(z) jumps from one branch to the other, shown for
ξ = 4. (Top Right - (b)) The function z = z(H) from the Legendre transform (35). The reciprocal function H(z)
is multi-valued for ξ > ξ1 and z ∈ [zc1, zc2]. (Bottom Left - (c)) The large deviation rate function Φ(H) versus H,
obtained using the parametric representation (35) and Table I. As ξ increases, the location Htyp of the minimum at
Φ(Htyp) = 0 is shifted towards negative values. (Bottom Right - (d)) The rate function Φ̂(Z) versus Z. For ξ = 0,
it is symmetric around Z = 0.5 and one recovers the result of [40] (in general the symmetry is Z(ξ) ↔ 1 − Z(−ξ)).
For large values ξ > ξ1, Φ̂(Z) develops a concave part which is responsible for the first-order phase transition.

C. Multi-valuation and first-order transition

To interpret the S-shape form of Ψ′(z) shown with
all its branches in Figure 1a, we recall that the opti-
mal Ψ′(z) = 〈Z〉z is the expectation value of the ran-
dom variable Z under the z-dependent tilted mea-
sure

P(Z)e−
√
TzZ ∼ e−

√
T (Φ̂(Z)+zZ) (40)

The key point is that for ξ > ξ1 the function Φ̂(Z)
has a concave part, see Fig. 1d. As a consequence,
for z ∈ [zc1, zc2] the tilted measure (40) devel-
ops three extrema at Zj(z) = eHj(z), solutions of
Φ̂′(Z) = −z. They lead to the three branches of
Ψ′(z) = Zj(z). Equivalently, there are three ex-
tremal values Hj(z) in (8) solutions of (35). The
"optimal" Ψ(z) is determined by the minimum in
(35), hence it is given by
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Ψ(z) = min
j=1,2,3

[Φ̂(Zj) + zZj ] (41)

and the optimal j switches from j = 1 to j = 3
at z = z∗(ξ) where z∗ is the solution of (see Ap-
pendix H)

∆1(z∗) = ∆3(z∗) . (42)

It is also the point given by an equal area law on
the curve Ψ′(z), as in standard magnetization ver-
sus field curve for a first-order phase transition, see
Fig. 1a (inset). The points Z = {Z1, Z3} are "sta-
ble" whereas Z = Z2 is "unstable". The optimal rate
function Ψ(z) thus exhibits a first-order transition.
This type of transition occurs in other large devia-
tion problems [44].

D. Solitons

Let us discuss the significance of the multiple
branches in terms of the nature of the solutions of
the interpolating system (11). For any value of ξ, the
logarithm in the integrand of Φ± in (26) has branch
cuts for q in the complex plane. Equivalently, the
product a(k)ã(k) in (20) vanishes for some complex
k = ks = ipc where pc are generic complex solutions
of (37), indicating the spontaneous generation of a
soliton [12]. This means that additional solutions
with a solitonic component are possible, as was the
case for the WNT of the KPZ equation [10, 11]. For
that problem, by obtaining the exact solution of the
{P,Q} system for any space-time point, we were able
to show that the multi-valuation of Ψ(z) was equiva-
lent to the coexistence of two solutions (in that case
with and without a soliton) for the same mixed-
time boundary conditions. Here, for ξ >

√
8 the

multi-valuation of Ψ(z) similarly indicates the co-
existence of three solutions for Λg ∈ [zc2/zc, zc1/zc]
(a ξ-dependent interval), at least two of them being
solitonic. Each of these solutions give rise to a dif-
ferent value Zj(z), i.e. of the value of the right hand
side of Eq. (13). The precise nature and interactions
of these solitons will be investigated in a subsequent
work [45].

V. LARGE ξ LIMIT AND CONVERGENCE
TO KPZ.

We now consider the limit where the tracer parti-
cle is located extremely far, i.e. ξ → +∞. In that

limit we can approximate in (32) iq − ξ
2 ' −

ξ
2 and

define z̃ = z ξ2e
− ξ

2
4 = −z/zc to obtain

Ψ0(z) ' −−
∫
R

dq
2π

Li2(−z ξ2e−q
2− ξ

2
4 )

( ξ2 )2
= 4
ξ2 ΨKPZ(z̃)

(43)
where

ΨKPZ(z̃) = − 1√
4π

Li5/2(−z̃) (44)

is the main branch of the large-deviation rate func-
tion for the height field hKPZ(0, TKPZ) of the KPZ
equation with droplet initial condition. This rate
function was obtained in [46] from a Fredholm deter-
minant formula and in [10] from the exact solution
of the WNT, i.e. of the {P,Q} system. It admits a
second branch denoted ΨKPZ(z̃) + ∆KPZ(z̃), which
is also recovered, see below.

Hence, at the level of the large deviations, the
MFT in the regime Y ∼

√
T recovers, in the large

ξ = Y√
T

limit, the result of the WNT for the KPZ
equation valid for small KPZ time TKPZ � 1. Com-
paring [10, 46] and the present result (43) shows that
the correspondence between the MFT time T and
the KPZ time TKPZ reads (see Appendix I 2)

TKPZ = Y 4

16T 3 = ξ4

16T (45)

This can be compared with [20] where it was shown,
in the different scaling regime Y ∼ T 3/4, i.e. TKPZ =
O(1), that in law Z(Y, T ) ' Y

2T e
−Y 2

4T ehKPZ(0,TKPZ),
with the same TKPZ as in (45) (see Appendix I 2 for
details). Since z̃ = z ξ2e

− ξ
2

4 , the two results match
perfectly, showing that no intermediate regime ex-
ists between the diffusive scaling Y ∼

√
T and the

of the finite-time KPZ equation scaling Y ∼ T 3/4

(note that the large-time Tracy-Widom KPZ class
universality is seen only for Y � T 3/4).

Finally, as detailed in Appendices I 1 and I 2, we
obtain the convergence at large ξ � 1 of the rate
function for the logarithm H = logZ, to the rate
function of the reduced KPZ height HKPZ

Φ(H) ' 4
ξ2 ΦKPZ(HKPZ) (46)

with the correspondence H = − ξ
2

4 − log( ξ2 ) +HKPZ
and ΦKPZ is the rate function for the KPZ equation,
see details and definitions in I 2.

We now discuss what happens to the other
branches of Ψ(z) at large ξ. We show how the second
branch of the KPZ rate function and the value of its
jump, ∆KPZ, is recovered in the limit. Recovering
this second branch, which exists for −1 6 z̃ < 0, is
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necessary for (46) to hold for all HKPZ ∈ R. To this
aim, we first define the rescaled critical values of z
as

z̃c = −zc
zc
, z̃c1 = −zc1

zc
, z̃c2 = −zc2

zc
. (47)

and take their large ξ limit which read
z̃c = −1, z̃c1 ' −1, z̃c2 ' 0 . (48)

From the last column of Table I we now see that,
in that limit:

1. the branches ∆1(z) and ∆2(z) disappear due
to the coalescence of zc and zc1,

2. the next branch recovers the second branch of
the KPZ limit, i.e.

∆2(z)−∆1(z)→ 4
ξ2 ∆KPZ(z̃) = 16

3ξ2 log
(−1
z̃

) 3
2 ,

(49)
which can be explicitly checked I 1.

3. When z̃ approaches z̃c2, we obtain in the large
ξ limit that the corresponding value of HKPZ
goes to +∞, hence the branches ∆3(z)−∆1(z)
and ∆3(z) disappear at infinity, see Fig. 7.
This corresponds to events where Z = O(1)
which become irrelevant in that limit [47].

VI. FREDHOLM DETERMINANT
FORMULA

We can now compare our result (32) obtained us-
ing the inverse scattering method, to a formula ob-
tained by completely different methods, for a model
of sticky Brownian motions [19]. That model, which
allows for a rigorous formulation, is believed (up to
mathematical subtleties) to be equivalent to the one
considered here. The original formula of [19] is valid
for any time T and any Y , and here we obtain its
limit in the large deviation diffusive scaling regime.
Applied to our model this formula reads

e−uZ(Y,T ) = det(I −Ku) (50)
where the kernel Ku was derived in Ref. [19, Theo-
rem 1.11] and is recalled in Eq. (J4).
We scale u =

√
Tz with z = O(1) in Eq. (50) so

that the l.h.s. of (50) can be identified to the l.h.s
of (7). We perform asymptotic analysis on the ker-
nel Ku and extract the large T large deviation rate
function Ψ(z) by using the first cumulant method
introduced in [48–50]. The manipulations, sketched
in Appendix J are quite heuristic, but allow to re-
cover nicely the algebraic form of formula (32). It

remains open how to make it more mathematically
rigorous.

VII. APPLICATIONS

A. Extremal diffusions

Consider the rightmost of N independent parti-
cles in the same random field, of position YN (T ) =
maxi=1,...,N Yi(T ). Without random field and for
N � 1, YN (T ) has a deterministic part' 2

√
T logN

plus a "thermal" fluctuation part ' G
√

T
logN , G be-

ing a Gumbel random variable. With the random
field, for logN ∼ T � 1, there is also a O(1) sample-
to-sample fluctuation part, with a Tracy-Widom dis-
tribution [15, 22]. In the more accessible regime
logN ∼

√
T � 1, as shown in [16, 20] this fluc-

tuating term is distributed as h(0, TKPZ)/
√

logN ,
the droplet solution of the KPZ equation. These
phenomena go beyond the Gaussian nature of Ein-
stein’s diffusion. They allow for a detectable finger-
print of the random medium. Recently, these two
regimes have been observed numerically [51]. The
present results allow to study yet another regime,
logN �

√
T , where diffusive scaling holds and the

scaled position yN (T ) = YN (T )√
T

of the maximum con-
verges to

yN (T ) ' 2
√

logN + G− cN + δH√
logN

(51)

where for typical environments δH = O(T−1/4) is
an Edwards-Wilkinson random variable with a com-
putable variance, see Appendix K, and for rare en-
vironments δH = H − Htyp(ξ) = O(1) with the
rate function (5) computed here and ξ = 2

√
logN .

We also find that in the regime N ∼
√
T the dis-

order average CDF takes the large deviation form
P(yN (T ) < ξ) ∼ e−

√
TΣξ(n), with n = N√

T
= O(1)

fixed, and Σξ(n) a rate function explicitly obtained
in Appendix K.

B. Extension to the SEP

Our results are relevant within the class of MFT
models with quadratic noise variance σ(%). These
models enjoy a mapping to the {R,Q} DNLS
system (A7), see Appendix L. Recently, the exact
solution of the MFT of the SEP was investigated in
Ref. [42] using the well-known gauge transformation
of Wadati and Sogo, [65, Eq. (4.5)], to map the
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{R,Q} DNLS system to the {P,Q} NLS system.
The remarkable result of [42] is that under this
gauge transformation, the annealed initial condition
of the SEP is mapped onto the initial condition
solved by us in [10] (with different coupling constant
[52]). The natural extension of [42] would be to
study the statistics of a tracer at arbitrary position
in an MFT model with quadratic variance and
annealed initial condition. The inverse scattering
method we have pursued in this work provides the
right tools to answer this question.

VIII. CONCLUSION

We have elucidated here in great details the
crossover upon adding an asymmetry, between the
MFT for diffusive systems and the WNT of the
KPZ equation. We have focused on the example
of the diffusion of a tracer in a time-dependent ran-
dom medium in an atypical direction and a "droplet"
type initial condition. We have obtained the large-
deviation functions in the context of classical inte-
grability using simple, standard and versatile inverse
scattering methods. For this model it was based on
the integrable crossover between the DNLS and NLS
equations. Obtaining the complete solution of this
interpolating system (11) beyond the large-deviation
observable requires further efforts involving the use

of Fredholm determinants similarly to what we have
achieved in [10, 11] for the complete solution of the
WNT. This is one open question that we leave to
subsequent works [45], together with other outstand-
ing questions, such as investigating the MFT-KPZ
crossover for more general models, or within the
present model, to study (2) for other initial condi-
tions, in particular those identified in [16] to con-
verge in atypical directions to solutions of the KPZ
equation for flat and stationary geometries [11].
Note added. After completion, the paper [53] ap-

peared, where the results of [11] are proved rigor-
ously.
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Appendix A: Derivation of the interpolating system

Let us detail the steps performed in the text to obtain Ψ(z) defined from the expectation value in (7) via
the saddle point method. Introducing the standard dynamical path integral representation, one has (where
overlines represent averages w.r.t. the random field η̃)

e−z
√
TZ(Y,T ) = e

−z
√
T
∫ +∞

ξ
dxQη̃(x,t=1) (A1)

=
∫∫
DQ̃DP̃ e−

∫ 1

0
dt
∫
R
dx[
√
TP̃ (∂tQ̃−∂2

xQ̃−∂x
√

2η̃(x,t)Q̃)]−z
√
T
∫ +∞

ξ
dxQ̃(x,t=1) (A2)

=
∫∫
DQ̃DP̃ e−

√
T (S[P̃,Q̃]+z

∫ 1

0
dtδ(t−1)

∫ +∞

ξ
dxQ̃(x,t)) (A3)

where the equation of motion (6) has been expressed using the response field P̃
√
T , and the associated

dynamical action is

S[P̃, Q̃] =
∫ 1

0
dt
∫
R

dx[P̃ (∂t − ∂2
x)Q̃− Q̃2(∂xP̃ )2] (A4)

For T → +∞ one can use the saddle point method. Here we denote the fields and their saddle point values
in the original frame as {P̃, Q̃} to distinguish them from the Galilean transformed fields {P,Q} introduced
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below. Taking the functional derivative w.r.t. {P̃, Q̃} we obtain

∂tQ̃ = ∂2
xQ̃+ 2β∂x(Q̃2(∂xP̃ )) (A5)

−∂tP̃ = ∂2
xP̃ − 2βQ̃(∂xP̃ )2 − zδ(t− 1)Θ(x− ξ) (A6)

with β = −1. We will keep β as a parameter but for the application to obtain Ψ(z) it is understood that
it is set to β = −1. Initially the upper boundary in time is t = +∞ but since P̃ vanishes for t > 1, we can
equivalently restrict the equations for t ∈ [0, 1] and interpret the last term in the second equation (which
must be integrated backward in time) as a boundary condition P (x, t = 1) = −zΘ(x − ξ) for P̃ (x, t), so it
drops from the equation. To make the two equations more symmetric let us now introduce the derivative
field R̃(x, t) = ∂xP̃ (x, t), leading to

∂tQ̃ = ∂2
xQ̃+ 2β∂x(Q̃2R̃)

−∂tR̃ = ∂2
xR̃− 2β∂x(Q̃R̃2)

(A7)

with the boundary conditions
Q̃(x, t = 0) = δ(x) , R̃(x, t = 1) = Λ0δ(x− ξ) , Λ0 = −z (A8)

This system is the cousin of the DNLS equation (identical to it upon the change t→ it).

Now we perform a Galilean transformation x→ x− ξt to bring back ξ to zero. Anticipating a bit, let us
introduce the interpolating system introduced in the text in (11) which we recall here

∂tQ = ∂2
xQ+ 2β∂x(Q2R) + 2gQ2R

−∂tR = ∂2
xR− 2β∂x(QR2) + 2gQR2 (A9)

and notice that if Q̃, R̃ satisfies this system with couplings (β, g) then

Q(x, t) = Q̃(x− vt, t)e− 1
2xv+ v2

4 t , R(x, t) = R̃(x− vt, t)e 1
2xv−

v2
4 t , (A10)

also satisfies the same system with couplings (β, g+β v2 ). Thus consider Q̃, R̃ which satisfy the above DNLS
system (A7) with boundary conditions Q̃(x, 0) = Q0(x) and R̃(x, 1) = Λ0δ(x − ξ). We will choose v = −ξ
so that

Q(x, t) = Q̃(x+ ξt, t)e 1
2xξ+

ξ2
4 t , R(x, t) = R̃(x+ ξt, t)e− 1

2xξ−
ξ2
4 t , (A11)

satisfies the interpolating system (A9) with couplings (β,−β ξ2 ) and boundary conditions

Q(x, 0) = Q̃0(x)e 1
2xξ , R(x, 1) = Λ0δ(x)e−

ξ2
4 , (A12)

which for Q̃0(x) = δ(x) gives the result (12) in the text, where we called Λ = Λ0e
− ξ

2
4 .

Symmetries. Note that the DNLS equation (A7) is invariant by x → −x and R → −R. The
interpolating system {R,Q} (A9) is invariant by x→ −x, R→ −R and g → −g.

Conserved quantities. Note that the system (A7) admits a series of conserved (i.e. time independent)
quantities, the simplest one being

∫
R dx Q̃(x, t) = 1 (here its value is fixed to unity by the initial condition

(A8)). This conservation law originates from the conservation of probability in the Fokker-Planck equation,
d
dt
∫

dt qη(x, t) = 0. Upon a Galilean transformation it becomes∫
R

dxQ(x, t)e−x
ξ
2−

ξ2
4 t = 1 (A13)

Note that R̃ also satisfies the conservation law
∫
R dx R̃(x, t) = Λ and after a Galilean transformation∫

R dxR(x, t)ex ξ2 + ξ2
4 t = Λ0 = Λeξ2/4. One can check that this is consistent with the symmetry (14).

Coupling constant. If one compares with Ref. [10] the true coupling constant of the {P,Q} (i.e.
here {R,Q}) system used there (called g there) is ĝ = Λg. Since βΛ = ze−ξ

2/4 and g = −β ξ2 , this gives
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ĝ = −z ξ2e−ξ
2/4. The special point zc discussed in the text thus corresponds to ĝ = 1, as for the case of the

WNT of the KPZ equation.

The rate function Ψ(z) from the saddle point. The value of Ψ(z) defined in (7) is then obtained
from the saddle point value in (A3). One has

Ψ(z) =
[
S[P̃, Q̃] + z

∫ +∞

ξ

dx Q̃(x, 1)
]
|sp (A14)

where P̃, Q̃ must be replaced by the z dependent solutions of the system (A7) with boundary conditions
(A8). Taking a derivative w.r.t. z and using the saddle point conditions, only the explicit derivation w.r.t.
z remains, and one obtains the formula (13) given in the text

Ψ′(z) =
∫ +∞

ξ

dx Q̃(x, 1) =
∫ +∞

0
dxQ(x, 1)e− 1

2xξ−
ξ2
4 (A15)

where Q(x, 1) is the z-dependent solution of the interpolating system (A9) with boundary conditions (12).
Since by definition Ψ(0) = 0 this equation is sufficient to obtain Ψ(z) if the r.h.s. is known as a function of
z.

Appendix B: Direct scattering solution for the interpolating system

In this section we derive the formula (17) and (18) for the scattering amplitudes {a(k), ã(k), b(k), b̃(k)}
given in the text.

Equation for φ̄ at t = 1 . This equation allows to obtain the relations involving ã(k) and b̃(k). We
call φ̄1,2(x, t) the two components of φ̄ (the dependence in k is implicit). Let us recall that at x → −∞,
φ̄ ' (0,−eikx/2)ᵀ. The first equation of the Lax pair ∂x~v = U1~v with ~v = e−k

2t/2φ̄ reads in components at
t = 1, from (15) and using that R(x, 1) = Λδ(x)

∂x(ei k2 xφ̄1) = −(g + iβk)Λδ(x)φ̄2e
i k2 x , ∂x(e−i k2 xφ̄2) = Q(x, 1)φ̄1e

−i k2 x (B1)
Let us integrate the first equation from x = −∞ to x. Since φ̄1 vanishes at x = −∞ it gives

φ̄1(x, 1) = −(g + iβk)Λe−i k2 xΘ(x)φ̄2(0, 1) (B2)
Taking the limit x→ +∞, we thus obtain

b̃(k, t = 1) = −(g + iβk)Λφ̄2(0, 1) (B3)
To determine φ̄2(0, 1) we can integrate the second equation in (B1), which gives, using (B2) and (B3){

e−i k2 xφ̄2(x, 1) = φ̄2(0, 1) + b̃(k, 1)
∫ x

0 dx′Q(x′, 1)e−ikx′ , x > 0
φ̄2(x, 1) = −ei k2 x, x < 0

(B4)

where in the second equation we have used that φ̄2(x, 1) ' −ei k2 x for x → −∞. Assuming continuity of
φ̄2(x, 1) at x = 0, this leads to φ̄2(0, 1) = −1 and to

b̃(k, t = 1) = (g + iβk)Λ ⇒ b̃(k) = (g + iβk)Λe−k
2

(B5)
since we recall that b̃(k, t) = b̃(k)ek2t. Taking the x→ +∞ limit of (B4) and using the asymptotics (16) we
also obtain the relation

ã(k, 1) = ã(k) = 1− (g + iβk)Λ
∫ +∞

0
dx′Q(x′, 1)e−ikx′ (B6)

Equation for φ at t = 0 . This equation allows to obtain the relations involving a(k) and b(k). We
call φ1,2(x, t) the two components of φ (the dependence in k is implicit). Let us recall that at x → −∞,
φ ' (e−ikx/2, 0)ᵀ. The first equation of the Lax pair ∂x~v = U1~v with ~v = ek

2t/2φ reads in components at

12



t = 0, from (15) and using that Q(x, 1) = δ(x).

∂x(ei k2 xφ1) = −(g + iβk)R(x, 0)φ2e
i k2 x, ∂x(e−i k2 xφ2) = δ(x)φ1e

−i k2 x (B7)
Integrating the second equation of (B7) from x = −∞ to x. Since φ2 vanishes at x = −∞ it gives

φ2(x, 0) = ei k2 xΘ(x)φ1(0, 0) (B8)
Taking the limit x→ +∞, we thus obtain

b(k, t = 0) = φ1(0, 0) (B9)
To determine φ1(0, 0) we can integrate the first equation in (B7), which gives, using (B8) and (B9){

ei k2 xφ1(x, 0) = φ1(0, 0)− (g + iβk)b(k, 0)
∫ x

0 dx′R(x′, 0)eikx′ , x > 0
φ1(x, 0) = e−i k2 x, x < 0

(B10)

where in the second equation we have used that φ1(x, 0) ' ei k2 x for x → −∞. Assuming continuity of
φ1(x, 0) at x = 0, this leads to φ1(0, 0) = 1 and to

b(k, t = 0) = b(k) = 1 (B11)
Taking the x→ +∞ limit of (B10) and using the asymptotics (16) we also obtain the relation

a(k, 0) = a(k) = 1− (g + iβk)
∫ +∞

0
dx′R(x′, 0)eikx′ (B12)

At this stage we can use the symmetry (14) and obtain

a(k) = 1− (g + iβk)Λ
∫ 0

−∞
dx′Q(x′, 1)e−ikx′ (B13)

which completes the derivation of the equations (18) and (17) in text. Alternatively one may derive (B13)
without using the symmetry (14) by considering the equation for φ at t = 1. We now present that derivation.

Equation for φ at t = 1 . This equation allows to obtain a(k) in (B13). Let us recall that at x→ −∞,
φ ' (e−ikx/2, 0)ᵀ. The first equation of the Lax pair, ∂x~v = U1~v with ~v = ek

2t/2φ as given in the text now
reads, in components and at t = 1, using that R(x, 1) = Λδ(x)

∂x(ei k2 xφ1) = −(g + iβk)Λδ(x)φ2e
i k2 x, ∂x(e−i k2 xφ2) = Q(x, 1)φ1e

−i k2 x (B14)
Integrating these two equations, and using the asymptotics (16) at x→ +∞ we obtain

φ1(x, 1) = e−i k2 x(Θ(−x) + a(k)Θ(x)), a(k)− 1 = −(g + iβk)Λφ2(0, 1)

φ2(x, 1) = ei k2 x
∫ x

−∞
dx′Q(x′, 1)e−ikx′(Θ(−x′) + a(k)Θ(x′))

(B15)

where we used that a(k, t) = a(k), see the main text. Setting x = 0 in the second equation we obtain the
relation displayed in the text

φ2(0, 1) =
∫ 0

−∞
dx′Q(x′, 1)e−ikx′ , a(k) = 1− (g + iβk)Λ

∫ 0

−∞
dx′Q(x′, 1)e−ikx′ (B16)

Appendix C: Details of the calculation of the scattering amplitudes

So far the scattering amplitudes {a, ã} have been expressed as half-Fourier transforms in Eqs. (B6) and
(B16). To determine them more explicitly, one wants to solve Eq. (20), namely the normalization relation
of the scattering amplitudes, which read here

a(k)ã(k) = 1− (g + iβk)Λe−k
2

(C1)
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where a(k) and ã(k) satisfy Eq. (18), which we recall reads

a(k) = 1− (g + iβk)ΛQ−(k) , ã(k) = 1− (g + iβk)ΛQ+(k) , Q±(k) =
∫
R±

dxQ(x, 1)e−ikx . (C2)

Clearly for k complex, Q+(k), hence ã(k), is analytic in the lower half-plane, and Q−(k), hence a(k), is
analytic in the upper half-plane. Now we define the parametrization

a(k) = a(∞)eΦ+(k) , a(∞) = 1 + βΛQ(0−, 1) , (C3)
ã(k) = ã(∞)eΦ−(k) , ã(∞) = 1− βΛQ(0+, 1) , (C4)

where a(∞) and ã(∞) where obtained in Eq. (21), so that Φ±(k) → 0 as k → ±∞. Using Eq. (24), i.e.
a(∞)ã(∞) = 1, one can thus rewrite (C1) for real k as

1− (g + iβk)Λe−k
2

= eΦ+(k)eΦ−(k) (C5)
where eΦ±(k) are analytic respectively in the UHP/LHP. This is a typical Riemann-Hilbert [54] or Wiener-
Hopf problem. In some domain, taking the logarithm of this equation, it can be written as

log(1− (g + iβk)Λe−k
2
) = Φ+(k) + Φ−(k) + 2iπn(k) (C6)

for some integer-valued function n(k). One can check that for ĝ = Λg < 1 the l.h.s. of (C6) is analytic in a
strip around the real axis in k (see Section G) and decays fast at infinity along the real axis. In this strip
n(k) = 0, and for ĝ = Λg < 1 the multi-valuation occurs only outside this strip. As in [40] one can use the
well-known Sokhotskyi–Plemelj formula∫

R

dq
2iπ

f(q)
q − k ± i0+ = −

∫
R

dq
2iπ

f(q)
q − k

∓ 1
2f(k) (C7)

which leads to the decomposition of a general function f(k)

f(k) =
∫
R

dk′
2iπ

f(k′)
k′ − k − i0+ −

∫
R

dk′
2iπ

f(k′)
k′ − k + i0+ (C8)

in parts which are analytic in the UHP and LHP respectively. This implies that

Φ±(k) = ±
∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
q − k ∓ i0+ (C9)

The formula for Φ+(k) is valid only in the UHP and the one for Φ−(k) is valid only in the LHP (at least in
a strip around the real axis). This recovers Eq. (26) in the text.

Validity. The results above are valid for Λg < 1. For their continuation beyond that domain see
Section G below.

Recovering the case β = 0. If we set β = 0 in the interpolating system (11) we obtain the {P,Q}
system extensively discussed in Refs. [10, 11]. Let us show that one then recovers the solution obtained in
our previous work [10]. There, we studied a more general initial condition Q(x, t = 0) = Q0(x), and to
identify we must set g → gΛ (since there R(x, t = 1) = δ(x) while here R(x, t = 1) = Λδ(x) while there Λ is
set to unity). Taking this into account there we obtained b̃(k) = ge−k

2 which agrees with (17), and

a(k) =
√

1− gb(k)Λe−k2e−iϕ(k) , ϕ(k) = −
∫
R

dq
2π

1
q − k

log(1− gb(q)Λe−q
2
) (C10)

together with ã(k) = a(−k) for real k, and ϕ(−k) = −ϕ(k). It is easy to see that it agrees with (C9) for
β = 0 using (C7) with f(k) = log(1− gb(k)Λe−k2), that is, in that case for k ∈ R

Φ±(k) = −iϕ(±k) + 1
2 log(1− gb(k)Λe−k

2
) (C11)

Of course here we restricted to the special case of the droplet initial condition Q0(x) = δ(x), where b(k) = 1
as found in [10] and recovered here in Eq. (17).
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General initial condition for β 6= 0. Extending the previous discussion we see that the solution of the
interpolating system for a more general initial condition Q(x, 0) = Q0(x) reads

Φ±(k) = ±
∫
R

dq
2iπ

log(1− (g + iβq)Λb(q)e−q2)
q − k ∓ i0+ (C12)

where there is a map between Q0(x) and b(q) which can be obtained by solving the scattering problem.

Appendix D: Bounds and symmetries for Ψ(z)

We give here some properties of the function Ψ(z). Since we start from its definition (7) we are dealing
here with what we call in the text the "optimal" Ψ(z), also given by the minimization (8). From its definition
(7) the expansion of Ψ(z) in powers of z around z = 0 gives the cumulants of Z = Z(Y, T )

Ψ(z) = − 1√
T

log exp(−z
√
TZ) = −

∑
p>1

(−z)p
p! T

p−1
2 Zp

c (D1)

hence the leading behavior of each cumulants at large time is given by

Zp
c ' (−1)p+1T

1−p
2 Ψ(p)(0) (D2)

On the other hand, taking derivatives of Ψ(z) w.r.t z for any z lead to

Ψ′(z) = 〈Z〉z , Ψ′′(z) = −
√
T 〈Z2〉cz , 〈O〉z = O exp(−z

√
TZ)

exp(−z
√
TZ)

(D3)

where the expectation values are w.r.t. the tilted measure also defined in the text. Since the random variable
Z obeys 0 < Z < 1 it implies

0 < Ψ′(z) < 1 , Ψ′′(z) < 0 . (D4)

The function Ψ(z) must thus be concave. Note that some of the branches obtained in the text are not
concave hence they do not appear in the optimal Ψ(z). In such cases there is instead a jump of Ψ′(z) from
one branch to another one, for z = z∗. As discussed in the text, at this point the tilted measure has two
degenerate maxima hence the fluctuations are anomalously large,

√
T 〈Z2〉cz=z∗ = +∞.

Let us now make the dependence in ξ apparent and denote Zξ = Z(Y, T ). By definition one has

Zξ =
∫ +∞

ξ

dy qη(y, T ) , 1− Z−ξ =
∫ −ξ
−∞

dy qη(y, T ) (D5)

where 0 < Zξ < 1. The equation (2) is invariant by y → −y and η(y, τ) → −η(−y,−τ), which leaves the
PDF of the noise invariant, hence Zξ and 1 − Z−ξ have the same PDF. This observation inserted into (7)
gives

exp(−z
√
TZξ) ∼ exp(−

√
TΨξ(z)) = exp(−z

√
T (1− Z−ξ)) = exp(−

√
T (z + Ψ−ξ(−z))) (D6)

hence it implies the symmetry given in the text
Ψ−ξ(z) = Ψξ(−z) + z (D7)

Remark. To measure Zξ and −Z−ξ one can use the DNLS equation with boundary condition P (x, 1) =
Θ(x − ξ) i.e. R(x, 1) = δ(x − ξ) for the first, and P (x, 1) = Θ(−x − ξ) i.e. R(x, 1) = −δ(−x − ξ) for the
second. Using the symmetry x→ −x and R→ −R one arrives at the same conclusion.
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Appendix E: Derivation of the rate function Ψ(z) – main branch

Let us give some more details on how (32) in the text is obtained. Taking a derivative w.r.t. k of (27) at
k = ig

β and using (28) one obtains

iβΛQ∓
(

ig
β

)
= −Φ′±

(
ig
β

)
(E1)

Let us verify that this is consistent with the second equality in (30) (which comes from the conservation of
probability). For that let us first recall that (from (C6) with n(k) = 0)

log(1− (g + iβk)Λe−k
2
) = Φ+(k) + Φ−(k) (E2)

where Φ±(k) are given in (C9) for k in the complex upper/lower half planes.

Taken at k = ig
β it again shows that Φ±( ig

β ) are opposite quantities. Taking a derivative w.r.t. k at
k = ig

β = −i ξ2 one obtains

−iβΛeξ
2/4 = Φ′+

(
ig
β

)
+ Φ′−

(
ig
β

)
(E3)

which, from Eq. (E1), is exactly equivalent to the second equality in (30).

One must be careful in computing Φ′±(k) for k = ig
β = −iξ/2 since the formula (26) given in the text and

above in (C9) for Φ±(k) are valid only for k in the UHP/LHP respectively. There are thus two cases:

1. If g/β > 0, i.e. ξ < 0, we can use (26) for Φ+ for =(k) > 0 and one obtains

Φ′+
(

ig
β

)
=
∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
(q − ig

β )2
(E4)

while, using (E3) one has

Φ′−
(

ig
β

)
= −

∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
(q − ig

β )2
− iβΛeξ

2/4Θ(−ξ) (E5)

2. If g/β < 0, i.e. ξ > 0, we can use (26) for Φ− for =(k) 6 0 and one obtains

Φ′−
(

ig
β

)
= −

∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
(q − ig

β )2
(E6)

while, using (E3) one has

Φ′+
(

ig
β

)
=
∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
(q − ig

β )2
− iβΛeξ

2/4Θ(ξ) (E7)

Putting the two cases together, we obtain from the equality (E1)

iβΛQ∓
(

ig
β

)
= −Φ′±

(
ig
β

)
= ∓−

∫
R

dq
2iπ

log(1− (g + iβq)Λe−q2)
(q − ig

β )2
+ iβΛeξ

2/4Θ(±ξ) (E8)

a result which remains true for g = ξ = 0 provided the integrals are then interpreted as principal values and
that we use the convention Θ(0) = 1/2.

Now using (30) and inserting β = −1, g = −β ξ2 and βΛ = ze−ξ
2/4 we obtain the result (31) in the text,

from which (32) is obtained upon integration over z.
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Remark on the Heaviside function. The appearance of the term Θ(±ξ) in (E8) can also be seen as
follows. Let us expand (26) in series of Λ

Φ′±(k) = ∓
∑
n>1

(iβΛ)n
n

∫
R

dq
2iπ

(q − ig
β )ne−nq2

(q − k ∓ i0+)2 (E9)

Taking k = ig
β we can neglect the term ±i0+ except for n = 1. The term n = 1 is

∓ (iβΛ)
∫
R

dq
2iπ

e−q
2

q + iξ
2 ∓ i0+

= ∓(iβΛ)−
∫
R

dq
2iπ

e−q
2

q + iξ
2
− iβΛeξ

2/4Θ(±ξ) (E10)

Recovering the typical probability. Similarly the expansion of zΨ′(z) in powers of z contains a term
with a pole at q = −iξ/2 only for n = 1. As shown in the text, this term recovers the typical probability
Z = Ztyp. In deriving the equation (34) we have used the identity, for real a

−
∫
R

dq
2π

1
iq + a

e−q
2

= 1
2e

a2
(Erfc(a)− 2Θ(−a)) (E11)

Range of validity As discussed in the text the formula for Ψ(z) presented in this section is what we
call the "main branch" valid only for z/zc < 1 with zc = − 2

ξ e
ξ2/4. As a result it only allows to determine

Φ(H) for H < Hc. To obtain the full solution to the problem we need to consider analytical continuations,
to which we now turn.

Appendix F: Analytic continuation in the case of the WNT for the KPZ equation

Before discussing the intricacies of the analytic continuations for the present problem, we recall
here how it works in the case of the WNT for the KPZ equation. It is necessary to do so since we
show below that at large ξ the results for KPZ equation are recovered. We present further details
than given in Ref. [10] as they will be very useful below. Indeed the situation in the present paper is
already quite similar to the one for the KPZ equation where ΨKPZ(z̃) admits a second branch for −1 6 z̃ < 0.

For the KPZ equation one first obtains for z̃ ∈ [0,+∞)

ΨKPZ(z̃) = ΨKPZ,0(z̃) := − 1√
4π

Li5/2(−z̃) (F1)

which can be continued for z̃ ∈ [−1,+∞). The polylogarithm function Li5/2(−z̃) is analytic in the complex
z̃ plane except on a branch cut for z̃ ∈ (−∞,−1]. Across this branch cut it has a jump, which leads to

ΨKPZ,0(z̃ + i0+)−ΨKPZ,0(z̃ − i0+) = ∆KPZ(z̃) , ∆KPZ(z̃) = 4
3 i(log(−z̃))3/2 (F2)

for z ∈ (−∞,−1].

Analogy with the logarithm. This situation is analogous to the study of the logarithm which admits
different determination in the complex plane. Indeed, along the negative real axis, the logarithm has a jump
of value 2iπ. A better understanding of the logarithm is done by considering its domain of definition not in
the complex plane but rather on a Riemann surface, see Fig. 2, where it does not have any jump. In the
case of the logarithm, the Riemann surface is composed of different sheets joined by winding around the
origin and the correct definition of the logarithm on the n-th sheet is log z+2iπn where log z is the principal
determination or main branch.
Pursuing the construction of ΨKPZ(z̃) on a Riemann surface rather than on the complex plane, we extend

continuously the definition ΨKPZ,0(z̃) to the first Riemann sheet along the branch cut as follows

ΨKPZ(z̃) =
{

ΨKPZ,0(z̃), =(z̃) > 0
ΨKPZ,0(z̃) + ∆KPZ(z̃), =(z̃) < 0

(F3)
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Figure 2. Plot of the Riemann surface of the logarithm z 7→ log z. This surface is composed of different sheets
continuously connected is a staircase manner.

On the real axis it is multi-valued, i.e. there is a first branch for ΨKPZ(z̃) given by the first line, and a
second branch given by the second line. One can now continue these two branches for z̃ ∈] − 1, 0] and one
finds that the second branch is

ΨKPZ,0(z̃) + ∆KPZ(z̃) = − 1√
4π

Li5/2(−z̃) + 4
3(− log(−z̃))3/2 (F4)

for z̃ ∈]− 1, 0].

Another route to find the analytic continuation. One can arrive at the same result from the integral
representation. Indeed, for z̃ ∈]− 1,+∞[ one has

z̃Ψ′KPZ(z̃) =
∫
R

dq
2π log(1 + z̃e−q

2
) = z̃Ψ′0,KPZ(z̃) = − 1√

4π
Li3/2(−z̃) (F5)

Let us plot the argument of the logarithm AKPZ(q) = 1 + z̃e−q
2 in the complex q plane. This is shown

schematically in Fig. 3. For z̃ > −1 no branch cut crosses the real axis (integration axis). When z̃ reaches
−1 the two symmetric branch cuts along the imaginary axis join. For z̃ < −1 they form a "cross" (see Fig. 3
– top right) with ends located at q = ±

√
log(−1/z̃). It is impossible to integrate over the real axis without

crossing them. However suppose now we consider z̃ → z̃± iε. We can see that the two branch cuts then avoid
each others and it is possible to deform slightly the integration contour to avoid crossing them (see Fig. 3 –
bottom). This is consistent with the function Li3/2(−z̃) being analytic away from the negative real axis for z̃.

Now one can see that the additional contribution ∆KPZ(z) comes for z̃ < −1 from the jump across the
horizontal part of the "cross" (see Fig. 3 – bottom) and is precisely

z̃∆′KPZ(z̃) = 2iπ
∫ √− log(−1/z̃)

−
√
− log(−1/z̃)

dq
2π = 2i[log(−z̃)]1/2 (F6)

while its continuation for z̃ > −1 - which enters the second branch – can be obtained as an integral around
the complementary of the branch cut in Fig. 3 – top left)

z̃∆′KPZ(z̃) = 2iπ
∫ i
√

log(−1/z̃)

−i
√

log(−1/z̃)

dq
2π = −2[− log(−z̃)]1/2 (F7)
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Figure 3. Schematic plot of the argument of the logarithm in Eq. (F5) in the complex q plane for various values of
z̃. Top left. z̃ > −1, z̃ ∈ R. Top right. z̃ 6 −1, z̃ ∈ R. Bottom <(z̃) < −1, =(z̃) = 0+. The black crosses
correspond to the locations where the argument AKPZ(q) is zero and the red curves correspond to the branch cuts of
logAKPZ(q).

consistent with the previous argument. These considerations will be useful for the next subsection.

Appendix G: Analytic continuation and additional branches of the rate function Ψ(z)

1. Preliminaries: solutions of Eq. (37) in the text

As mentioned in the text, and for the discussion below about the branch cuts in the integration in the
formulas (31) and (32) for zΨ′(z) and Ψ(z), it is important to study the argument of the logarithm in (31),
which we denote A(q)

A(q) := 1− z(iq − ξ

2)e−q
2− ξ

2
4 (G1)

and in particular to find the points where it vanishes, i.e. the zeroes, solutions of A(q) = 0. There are many
such zeroes but it turns out, see below, that the zeroes on the imaginary axis are the ones which play an
important role. Setting q = ip, it is equivalent to study A(ip) or the function fz,ξ(p) defined as

fz,ξ(p) = e−p
2+ ξ2

4 A(ip) = e−p
2+ ξ2

4 + z(p+ ξ

2) (G2)

and finding its real zeroes, fz,ξ(p) = 0, which is Eq. (37) in the text.
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Figure 4. Schematic behavior of the zeroes pi of the equation fz,ξ(pi) = 0 as a function of z < 0 for ξ > 0. Top
Left: the case ξ < ξ1 =

√
8 in which case there is a single zero, which changes sign at z = zc. Top Right: the case

ξ1 < ξ < ξ2 in which case there are three zeroes p1 > p2 > p3 in the interval z ∈ (zc1, zc2) and zc2 < zc. Bottom: the
case ξ > ξ2, same but now zc2 > zc. The zeroes p2, p3 coalesce and annihilate at z = zc2 and p2, p3 at z = zc1. The
points zc1 and zc2 also serve as turning points in the definition of the function Ψ(z).

We will consider ξ > 0 (the case ξ < 0 can be studied from the symmetry (ξ, z) → (−ξ,−z)). Consider
also z < 0 (see z > 0 below). Since fz,ξ(p) → ∓∞ as p → ±∞ it has at least one real zero, but in some
cases can have three. When there are three zeroes we will denote them p1 > p2 > p3 in decreasing order.
They are functions of (z, ξ) i.e. pi = pi(z, ξ).

The evolution of the zeroes when z < 0 is varied is shown in Fig. 4. There are three cases depending
in the values of ξ which we now describe. In all three cases the largest zero p1 vanishes for the value of

z = zc = zc(ξ) = − 2e
ξ2
4
ξ < 0. One finds that

1. for 0 < ξ < ξ1 =
√

8, and for all z < 0, there is only one zero, p1 = p1(z, ξ), see Fig. 4 (top left).

2. for ξ > ξ1 there is an interval of values of z, z ∈]zc1, zc2[, where there are three zeroes. To find this
interval one looks for double zeroes fz,ξ(p) = f ′z,ξ(p) = 0, i.e.

e−p
2+ ξ2

4 = −z(p+ ξ

2) = z

2p (G3)

For a given ξ one can solve these conditions for the couple (z, p). One finds that there are no real
solutions for ξ <

√
8 but that there are two solutions (zc1, pc1) and (zc2, pc2) for ξ > ξ1 =

√
8. These
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read, with zc1 < zc2,

zc1 = zc1(ξ) = −1
2e

1
8

(
ξ
(
ξ+
√
ξ2−8

)
+4
) (

ξ −
√
ξ2 − 8

)
, pc1 = −1

4

(
ξ −

√
ξ2 − 8

)
(G4)

zc2 = zc2(ξ) = −1
2e

1
8

(
ξ
(
ξ−
√
ξ2−8

)
+4
) (

ξ +
√
ξ2 − 8

)
, pc2 = −1

4

(
ξ +

√
ξ2 − 8

)
(G5)

For any ξ > ξ1, and as can be seen in Fig. 4, the two smallest zeroes annihilate at z = zc2 where
their values are p2 = p3 = pc2 and the two largest zeroes annihilate at z = zc1 where their values are
p1 = p2 = pc1. Note that at ξ =

√
8 the interval is a single point and one has zc1 = zc2 = −

√
2e3/2

and pc1 = pc2 = −1/
√

2.

3. It will turn out to be important below to distinguish the cases where zc2 < zc and zc2 > zc, see Fig. 4.

Let us determine the value of ξ, denoted ξ = ξ2, at which zc(ξ) = zc2(ξ). Inserting z = zc(ξ) = − 2e
ξ2
4
ξ

into (G3) one gets two equations

ξpe−p
2

= −1 , p2 + pξ

2 = −1
2 (G6)

where here p should be set to p = pc2(ξ) given in (G5). Combining we obtain a closed equation for
pξ/2, i.e.

pξ

2 e
pξ
2 = −1

2e
−1/2 ⇒ ξpc2(ξ)

2 = W−1

(
− 1

2
√
e

)
(G7)

which using pc2(ξ) from (G5) and solving for ξ finally leads to ξ = ξ2 with

ξ2 = −2
√√√√ 2
−2W−1

(
− 1

2
√
e

)
− 1

W−1

(
− 1

2
√
e

)
' 3.13395 (G8)

Note that we have discarded the other solution ξpc2(ξ) = −1 of (G7) which does not provide a solution
for ξ2. Hence, we finally find that for ξ < ξ2 one has zc2 < zc and for ξ > ξ2 one has zc < zc2, see
Fig. 4. This will be important below.

2. Continuation and branches of Ψ(z) for 0 < ξ < ξ1

We now study the analytical continuations and various branches of Ψ(z). Let us first recall the expressions
of Ψ(z) and Ψ′(z) obtained in the text in (31) and (32) for ξ > 0

zΨ′(z) = −
∫
R

dq
2π

log(1− z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

, Ψ(z) = −−
∫
R

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

(G9)

The argument of the logarithm and polylogarithm is A(q) defined in (G1). The integrand has branch cuts
in the complex plane for q when A(q) ∈ R−, i.e. is real negative. In the previous subsection we found some
of the zeroes (those on the imaginary axis) from which the branch cuts originate. There are additional ones,
and the full picture for all ξ > 0 is shown schematically in Fig. 5 where the zeroes of A(q) are represented
by crosses and the branch cuts by red lines.

Here we examine the simplest case ξ < ξ1 =
√

8. Then one finds that for zc < z < 0 (top left in Fig. 5)
no branch cut crosses the real axis. This corresponds to the regime with a single positive zero p = p1 to
Eq. (37). In that regime the formula in (G9) are valid. This is the main branch.

For z 6 zc(ξ) = − 2e
ξ2
4
ξ the single zero p = p1 becomes negative hence the branch cut along the positive

imaginary axis intersects the real axis at q = 0. This is represented in Fig. 5 (top right). In the case however,
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i.e. for 0 < ξ < ξ1, it is always possible (i.e. for any z 6 zc) to deform the integration contour of q away
from the real axis to pass below the branch cut (as represented on the Figure). We call this new contour C.
This provides a natural analytical continuation to all real z. This leads to

zΨ′(z) =
∫
C

dq
2π

log(1− z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

= zΨ′0(z) + z∆′1(z) , zΨ′0(z) =
∫
R

dq
2π

log(1− z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

(G10)

In the second line we have split the integral into an integral over the real axis which passes right through
the branch cut, and a contribution denoted z∆′1(z) which represents the contribution of a contour around
the branch cut (taking into account the 2iπ discontinuity of the logarithm), which reads

z∆′1(z) =
∫ p1

0

dp
(p+ ξ/2)2 = 4p1

ξ(2p1 + ξ) (G11)

with p1 = p1(z, ξ). The first piece, zΨ′0(z) is by definition the integral over R computed "naively", that is
with a jump of the integrand when the argument of the logarithm crosses the negative real axis (which
occurs for q = 0) and in such a way that the invariance under the change of variable iq → −iq ensures that
the result is real (in other words one can e.g. replace

∫
R = 2<

∫
R−) and not worry about the branch cut.

We can repeat the same procedure for the formula for Ψ(z) itself in (G9), the branch cut of the Li2 function
being identical to the one of the logarithm with however a different value of the jump

Li2(t+ i0+)− Li2(t− i0+) = −2iπ log t (G12)
One obtains

Ψ(z) = −
∫
C

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

= Ψ0(z) + ∆1(z) , Ψ0(z) = −
∫
R

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

(G13)

with

∆1(z) = −
∫ p1

0

dp
(p+ ξ/2)2 log(−z(p+ ξ

2)ep
2− ξ

2
4 ) (G14)

= ∆̂(p1(z, ξ)) , ∆̂(p) = 1
ξ

[
−(ξ2 + 2)(log(ξ)− log(ξ + 2p)) + 2p(p− ξ)− 4p

ξ + 2p

]
(G15)

where we have defined a new function ∆̂(p) which will be useful below. To obtain this expression for ∆1(z)
one can either compute the contribution of the branch cut, as done above, or integrate the expression (G11)
over z. In the latter case one uses the following differential relation for p1 = p1(z)

dp1

dz = −1
z

p1 + ξ
2

1 + 2p1(p1 + ξ
2 )

(G16)

and write

∆1(z) = −
∫ zc

z

dz′
z′

4p1(z′)
ξ(2p1(z′) + ξ) =

∫ p1

0
dp2p

ξ

1 + 2p(p+ ξ
2 )

(p+ ξ
2 )2

(G17)

which also yields (G14), showing that the two methods agree.

The above formula are those used for the plots of Ψ′(z) in the main text for 0 < ξ < ξ1. We have checked
numerically that for large negative z → −∞, Ψ′(z)→ 1 since p1 → − ξ2 −

1
z + o(1/z). This gives confidence

that this is the correct solution.
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Figure 5. Schematic plots of the argument of the logarithm A(q) given in (G1) as a function of q in the complex plane
for ξ > 0 and z < 0. The crosses indicate the positions of the zeroes of A(q) and the red lines are the branch cuts.
Top Left. zc < z < 0 for all ξ > 0. No branch cut crosses the real axis. Top Right. z < zc for 0 < ξ < ξ1 =

√
8,

and zc2 < z < zc for ξ1 < ξ < ξ2. In that case one branch cut crosses the real axis. The integration contour in q
in (G9) can be deformed (dotted lines) to avoid the branch cut. Bottom Left. zc1 < z < zc2 for ξ1 < ξ. It is still
possible to avoid the branch cut. Bottom Right. ξ > ξ1 and z < zc1. In that case the branch cuts have met and
form a cross, and there is no way to deform the integration contour to avoid them.

Remark. We call Ψ(z) = Ψ0(z) + ∆1(z) for z < zc a new branch different from the main branch,
although in a sense they are the same branch by some choice of integration contour. The important point
here is the identification of the jump function ∆1(z) which, as we will see now, plays an important role to
determine the several other branches for ξ > ξ1.

Remark. The structure of branch cuts in the complex plane discussed here for ξ > 0 is already present
for ξ = 0, although in that case zc = −∞ (for ξ → 0+) so no analytic continuation is needed. There is
some interpretation of the corresponding zeroes of a(k) and ã(k) in terms of additional solitonic solutions of
the DNLS equation, as discussed in the main text. For z > zc these are presumably irrelevant for the large
deviations.
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3. Continuation and branches of Ψ(z) for ξ > ξ1

Let us consider now the case ξ > ξ1 =
√

8. First, for zc(ξ) < z < 0 it is still true that no branch cut crosses
the real axis. This is because the largest zero p1 is strictly positive hence the branch cut q ∈ [ip1,+i∞[ does
not cross the real axis. Thus the formula in (G9) are valid, and this is again the main branch.

Next, as discussed in a previous subsection, see Fig. 4, there is an interval of values of z, z ∈]zc1, zc2[,
where there are three real zeroes p1 > p2 > p3 to the equation A(ip) = 0. Then there are two sub-cases, for
ξ1 < ξ < ξ2 one has zc2 < zc, while for ξ2 < ξ one has zc < zc2.

In terms of branch cuts, as one can see in Fig. 5, one finds that for z < zc the branch cut q ∈ [ip1,+i∞[
crosses the real axis. However as long as z > zc1 there is a way to deform the contour of integration avoid
this branch cut. For z < zc1 something nasty happens, the upper and lower branch cuts meet and form a
cross see Fig. 5 (bottom right). The same happened for the KPZ equation, as discussed in the previous
section. In that case, it is not possible anymore to deform the integration contour to avoid these branch
cuts. We can now use the "jump" function ∆1(z) obtained in the previous section to propose the proper
analytical continuations and the ensuing new branches.

When z reaches zc1 the zeroes p1 and p2 annihilate (corresponding to the merging of the upper and lower
branch cuts) and for z < zc1 the only remaining zero is p3. Thus one would like to write

Ψ(z) = Ψ0(z) + ∆3(z) , ∆3(z) = ∆̂(p3(z)) (G18)

where ∆̂(p) was defined in (G15). This branch appears indeed in the Table I. However since
∆3(zc1) 6= ∆1(zc1) it is not a continuous extension of Ψ0(z) + ∆1(z). This means that there are
other branches that will allow a continuous extension. As we now discuss, they will be constructed by first
decreasing z from +∞ down to a turning point, increasing it up to a second turning point, and finally
decreasing it again down to −∞.

We will thus consider the point z = zc1 as the first turning point and start to follow the second zero
p2 = p2(z). One then proposes the continuous extension defined for z ∈]zc1, zc2[

Ψ(z) = Ψ0(z) + ∆2(z) , ∆2(z) = ∆̂(p2(z)) (G19)

It is a new branch and since Ψ0(z) + ∆1(z) also exists in the same interval z ∈]zc1, zc2[ the function Ψ(z) is
multi-valued in that interval.

When z reaches zc2 the zeroes p2 = p2(z) and p3 = p3(z) annihilate (corresponding to the disappearance
of the lower branch-cut as seen in Fig. 5 (top right)). We then again consider z = zc2 as a second turning
point and start following the third zero p3. The candidate for the next continuous extension is therefore

Ψ(z) = Ψ0(z) + ∆3(z) , ∆3(z) = ∆̂(p3(z)) (G20)

which is precisely the one in (G18).

This procedure is sufficient for ξ1 < ξ < ξ2 and leads the third column in the Table I. Using the two
turning points one thus obtains a continuous extension, which is multi-valued in the interval ]zc1, zc2[.

In the case ξ > ξ2 this however is insufficient. Indeed, there is a last feature of the branch cuts to take into
account. When z increases from zc1 to zc2 and then decreases from zc2 to −∞ it can cross the value z = zc
depending whether zc is in the interval [zc1, zc2]. This is the case when ξ > ξ2. When z crosses the value zc,
the branch point ip1 crosses the real axis, either descending from the upper half plane or ascending from the
lower half plane. We have observed for the first branch that crossing zc from above, i.e. z = zc+0+ → zc+0−
implies that the function Ψ0 is modified as

Ψ0 → Ψ0 + ∆1 (G21)
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Conversely, crossing zc from below, i.e. z = zc + 0− → zc + 0+ implies that the function Ψ0 should be
modified as

Ψ0 → Ψ0 −∆1 (G22)

To obtain the complete solution for ξ > ξ2 one then needs to take into account the coalescence of the zeroes
p1, p2, p3 shown in Fig. 4 and also the different crossing of z = zc independently. This leads to the fourth
column of Table I.

Remark. In all these formula Ψ0(z) denotes the integral (G13) along the real axis which may or may not
have a jump in the integrand depending on whether z < zc or z > zc.

Appendix H: Summary of the results: determination of Φ(H)

In this Section we summarize the exact results for the large-deviation rate function Φ(H) of the diffusion
in time-dependent random medium for arbitrary position of the tracer ξ > 0. The rate function Φ̂(Z) defined
in the text is simply obtained as Φ̂(Z) = Φ(logZ).

1. Exact expressions for all rate functions and critical values

Critical values of ξ. There are two critical values of the position of tracer denoted ξ1 and ξ2. Their
value is given as

ξ1 =
√

8 ' 2.82843

ξ2 = −2
√√√√ 2
−2W−1

(
− 1

2
√
e

)
− 1

W−1

(
− 1

2
√
e

)
' 3.13395 (H1)

where W−1 is the second real branch of the Lambert function [57].

1. For ξ > ξ1 there can be three real zeroes to Eq. (37) depending on z, whereas for ξ 6 ξ1 there is only
one real zero.

2. The value ξ2 is determined as the solution of zc(ξ) = zc2(ξ). For ξ > ξ2, we have the ordering
zc1 < zc < zc2.

Critical values of z. There are three critical values of the parameter z denoted zc, zc1 and zc2. Their
dependence on the tracer position ξ is given as

zc(ξ) = −2e ξ
2

4

ξ

zc1(ξ) = −1
2e

1
8

(
ξ
(
ξ+
√
ξ2−8

)
+4
) (

ξ −
√
ξ2 − 8

)
zc2(ξ) = −1

2e
1
8

(
ξ
(
ξ−
√
ξ2−8

)
+4
) (

ξ +
√
ξ2 − 8

)
(H2)

1. The quantities zc1, zc2 are real only for ξ > ξ1. They are determined by the value of p where the
function fz,ξ has two degenerate zeroes, i.e. fz,ξ(p) = f ′z,ξ(p) = 0

2. For z < zc, the largest real zero of fz,ξ(p) is negative whereas for z > zc it is positive.
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Critical values of the zeroes p.

pc = 0 (H3)

pc1 = −1
4

(
ξ −

√
ξ2 − 8

)
(H4)

pc2 = −1
4

(
ξ +

√
ξ2 − 8

)
(H5)

The rate function Φ(H). We obtain the rate function Φ(H) parametrically. In practice, its numerical
determination will be done by parts using all the different branches of Ψ(z). Since z(H) is single-valued, this
procedure allows to obtain Φ(H) in the whole range ]−∞, 0]. We provide in the following the representations
which were used for the numerical plots.

a. ξ = 0

The rate function, see Table II, reads

interval of H interval of z H = Φ(H) =

H ∈ R− z ∈ R log Ψ′0(z) Ψ0(z)− zΨ′0(z)

Table II. Case ξ = 0

26



b. 0 < ξ 6 ξ1

Defining the critical height Hc = log Ψ′0(zc), the rate function, see Table III, reads

interval of H interval of z H = Φ(H) =

H 6 Hc zc 6 z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

0 > H > Hc zc > z log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Table III. Case 0 < ξ 6 ξ1

c. ξ1 < ξ 6 ξ2

Defining the three critical heights
Hc = log Ψ′0(zc),
Hc1 = log(Ψ′0(zc1) + ∆′1(zc1)) = log(Ψ′0(zc1) + ∆′2(zc1)),
Hc2 = log(Ψ′0(zc2) + ∆′2(zc2)) = log(Ψ′0(zc2) + ∆′3(zc2)),

(H6)

the rate function, see Table IV, reads

interval of H interval of z H = Φ(H) =

H 6 Hc zc 6 z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

Hc < H 6 Hc1 zc1 6 z < zc log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Hc1 < H 6 Hc2 zc1 < z 6 zc2 log(Ψ′0(z) + ∆′2(z)) Ψ0(z) + ∆2(z)− z(Ψ′0(z) + ∆′2(z))

Hc2 < H < 0 zc2 > z log(Ψ′0(z) + ∆′3(z)) Ψ0(z) + ∆3(z)− z(Ψ′0(z) + ∆′3(z))

Table IV. Case ξ1 < ξ 6 ξ2

It is important to note that the expressions for H and for Φ(H) as a function of z in the second and third
line of the above table merge continuously at H = Hc1 around the turning point at z = zc1. This can be
seen from (G11) and (G17) as the jumps ∆j(z) = ∆̂(pj(z)), j = 1, 2 are the same function of the zeroes
pj(z), hence one has ∆1(zc1) = ∆2(zc1) as well as ∆′1(zc1) = ∆′2(zc1), since p1(z) = p2(z) at z = zc1. This
implies that as z decreases from +∞ down to the turning point zc1 and then increases again from zc1 , the
function H = H(z) smoothly increases, and Φ(H) is a smooth function of H around Hc1. These features
can be seen in Fig. 1b in the text. The same holds for each turning point, and is also valid for the table in
the next section.
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d. ξ2 < ξ

Defining the five critical heights
Hc = log Ψ′0(zc)

Hc10 = log(Ψ′0(zc1) + ∆′1(zc1)),
Hc11 = log(Ψ′0(zc) + ∆′2(zc)),
Hc20 = log(Ψ′0(zc2) + ∆′2(zc2)−∆′1(zc2)),
Hc21 = log(Ψ′0(zc) + ∆′3(zc)),

(H7)

the rate function, see Table V, reads

interval of H interval of z H = Φ(H) =

H 6 Hc zc 6 z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

Hc < H 6 Hc10 zc1 6 z < zc log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Hc10 < H 6 Hc11 zc1 < z 6 zc log(Ψ′0(z) + ∆′2(z)) Ψ0(z) + ∆2(z)− z(Ψ′0(z) + ∆′2(z))

Hc11 < H 6 Hc20 zc < z 6 zc2 log(Ψ′0(z) + ∆′2(z)−∆′1(z)) Ψ0(z) + ∆2(z)−∆1(z)− z(Ψ′0(z) + ∆′2(z)−∆′1(z))

Hc20 < H 6 Hc21 zc 6 z < zc2 log(Ψ′0(z) + ∆′3(z)−∆′1(z)) Ψ0(z) + ∆3(z)−∆1(z)− z(Ψ′0(z) + ∆′3(z)−∆′1(z))

Hc21 < H < 0 zc > z log(Ψ′0(z) + ∆′3(z)) Ψ0(z) + ∆3(z)− z(Ψ′0(z) + ∆′3(z))

Table V. Case ξ2 < ξ

Optimal rate function Ψ(z) As discussed in the text the "optimal" Ψ(z) follows by definition the
minimum of the different branches of Ψ(z) that we have found. For ξ < ξ1 there is no multi-valuation of
Ψ(z) hence Ψ(z) follows continuously the two branches z > zc and z < zc. For ξ > ξ1 there is multi-valuation
of Ψ(z) for z ∈]zc1, zc2[ leading to a discontinuity, i.e. a jump of Ψ(z) The value of z for which Ψ(z) jumps
from a branch to the next (see inset of Fig. 1a) is given by z∗ solution of

∆1(z∗) = ∆3(z∗) (H8)
This value is located between zc1 and zc2. We provide in the next two Tables VI the value of the optimal
Legendre solution. Note that the jump in the value of Z is always ∆′3(z∗)−∆′1(z∗) (jumps between the two
maxima of the tilted measure for Z as discussed in the text).
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interval of z "optimal" Ψ(z) =

zc 6 z Ψ0(z)

z∗ 6 z < zc Ψ0(z) + ∆1(z)

z∗ > z Ψ0(z) + ∆3(z)

interval of z "optimal" Ψ(z) =

z∗ 6 z Ψ0(z)

zc 6 z < z∗ Ψ0(z) + ∆3(z)−∆1(z)

zc > z Ψ0(z) + ∆3(z)

Table VI. (Left) Case ξ1 < ξ 6 ξ2. In the inversion of the Legendre-Fenchel transform, Z jumps from Ψ′0(z∗)+∆′1(z∗)
to Ψ′0(z∗) + ∆′3(z∗). (Right) Case ξ2 < ξ (assuming zc < z∗). In the inversion of the Legendre-Fenchel transform,
Z jumps from Ψ′0(z∗) to Ψ′0(z∗) + ∆′3(z∗) − ∆′1(z∗). Note that zc > z∗ would lead to a jump between the second
branch and the last branch with the same jump criterion (H8).

2. Additional plots

In this Section we show the plot of Ψ(z) versus z, as well as the plot of Φ(H(z)) versus z, see Fig. 6.

Figure 6. Plots for various values of ξ = 0, 1, 2, 3, 4, 5. (Left) Large deviation rate function Φ(H(z)) as a function
of z using the definition (35). The function is symmetric for ξ = 0 and becomes asymmetric for non-zero values of
ξ. It satisfies the symmetry Φ(H(z))|−ξ = Φ(H(−z))|ξ. (Right) Large deviation rate function Ψ(z). The minimum
branch of Ψ(z) defines the "optimal" solution to the Legendre inversion of Eq. (8). For large negative values of z, the
function becomes almost linear, i.e. Ψ(z) ' z.

3. Result for ξ = 0 and correspondence with Ref. [40]

We provide in this Section a correspondence between the variables and functions studied in this work and
in the work [40] in the particular case ξ = 0. In that case g = 0. This is summarized in the Table VII.

Consider the formula (27) and (29) in [40]. Taken together they give

s(λ)− λj(λ) =
∫
R

dk
8πk2 Li2(−λ2k2e−2k2

) , λj(λ) =
∫
R

dk
4πk2 log(1 + λ2k2e−2k2

) (H9)

From the Table VII we should identify the first result as Ψ(z)− z/2 and the second as z/2− zΨ′(z). Using
the duplication formula for the dilogarithm

Li2(z) + Li2(−z) = 1
2Li2(z2) (H10)
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This present work Ref. [40]

z = βΛ −λ

βR v

Q u

Z = eH = Ψ′(z) j + 1
2

Φ(H) = Ψ(z)− zeH = Ψ(z)− zΨ′(z) s(j)

−z = e−HΦ′(H) λ = ds
dj

Table VII. Correspondence between the variables of this work and Ref. [40] for ξ = 0.

we indeed find agreement with our formula (32) and (31) with z = −λ and using Θ(ξ = 0) = 1/2 as discussed
in the text.

4. Cumulant expansion of Z and checks

From its definition (7) the function Ψ(z) encodes the cumulant expansion

Ψ(z) = −
∑
p>1

(−z)p
p! T

p−1
2 Z(Y, T )p (H11)

We will now check from perturbation theory that the lowest order matches our exact result. Since Z(Y, T )
is the cumulative probability (4), from (2) it satisfies the SDE

∂τZ(y, τ) = ∂2
yZ(y, τ)−

√
2η(y, τ)∂yZ(y, τ) (H12)

which we can call the derivative stochastic heat equation, with initial condition Z(y, τ = 0) = Θ(−y). We
rescale the space and time variables as y = x

√
T , τ = tT . Here we will abuse notations and use the same

letter to denote Z(y, τ) = Z(x, t). The original variable is recovered at the end. The rescaling yields the
dimensionless equation with small noise amplitude

∂tZ(x, t) = ∂2
xZ(x, t)−

√
2T−1/4η(x, t)∂xZ(x, t) (H13)

with initial condition Z(x, t = 0) = Θ(−x). Denoting G(x, t) = 1√
4πte

−x2/(4t) the free Green’s function, this
can also be written as

Z(x, t) = Z0(x, t)−
√

2
T 1/4

∫ t

0
du
∫
R

dx′G(x−x′, t−u)η(x′, u)∂x′Z(x′, u) , Z0(x, t) =
∫
R

dx′G(x−x′, t)Θ(−x′)
(H14)

1. For the first moment one recovers indeed

Z(Y, T ) = Z(x, 1) = Z0(x, 1) =
∫ +∞

x

dy G(y, 1) = 1
2Erfc(x2 ) = Ψ′(0) (H15)

2. To lowest order in T−1/2 one finds the second cumulant

Z(x, 1)2c = 2T−1/2
∫ 1

0
du
∫
R

dx′G(x− x′, 1− u)2(∂x′Z0(x′, u))2 +O(T−1) (H16)
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Using that ∂x′Z0(x′, u) = −G(x′, u) one finds the remarkably simple result

Z(Y, T )2c = Z(ξ, 1)2c = T−1/2 e
− ξ

2
2

4
√

2π
+O(T−1) (H17)

On the other hand one must have

− T 1/2Z(Y, T )2c = Ψ′′(0) = −1
2

∫
R

dq
2π e

−2q2− ξ
2

2 = − 1
4
√

2π
e−

ξ2
2 (H18)

since Ψ′′(0) is the coefficient of z2 in zΨ′(z).

This shows that our formula (32) for the large-deviation function Ψ(z) yields correctly the two lowest
cumulants, as stated in the text. These first two cumulants describe the typical fluctuations of Z(Y, T ) in
the diffusive scaling regime, Y '

√
T , a regime which was studied previously in the mathematical literature

[59, 60].

5. Cumulants of H

One can obtain the cumulants of H from the derivatives of the rate function Φ(H) (see e.g. in [58,
Sec. 4.2.5 of the Supp. Mat.]). Here they scale as Hqc ∼ T

1−q
2 . The typical value H = Htyp is determined

by Φ′(Htyp) = 0, which leads eHtyp = Ψ′(0) (see previous subsection) and the second cumulant reads

H2c = T−
1
2

Φ′′(Htyp) = −T− 1
2

Ψ′′(0)
Ψ′(0)2 = C2(ξ)T− 1

2 , C2(ξ) = 1√
2π
e−

ξ2
2

(
Erfc(ξ2)

)−2
(H19)

Indeed, one can relate the derivatives Φ(q)(Htyp) to those of Ψ(z) around z = 0 by differentiating the relations
Ψ′(z) = eH and Φ′(H) = −zeH . One obtains Φ′′(H) − Φ′(H) = − dz

dH e
H = − e2H

Ψ′′(z) . Taken at z = 0 and
H = Htyp they lead to (H19). One has the asymptotics at small and large ξ

C2(ξ) = 1√
2π

+
√

2
π
ξ +O(ξ2) , C2(ξ) =

√
π

2 (ξ
2

4 + 1) +O( 1
ξ2 ) (H20)

Appendix I: Convergence to the large deviations of the Kardar-Parisi-Zhang equation

1. Large ξ limit: matching MFT at large time T � 1 to WNT at small time TKPZ � 1

We ought to understand in this Section the behavior of our solution in the large ξ limit. In this regime,
one first needs to rescale the variable z as

z̃ = z
ξ

2e
− ξ

2
4 = − z

zc
. (I1)

Values of the main branch of the large-deviation function Ψ0(z). Recalling the definition of
Ψ0(z) in (32) for ξ > 0, approximating iq − ξ

2 ∼ −
ξ
2 and using the series expansion of the dilogarithm

Li2(y) =
∑
n>0 y

n/n2, we obtain that

Ψ0(z) ' − 1
( ξ2 )2

+∞∑
n=1

(−z̃)n
n2

∫
R

dq
2π e

−nq2

' 4
ξ2 ΨKPZ,0(z̃)

(I2)

To go from the first line to the second one, we performed the Gaussian integral and used the identity

ΨKPZ,0(z̃) = − 1√
4π

Li5/2(−z̃) (I3)
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Critical values of z. In the same way, we rescale the critical values of z as follows:

z̃c = −zc
zc
, z̃c1 = −zc1

zc
, z̃c2 = −zc2

zc
. (I4)

and take the ξ � 1 limit to obtain the limiting values

z̃c = −1, z̃c1 = −1 +O( 1
ξ2 ), z̃c2 = e1− ξ

2
4

(
1− ξ2

2 +O( 1
ξ2 )
)
. (I5)

Values of the zeroes p1, p2, p3. The equation (37) determining the position of the branch cut reads with
this variable

e−p
2

+ z̃(1 + 2p
ξ

) = 0 (I6)

At the first order at large ξ, the zeroes of this equation read

p1 '

√
log
(
zc
z

)
=
√
− log(−z̃)

p2 ' −

√
log
(
zc
z

)
= −

√
− log(−z̃)

p3 ' −
ξ

2 −
1
z

= −ξ2 −
ξ

2z̃ e
−ξ2/4

(I7)

To study only real zeroes imposes that z̃ ∈ [−1, 0].

Values of the derivative of the jump function. Recalling that the derivative of the jump function
(39) reads

z̃∂z̃∆` = 4p`
ξ(2p` + ξ) (I8)

It yields for the different zeroes

z̃∂z̃∆1 'ξ→∞
4
ξ2

√
− log(−z̃) ,

z̃∂z̃∆2 'ξ→∞ −
4
ξ2

√
− log(−z̃) ,

z̃∂z̃∆3 'ξ→∞ z = 2z̃
ξ
e
ξ2
4

(I9)

Discussion about which branches remain in the large ξ limit. Recalling the different branches of
the large-deviation function Ψ(z) in Table V, we now discuss how the different branches behave in the large
ξ limit. Since we have z̃c = z̃c1, the branches

Ψ(z) = Ψ0(z) + ∆1(z)
Ψ(z) = Ψ0(z) + ∆2(z) (I10)

disappear on the z̃ scale. We now explain that the next branch, i.e.
Ψ(z) = Ψ0(z) + ∆2(z)−∆1(z) (I11)

is the only one, besides the main branch, to remain on the z̃ scale. Indeed, looking at the derivative
z̃∂z̃Ψ(z) = z̃∂z̃Ψ0(z) + z̃∂z̃∆2(z)− z̃∂z̃∆1(z)

' 4
ξ2

(
z̃∂z̃ΨKPZ,0(z̃)− 2

√
− log(−z̃)

) (I12)

which has a jump function part identical to (F7). Hence that branch converges to the second branch of the
KPZ rate function, i.e. to ΨKPZ(z̃) = ΨKPZ,0(z̃) + ∆KPZ(z̃), as claimed in the text.
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Furthermore, as explained in the main text, the last two branches with ∆ = ∆3 − ∆1 and ∆ = ∆3
disappear in the region H ∼ 0 or equivalently Z ∼ 1, which correspond to HKPZ → +∞ see discussion
below.

2. Matching to the regime Y ∼ T 4/3

It was predicted in [16, 18], and proved in [20], that the sample-to-sample fluctuations of the probability
denoted here as Z(Y, T ) = eH(Y,T ) – defined in (3) – when seen in an atypical space time direction, are
related to those of the random height field hKPZ(x, t) = h(x, t) solution of the KPZ equation

∂th(x, t) = ∂2
xh(x, t) + (∂xh)2 +

√
2η(x, t) (I13)

with droplet initial condition eh(x,0) = δ(x), where η is a standard space-time white-noise. The relation
to the KPZ solution at finite time, hKPZ(0, t), holds when one scales Y ∼ T 3/4. The scaling studied here
Y ∼ T 1/2 thus corresponds to short KPZ time, while the scaling Y ∼ T corresponds to the limit of infinite
KPZ time, leading to the Tracy-Widom distribution [15].

Let us recall the result of [20, Section 3.2 Eq. (30)] established in the scaling regime Y ∼ T 3/4 (we consider
here Y > 0). Setting y = 0 and t = 2T there (to account for the different units) it translates into the equality
in law in the large T limit (for the diffusion (2))

logP
[
y(T ) > x̃(2T )3/4]+ 1

2 x̃
2(2T )1/2 + 1

4 log(2T )− log x̃ = hKPZ

(
0, x̃

4

2

)
(I14)

where x̃ = Y
(2T )3/4 . Hence denoting

TKPZ = Y 4

16T 3 (I15)

we have the equalities in law

H(Y, T ) = hKPZ (0, TKPZ)− Y 2

4T + log Y

2T ⇔ Z(Y, T ) = Y

2T e
−Y 2

4T ehKPZ(0,TKPZ) (I16)

valid a priori in the regime Y ∼ T 3/4. Let us now set Y = ξ
√
T , with ξ > 0. One gets

Z(Y, T ) = ξ

2
√
T
e−

ξ2
4 ehKPZ(0,TKPZ) , TKPZ = ξ4

16T (I17)

valid a priori in the regime ξ ∼ T 1/4. We now show that it holds beyond that, i.e. in the large deviation
regime where ξ is of order one but large, which is also the regime where the KPZ time is small, TKPZ � 1. To
compare with the known large deviation results for the KPZ equation at short time, it is useful to introduce

HKPZ := hKPZ(0, TKPZ) + log(
√
TKPZ) (I18)

These results read [46], given here in the form of [10, Eqs. (4) and (22)]

exp(−z̃ehKPZ(0,TKPZ)) = exp(− z̃√
TKPZ

eHKPZ) = exp
(
−ΨKPZ(z̃)√

TKPZ

)
(I19)

where ΨKPZ(z̃) = ΨKPZ,0(z̃) = − 1√
4πLi5/2(−z̃). While the l.h.s. exists a priori only for z̃ > 0 this formula

admits an analytic continuation, called the main branch, for z̃ ∈ [−1,+∞]. Already at this level we can
match with the results of the present study. Indeed here we obtained for the main branch for z > zc, see
Eqs (43) and (44) in the text

exp(−z
√
TZ) = exp

(
−
√
T

4
ξ2 ΨKPZ,0(z̃)

)
, z̃ = z

ξ

2e
−ξ2/4 (I20)

which is in perfect agreement with (I19) using the relations in (I17). Hence the large deviations in the
regime Y ∼ T 3/4 and the diffusive regime Y ∼

√
T match smoothly.
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Figure 7. Plot of z̃ = −z/zc as a function of HKPZ = H + ξ2

4 + log( ξ2 ) for several values of ξ = 4, 5, 6 as compared
with the asymptotic ξ = ∞ KPZ expression. All branches are represented. The convergence to KPZ is excellent.
The last two branches in Table I correspond to the sharp decrease to z̃ → −∞ and is pushed to HKPZ = +∞ as
ξ = +∞. It corresponds to events where Z ≈ 1 which become irrelevant in that limit.

As discussed in [10, 46] one obtains the rate function for the KPZ equation, ΦKPZ(HKPZ), upon Legendre
inversion in the parametric form

ΦKPZ(HKPZ) = ΨKPZ(z̃)− z̃eHKPZ , eHKPZ = Ψ′KPZ(z̃) (I21)
For the KPZ equation the main branch ΨKPZ,0(z̃) allows to obtain ΦKPZ(HKPZ) only for
HKPZ < HKPZ,c = log ζ(3/2)

4π which corresponds to the field at which z̃ = z̃(HKPZ) solution of (I21)
with ΨKPZ → ΨKPZ,0 reaches z̃ = −1. For HKPZ > HKPZ,c one needs to use the second branch
ΨKPZ → ΨKPZ,0 + ∆KPZ(z̃) and z̃(HKPZ) increases again from −1 to 0 as HKPZ → +∞.

As we have shown in the previous subsection in the limit ξ → +∞ one obtains the convergence

Ψ(z)→ 4
ξ2 ΨKPZ(z̃) (I22)

not just for the main branch, but for all the branches which survive in that limit. Thus we expect the
correspondence between the fields obtained upon Legendre transform

H(z) = log
(

dΨ
dz

)
'
ξ�1

log( 4
ξ2

dz̃
dz

dΨKPZ

dz̃ ) '
ξ�1
−ξ

2

4 − log(ξ2) +HKPZ(z̃) (I23)

The prediction is thus that using the results of the present work for ξ → +∞, one should have that
z̃ = −z/zc plotted versus HKPZ = H + ξ2

4 + log ξ
2 reaches a limit curve indentical to z̃(HKPZ) for the KPZ

equation. As one can see from (7) this is indeed the case.

Finally we can check that (I23) is indeed consistent with the correspondence discussed above from the
matching to the Y ∼ T 3/4 regime. Indeed, using (I18) and (I17) one has

HKPZ(z̃) = hKPZ(0, TKPZ) + log(
√
TKPZ)

= hKPZ(0, TKPZ)− log(
√
T ) + log(ξ2/4)

= H + ξ2

4 + log ξ2

(I24)

which is identical to (I23).
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In conclusion, inserting into the parametric representation of the Legendre transform one obtains for ξ � 1

Φ(H) ' 4
ξ2 ΦKPZ(HKPZ) , HKPZ = H + ξ2

4 + log ξ2 (I25)

as given in the text which means that one can identify the large deviations probabilities

P(H) ∼ exp
(
−
√
TΦ(H)

)
∼ exp

(
−Φ(HKPZ)√

TKPZ

)
∼ PKPZ(HKPZ) . (I26)

Appendix J: Large-time limit of the Fredholm determinant result for the sticky Brownian motion

In this section we start from the formula of [19] and study the diffusive limit where T and Y are large
with ξ = Y/

√
T fixed. This leads to a conjectural form for Ψ(z) which agrees with the one derived in the

text using inverse scattering. The manipulations in this Appendix are quite heuristic but they have the
merit to show that the algebraic structure which emerges from the Fredholm determinant is similar to the
one derived in the text from first principles by the inverse scattering method. We hope that it will help to
obtain in the future a more precise and rigorous derivation.

In [19] the quantity which corresponds to Z(Y, T ) was studied. It was denoted K0,t(0, [x,+∞[) and called
the kernel of the uniform Howitt-Warren flow [61]. The equivalence between the two objects, mathematically
very subtle, was discussed in [19, Remark 2.4], see also [62] and [63]. Note that the regime of typical
fluctuations of Z(Y, T ) was studied in [59] (see also [60]) and it was shown to have Edwards-Wilkinson type
of fluctuations with T 1/4 scaling.

Here, the quantity which we define as Z(Y, T ) obeys a backward Fokker-Planck equation. Indeed, from
the definition

Z(Y, τ) =
∫ +∞

Y

dy qη(y, τ) , qη(y, τ) = −∂yZ(y, τ) (J1)

one easily obtain upon integrating Eq. (2)
∂τZ(Y, τ) = ∂2

Y Z(Y, τ)−
√

2η(Y, τ)∂Y Z(Y, τ) (J2)
with initial condition Z(Y, τ = 0) = Θ(−Y ). This is equivalent to Ref. [19, Eq. (19)]. The correspondence
of notations is that the space and time variables there must be replaced by t → 2T and x = Y . Note that
in Ref. [19, Eq. (19)] the noise term is −

√
2η(y, T ) =

√
2√
λ
η̂(y, T ) where η̂ is standard space time white noise.

Hence below λ is set to unity.

The identity proved in [19, Theorem 1.11] reads for u non-negative
E[e−uZ(Y,T )] = Det(I −Ku)|L2(C) (J3)

where C is a positively-oriented circle with radius R and centered at R and

Ku(v, v′) = 1
2iπ

∫
1/2+iR

π

sin πsu
s g(v)
g(v + s)

ds
s+ v − v′

(J4)

The definition of g(v) is

g(v) = Γ(v)eaY ψ0(v)+bTψ1(v) (J5)

where ψ0,1 denote polygamma functions and a = λ and b = λ2. Here λ is set to unity.

We now use ζ = v + s as a variable, for which the integration contour can be chosen as 1/2 + 2R + iR –
see remark in [19, Proposition 2.3] – where we recall that C is the integration contour for v, v′. We factorize
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the kernel (J4) into the following form

Ku(v, v′) =
∫

1/2+2R+iR

dζ
2iπA(v, ζ)Ã(ζ, v′), (J6)

A(v, ζ) = πuζ−v

sin(π(ζ − v))
g(v)
g(ζ) , Ã(ζ, v′) = 1

ζ − v′
. (J7)

We now use the identity

π

sin(πs)u
s =

∫
R

dr u

u+ e−r
e−sr (J8)

which, inserted into (J7), allows to factorize the kernel A as

A(v, ζ) =
∫
R

dr u

u+ e−r
e−(ζ−v)r g(v)

g(ζ) =
∫
R

drσ(r)A1(v, r)A2(r, ζ) = (A1σA2)(v, ζ) (J9)

where the kernels A1, A2 and the function σ read

A1(v, r) = g(v)evr, A2(r, ζ) = e−ζr

g(ζ) , σ(r) = u

u+ e−r
. (J10)

Hence using Sylvester’s identity
Det(I −Ku)|L2(C) = Det(I −AÃ)

= Det(I −A1σA2Ã)
= Det(I − σA2ÃA1)|L2(R)

(J11)

This last Fredholm determinant has the typical structure for which the first cumulant method, developed
in [48–50] to study the relevant asymptotics (here large T ), applies. Defining a determinantal point process
{a`}`∈N associated to the kernel A2ÃA1, the following identity holds

Det(I − σA2ÃA1) = E

 ∞∏
`=1

(1− σ(a`))

 = E

 ∞∏
`=1

e−ϕ(a`)

 (J12)

where e−ϕ = 1 − σ. The first cumulant approximation asserts [48, Section 6] that as some parameter goes
to infinity (here it will be T , see below), we expect the point process to self-average, i.e.

E

 ∞∏
`=1

e−ϕ(a`)

 ∼ e−E[ϕ(a)] = e−Tr(ϕA2ÃA1) (J13)

If the first cumulant method works, we aim to have under the right scaling

Det(I −Ku)|L2(C) ∼ exp
[
−Tr(ϕA2ÃA1)

]
(J14)

The explicit expression of the kernel A2ÃA1 is obtained as

(A2ÃA1)(r, r′) =
∫

1/2+2R+iR

dζ
2iπ

∫
C

dv′
2iπ

g(v′)
g(ζ)

1
ζ − v′

er
′v′−rζ (J15)

taking into account that the measure on the variables v is dv
2iπ . Using that

ϕ(r) = log(1 + uer) = −Li1(−uer) (J16)
to apply the first cumulant method we need to calculate the following quantity which only involves the
diagonal part of the kernel A2ÃA1

Tr(ϕA2ÃA1) = −
∫
R

dr
∫

1/2+2R+iR

dζ
2iπ

∫
C

dv′
2iπLi1(−uer)g(v′)

g(ζ)
1

ζ − v′
er(v

′−ζ) (J17)

We recall that <(ζ − v′) > 0 by construction. We further proceed to an integration by part with respect to
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r to obtain

Tr(ϕA2ÃA1) = −
∫
R

dr
∫

1/2+2R+iR

dζ
2iπ

∫
C

dv′
2iπLi2(−uer)g(v′)erv′

g(ζ)erζ (J18)

The boundary terms of the integration by part are zero since er(1+v′−ζ) → 0 for r → −∞ and the
polylogarithms behave as Lis(er) ∼ rs at r → +∞.

At this stage we proceed to the large-time rescaling to the diffusive regime using the rescaled variables
{Y = ξ

√
T , v = w

√
T , ζ = ω

√
T , u = z

√
T} (J19)

We then rewrite (J17) as

Tr(ϕA2ÃA1) = −
∫
R

drLi2(−uer)I(r) = −
∫
R

drLi2(−zer)I(r − log
√
T ) (J20)

where we have shifted the variable r by − log
√
T , and defined

I(r − log
√
T ) =

∫
1/2+2R+iR

dζ
2iπ

∫
C

dv′
2iπ

g(v′)e(r−log(
√
T )))v′

g(ζ)e(r−log(
√
T ))ζ

=
∫

1/2+2R+iR

dζ
2iπ e

−(log g(ζ)+(r−log
√
T )ζ)

∫
C

dv
2iπ e

(log g(v)+(r−log
√
T )v)

(J21)

The large-time expansion of the function g(v) given in Eq. (J5) reads
log g(v) = aY ψ0(v) + bTψ1(v) + log Γ(v) (J22)

=
√
T
(
φ(w) + (w + aξ) log

√
T
)

+ χ(w)− 1
2 log(

√
T ) + o(T )

where we defined

φ(w) = b

w
− w + (w + aξ) log(w) , χ(w) = b

2w2 −
aξ

2w + 1
2 log(2πw) (J23)

At this stage we will choose the radius of the circle C conveniently to be equal to R = T/Y so that its
mapping under the large-T limit is a circle C ′ of radius 1/ξ centered at 1/ξ (we assume here and below that
ξ > 0). Upon the change of variable (J19) in the large T limit, inserting (J22) into (J21) and noting that
constant terms cancel from the two integrals we obtain

I(r − log
√
T ) ' T

∫
2/ξ+0++iR

dω
2iπ e

−
√
T (φ(ω)+rω)−χ(ω)

∫
C′

dw
2iπ e

√
T (φ(w)+rw)+χ(w) (J24)

In the large-T limit these integrals are dominated by saddle points. The saddle point equations read

φ′(w) = − 1
w2 + ξ

w
+ log(w) = −r (J25)

and the same for ω. Since w is on the circle C ′ we can parameterize it in the following way
1
w

= −iq + ξ

2 , q ∈ R (J26)

The saddle point equation becomes

er = (−iq + ξ

2)e−q
2− ξ

2
4 (J27)

which is very reminiscent of Eq. (37). To make this saddle point easily attainable, one way is to deform the
integration contour of r which is not R anymore but the image of (J27) as q varies on the real axis, which
we call γ. We will assume that this is possible. This is a closed curve for er, touching the real axis at values
er = 0 and er = ξ

2e
− ξ

2
4 . The solution of (J26) and (J27) defines a function w(r) so that the saddle point

evaluation of (J24) gives

I(r − log
√
T ) ' −

√
T

2iπ
1

φ′′(w(r)) (J28)
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where we have also assumed that the integration contour of ω could be deformed to be folded around C ′.
This ensures that the dominant exponential at the saddle point cancel.

To summarize, the first cumulant (J20) of the Fredholm determinant reads in the large T -limit

Tr(ϕA2ÃA1) =
√
T

2iπ

∫
γ

dr Li2(−zer) 1
φ′′(w(r)) (J29)

We will now perform the change of variable (J27). Using the saddle point equation φ′(w(r)) = −r we obtain
upon derivation the Jacobian of this change of variable

φ′′(w(r))dw(r)
dq

dq
dr = −1, 1

φ′′(w(r))dr = −i dq
(iq − ξ

2 )2
(J30)

Inserting into (J29) we finally obtain

Ψ(z) = 1√
T

Tr(ϕA2ÃA1) = −
∫
R

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ

2
4 )

(iq − ξ
2 )2

(J31)

which is in agreement with Eq. (32) in the text.

Appendix K: Extension to the extremal diffusion beyond Einstein’s diffusion theory

In this section we study the position of the maximum of N walkers in the same random field (by sample
below we mean one given environment, i.e. random field). Previous works started with Ref. [15, 22] which
studied the Beta random walk and pointed out that for N � 1, and in the regime logN ∼ T , the position of
the maximum has sample to sample fluctuations given by the Tracy-Widom distribution. Another regime,
logN ∼

√
T , was obtained in [16] and [20] where these fluctuations are described by the solution of the

KPZ equation at finite time. Numerical simulations which confirm these regimes have been performed
recently [51]. Extending these arguments, our present work allows to study another regime, logN �

√
T ,

not studied previously.

Consider N independent particles in the same environment. One denotes YN (T ) = maxi Yi(T ) with
i = 1, . . . , N and ZN (Y, T ) = P(YN (T ) > Y ). One has the exact relation

1− ZN (Y, T ) = P(YN (T ) < Y ) = P(Y (T ) < Y )N = (1− Z(Y, T ))N (K1)
We focus below on the diffusive scaling Y ∼

√
T at large T , not considered previously in the discussion of

the extremal diffusion. We will thus denote yN (T ) = 1√
T
YN (T ). There are several observables of interest.

Large deviations of the CDF of the maximum. The first observable is ZN = P(yN (T ) > ξ), which
is simply the analog of Z for the maximum position of N particles. One can ask, for any finite N , what are
the large deviations of the PDF of ZN for T � 1. From the above simple relation (K1) one finds for

P(ZN ) ∼ exp
(
−
√
T Φ̂ξ

(
1− (1− ZN )1/N

))
(K2)

where the rate function Φ̂ξ(Z) is the one obtained in the present work (for N = 1). Here and below we
indicate explicitly the dependence in ξ of the rate functions.

Averaged CDF of the maximum. Another observable is the following average over the environment

P(yN (T ) < ξ) =
∫ 1

0
dZeN log(1−Z) ∼

∫ 1

0
dZeN log(1−Z)−

√
T Φ̂ξ(Z) (K3)

where in the last equation we have substituted the large deviation form. Note that considering instead of
the average moments of order q is equivalent to substitute n→ nq.
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There are several regimes depending on N . If N �
√
T then the second term dominates and implies that

Z ≈ Ztyp(ξ) so that

P(yN (T ) < ξ) ' eN log(1−Ztyp(ξ)) (K4)

and the result is identical as the CDF of the maximum position for N particles in the absence of random field.

If N = n
√
T � 1 with n = O(1) fixed, the two terms can balance each others and one finds that this

observable takes the large deviation form

P(yN (T ) < ξ) ∼ e−
√
TΣξ(n) , Σξ(n) = min

Z
(Φ̂ξ(Z)− n log(1− Z)) (K5)

with a rate function obtained from a non trivial variational formula. Here for a given ξ the value of Z
which realizes the optimum is different from Ztyp(ξ) and thus involves rare environments. Upon some simple
manipulations, recalling that Z = Ψ′(z) and Φ̂′(Z) = −z we obtain z = n

1−Z leading to the parametric
representation

Σξ(n) = Ψξ(z)− z + n− n log(n
z

) , z(1−Ψ′ξ(z)) = n (K6)

Note that the approximation N log(1 − Z) ' −NZ valid for Z = Ψ′ξ(z) � 1 would instead lead to z ' n

and Σξ(n) ' Ψξ(z). Although we leave this study to the future, it is quite likely that a phase transition
similar to the one of Ψ(z) for ξ > ξ1 for and for some values of z should also occur here. For n→ 0 one has
n ' z(1−Ψ′ξ(0)) = z(1− Ztyp(ξ)) and one recovers (K4). More precisely one has the expansion

Σξ(n) = −n log(1−Ψ′ξ(0)) +
Ψ′′ξ (0)n2

2(1−Ψ′ξ(0))2 +O(n3) , Ψ′ξ(0) = Ztyp(ξ) (K7)

Position of the maximum: typical behavior. One can ask about the position of the maximum and
its fluctuations. Let us introduce N i.i.d exponential random variables gi of PDF P (g) = e−gΘ(g), and call
GN = maxi gi − logN . At large N , GN → G a Gumbel random variable with P(G < g) = e−e

−g . For any
N one has P(G < g) = (1− 1

N e
−g)N . In a given environment one can write

P(YN (T ) < Y ) = eN log(1−Z(Y,T )) = Θ(GN + logN +H(Y, T ) < 0)GN (K8)
This formula is valid for any N and for large N one obtains the same formula with GN → G by approximating
eN log(1−Z) ' e−NZ . Note that GN and G in this formula are independent of H(Y, T ). As discussed below,
the approximation Z � 1 is also realized for any N with large probability when ξ = Y/

√
T is large. The

random position of the maximum YN (T ), in a given environment is then given by
GN + logN +H(Y, T ) < 0 ⇔ YN (T ) < Y (K9)

Note that GN + logN is a positive random variable. Since Z(Y, T ) and thus H(Y, T ) is a positive decreasing
function of Y in any sample, one may argue (by taking a derivative w.r.t. Y in (K8)) that (K9) is equivalent
to

GN + logN +H(YN (T ), T ) = 0 (K10)

This formula generalizes [20, Eq. (50)] to any N .

Until now this is exact. Let us again consider the diffusive scaling regime Y ∼
√
T at large T . In

a typical environment, one has H(Y, T ) ' Htyp(ξ) where ξ = Y/
√
T and Htyp(ξ) = log

(∫ +∞
ξ

e−x
2/4

√
4π

)
=

log( 1
2Erfc( ξ2 )) = − ξ

2

4 − log(
√
πξ)+O(ξ−1). Note that Htyp(ξ) varies from 0 for ξ → −∞ to −∞ for ξ → +∞.

Let us denote ytyp
N the scaled position of the maximum in a typical environment. At large T it reaches a

finite limit in distribution such that
GN + logN +Htyp(ytyp

N ) = 0 ⇔ ytyp
N = H−1

typ(−GN − logN) (K11)
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where H−1
typ(h) = ξ is the reciprocal function of Htyp(ξ) = h. This is correct for any N . The distribution of

ytyp
N is exactly the same as the one for the maximum of N Brownian motions at time t = 1, performing each
diffusion dBi(t)2 = 2dt, started at Bi(0) = 0 at t = 0, i.e. for the problem without the quenched random
field. For N � 1, using the asymptotics of Htyp(ξ) one finds the standard result

ytyp
N ' 2

√
logN +

G− 1
2 log(4π logN)
√

logN
+ . . . (K12)

We can now study the typical fluctuations from sample to sample. To lowest order one should take into
account the typical fluctuations of H(Y, T ), which are δH = O(T 1/4). The variance was obtained in (H19)
as H2c = C2(ξ)T−1/2, where the function C2(ξ) was given there. The position of the maximum is now
determined by

GN + logN +Htyp(yN ) +
√
C2(yN )T−1/4ω = 0 (K13)

where ω is a Gaussian random variable of unit variance. Inverting to leading order at large time we find (an
equation valid for any N)

yN = H−1
typ

(
−GN − logN −

√
C2(ytyp

N )T−1/4ω

)
+ o(T−1/4) (K14)

= ytyp
N −

√
C2(ytyp

N )
H ′typ(ytyp

N )
T−1/4ω + o(T−1/4) (K15)

If N � 1 one finds

yN = 2
√

logN +
G− 1

2 log(4π logN) +
√
C2(ytyp

N )T−1/4ω
√

logN
+ . . . (K16)

where we recall that the ω term represents the sample-to-sample fluctuations and the Gumbel variable G
the "thermal" fluctuations, the two random variables being uncorrelated.

We can compare this result with Ref. [20, Eqs. (57-58)] settingD = 1 and r0 = 2 there, which were obtained
whenN and T are large with the parameter g = logN√

T
kept fixed. The KPZ time there is TKPZ = g2 = (logN)2

T .
This agrees perfectly with the KPZ time in the present work TKPZ = ξ4/(16T ) where ξ ∼ yN ∼ 2

√
logN

from (K16). For the matching to [20, Eqs. (57-58)] to be perfect we need the variance of the KPZ height
field at very short time (i.e. in the Edward-Wilkinson regime for droplet initial condition) which is given by
[46]

h(0, TKPZ)2c ' CKPZ
2 T

1/2
KPZ , CKPZ

2 =
√

2
π

(K17)

One then easily checks that it exactly matches the amplitude of the fluctuating term ∼ ω in (K16) using
the large ξ behavior (H20), C2(ξ) ' ξ2

4

√
2
π .

To summarize, (K14) and (K16) extend the results of [20] about "typical" extremal diffusion to the
diffusive regime Y ∼

√
T . In that new regime logN �

√
T , i.e. T � (logN)2 and the fluctuations are of

the Edwards-Wilkinson type. If N is large, logN does not need to be very large. As (logN)2/T is increased
there is a perfect match to the predictions of [20] in the regime Y ∼ T 3/4 where the sample-to-sample
fluctuations are governed by the finite-time KPZ equation.

Remark. The two independent random contributions in (K16) can be separated by considering simul-
taneously the "quantile" as done in numerical simulations [51], that is, instead of yN (T ), xN (T ) = XN (T )√

T

defined by
∫ +∞
XN (T ) dyqη(y, T ) = 1

N in a given sample, or in other words

logH(XN (T ), T ) = − logN , Z(XN (T ), T ) = 1
N

(K18)
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Position of the maximum: large deviations. Finally, our results yield additional information about
the large deviations of extremal diffusion, i.e. for rare environments such that H − Htyp = O(1). In that
case if one heuristically replaces in (K10), H(YN (T ), T )→ Htyp(yN (T )) + (H −Htyp(ytyp

N )) one obtains

yN ' H−1
typ
(
−GN − logN − (H −Htyp)

)
(K19)

and for N � 1

yN ' 2
√

logN +
G− 1

2 log(4π logN) + (H −Htyp(ξ))
√

logN
+ . . . (K20)

with ξ = 2
√

logN , for rare environments which occur with probability ∼ exp(−
√
TΦξ(H)). Since ξ is large,

rewriting H = − ξ
2

4 − log ξ
2 +HKPZ, this is equivalent to extend the estimate of of [20] for the fluctuations of

the position of the maximum to the large deviations regime of the KPZ equation (with rare environments
occuring with probability ∼ exp(− 1√

TKPZ
ΦKPZ(HKPZ)) and with TKPZ = ξ4

16T = (logN)2

T � 1.

Appendix L: Extension to general quadratic models in the MFT: diffusion in random medium and
the symmetric simple exclusion process

One definition of the MFT is as the Langevin equation of a diffusive gas with particle density q(x, t) [64]
∂tq = ∂x[D(q)∂xq −

√
σ(q)ξ(x, t)] (L1)

where ξ(x, t) is a standard space-time white noise. The model solved in this present paper corresponds to
σ(q) = 2q2 and D(q) = 1. Averages of solutions of (L1) over the noise can be obtained from the dynamical
action S[q, p] =

∫∫
dxdt [p∂tq−H(q, p)] with Hamiltonian H(q, p) = −D(q)∂xq∂xp+ 1

2σ(q)(∂xp)2, and where
p(x, t) is the response field. At large time these averages can be obtained from the solutions to the saddle
point equations ∂tq = δH

δp and ∂tp = − δHδq , which admit the conservation law d
dtH(p, q) = 0.

We will focus below on a subclass of models within the MFT called quadratic models and show how the
work of this present paper is relevant to solve them.

1. Mapping of quadratic models in the MFT to the coupled DNLS system

Consider here the quadratic MFT models which have a noise variance parameterized as
σ(q) = 2Aq(B − q) (L2)

and a diffusion constant D(q) = 1. This class contains both the SEP and the present model of diffusion in
random medium. The MFT hydrodynamic equations (i.e. the saddle point equations) read

∂tq = ∂x[∂xq − 2Aq(B − q)∂xp]
∂tp = −∂2

xp−A(B − 2q)(∂xp)2 (L3)

We introduce the generalized derivative Cole-Hopf transform
R(x, t) = A∂xp(x, t)eABp(x,t), Q(x, t) = q(x, t)e−ABp(x,t) . (L4)

The variables {R,Q} then verify the coupled DNLS system (A7) with β = 1
∂tQ = ∂2

xQ+ 2∂x(Q2R)
−∂tR = ∂2

xR− 2∂x(QR2)
(L5)
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2. Gauge transformation between NLS and DNLS and relation with the non-local transformation
of [42]

Change of variable of Wadati and Sogo. Wadati and Sogo proved in 1982 [65] that the non-linear
Schrodinger equation and the derivative non-linear Schrodinger equation were gauge equivalent. Indeed,
consider the following systems in the conventions of [65], firstly the coupled NLS

iq1t + q1xx − 2r1q
2
1 = 0

ir1t − r1xx + 2r2
1q1 = 0

(L6)

and secondly the coupled DNLS
q2t − iq2xx − (r2q

2
2)x = 0

r2t + ir2xx − (r2
2q2)x = 0

(L7)

Wadati and Sogo showed that the following change of variables allows to map the coupled DNLS system to
the coupled NLS system.

q1 = q2

2 exp
(
− i
∫ x

−∞
r2q2

)
r1 = (−ir2x + r2

2q2/2) exp
(
i
∫ x

−∞
r2q2

) (L8)

To show the relation with the non-local transformation of [42], one needs to relate the conventions of Wadati
to the ones of this present work and of [42]. We first transform the time in (L6) and (L7) as t → it, and
choose

q1 = v, r1 = u

q2 = −2R, r2 = iQ
(L9)

We obtain that (L7) is the {R,Q} system with β = 1 (that is e.g. (11) with g = 0 or (A7)) and that (L6)
is the {P,Q} system with g = −1. This {P,Q} system is precisely the equations verified by the functions
{v, u} of [42] (with v = P and u = Q).

Now, considering the MFT for the SEP, we have shown in (L4) that the derivative Cole-Hopf transform
of the MFT variables verify the DNLS {R,Q} system. Performing the gauge transformation (L8) with our
new variables thus leads to

u = (Q2R+ ∂xQ) exp
(
2
∫ x

−∞
dy QR

)
v = −R exp

(
− 2

∫ x

−∞
dy QR

) (L10)

We can now go back to the variables q and p of the MFT using the generalized derivative Cole-Hopf transform
(L4), and we obtain

u =
(
−Aq(B − q)∂xp+ ∂xq

)
exp

(
−
∫ x

−∞
dy A(B − 2q)∂yp

)
(L11)

v = −A∂xp exp
(∫ x

−∞
dy A(B − 2q)∂yp

)
(L12)

which is valid for any quadratic theory. This recovers the "generalized Cole-Hopf equations" obtained very
recently in [42, Eqs. (10)–(11)] (which use the notations H = p and % = q). Note however the missing the
factor A in the second equation in that work.
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3. Stationary measure

The stochastic equation (L1) admits generically a family of stationary measures. For instance if one
fixes the boundary conditions as q(0) = q(L) = %, and if the problem is taken on a finite-size interval, the
stationary measure is [2, 26, 64, 66]

Peq({q(x)}) ∼ e−
∫ L

0
dx(f(q(x))−f(%)−(q(x)−%)f ′(%)) (L13)

where f ′′(q) = 2D(q)
σ(q) . The linear term is determined so that the maximum probability is for q = %.

Consider the model of diffusion in a random environment studied here in Eq. (2), with a more general
amplitude for the noise. In that case one has D(q) = 1 and σ(q) = 2αq2, hence f ′′(q) = 1/(αq2). This leads
to f(q) = − 1

α log q + kq + c, and to the stationary measure

Peq({q(x)}) ∝ e−
1
α

∫ L
0

dx
(
− log(q(x)/%)+ q−%

% )
)

(L14)
Remark. The stationary measure (L14) is the analog in the continuum of a discrete measure on a lattice

defined as a product of independent Gamma variables at each site, i.e.
∏
x wx, with PDF p(w) ∝ wγ−1e−w.

Indeed that measure appeared as a stationary measure in the Beta polymer problem. The fact that its one
point distribution is a Gamma variable was found in [18], and recently proved for the continuum model in
[62, Prop. 5.4]. The fact that it is a product measure of Gamma variables was conjectured recently in [67,
discussion below Conjecture 1.14]. For the more general quadratic model parametrized as (L2), in particular
for the SEP, the corresponding discrete stationary measures are instead factorized Bernoulli.

Remark. From a mathematical standpoint the precise meaning of (L13) is non trivial, more generally
the continuum analog of a discrete i.i.d process is subtle [68] and some exotic noises appear in related
Howitt-Warren stochastic flows [69].

Remark. For the diffusion model, one has B = 0 in (L2). Hence R = A∂xp and Q = q satisfy the DNLS
system with β = 1. By choosing here A = −α one can vary the exponent γ of the local Gamma distribution
to any value in the stationary measure.

4. Extension of [42] to quadratic MFT models with annealed initial condition and tracer away from
the origin

Let us consider a model within the MFT where the noise variance is parametrized as (L2). We study here
the annealed case where the initial condition of the hydrodynamic equations (L3) is fluctuating according
to the stationary measure of the MFT [2, 35, 36]. We choose the initial condition as a local equilibrium
configuration with two different densities on the positive and negative axis

P(q(x, 0)) ∼ e−
√
TF(q(x,0)), F(q(x, 0)) =

∫
R

dx
∫ q(x,0)

q̄(x)
dz 2D(z)

σ(z) (q(x, 0)− z) (L15)

with q̃(x) = q−Θ(−x) + q+Θ(x) is the step density profile.

We will be interested in the position Xt of a tracer initially located at position X0 = 0 and at final position
X1 = ξ. Its position at any time is defined as∫ Xt

0
dx q(x, t) =

∫ ∞
0

dx (q(x, t)− q(x, 0)) (L16)

If we focus on the generating function of X1 or the current at the right of X1, i.e. Z(ξ) =
∫∞
ξ

dx (q(x, 1)−
q(x, 0)), then it was shown [26, 35, 36] that the mixed-time boundary conditions of the hydrodynamic system
(L2) read

p(x, 1) = λΘ(x− ξ) (L17)
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p(x, 0) = λΘ(x) +
∫ q(x,0)

q̄(x)
dr 2D(r)

σ(r) (L18)

for some constant λ. Using the gauge transformation (L12) along with the same manipulations as the ones
in [42, below Eqs. (14)-(15)] allows to transform these boundary conditions for {p, q} into simple boundary
conditions for {u, v}

u(x, 0) = ω

K
δ(x) , v(x, 1) = Kδ(x− ξ) . (L19)

for some constant K to be determined as in [42]. These boundary conditions have an asymmetry due to the
presence of ξ that we can cancel using the same boost transformation as in (A10)

U(x, t) = u(x− vt, t)e− 1
2xv+ v2

4 t , V (x, t) = v(x− vt, t)e 1
2xv−

v2
4 t , (L20)

Note that this boost leaves the coupled NLS system (L6) invariant. We choose v = −ξ so that

U(x, t) = u(x+ ξt, t)e 1
2xξ+

ξ2
4 t , V (x, t) = v(x+ ξt, t)e− 1

2xξ−
ξ2
4 t , (L21)

which yields for boundary conditions

U(x, 0) = ω

K
δ(x) , V (x, 1) = Ke−

ξ2
4 δ(x) . (L22)

One can then proceed as in this work to complete the scattering analysis and solve the large-deviation
problem.

5. Discussion on the quench and annealed initial conditions

The quadratic models of MFT have been investigated through the spectrum of classical integrability in
three works and two contexts of initial conditions:

• Reference [42] considered the SEP with an initial condition in the annealed class and solved the
problem through the mapping to the coupled NLS {P,Q} system and the use of its scattering theory.
The remarkable feature of that work is that the annealed initial condition for the SEP admits a simple
quenched δ, δ mixed-time boundary conditions interpretation in the coupled NLS {P,Q} system.

• The present work as well as Ref. [40] considered the diffusion in random media, equivalent to the KMP
model, with a quenched initial condition and solved the problem using the scattering theory of the
coupled DNLS {R,Q} system.

At this stage, the observation is that depending on whether the quench or annealed initial condition is
considered, a specific integrable model might be more suited to obtain the exact solution of the problem. Since
other gauge transformations between integrable models have been proposed in [65], it would be interesting
to investigate whether mappings to other integrable models would allow to answer new questions.
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