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Sperm cells perform extremely demanding tasks with minimal capabilities. The cells must quickly
navigate in a noisy environment to find an egg within a short time window for successful fertilization
without any global positioning information. Many research efforts have been dedicated to derive
mathematical principles that explain their superb navigation strategy. Here we show that the
navigation strategy of sea urchin sperm, also known as helical klinotaxis, is a natural implementation
of a well-established adaptive control paradigm known as extremum seeking. This bridge between
control theory and the biology of taxis in microorganisms is expected to deepen our understanding of
the process. For example, the formulation leads to a coarse-grained model of the signaling pathway
that offers new insights on the peculiar switching-like behavior between high and low gain steering
modes observed in sea urchin sperm. Moreover, it may guide engineers in developing bio-inspired
miniaturized robots with minimal sensors.

I. INTRODUCTION

Source seeking, a well-studied topic in the control com-
munity [1], is the problem of locating an object that emits
a scalar measurable signal (e.g. chemical concentration,
sound, heat, etc.), typically without global positioning
information. Many organisms are routinely faced with
the source seeking problem. A well studied example is
that of sperm chemotaxis [2, 3]. To locate an egg in open
water, sea urchin sperm evolved to swim up the gradi-
ent of the concentration field established by the diffusion
of a species-specific chemoattractant, a sperm-activating
peptide (SAP), secreted by the eggs [3]. Unlike the in-
herently stochastic bacterial chemotaxis, the navigation
strategy of sea urchin sperm can be reasonably described
in a deterministic fashion; the cells employ the mean cur-
vature of the flagellum, regulated by intracellular Ca2+,
as a steering mechanism to swim in circular paths that
drift in the direction of the gradient in 2D, and in helical
paths that align with the gradient in 3D [2, 4–6]. This
feedback mechanism is mediated by a complex signaling
pathway that regulates the influx and efflux of Ca2+ in
the cell [7, 8].

In this letter, we revisit sperm chemotaxis from the
perspective of control theory. We frame the search for the
egg as a source seeking problem, then we show that the
3D navigation strategy of sea urchin sperm, also known
as helical klinotaxis, is in fact a natural implementation
of a well established adaptive control paradigm known
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as extremum seeking [1, 9, 10]. We illustrate this novel
connection by establishing a one-to-one correspondence
between the key components of the navigation strategy
of sea urchin sperm cells and the hallmark features of an
extremum seeking solution to the source seeking problem.
Based on this formulation, we propose a coarse-grained
minimal dynamical description that captures the crucial
features of the chemotactic signaling pathway, including
the peculiar behavior of sea urchin sperm cells where they
seem to switch between two distinct navigation modes: i)
the ‘on-response’ which is a low-gain steering mode when
the average velocity vector of the cell is mostly aligned
with the gradient, and ii) the ‘off-response’ which is a
high-gain steering mode otherwise [6]. Previous models
employed a threshold-based switching logic to account for
this behavior [6]. The threshold defining the discontinu-
ous switching boundary was later determined as the solu-
tion to an optimal decision problem [11]. Here, we show
that the behavior can arise from a continuous dynamical
description in a simpler way: it arises as a consequence of
the motion pattern and a time-scale separation between
the proposed dynamics of the signaling pathway and the
average motion. In particular, the proposed model does
not exploit any information other than the perceived in-
stantaneous local concentration.

II. A PRIMER ON EXTREMUM SEEKING

We begin with a brief exposition of Extremum Seek-
ing (ES) control. ES is an adaptive control technique de-
signed to steer a dynamical system towards the extremum
of an objective function that depends on the state of the
system, without access to information about the gradient



2

of the function (only the value of the objective function is
available for measurement at each instant in time). The
first ES control law can be traced back to the century old
paper due to Leblanc [12], but the recent interest in ES
control was sparked by Krstić’s seminal paper [13]. In the
simplest setting, an ES controller is designed to find the
optimal value of a single-variable static objective function
by dynamically estimating the gradient. Let c(x) be the
objective function, and consider the following dynamical
system [14]:

x = x̄+ a sin(ωt), ˙̄x = 2 ζ k sin(ωt), (1a)

ζ̇1 = ω (ζ2 − ζ1), ζ̇2 = ω (c(x)− ζ2), ζ = ζ2 − ζ1, (1b)

which is depicted in the block diagram [15] presented in
Fig.1, where x̄ is the estimate of the optimal value of
the independent variable x, ζ1 and ζ2 are the states of a
band-pass filter centered around the constant frequency
ω, and k, a are tuning parameters. The flow of the block
diagram in Fig.1 can be traced as follows. First, a si-
nusoidal perturbation is injected to sample the objective
function near the estimate x̄. Using Taylor expansion,
the instantaneous cost can be written as:

c(x) = c(x̄) +
dc(x̄)

dx̄
a sin(ωt) +O(a2). (2)

We observe how the gradient appears as the amplitude
of the sinusoidal perturbation. In engineering terms, in-
jecting the perturbation around the current estimate x̄
‘modulates’ the local gradient information on the am-
plitude of the sinusoidal ‘carrier’ signal sin(ωt). There-
fore, to extract the gradient information, the measured
objective function c(x) goes through a band-pass filter
centered around the frequency ω as defined by equation
(1b). The output of the filter ζ can be approximated in
the quasi-steady sense by:

2ζ ≈ 2ζQS =
dc(x̄)

dx̄
a sin(ωt), (3)

Next, the gradient information is ‘demodulated’ (i.e., ex-
tracted from the carrier signal) through multiplication
with another sinusoid having the same frequency and
phase as the carrier signal:

2 ζ k sin(ωt) =
a k

2

dc(x̄)

dx̄
(1− cos(2ωt)), (4)

where the time-average of the right hand side of equa-
tion (4) is proportional to the gradient. Finally, the de-
modulated gradient information is used in adjusting the
current estimate x̄. Through a simple averaging argu-
ment, we obtain that the estimate x̄ evolves on average
according to:

˙̄x ≈ 2 ζQS k sin(ω t) =
a k

2

dc(x̄)

dx̄
, (5)

where the overline indicates the time average of the
overlined quantity. That is, the estimate x̄ evolves, in

PerturbationIntegrationDemodulation

FIG. 1. A block diagram description of the simplest extremum
seeking control scheme as represented by equations (1).

a quasi-steady average sense, along the gradient of the
objective function under the extremum seeking control
law (1). The interested reader is referred to [13, 14, 16]
for more details.

III. MODELING THE SPERM MOTION

We now turn our attention to the motion of the sperm
cell. Swimming in a low Reynolds number is dominated
by viscous forces, which enables the use of kinematic
models as a good approximation to the motion of micro-
swimmers, including sperm cells [17]. The kinematics of
a rigid body are given by:

ẋ = Rv, Ṙ = Rω̂, (6)

where the vectors v and ω are the linear and angular
velocity vectors in the body frame, ω̂ denotes the skew-
symmetric matrix corresponding to the angular velocity
vector ω, x is the instantaneous position of the body with
respect to the origin of a fixed frame of reference, and
R is the instantaneous rotation matrix that relates the
body frame to the fixed frame. In sea urchin sperm, the
mean curvature of the flagellar beating pattern, which is
regulated by the chemotactic signaling pathway, controls
the angular velocities in the body frame [3, 4]. A common
model of the effect of the chemotactic signaling pathway
on the swimming kinematics of sea urchin sperm is given
by the relations:

v =
[
v 0 0

]ᵀ
, ω =

[
ω‖ 0 ω⊥

]ᵀ
, (7)

where v > 0 is constant, and the angular velocity com-
ponents ω‖ and ω⊥ are given by:

ω‖ = ω‖0 + ω‖1η, ω⊥ = ω⊥0 + ω⊥1η, (8)

with ω⊥0, ω⊥1, ω‖0, ω‖1 as constant coefficients, and η is
a dynamic feedback term representing the effect of the
signaling pathway [2, 6, 18].
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FIG. 2. The geometry of helical swimming. A: the helical na-
ture of the trajectory suggests decomposing the motion (x,R)
into an average part along the helical centerline (x̄, R̄) and a
periodic excursion R̄d(t) that is orthogonal to the centerline.
B: the direction of the gradient ∇̌c can be decomposed into
two parts, one along the helical centerline h̄ (denoted as ∇̌‖c),
and another orthogonal to it (denoted as ∇̌⊥c) which is con-
tained in the same plane as the direction q̄(t) of the periodic
excursion R̄d(t).

IV. AN EXTREMUM SEEKING LOOP

The constant forward velocity v > 0, along with the
constant angular velocity components ω‖0 and ω⊥0, lead
to a periodic swimming pattern, a helical trajectory. The
sign of ω‖0 and ω⊥0 determine the handedness of the he-
lical trajectory. For simplicity, we consider the case in
which both ω‖0 and ω⊥0 are positive. The geometry of
helical swimming (see Fig.2A) suggests decomposing the
motion into an average part and an oscillatory part. We
define the average instantaneous position x̄ and orienta-
tion R̄ of the cell as:

R0(t) = exp
(
ω̂0t
)
, R̄ = RR0(t)ᵀ, (9a)

x̄ = x− R̄d(t), (9b)

where the vector ω0 is given by:

ω0 =
[
ω‖0 0 ω⊥0

]ᵀ
(10)

and the vector d(t) is the perturbation in the position
due to the helical swimming pattern, and is defined by:

vm = R0(t)v, d(t) =

ˆ
(R0(t)v− vm) dt. (11)

In particular, the periodic perturbation vector d(t) and
the average velocity vector vm are orthogonal. The evo-
lution of the average motion variables x̄ and R̄ is gov-
erned by the following system of differential equations
with periodic coefficients:

˙̄x = R̄vη(t)η + R̄vm, vη(t) = d(t)× ωη(t), (12a)

˙̄R = R̄ω̂η(t)η, ωη(t) = R0(t)ω1, (12b)

where the vector ω1 is given by:

ω1 =
[
ω‖1 0 ω⊥1

]ᵀ
. (13)

Under the assumption that |d(t)| � 1, the instantaneous
local concentration c(x) can be approximated as a Taylor

series in terms of the average motion variables x̄ and R̄
using equation (9b):

c(x) ≈ c(x̄) +∇c(x̄)ᵀR̄d(t). (14)

Clearly, the helical swimming pattern modulates the
local gradient information on the amplitude of the
perturbation R̄d(t), similar to the perturbation stage
of the ES control loop. The amplitude of the periodic
component ∇c(x̄)ᵀR̄d(t) of the instantaneous local
concentration (14) is proportional to the component
of the local gradient that is orthogonal to the average
swimming direction as defined by R̄vm.

It is well known that microorganisms that swim in
helical trajectories, including sea urchin sperm, can align
the axis of their helical trajectory with the gradient
by periodically varying the angular velocities of the
cell with the same frequency of the helical trajectory
[4, 18]. That is, a sperm cell can align its swimming
direction with the gradient provided that the signaling
pathway is able to extract the periodic component of the
instantaneous local concentration, similar to the role of
the filter in the ES control loop. This implication about
the role of the signaling pathway is one of the main
outcomes of the connection between chemotaxis and ES,
as proposed in this paper.

Going back to the governing equations of the kine-
matics (12), we see that the feedback signal η multiplies
the periodic feedback coefficients vη(t) and ωη(t).
Consequently, the local gradient information carried on
the periodic component in the signal η is ‘demodulated’
into the non-zero average component of the product
signals ωη(t) η and vη(t) η, similar to the demodulation
stage of the ES control loop.

Finally, the demodulated local gradient information
passes through the kinematics of the motion represented
by equations (12), which is responsible for biasing the
motion in the direction of the gradient. The closed-loop
behavior of the nonholonomic integrator defined by
the kinematics is investigated in the next section. A
block diagram description of the dynamical equations
(12) representing the navigation strategy of sea urchin
sperm is shown in Fig.3, where the special integration
symbol

ffl
denotes the nonholonomic kinematic integrator

corresponding to the equations (12). The isomorphism
between the block diagrams in Fig.1 and Fig.3 clearly
reveals the connection between sperm chemotaxis and
extremum seeking. We remark that the signaling
pathway is more complicated than the simple input-
output depiction shown in Fig.3 (see [3] for more details).

It is note-worthy that the 2D version of the model (6)-
(8) (i.e. when ω‖ = 0 and the motion is restricted to a
plane) is a well-studied kinematic model in the control
community known as the unicycle model. Remarkably,
the trajectories generated by an ES-based algorithm for
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FIG. 3. A block diagram description of the chemotactic nav-
igation of sperm represented by equations (9) and (12).

the unicycle model, which was recently proposed in [9, 10]
independently from the literature on sperm chemotaxis,
are astonishingly similar to the actual trajectories of sea
urchin sperm in shallow observation chambers [19].

V. CHEMOTACTIC RESPONSE AND CLOSED
LOOP BEHAVIOR

The evident one-to-one correspondence between the
key components of the navigation strategy of sea urchin
sperm and ES control immediately clarifies the role of the
signaling pathway: it must act as an adaptive band-pass
filter attuned to the frequency of the swimming pattern
of the cell. Motivated by this observation, and building
upon previous phenomenological models [2, 6], we pro-
pose the following coarse-grained dynamical description
of the signaling pathway:

σ ξ̇ = s(t)− ξ, (15a)

µ η̇ = ρ ξ̇ − η3, (15b)

µ ρ̇ = ρ− ρ η2, (15c)

where µ and σ are positive constants such that σ < µ,
and s(t) is the input to the model, which represents the
time-varying external stimulus to which the pathway is
exposed due to the binding of SAP molecules with the
receptors. Without accounting for noise, the stimulus
s(t) is customarily approximated by:

s(t) ≈ λ c(x) (16)

for some positive proportionality constant λ [2, 6]. The
proposed model possesses three essential dynamical
features: excitation, relaxation, and adaptation. The
excitation is modelled by equation (15a), which acts
as a differentiator that detects changes in the local
concentration. The relaxation is modelled by equation
(15b), which brings the response η back to resting levels
when there is no change in the stimulus. Finally, the
adaptation is modelled by equation (15c), which adjusts

the sensitivity of the pathway to the stimulus. A sample
trajectory of the equations (6)-(8) and (15) is shown
in Fig.4 along with time-history of the average local
concentration c(x̄), the steering response η and the
angle ψ between the gradient and the average swimming
direction.

We now analyze the closed loop behavior when the
dynamics of the pathway is given by the proposed dy-
namical system (15) using analytical calculations based
on linear response theory and averaging, similar to [2, 6].
The details of calculations in this section can be found in
the supplemental material [20]. In the parametric regime
where σ|vm|� µ|vm|� σ|ω0|≈ O(1), there is a large
time-scale separation between the dynamics of average
motion (12) in the absence of feedback and the dynamics
of the pathway (15). Consequently, we may approximate
the response η due to the time-varying local concentra-
tion (14) by the quasi-steady response:

ηQS =
h̄
ᵀ∇̌c+

√
2β q̄(t+ tφ)ᵀ∇̌⊥c√

|∇̌‖c|2+β2 |∇̌⊥c|2
, (17)

where β = γ(ω)|d(t)|/(µ
√

2|vm|), tφ = φ(ω)/ω with γ(ω)
and φ(ω) being the gain and phase contributions of the
linear part of the system (15) at the frequency ω = |ω0|
(exact expressions can be found in the supplemental ma-
terial [20]), ∇̌c = ∇c(x̄)/|∇c(x̄)| is a unit vector in the
direction of the gradient, and we used the following short-
hand notations:

h̄ = R̄vm/|vm|, q̄(t) = R̄d(t)/|d(t)|,
∇̌‖c = h̄ h̄

ᵀ∇̌c, ∇̌⊥c = ∇̌c− ∇̌‖c,

to simplify the expression (see Fig.2B for a geometric
illustration of the introduced variables). Notably, the
quasi-steady response (17) is independent of the ambi-
ent concentration c(x0) and the stimulus proportional-
ity constant λ, which are irrelevant information from a
chemotactic perspective. If we close the loop by replacing
η with the quasi-steady approximation ηQS, an intricate
averaging analysis on the fast time scale τ = ωt when
ω � 1 for the system of equations (12a)-(12b) coupled
with equation (17) leads to the following averaged quasi-
steady equations:

˙̄xᵀh̄ =
v ω‖0

ω

(
1 +

ω2
⊥0ω‖1

ω2ω‖0α
h̄
ᵀ∇̌c

)
, (18a)

˙̄hᵀ∇̌c =
γ(ω)ω2

⊥0ω‖1

2µω2ω‖0α
cos(φ(ω))|∇̌⊥c|2, (18b)

α =
√
|∇̌‖c|2+β2|∇̌⊥c|2. (18c)

Equation (18a) expresses the speed along the average
direction of motion h̄, while equation (18b) presents
the rate of alignment of the average direction of mo-
tion h̄ with the gradient. We now analyze the qual-
itative dynamic behavior of the quasi-steady averaged
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v ω‖0 ω‖1 ω⊥0 ω⊥1 µ σ η(t0) ζ(t0) ρ(t0)
3.07 3.07 2.30 8.91 1.00 3.07 9.42 0.00 c(x0) 5.00

FIG. 4. The three cases of the behavior of the signaling path-
way illustrated on a sample trajectory projected on the xy-
plane, the response η, the average instantaneous concentra-
tion c(x̄), and the angle ψ = cos−1(h̄

ᵀ∇̌c) (in degrees) be-
tween the gradient and the average direction of motion h̄, in
a radial concentration field c(x) = 1/(1 + 0.5|x|2). The initial
position is taken as x0 = (6, 1, 0), and the initial orientation
is R(t0) = exp(2πê2/5), where ê2 = (0, 1, 0). The rest of the
initial conditions and parameter values are in the table.

equations (18) by considering three events and the cor-
responding response. The first event (the segments high-
lighted in green in Fig.4) is when the average swim-
ming direction h̄ is mostly aligned with the gradient (i.e.
β|∇̌⊥c|� h̄

ᵀ∇̌‖c ≈ 1), in which case the response ηQS is
approximately given by:

ηQS ≈ 1 +
√

2β q̄(t+ tφ)ᵀ∇̌⊥c, (19)

where the second term is small compared to 1 (i.e. the
periodic component is attenuated relative to the slope of
the ramp component), and the change in the misalign-
ment between the average swimming direction and the
gradient is minor. Moreover, the net motion along the
average swimming direction h̄ is sped up:

˙̄xᵀh̄ ≈
v ω‖0

ω

(
1 +

ω‖1ω
2
⊥0

ω‖0ω2

)
, (20)

The second event (the segments highlighted in pur-
ple in Fig.4) is when the average swimming direction is
almost opposite to the gradient (i.e. h̄

ᵀ∇̌‖c ≈ −1), in
which case the response is approximately given by:

ηQS ≈ −1 +
√

2β q̄(t+ tφ)ᵀ∇̌⊥c, (21)

where once again the periodic term is small. However,
the net speed along the average swimming direction h̄ is

reduced:

˙̄xᵀh̄ ≈
v ω‖0

ω

(
1−

ω‖1ω
2
⊥0

ω‖0ω2

)
. (22)

That is, when the motion is opposite to the gradient,
the net motion along the average swimming direc-
tion h̄ is slowed down, thereby reducing the helical
pitch of the trajectory. This helical pitch reduction
can be observed in the purple segment of the tra-
jectory in Fig.4. Moreover, the average swimming
direction defined by h̄

ᵀ∇̌‖c = −1 is unstable, so any
slight misalignment triggers the transition towards the
stable average swimming direction defined by h̄

ᵀ∇̌‖c ≈ 1.

The third event (the segments highlighted in red in
Fig.4) is when the average swimming direction h̄ is or-
thogonal to the gradient (i.e. h̄

ᵀ∇̌‖c ≈ 0 and |∇̌⊥c|≈ 1),
in which case the quasi-steady response ηQS is dominated
by the periodic component in the local concentration:

ηQS ≈
√

2 q̄(t+ tφ)ᵀ∇̌⊥c, (23)

and the alignment between the average swimming direc-
tion and the gradient is increased at a peak rate:

˙̄hᵀ∇̌c ≈
ω⊥0ω‖1√

2ω
cos(φ(ω)). (24)

We remark that near the maximum concentration, the
gradient vanishes, and the behavior of the system is dom-
inated by second order effects, due to the Hessian of the
concentration field, which are neglected here.

VI. DISCUSSION

Helical klinotaxis is a ubiquitous mode of taxis in mi-
croorganisms. In this study, we used sperm chemotaxis in
sea urchins to highlight extremum seeking control as an
underlying principle behind helical klinotaxis. This con-
nection sheds light on the role played by the chemotactic
signaling pathway and emphasizes the characterization of
its dynamics as an adaptive band pass filter. Moreover,
we showed that the switching-like behavior of sea urchin
sperm can arise from a continuous dynamical description
(15) without an explicit discontinuous switching logic as
in previously proposed models [6, 11]. The key feature of
the model (15) is that the gain ρ adapts to the filtered

stimulus ξ̇ rather than the stimulus s(t) directly. As a
consequence, the ambient concentration levels do not al-
ter the behavior of the model significantly. The forward
velocity v of the cell is treated as a constant in the kine-
matic model (6)-(8). Yet, the cell is able to adjust the
speed of the net motion along the average swimming di-
rection (i.e. the pitch of the helical trajectory) by dynam-
ically regulating the angular velocity components. Our
results suggest that this helical pitch adjustment mecha-
nism is behind the peculiar switching-like behavior. That
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is, the on-response corresponds to the combined effect of
helical pitch increase and the attenuation of the peri-
odic component when the direction of motion is mostly
aligned with the gradient. In contrast, the off-response
may be explained as the combined effect of helical pitch
decrease when the direction of motion is opposite to the
gradient followed by amplification of the periodic compo-
nent when the direction of motion is misaligned with the
gradient. The strength of the off-response in our model
is determined by the maximum pitch reduction and the
peak alignment rate given in equations (22) and (24),
respectively. In particular, the off response is most pro-
nounced when ω‖1ω

2
⊥0 ≈ ω‖0ω

2, since that leads to zero
helical pitch when the direction of motion is opposite to
the gradient. Furthermore, the feedback gain in the peak
rate alignment depends on the factor cos(φ(ω)), which
attains its maximum value when the frequency of the pe-

riodic swimming pattern ω is inside the pass-band of the
signaling pathway defined by µ and σ so that the phase
lag is minimal. Finally, we remark that the proposed con-
nection between klinotaxis and extremum seeking may
guide technological developments in robotic navigation
[21, 22]; it may inspire engineers to design source seeking
algorithms with minimal sensors, suitable for miniatur-
ized robots.
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[13] M. Krstic and H.-H. Wang, Stability of extremum seek-
ing feedback for general nonlinear dynamic systems,
Automatica-Kidlington 36, 595 (2000).

[14] K. B. Ariyur and M. Krstic, Real-time optimization by
extremum-seeking control (John Wiley & Sons, 2003).

[15] A. Abramovici and J. Chapsky, Feedback control systems:
A fast-track guide for scientists and engineers (Springer
Science & Business Media, 2000).

[16] Y. Tan, W. H. Moase, C. Manzie, D. Nešić, and I. M.
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