
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Screening confinement of entanglements: Role of a self-
propelling end inducing ballistic chain reptation

Xue-Zheng Cao, Holger Merlitz, Chen-Xu Wu, and M. Gregory Forest
Phys. Rev. E 106, L022501 — Published  9 August 2022

DOI: 10.1103/PhysRevE.106.L022501

https://dx.doi.org/10.1103/PhysRevE.106.L022501


Self-Propelling End Induces Ballistic Chain Reptation to Screen Confinement of Entanglements

Xue-Zheng Cao,1, ∗ Holger Merlitz,2 Chen-Xu Wu,1 and M. Gregory Forest3

1Department of Physics, Xiamen University, Xiamen 361005, P.R. China
2Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany

3Departments of Mathematics, Applied Physical Sciences, Biomedical Engineering,

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, United States

(Dated: July 18, 2022)

Synthetic and natural nanomaterials with self-propelling mechanisms continue to be explored to boost chain

mobility beyond normal reptation in the crowded environments of entangled chains. Here we employ scaling

theory and numerical simulations to demonstrate that activating one chain end of a singular or isolated chain

boosts entanglement-constrained chain reptation from the one-dimensional diffusive mobility as described by

the deGennes-Edwards-Doi model to ballistic motion along the entanglement tube contour. The active chain is

effectively screened from the constraint of entanglements on length scales exceeding the tube size.

Entanglements suppressing chain motion is an important

microscopic origin that determine the rheological properties

of many materials composed of long polymer chains [1, 2]. A

regulation of dynamical mechanic properties of related poly-

mer materials requires a manipulation of the dynamics of in-

dividual chains, which is limited by entanglements. Releas-

ing long chains from entanglement constraints to achieve en-

hanced chain mobility is a challenge in polymer physics and

soft matter, whose solution has a wide range of biomedical

and industrial applications [3–18]. Growing examples of syn-

thetic and natural systems, e.g., nano-motors and biological

microswimmers, with self-propelling characteristics, inspire

the possibility to manipulate the relaxation dynamics of en-

tangled polymer chains by giving selected chain segments the

ability to self-propel [19–30]. Here we explore and report re-

sults for local activation of the end of a single isolated chain

within an otherwise passive entangled polymer chain melt,

showing that the active chain effectively screens confinement

of the surrounding entanglements via taking ballistic reptation

to release along the entanglement tube.

FIG. 1. (color online). Left panel: Sketches showing the reptation

motions of active and passive chains along the entanglement tube.

We mark both ends of the passive chain as green arrows to indicate

their identical mobility, while the active chain is marked as being ori-

ented by a red arrow, with the red-to-green color contour change rep-

resenting the decreasing influence of the self-propelling end on the

stretching of chain segments closer to the passive end. Right panel:

Scaling predictions of mean squared displacements (MSDs), for the

self-propelling end (shown in red lines) based on the theoretical dis-

cussions proposed in the present paper, and for a passive chain end

(shown in green lines) based on the de-Gennes-Edwards-Doi model.

The dashed lines are shown to separate different scaling regimes.

Based on the tube model proposed by de Gennes, Edwards,

and Doi, see Figure 1, there exist three regimes that com-

mence once the tube confinement of entanglements starts to

take effect, namely beyond the critical timescale, τent. The

mean squared displacement g(t) =< ∆r2(t) > of a monomer

belonging to an entangled network of passive, ideal polymer

chains exhibits [31]: (I) A subdiffusive regime related to the

confinement-induced one dimensional Rouse relaxation of en-

tanglement blobs, g(t)∼ t1/4 when τent < t < τR, with τR be-

ing the Rouse time at which the whole chain begins to move

coherently along the tube contour; (II) another subdiffusive

regime related to the one-dimensional random motion repta-

tion of the whole chain along the entanglement tube, g(t) ∼
t1/2 when τR < t < τrep, where τrep is the critical timescale

from which the chain becomes completely relaxed from the

original confinement of entanglements; and (III) the regime

of Fickian diffusion, g(t)∼ t when t > τrep . Note that, the de-

Gennes-Edwards-Doi model was built by regarding polymer

chains as ideal and assuming that all monomers of an entan-

gled chain are constrained identically by surrounding polymer

chains that form a stable entanglement tube. This mechanism

contributes to the scaling exponents for experimental and sim-

ulated entangled polymers, as confirmed in previous simula-

tions to exhibit deviations from the theoretical predictions of

the de-Gennes-Edwards-Doi model. This arises in particular

for the MSD of monomers close to chain ends [32, 33].

For an entangled single active chain, the effective temper-

ature T act of the self-propelling end is higher than the ther-

mal T pas of the remaining (passive) monomers that belong to

the chain. Therefore, the self-propelling end stretches adja-

cent chain segments before they have been given sufficient

time to complete their structural relaxation through conven-

tional thermal motion. Since the segment’s size is enlarged by

the stretching, we assume a scaling dependence of the mean

square end-to-end distance and a corresponding time depen-

dent scaling exponent, yielding

< r2
ete[N(t)]>∼ Nν(t)(t), (1)

with ν(t) > 1, in which N(t) is the number of monomers ad-

jacent to the self-propelling end that are affected by the active

monomer at a time t. Note that the stretching effect degener-
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ates as N(t) increases, yielding a gradually decreasing value

of ν(t), which approaches unity as time evolves.

The time-dependent diffusion coefficient and the corre-

sponding displacement for the self-propelling end, at small

timescales, can be approximately defined as Dact(t) ≈

kT act

N(t)ζm
and g(t) = 6 kT act

N(t)ζm
t, respectively, with ζm being the

monomeric friction coefficient. Entanglements of surround-

ing polymer chains start to confine the motion of a monomer

when its mean square displacement g(t)> d2, where d is the

entanglement tube size formed by surrounding chains of the

polymer melt, regardless whether the single chain is active

or passive. Therefore, the critical timescale, at which the

monomer’s motion begins to be confined by entanglement,

shifts from τ
pas
ent ∼

Nentζmd2

kT
for an end of one passive chain, to

τact
ent ∼

N(τact
ent)ζmd2

kT act for the self-propelling end of an active chain.

According to Eq.(1), a lower number of monomers is required

in the stretched active chain segment than in a passive one to

make the segment’s end-to-end distance comparable with the

entanglement tube size, thus N(τact
ent) < Nent. In addition, be-

cause of T act > T pas, τact
ent < τ

pas
ent is expected to hold, indicat-

ing an earlier onset of the entanglement related confinement

to take effect.

After t = τact
ent , the confinement of entanglements induced

by surrounding polymer chains prevents any coherent chain

motion transverse to the entanglement tube over length scales

exceeding the entanglement length, and the active chain is

restricted to movements along the entanglement tube. As

time evolves, an increasing number of monomers in the active

chain participates in the motion driven by the self-propelling

end. As with the confined motion of the passive chain along

its entanglement tube, there exists a critical timescale, τact
R

that determines at which point all monomers in the active

chain participate in the motion of its active end. As shown

in Figure 1, the active chain relaxation, over timescales of

τact
ent < t < τact

R , can be regarded as the relaxation of a chain

consisting of stretched entanglement blobs. Along the contour

of the entanglement tube, blobs closer to the self-propelling

end are stretched out further and participate earlier in the self-

propelling end’s coherent motion. Therefore, we assume there

exists a scaling dependence of the relaxation time of a chain

section on the number of involved entanglement blobs M,

τmb ∼ M2β (t), (2)

where β (t) < 1 and gradually approaching unity as time

evolves and the degree of stretching diminishes. Based on

Eq.(1) and Eq.(2), the one dimensional mean squared dis-

placement along the contour of the entanglement tube then

yields

< ∆s2(t)>∼ Mν
∼ t

ν
2β . (3)

Moreover, the three dimensional mean squared displacement

of the self-propelling end takes the form

g(t)∼

(

√

< ∆s2(t)>

)ν

∼ tν2/4β , (4)

as τact
ent < t < τact

R , in which the value of ν2/4β decreases with

time as a result of decreasing ν and increasing β .

At timescales of t > τact
R , the whole chain moves coherently

to relax from the existing entanglement tube. One qualitative

difference between the reptation motions of active and pas-

sive chains is that all monomers in the active chain have to

move along with its self-propelling end, while there is no pre-

ferred direction in the passive chain due to the absence of a

mobility imparity between the two ends. We can regard the

self-propelled reptation motion along the entanglement tube

as effectively ballistic, so that

g(t)∼

(

√

< ∆s2(t)>

)ν

∼

(

√

Drept2

)ν

∼ tν , (5)

while τact
R < t < τact

Rep, where Drep is the curvilinear diffusion

coefficient of the chain’s center-of-mass motion along the en-

tanglement tube, and τact
rep is the reptation time after which the

active chain has fully relaxed from the constraint of the orig-

inal entanglement tube. Once the active chain has completed

its reptation relaxation, the active end’s MSD enters its Fick-

ian diffusion regime, in which

g(t) = 6Dft ∼ t, (6)

as t > τact
rep and Df is the Fickian diffusion coefficient of the ac-

tive chain. Note that the scaling exponent ν defined in Eq.(1)

approaches unity after about t = τact
R , because the transient

stretching effect induced by the self-propelling end dimin-

ishes over large timescales comparable to the Rouse time of

the chain. Therefore, as shown in Figure 1, there exists no

crossover in the self-propelling end’s MSD from the regime of

reptation motion as defined by Eq.(5) to the Fickian diffusion

regime, which signifies that the confinement of entanglements

is effectively screened.

FIG. 2. (color online). The modeled system of a single chain in an

entangled polymer melt. (a) A simulation snapshot showing the con-

formation of an active chain of N = 128 and bending energy param-

eter εbend = 0, with its self-propelling end of driving force fsp = 8

(red). The entangled polymer melt is shown in grey. (b) Simula-

tion result of the stress relaxation moduli of the entangled polymer

melt, and the corresponding theoretical fit based on Eq.(9) with the

fit parameters nm = 0.80, τmon = 3.0, γ = 0.50, Gred
pla = 0.088 and

τter = 4.3 ·106. The dashed horizontal line indicates the plateau mod-

ulus of G(t) = nmkT Gred
pla . Here, the polymer chain length and the

bending energy parameter between neighboring bonds governing the

stiffness of polymer chains in the melt are N = 256 and εbend = 2,

respectively.
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Moleclular dynamics (MD) simulations were performed to

verify the systematic shift of the chain end’s diffusional be-

havior as proposed in the above theoretical scaling model.

Polymer chain is composed of Lennard-Jones (LJ) spheres

representing Kuhn monomers that are connected by harmonic

springs governed by a finitely extensible elastic potential, de-

fined as

Ubond(r) = k(r−σ0)
2, (7)

where k = 100ε0/σm
2 is the spring constant, ε0 is the energy

unit, and σ0 is the length unit. The stiffness of polymer chains

is governed by defining the bending potential between every

two neighboring bonds,

Ubend(θ ) = εbend(θ −π)2, (8)

where θ is the angle between the two bonds. The monomer-

monomer interactions were modeled as truncated and shifted

Lennard-Jones (LJ) potentials

ULJ(r)= 4ε0

[

(σi j

r

)12

−

(σi j

r

)6

−

(

σi j

rc

)12

+

(

σi j

rc

)6
]

,r < rc,

(9)

where σij = σ0 stands for the mean size of two particles (i

th and j th) involved in the pair interactions of monomer-

monomer. It is easily verified that with the cutoff of, rc =

2
1
6 σij, implemented, the attractive contribution to this poten-

tial is eliminated, i.e. ULJ(r) = 0 when r > rc.

In this work, the LJ system of units is used. It is defined

using a model polymer with a LJ pair potential, featuring the

length unit σ0, the energy unit ε0 and the mass unit m0 as

the fundamental quantities. All simulations started from an

initial condition with chains of polymer melt distributed ho-

mogeneously. The boundary conditions in all three directions

are periodic. The simulations are carried out at fixed cubic

box size d = 40σ0, which is much larger than the averaged

radius of gyration of (polymer melt) chains of lc = 256. Fig-

ure 2(a) displays the system of a single active chain with a

self-propelling end, immersed in a melt of of entangled poly-

mer chains. In the simulation, the equation of motion for the

displacement of a passive monomer of index i is given by the

Langevin equation [34, 35]:

m0
d2ri

dt2
=−∇Ui − ζ

dri

dt
+Fi , (10)

where m0 is its mass, ri its coordinate, and Ui the total con-

servative potential energy at this position. The quantity Fi

is a random external force (white noise) with a second mo-

ment proportional to the temperature and the friction constant

ζ . For the self-propelling end, there is an additional driving

force pointing into the current direction of its velocity vector,

m0
d2ract

dt2
=−∇Uact − ζ

dract

dt
+Fact + fspev(t) , (11)

where ev(t) is the unit vector of the self-propelling end’s in-

staneous velocity at time t, and fsp is the constant value of the

driving force.

In order to reduce effects of constraint release of the sur-

rounding polymer chains on the relaxation dynamics of a sin-

gle active/passive chain, we introduce a moderate degree of

chain-stiffness to establish a stably entangled matrix, whose

conformations relax on time scales longer than the reptation

time of the single active/passive chain. There are εbend = 2

for the chains of polymer melt, and εbend = 0 for the single

active/passive chain, respectively. The presence of chain en-

tanglements in the melt was confirmed by measuring the stress

relaxation moduli, G(t), using a Green-Kubo protocol which

relates G(t) to the time-dependent auto-correlation function

of the off-diagonal elements of the system’s stress tensor [36–

38]. As shown in Figure 2(b), we adopt an empirical scaling

formula with a smooth crossover between the Rouse and rep-

tation relaxation regimes to fit the measured simulation data

of G(t):

G(t) = nm · kBT ·

[(

t

τmon

)γ

+Gred
pla

]

· exp

(

−

t

τter

)

. (12)

As a result, we obtain the entanglement length of the melt,

Nent =
1

Gred
pla

≈ 11, i.e. about 11 monomers form a chain strand

between two neighbouring entanglements.

FIG. 3. (color online). Simulation results. (a) Dependence of poly-

mer subchain size, quantified by the mean square end-to-end dis-

tance, on the subchain’s chemical distance to the respective end.

In case of the active chain, the active end-monomer is driven with

fsp = 8 (red squares), while its second end remains passive (red-

green squares). The passive chain has two passive ends (green

spheres). Both chains have N = 64 monomers. (b) MSDs of the

corresponding chain ends. (c) MSDs of the self-propelling end for

different chain lengths. (d) Comparison between the MSDs of the

active-and the passive ends of the same chain of length N = 64 and

driving force fsp = 8.

Figure 3(a) displays variations of the squared end-to-end

distances as a function of the segment-size, i.e. the number of

monomers starting at one of the chain ends. In case of the

active chain the self-propelling side (red squares) and the pas-

sive side (red-green squares) are evaluated separately. While

the passive chain (green spheres) shows the familiar random

walk scaling, the active chain, starting from its active end, ex-

hibits a locally swollen chain section which further down the
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chain crosses over into the ideal chain scaling, which is in

line with the crossover behavior as proposed in Eq.(1). The

corresponding MSD data for active and passive chain ends

is shown in Figure 3(b). In case of the passive chain, the

first subdiffusive regime with exponent γent
pas = 0.42 gradually

crosses over to the reptation regime of γ
rp
pas = 0.62, before it

assumes linear Fickian diffusion. As clarified above, the ap-

proximation of ideal chains, made in the de-Gennes-Edwards-

Doi model, which assumes a homogeneous diffusion behavior

for all monomers along the whole chain, is responsible for the

deviations between the theoretically predicted scaling expo-

nent in the MSD of the passive chain end with simulations.

For the active chain, the self-propelling end’s MSD crosses

over from a subdiffusion regime with a scaling exponent of

γsub
act = 0.51 to the Fickian diffusion regime, which confirms

the theoretical discussion based on Eq.(5), i.e. no intermediate

reptation regime is found. Figure 3(c) shows the MSD scaling

of active chains of various chain lengths. In case of the longest

chain (N = 256, triangles), an intermediate regime arises be-

yond τ/τ0 ≈ 10000 in which the scaling exponent is reduced,

which demonstrates the decreasing dependence of the scaling

exponent on time, as discussed along with Eq.(4). The emer-

gence of this complex intermediate diffusion regime supports

the scaling assumptions made in Eq.(1) and Eq.(2), i.e. the

introduction of time-dependent scaling exponents, expressing

the fact that the self-propelling end induces a chain stretch that

diminishes in time while the majority of monomers join its

motion. The resulting decrease of ν(t) and the corresponding

increase of β (t) with t leads to this transient regime in which

the scaling exponent is dropping, and which remains invisible

with the shorter chains where it falls into the crossover to the

Fickian regime.

FIG. 4. Time-dependent conformational evolvements of the passive

and active chains with fsp = 8 and N = 128. The conformations are

obtained by dumping their coordinates in intervals of 103τ0, and a

total of 40 conformations is displayed for each chain. Beads are only

shown at the chain ends, otherwise only the bond vectors are plotted.

Time evolution is shown in terms of color changes of the chain ends:

red → yellow (active end of the active chain and one arbitrary end

of the passive chain) or blue → green (remaining passive ends). The

dashed curve is only used for guiding the eyes.

MSDs of the self-propelling and passive ends of the active

chain are compared in Figure 3(d). Due to ζ act
m < ζm, the pas-

sive end exhibits a slower diffusional motion than the self-

propelling end on short timescales when the local stretch im-

posed by the self-propelling end has not yet affected the mo-

tion of the passive end, i.e. at t < τact
R . Then after t > τact

R , the

MSD of the passive end has a larger scaling exponent than the

self-propelling end, since it accelerates along with the coher-

ent motion induced by the self-propelling end as the stretching

of the chain releases. From the color-coding of the chain ends

as shown in Figure 4, it is discernible that the self-propelling

end’s movement is followed by the passive end trailing along

the entanglement tube contour, revealing that, before the ac-

tive chain is fully relaxed from the confinement of entangle-

ments, i.e. at t < τact
rep, the active chain as a whole can only

move directionally along the contour of the current entangle-

ment tube. The conformational evolvement of active/passive

chains confirms the theoretical scaling analysis, as concluded

by Eq.(5), that the one dimensional reptation motion of the ac-

tive chain along the entanglement tube is ballistic snake-like

and directed toward the driven motion of the self-propelling

end rather than a one-dimensional random motion. It is also

visible in Figure 4 that such a ballistic chain motion with

snake-like characteristics is not observed with the reptation

motion of a passive chain, in which the two ends show an

identical relaxation from the confinement of entanglements.

A similar oriented one dimensional motion of a self-propelled

end was experimentally observed by Steven Chu et al. adopt-

ing single-molecule techniques to visualize and characterise

the motion and relaxation of entangled single chains with one

end being attached to a microbead. In their experiments, the

bead is driven by an optical tweezer and effectively acting

as a self-propelling end (whose motion remains, however, re-

stricted to a selected direction in the laboratory frame) [39].

FIG. 5. (color online). Scaling dependence of the Fickian diffusion

coefficients of the active (with fsp = 8 and 16) and passive chains,

obtained from the MSDs of their respective ends, on the chain length.

Note that the MSD curves, for the self-propelling and passive ends

of the same active chain, coincide with each other in the Fickian

diffusion regime as shown in Figure 3(d).

As a result of taking on a ballistic reptation motion along

the entanglement tube, the active chain is effectively screened

from the constraints imposed by entanglements on length-

scales exceeding the entanglement tube size, which results in

the scaling dependence as shown in Figure 5, where the Fick-

ian diffusion coefficient exhibits weaker dependence on chain

length than corresponding passive chains. Moreover, it is con-

firmed in Figure 5 that the corresponding scaling exponent in

the dependence of the Fickian diffusion on chain length is in-
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dependent of the driving force fsp because of the unchanged

mode of motion taken by the active chain once ballistic repta-

tion is induced.

In summary, through a scaling analysis extension of the

deGennes-Edwards-Doi tube model and numerical simula-

tions, we show that a single active chain with a self-propelling

end within an entangled passive polymer melt undergoes bal-

listic reptation in contrast with the random motion along the

entanglement tube of a passive chain. Activation localized at

the chain end effectively screens the active chain from entan-

glement constraints on passive chains. This work provides im-

portant computational and theoretial foundations for achiev-

ing boosted chain diffusion in crowded environments of entan-

gled chains, without the need to disrupt the entanglement tube

formed by surrounding polymer chains. The design of an ac-

tive chain with desired distribution of self-propelling objects,

that are responsive to external fields is now within reach of

state of the art nanotechnology, which makes this work inter-

esting for diverse applications ranging from transport of large

molecular species (e.g., drugs) within biological membranes,

or engineering strong and tough polymeric materials, to ac-

celerated degradation of polymeric waste materials [40–50].

Furthermore, the basic mechanism of overcoming constraints

imposed by entanglements is not restricted to melts but ap-

plies as well to polymer chains that are solvated in a crowded

environment, in which active biological swimmers could pos-

sibly be as small as catalytic enzymes, and certain molecular

motors are even smaller than that [51, 52].

Acknowledgements This research was supported in part

by the National Science Foundation of China through Grants

NSFC-11974291, NSFC-11974292 and NSFC-12174323.

This work was also partly supported by the Fundamental Re-

search Funds for the Central Universities (No.20720160123

and No.20720210005) and the Natural Science Foundation of

Fujian Province of China (No.2020J01009), the U.S. National

Science Foundation (DMS-1816630 and CISE-1931516), and

the Alfred E. Sloan Foundation.

∗ xzcao@xmu.edu.cn

[1] M. E. D. Rosa and H. H. Winter, Rheologica Acta 33, 220

(1994).

[2] H. Watanabe, Progress in Polymer Science 24, 1253 (1999).

[3] G. D. Hattemer and G. Arya, Macromolecules 48, 1240 (2015).

[4] X. Z. Cao, H. Merlitz, C. X. Wu, G. Ungar, and J. U. Sommer,

Nanoscale 8, 6964 (2016).

[5] T. B. Martin, K. Mongcopa, R. Ashkar, P. Butler, R. Krish-

namoorti, and A. Jayaraman, Journal of the American Chemi-

cal Society 137, 10624 (2015).

[6] A. C. Balazs, T. Emrick, and T. P. Russell, Science 314, 1107

(2006).

[7] R. Mangal, S. Srivastava, and L. A. Archer, Nature Communi-

cations 6, 7198 (2015).

[8] E. Senses, A. Faraone, and P. Akcora, Scientific Reports 6,

29326 (2016).

[9] E. Senses, S. M. Ansar, C. L. Kitchens, Y. Mao, S. Narayanan,

B. Natarajan, and A. Faraone, Physical Review Letters 118,

147801 (2017).

[10] E. Senses, S. Narayanan, and A. Faraone, ACS Macro Lett. 8,

558 (2019).

[11] E. Senses, S. Darvishi, M. S. Tyagi, and A. Faraone, Macro-

molecules 53, 4982 (2020).

[12] E. Y. Lin, A. L. Frischknecht, and R. A. Riggleman, Macro-

molecules 54, 5335 (2021).

[13] E. J. Bailey and K. I. Winey, Progress in Polymer Science 105,

101242 (2020).

[14] H. Emamy, S. K. Kumar, and F. W. Starr, Physical Review

Letters 121, 207801 (2018).

[15] M. Abadi, M. F. Serag, and S. Habuchi, Nature Communica-

tions 9, 5098 (2018).

[16] M. Zamponi, M. Kruteva, M. Monkenbusch, L. Willner,

A. Wischnewski, I. Hoffmann, and D. Richter, Physical Re-

view Letters 126, 187801 (2021).

[17] I. Chubak, C. N. Likos, K. Kremer, and J. Smrek, Physical

Review Research 2, 043249 (2020).

[18] E. Locatelli, V. Bianco, and P. Malgaretti, Physical Review Let-

ters 126, 097801 (2021).

[19] H. D. Vuijk, H. Merlitz, M. Lang, A. Sharma, and J.-U. Som-

mer, Physical Review Letters 126, 208102 (2021).

[20] S. Mandal, C. Kurzthaler, T. Franosch, and H. Löwen, Physical

Review Letters 125, 138002 (2020).

[21] S. Mukherjee, R. K. Singh, M. James, and S. S. Ray, Physical

Review Letters 127, 118001 (2021).

[22] J. Palacci, S. Sacanna, S.-H. Kim, G.-R. Yi, D. J. Pine, and

P. M. Chaikin, Philosophical Transactions of the Royal Soci-

ety A: Mathematical, Physical and Engineering Sciences 372,

20130372 (2014).

[23] A. Somasundar, S. Ghosh, F. Mohajerani, L. N. Massenburg,

T. Yang, P. S. Cremer, D. Velegol, and A. Sen, Nature Nan-

otechnology 14, 1129 (2019).

[24] J. R. Baylis, J. H. Yeon, M. H. Thomson, A. Kazerooni,

X. Wang, A. E. S. John, E. B. Lim, D. Chien, A. Lee, J. Q.

Zhang, et al., Science Advances 1, e1500379 (2015).

[25] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
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