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Uncovering whether strong system-bath coupling can be an advantageous operation resource for energy con-
version can facilitate the development of efficient quantum heat engines (QHEs). Yet, a consensus on this
ongoing debate is still lacking owing to challenges arising from treating strong couplings. Here we conclude
the debate for optimal linear cyclic QHEs operated under a small temperature difference by revealing the detri-
mental role of strong system-bath coupling in their optimal operations. We analytically demonstrate that both
the efficiency at maximum power and maximum efficiency of strong-coupling linear cyclic QHEs are upper
bounded by their weak-coupling counterparts with the same degree of time-reversal symmetry breaking. Under
strong time-reversal symmetry breaking, we further reveal a quadratic suppression of the optimal efficiencies
relative to the Carnot limit when away from the weak coupling regime, along with a quadratic enhancement of
the mean entropy production rate.

Introduction.– The miniaturization of controllable quantum
systems opens doors for realizing nanoscale quantum heat en-
gines (QHEs) that enable heat-work conversion in the quan-
tum realm [1–10]. At the nanoscale, the surface area of the
working substances of QHEs could easily become compara-
ble to their volume [1, 4, 6, 7, 10–13], which gives rise to sce-
narios where the strong system-bath coupling limit is attain-
able [6]. Investigating such strong-coupling QHEs requires a
quantum thermodynamic framework that extends beyond the
classical version where system-bath coupling is assumed to be
negligible [14]. Hence strong-coupling QHEs can serve as a
vital platform for demonstrating intrinsic quantum signatures
of energy conversion [7, 15, 16]. Moreover, analyzing the per-
formance of strong-coupling QHEs allows for validation of
proposed definitions for thermodynamic quantities at strong
couplings [17, 18], an ongoing topic of strong-coupling ther-
modynamics (see a recent review [19] and references therein).

Understanding the role of system-bath coupling in heat-
work conversion can advance the field of strong-coupling
QHEs. Substantial efforts have been put into the investiga-
tion of whether strong system-bath coupling can lead to op-
eration advantages. To date, no general consensus has yet
been reached, in part due to theoretical and numerical chal-
lenges imposed by strong system-bath couplings [19]. In this
ongoing debate there are studies that claim system-bath cou-
pling could be a useful resource which potentially enhances
the performance of QHEs [20–25] and there are results sug-
gesting detrimental effects of finite system-bath coupling [26–
32]. This lack of agreement stems from the fact that existing
studies on strong-coupling QHEs are largely carried out on ei-
ther specific models [20, 21, 25, 27–30] or specific cycles [22–
24, 26, 31, 32] which limits the generality of their conclusions
on the role of system-bath coupling in heat-work conversion.

Here, we focus on generic periodically driven QHEs from
weak to strong couplings operated in the linear response
regime characterized by a small temperature difference (we
will refer to these as linear cyclic QHEs hereafter). Using a
complete form of the first law of thermodynamics which holds
for generic cyclic QHEs [23] and leveraging the principals of

linear irreversible thermodynamics [33], we reveal a univer-
sal feature of linear cyclic QHEs that optimal weak-coupling
machines perform more efficiently than their strong-coupling
counterparts with the same degree of time-reversal symmetry
breaking, conditional only on the non-negativity of both the
entropy production rate and the efficiency of QHEs. We gain
this general insight by first obtaining thermodynamic bounds
on the efficiency at maximum power and maximum efficiency
[cf. Eqs. (16) and (19)] of linear cyclic QHEs valid from
weak to strong couplings, then demonstrating that both the
efficiency at maximum power and maximum efficiency of lin-
ear cyclic QHEs are upper bounded by their weak-coupling
limits [cf. Eqs. (17) and (20)]. Our thermodynamic bounds
on optimal figures of merit reduce to known forms [34, 35]
in the weak coupling limit, thereby indicating that the exist-
ing thermodynamic bounds [34, 35] when applying to cyclic
QHEs are only applicable at weak couplings [36, 37]. We
also find that both the efficiency at maximum power and max-
imum efficiency of strong-coupling linear cyclic QHEs are
quadratically suppressed from the Carnot limit under strong
time-reversal symmetry breaking [cf. Eqs. (17) and (20)].
Interestingly, we can attribute this quadratic suppression of
optimal efficiencies to a quadratic enhancement of the mean
entropy production rate in the same limit [cf. Eq. (22)]. Our
findings uncover a universal detrimental role of strong system-
bath coupling in shaping the optimal performance of generic
linear cyclic QHEs, and provide crucial insight into the search
of efficient strong-coupling QHEs over weak-coupling coun-
terparts as one steps out of the linear response regime.

Linear cyclic QHEs.– We consider generic cyclic QHEs as
described by the total Hamiltonian (h̵ = 1 and kB = 1 here-
after)

H(t) = HS(t) +HI(t) +HB . (1)

Here, HS(t) describes a periodically-driven working sub-
stance, HB = ∑v=h,cH

v
B includes a hot (h) and a cold (c)

heat bath at temperatures Tv . HI(t) = ∑vH
v
I (t) denotes a

time-dependent system-bath coupling allowing for the imple-
mentation of thermodynamic strokes. We take periodic pro-
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tocols such that HS,I(T ) = HS,I(0) with T being the period
of the cycle. We assume that the cyclic QHE has reached its
time-periodic limit cycle at t = 0, after a transient warming-up
operation stage [23].

For strong-coupling cyclic QHEs in the limit-cycle phase, it
was recently emphasized that the first law of thermodynamics
should take the following complete form [23]

JW +∑
v

JQv − JA = 0. (2)

Here, JW,Qv,A are cycle-averaged thermodynamic fluxes [36–
39] corresponding to the work, heat and system-bath coupling
(α =W,Qv,A)

Jα ≡
1

T
∫

T

0
dt dt⟨Oα⟩, (3)

where OW = H(t), OQv = −Hv
B and OA = HI(t), respec-

tively; noting ∫
T

0 dt dt⟨HS(t)⟩ = 0 at limit cycle. ⟨O⟩ ≡

Tr[ρ(t)O] denotes an ensemble average of any observable
O over the global density matrix ρ(t) of the composite sys-
tem H(t), dtO ≡ dO/dt. In our convention, a heat engine
mode corresponds to JW < 0, JQh

> 0 and JQc < 0. We
point out that JW encompasses work contributions from both
driving the working medium and tuning on/off the interaction
[40] since dt⟨H(t)⟩ = ⟨dtH(t)⟩ and JA ⋅ T accounts for the
energy accumulated in the interaction term over a limit cycle.
We focus on typical setups with [HI ,HS +HB] ≠ 0 such that
JA vanishes only at weak couplings in the limit-cycle phase
[23]. The mean entropy production rate σ over a limit cycle is
given by

σ = −∑
v

βvJ
v
Q, (4)

Here, βv = 1/Tv are the inverse temperature of heat baths.
We consider a small temperature difference ∆T /Tv ≪ 1

with ∆T = Th − Tc, thereby allowing for a linear-response
description of cyclic QHEs. Combining Eqs. (2) and (4), we
find σ = βc(JW − JA) + (βc − βh)J

h
Q which motivates us to

introduce thermodynamic affinities FW = βc and FQ = βc −
βh > 0 together with a renormalized work flux JW̃ ≡ JW −JA
and a heat flux JQ ≡ JQh

. We remark that by introducing a
renormalized work flux we aim to develop a linear-response
description that naturally incorporates as a special limit the
existing version for cyclic QHEs at weak couplings (see, e.g.,
Refs [36, 37]) where JA vanishes.

Within linear irreversible thermodynamics [33], we can
write down equations relating fluxes and affinities

JW̃ = LW̃W̃FW +LW̃QFQ,

JQ = LQW̃FW +LQQFQ. (5)

The kinetic coefficients Lαβ (α,β = W̃ ,Q) introduced above
can be casted into the so-called Onsager matrix

L = (
LW̃W̃ LW̃Q

LQW̃ LQQ
) . (6)

We now find σ = ∑α,β LαβFαFβ =
FT
(L+LT

)F
2

≡ FTLsF
with F = (FW ,FQ)T a 2 × 1 vector and Ls ≡ (L + LT )/2
being the symmetric part of the matrix L; the superscript ‘T ’
denotes the transpose. The non-negativity of σ thus indicates
that the symmetric part Ls must be positive semidefinite [37],
leading to the following constraints on kinetic coefficients

LW̃W̃ ⩾ 0, LQQ ⩾ 0,

LW̃W̃LQQ −
1

4
(LW̃Q +LQW̃ )

2
⩾ 0. (7)

Though mathematically straightforward, the above linear-
response description is not directly applicable for the charac-
terization of the performance of strong-coupling cyclic QHEs,
noting that only part of JW̃ corresponds to the actual work
flux. We circumvent this issue by further adopting the follow-
ing separations for kinetic coefficients as can be inferred from
the form JW̃ = JW − JA and the linear nature of Eq. (5) [41]:
LW̃W̃ = LWW − LWA + LAA − LAW , LW̃Q = LWQ − LAQ
and LQW̃ = LQW −LQA, yielding

JW = (LWW −LWA)FW +LWQFQ,

JQ = (LQW −LQA)FW +LQQFQ. (8)

At weak couplings, we should have LαA = LAα = 0 since
JA = (LAW − LAA)FW + LAQFQ = 0 where both FW and
FQ are generally nonzero, reducing Eq. (8) to those for weak
coupling scenarios [36, 37].

To facilitate an analytical treatment, one can introduce
dimensionless parameters as combinations of kinetic coef-
ficients [34]. For strong-coupling linear cyclic QHEs, we
find the following four dimensionless parameters are adequate
to describe thermodynamics and characterize optimal perfor-
mance,

x ≡
LWQ

LQW −LQA
, y ≡

D

LQQ(LWW −LWA) −D
,

z1 ≡
LWQ

LWQ −LAQ
, z2 ≡

D

LQQ(LAA −LAW ) +D
. (9)

Here, D ≡ (LWQ −LAQ)(LQW −LQA). At weak couplings,
expressions for x and y reduce to their well-adopted forms in
systems with just work and heat fluxes [34, 36, 37] and z1,2
become unity. The presence of two extra parameters z1,2 ≠ 1
thus distinguishes strong-coupling cyclic QHEs from weak-
coupling counterparts in the linear response regime. The ra-
tio x/z1 characterizes the degree of time-reversal symmetry
breaking at strong couplings, in analog with the weak cou-
pling scenario [36, 37].

In terms of x, y, z1, z2 and using separations of kinetic co-
efficients introduced above, the constraints in Eq. (7) transfer
to

1

xz1
(

1

y
+

1

z2
) −

1

4
(

1

x
+

1

z1
)

2

⩾ 0, (10)

which yields

y−1 ⩾ h(x, z1, z2), for xz1 ⩾ 0,

y−1 ⩽ h(x, z1, z2), for xz1 < 0. (11)
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Here, we have introduced h(x, z1, z2) ≡ [z2(x + z1)
2 −

4xz1]/(4xz1z2). At weak couplings with z1,2 = 1, the above
inequalities reduce to known constraints on y: 0 ⩽ y ⩽

4x/(x−1)2 (4x/(x−1)2 ⩽ y ⩽ 0) for x ⩾ 0 (x < 0) [34, 36, 37].
It can be verified that h(x, z1, z2) ⩾ (z2 − 1)/z2 (⩽ −1/z2)
in the region of xz1 ⩾ 0 (xz1 < 0). Furthermore, we note
that h(−x,−z1, z2) = h(x, z1, z2) which leaves the bounds in
Eq. (11) unchanged. In Fig. 1, we depict a set of results for
h(x, z1, z2) with varying z1,2 which clearly verifies the afore-
mentioned features of h(x, z1, z2). By contrasting the blue
hatched and green shaded regions depicted in Fig. 1, one can
observe that the allowed parameter region of y−1 shrinks and
moves downwards when z1,2 deviate from the weak coupling
limit. Particularly, y can take negative values in the region of

Figure 1. Bound h(x, z1, z2) [cf. Eq. (11)] as a function of x with
z1,2 = 1 (blue solid line, corresponding to the weak coupling limit),
z1 = 0.25, z2 = 0.8 (green dashed-dotted line) and z1 = −0.25,
z2 = 0.8 (red dashed line). y−1 can take values only from the shaded
and hatched regions enclosed by h(x, z1, z2).

xz1 ⩾ 0 when z1,2 ≠ 1, in direct contrast to the weak coupling
limit where y is non-negative in the region of x ⩾ 0. As will be
seen later, the changes in h(x, z1, z2) lead to profound conse-
quences on thermodynamic bounds on optimal efficiencies of
linear cyclic QHEs.

Optimized performance.– Using Eq. (8), the output power
P ≡ −TcFWJW and thermodynamic efficiency η ≡ P /JQ in
the linear response regime are given by

P = −TcFW [(LWW −LWA)FW +LWQFQ], (12)

η = −
TcFW [(LWW −LWA)FW +LWQFQ]

(LQW −LQA)FW +LQQFQ
. (13)

We consider efficiency at maximum power (EMP) and maxi-
mum efficiency (ME) as figures of merit characterizing the op-
timal performance of linear cyclic QHEs from weak to strong
couplings. Particularly, we are interested in general thermo-
dynamic bounds on both the EMP and ME. To ensure the ex-
istence of non-negative EMP and ME for linear cyclic QHEs
with y satisfying Eq. (11), we find that one should limit the

ranges of z1,2 to (see details in Supplemental Material [42])

0 ⩽ z1 ⩽ 1,
1

2 − z1
⩽ z2 ⩽ 1. (14)

We require that one can take z2 = 1 only when z1 = 1 and
vice versa. Eq. (14) is a direct result of the non-negativity of
both the entropy production rate and optimal efficiencies, no
extra assumptions are invoked besides limiting z1 to a positive
number due to h(−x,−z1, z2) = h(x, z1, z2). In [42], we ad-
dress the scenario with a negative z1 and show that the results
and conclusions obtained below remain unaltered.

We first focus on the EMP and its thermodynamic bound.
By maximizing the output power [cf. Eq. (12)] with re-
spect to FW [43], we receive an optimal condition FoW =

−LWQFQ/[2(LWW −LWA)]. Then we can obtain the EMP
η(Pmax) = P /JQ∣

FW =F
o
W

as

η(Pmax) =
ηc
2

xyz1
2(1 + y) − yz1

. (15)

Here, ηc = 1 − Tc/Th denotes the Carnot limit. In arriv-
ing at the above equation, we have used the replacement
[LQQ(LWW − LWA)]/L

2
WQ = (y−1 + 1) /(xz1). When

z1 = 1, we recover the known expression for η(Pmax)[34, 36].
Since η(Pmax) is a decreasing (an increasing) function of

y−1 when xz1 ⩾ 0 (xz1 < 0), η(Pmax) attains its maximum
when y−1 = h(x, z1, z2), yielding a thermodynamic upper
bound ηEMP on the EMP (η(Pmax) ⩽ ηEMP)

ηEMP(x
′, z1,2) ≡

x′2z21z2ηc
z2(x′ + 1)2 + 2x′(2z2 − 2 − z1z2)

. (16)

Here, we have set x′ = x/z1. At weak couplings where
z1,2 = 1, ηweak

EMP(x) = ηcx
2/(x2+1) which is the known bound

on EMP obtained previously [34, 36]. Away from the weak
coupling limit, ηEMP is in general not a symmetric function
of x. From Eq. (16), we can deduce the following properties
of ηEMP

η∞EMP = z21ηc, and ηEMP(x
′, z1,2) ⩽ ηweak

EMP(x
′
). (17)

Here, η∞EMP ≡ lim
∣x′∣→∞

ηEMP; noting ∣x′∣ → ∞ corresponds to

a rather strong time-reversal symmetry breaking. The proof
of the inequality in Eq. (17) can be found in [42]. We re-
mark that here we compared the ηEMP with the same degree
of time-reversal symmetry breaking x′ = x/z1 which enables a
fair comparison between weak-coupling and strong-coupling
linear cyclic QHEs; similar for Eq. (20) below. Eq. (17)
represents our first main result. A typical set of results for
ηEMP as a function of x/z1 with varying z1,2 satisfying Eq.
(14) is depicted in Fig. 2 (a). From Fig. 2 (a), it is apparent
that ηEMP remains smaller than its weak-coupling limit with
z1,2 = 1, and saturates z21ηc when ∣x′∣→∞.

We then turn to the ME and its thermodynamic bound. To
get the ME ηmax, we directly optimize Eq. (13) with respect
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Figure 2. (a) ηEMP/ηc [cf. Eq. (16)] as a function of x/z1 with
varying z1 and fixed z2 = 0.9. Inset: Results with varying z2 and
fixed z1 = 0.3. (b) ηME/ηc [cf. Eq. (19)] as a function of x/z1 with
varying z1 and fixed z2 = 0.9. Inset: Results with varying z2 and
fixed z1 = 0.3. For comparisons, we depict the weak coupling limit
(WCL) with z1,2 = 1. Dashed horizontal lines in both plots mark the
value of z21 .

to FW . After some lengthy algebra, we find (see details in
[42])

ηmax = ηc
∣x∣

∣z1y∣
(
√

∣1 + y∣ −
√

∣1 + y − z1y∣)
2

(18)

Here, ∣O∣ takes the absolute value of O. When z1 = 1, we get
ηmax = ηc

x
y
(
√
y + 1 − 1)2 = ηcx

√
y+1−1
√
y+1+1

by noting y ⩾ −1 and
x, y have the same sign, recovering the expression for ηmax

used in the weak coupling limit [34, 36, 37]. It can be easily
verified that ηmax is a decreasing (an increasing) function of
y−1 when xz1 ⩾ 0 (xz1 < 0). Hence, similar to the EMP, we
can obtain a thermodynamic upper bound ηME on the ME by
taking y−1 = h(x, z1, z2) in Eq. (18) (ηmax ⩽ ηME):

ηME(x
′, z1,2) ≡ ηc∣x

′
∣ (

√
∣h′ + 1∣ −

√
∣(h′ + 1) − z1∣)

2
(19)

Here, we have defined h′ ≡ h(x′, z1,2) = [z2(x
′ + 1)2 −

4x′]/(4x′z2). It reduces to the known bound ηweak
ME (x) = ηcx

2

(ηc) for ∣x∣ ⩽ 1 (∣x∣ ⩾ 1)[34] when z1,2 = 1. From the above
bound, we find that

η∞ME = z21ηc, and ηME(x
′, z1,2) ⩽ ηweak

ME (x′). (20)

Here, η∞ME ≡ lim
∣x′∣→∞

ηME. The proof of the inequality in

Eq. (20) can be found in [42]. Eq. (20) is our second main
result. A typical set of results for ηME as a function of x/z1
with varying z1,2 satisfying Eq. (14) is presented in Fig. 2 (b)
which clearly validates the properties listed in Eq. (20).

Combining Eqs. (17) and (20), we can draw the follow-
ing general conclusions concerning the role of system-bath

coupling in shaping the optimal performance of linear cyclic
QHEs (n = EMP,ME): Most significantly, (i) ηn is upper
bounded by its weak coupling limit, implying that an optimal
weak-coupling cyclic QHE performs more efficiently than
its strong-coupling counterpart in the linear response regime.
(ii) Noting the fact in (i) and that ηn of weak-coupling lin-
ear cyclic QHEs attains its maximum ηc under strong time-
reversal symmetry breaking as ∣x∣ → ∞, one can infer that
optimal linear cyclic QHEs can reach the Carnot limit ηc only
in the weak coupling limit. (iii) Away from the weak-coupling
limit as z1 decreases from 1, the extreme value η∞n = z21ηc of
ηn drops quadratically in z1 relative to the Carnot limit. We
can further relate z1 to the dimensionless system-bath cou-
pling strength λ: Denoting HI = λH̃I with H̃I a rescaled
system-bath interaction, we have JA ∝ λ by noting the defi-
nition Eq. (3) and hence LαA, LAα ∝ λ since the affinities
are λ-independent, leading to z1 ≃ 1 − c1λ + O(λ2) with
c1 a model-dependent coefficient (noting definition in Eq.
(9)). Therefore, we expect a relative suppression (η∞,weak

n −

η∞n )/η∞,weak
n = 1 − z21 ∝ λ +O(λ2) scales at least linearly in

λ with η∞,weak
n = ηc for weak-coupling linear cyclic QHEs.

We emphasize that the aforementioned conclusions hold re-
gardless of details of cyclic QHEs (i.e., the detailed form of
H(t) in Eq. (1)) provided the temperature difference between
the baths is small.

To gain more insight into the suppression of optimal ef-
ficiencies in the strong coupling regime, we look at the
mean entropy production rate at efficiency at maximum power
σEMP and at maximum efficiency σME. We find that both
σEMP and σME have the form (n = EMP,ME)

σn(x
′, z1,2) =

F2
QL

2
WQ

LW̃W̃

Kn(x
′, z1,2). (21)

For simplicity, we relegate detailed functional forms of
Kn(x

′, z1,2) to [42]; We have checked that Kn(x′, z1,2) re-
mains non-negative for z1,2 satisfying Eq. (14). Unlike
ηn, it is noticeable that σn contains a non-negative prefac-

tor
F

2
QL

2
WQ

LW̃W̃
which cannot be expressed in terms of x′, z1,2

as first noted by Ref. [34]. From the above equation, we

find the weak coupling limits: σweak
EMP(x) =

F
2
QL

2
WQ

LWW

1
4x2 and

σweak
ME (x) =

F
2
QL

2
WQ

LWW

(x2
−1)2

4x2 when ∣x∣ ⩽ 1 (and vanishes oth-
erwise) [42]; The latter was first obtained by Ref. [34]. We
highlight that it is inappropriate to contrast σn and σweak

n di-
rectly due to the presence of non-equal prefactors. Neverthe-
less, we can still analyze the asymptotic behavior of σn in the
limit of ∣x′∣ → ∞. Since one can carry out linear response
theory in that limit, it is reasonable to assume that kinetic co-
efficients remain finite when varying x′. We find that [42]

σ∞n =
1

4
(

1

z1
− 1)

2 F2
QL

∞,2
WQ

L∞
W̃W̃

. (22)

Here, σ∞n ≡ lim
∣x′∣→∞

σn(x
′, z1,2) and L∞αβ = lim

∣x′∣→∞
Lαβ . In-

terestingly, when z1 decreases from 1, σ∞n experiences a
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quadratic enhancement compared to its vanishing weak cou-
pling limit (Noting η∞,weak

n = ηc). We thus attribute the
quadratic suppression of η∞n relative to the Carnot limit to this
quadratic enhancement of σ∞n .

Discussion.–It is interesting to explore whether optimal
weak-coupling cyclic QHEs can outperform their strong-
coupling counterparts beyond the linear response regime. To
provide a hint, consider a reversible thermodynamic cycle
with vanishing entropy production which usually necessitates
the ME. Specifically, we have S = −∑v βvQv = βc(W −A)+

(βc − βh)Qh = 0 (S = T σ, Qv = T JQv , W = T JW and
A = T JA), yielding W = A − ηcQh with ηc the Carnot effi-
ciency. Inserting the expression for W into the definition of
efficiency η = −W /Qh, we get the ME ηmax = ηc − A/Qh.
Recognizing that optimal strong-coupling cyclic QHEs with
normal thermal baths cannot break the Carnot limit, we should
have A > 0 at strong couplings by noting Qh > 0; A remains
nonzero at strong couplings as long as W ≠ 0 [23], conse-
quently, one naturally infers ηmax ⩽ ηweak

max = ηc. Hence, we
conjecture that strong coupling will likely suppress the ME
of cyclic QHEs beyond the linear response regime. We leave
possible validations to future works.

To correctly interpret the present results, it is necessary to
discriminate between optimal and non-optimal QHEs. Tak-
ing a set of z1,2 < 1, we only stated that ηn(z1,2) < ηweak

n ≡

ηn(z1,2 = 1) with n = EMP,ME in the linear response
regime. However, if one just considers a non-optimal linear
QHE with an actual efficiency η < ηn, it is possible to have the
trend η(z1,2) > ηweak ≡ η(z1,2 = 1) as opposed to the rela-
tive relation for the optimal efficiency ηn, namely, our present
results do not rule out the possibility of having non-optimal
cyclic QHEs capable of benefitting from strong couplings in
the linear response regime.

In summary, we analyzed the optimal performance of
generic cyclic QHEs from weak to strong couplings in the lin-
ear response regime and obtained thermodynamic bounds on
optimal efficiencies. We revealed a universal feature of linear
cyclic QHEs that system-bath coupling tends to suppress both
the efficiency at maximum power and maximum efficiency.
Under strong time-reversal symmetry breaking, this suppres-
sion scales at least linearly in system-bath coupling strength.
Our results provide new insight into the investigation of the
effects of system-bath coupling on heat-work conversion and
are relevant for the search of efficient strong-coupling QHEs.
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