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Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular
machines and drive transitions in steered molecular-dynamics simulations. Approximating energy
landscapes as locally quadratic, we design multidimensional trapping protocols that minimize dissi-
pation. The designed protocols are easily solvable and applicable to a wide range of systems. The
approximation does not rely on either fast or slow limits and is valid for any duration provided the
trapping potential is sufficiently strong. We demonstrate the utility of the designed protocols with
a simple model of a periodically driven rotary motor. Our results elucidate principles of effective
single-molecule manipulation and efficient nonequilibrium free-energy estimation.

Introduction.—The molecular machine ATP synthase
is a remarkable rotary motor that is driven by a pro-
ton gradient to synthesize ATP. Single-molecule biophys-
ical experiments have isolated the F; component of the
machine in order to drive it with chemical gradients
and applied torques, finding nearly perfect energetic effi-
ciency!2. Magnetic and optical trapping potentials such
as those used to study ATP synthase?* or carry out DNA
folding /unfolding experiments® '* are well approximated
as quadratic. By varying the focus and intensity of the
trapping potential, the center and stiffness can be pre-
cisely controlled. In this letter, we design energetically
efficient driving protocols for strong quadratic trapping
potentials on arbitrary energy landscapes. We describe
general design principles that can be applied to biophys-
ical experiments and molecular simulations.

We employ the theoretical framework of stochastic
thermodynamics, which describes the energy flows in
small-scale fluctuating systems'"'2. Much like its classi-
cal thermodynamic roots'?, stochastic thermodynamics
seeks to describe the design principles of energetically ef-
ficient machines, but now at the micro- and nano-scale.
Unlike thermodynamics at the macro-scale, small-scale
systems are constantly bombarded by relatively large
fluctuations, typically operate on timescales comparable
to their natural relaxation times, and are therefore not
well described by the familiar quasistatic processes often

used to describe efficient machines'?.

Despite the added complexity, considerable strides
have been made towards the general description of ef-
ficient stochastic-thermodynamic systems!'®. These sys-
tems can be driven by two types of protocols: constrained-
final-distribution (CFD) protocols and constrained-final-
control-parameter (CFCP) protocols. CFD protocols as-
sume complete control over the dynamics and drive the
system to a specified final probability distribution, guar-
anteeing that at any driving speed the system will reach
its destination. This can be used to model rotary mo-
tors like ATP synthase by setting the final state to be
identical to the initial but shifted by one period, result-
ing in one cycle of free energy transduction in a specified
duration.

For one-dimensional overdamped dynamics, optimal-
transport theory can be directly applied to determine

the minimum-dissipation protocol that drives a system
between specified initial and final distributions'® and to
place fundamental bounds on the cost of information era-
sure!”. For multidimensional overdamped dynamics, the
entropy production is lower bounded by the Wasserstein
distance between the initial and final distributions®19,
and exact minimum-dissipation protocols are known for
quadratic trapping potentials in isolation?%-2!,

CFCP protocols drive a finite set of control parame-
ters to specified final control-parameter values. For such
protocols, the system does not necessarily keep up with
rapid changes in control parameters, and for fast driv-
ing the system state remains largely unchanged??. For
nonequilibrium free-energy estimation, the free-energy
change is estimated from work measurements between
control-parameter endpoints, so CFCP protocols are the
natural choice. The minimum-dissipation protocol is de-
scribed by a geodesic of a Riemannian friction-tensor
metric when the protocol is sufficiently slow?3, by a short-
time efficient protocol (STEP) when the protocol is suffi-
ciently fast??, and by linear-response theory when the
perturbations are sufficiently weak?#2®. These meth-
ods have been used to explore a diverse set of model
systems?6 39 including DNA pulling experiments*’, and

have been applied to improve free-energy estimation®!.

We describe minimum-dissipation protocols for mul-
tidimensional overdamped dynamics driven over arbi-
trary energy landscapes by quadratic trapping poten-
tials. Approximating the static energy landscape as lo-
cally quadratic, we obtain minimum-dissipation proto-
cols that are valid for strong trapping potentials at any
driving speed. For equal initial and final covariance, the
minimum-dissipation CFD protocols are given by explicit
equations for the trap center (11a) and stiffness (13) that
linearly drive the mean between the specified endpoints
while maintaining constant covariance. We perform a
second optimization (19) to achieve CFCP minimum-
dissipation protocols. Since the designed CFD protocols
can be solved analytically and calculating CFCP pro-
tocols only requires performing a minimization over the
final mean and covariance (which in some cases is ana-
lytic (20)), these designed protocols are considerably sim-
pler to determine compared to previous methods!6:22:23,
We illustrate our results with a simple model of a rotary



motor (Fig. 1). By tightening the trap as it crosses energy
barriers, the designed protocol achieves minimal entropy
production (14) and maximum efficiency (16), provided
the trap is sufficiently strong to confine the system within
a single well.

Minimum-dissipation quadratic control.—Consider the
overdamped motion of a system with diffusion coefficient
D driven by a time-dependent potential Viot (7, ), satis-
fying the Fokker-Planck equation

Ip(r,t)
ot

=-V- ['l)(’!’,t)p(’l",t)] ) (1>
where
v(r,t) = =DV [BViot (7, t) + Inp(r,t)] , (2)

is the mean local velocity*? and p(r,t) the system’s prob-
ability distribution over position vector r at time t. The
system is in contact with a heat bath at temperature T,
with 8 = (kgT)~! for Boltzmann’s constant kg.

The total potential Viot = Viand + Virap is separated
into a time-independent component Vi,nq (the underlying
energy landscape) and a quadratic trapping potential

1
Virap[T, At, K] = B [r — )\t]T Kilr— X . (3)

K is the symmetric stiffness matrix, superscript T is
the vector transpose, and subscript ¢ denotes a variable
at time t. For a strong trapping potential, the time-
independent component can be expanded up to second
order about the mean position p

‘/land (T') ~ Viand(l"/) + (T - )U’)Tvvland (,u’) (4)
45— )TV Vi) = )

with VVT the Hessian matrix. Under these assump-
tions, the probability distribution can be approximated
as Gaussian, p(r,t) ~ N(u;,2:), with u, the average
position vector and ¥; the covariance matrix at time ¢.
The average entropy produced ASpoa = AS — BQ
(for dimensionless system entropy S and heat @ into the
system) in driving from initial probability distribution
p(r,0) to final probability distribution p(r, At) is*?

At
ASprod = /0 dt |:C(]1§ - BQ:|
At
_ _/0 dt/dr ap(a’;’ D lin p(r,£) + BVien (1, 1)

At
_ / dt / dr p(r, )v(r,t) - V [BVies(r, t) + Inp(r, 1)]
0

At
%/0 dt (v(r,t) - v(r,t)) . (5)

Angle brackets (---) denote an average over p(r,t) and
the rate of change of heat is Q = [ drV (r,t)dp(r,t)/0t.

The second line follows from the standard definitions of
entropy and heat,'? the third line from inserting (1) and
integrating by parts over r assuming the probability van-
ishes at infinity, and the last line from inserting (2). From
the first law of thermodynamics and the definition of en-
tropy production, the average work is

1
B

where AFyeq = Fheq(At) — Fleq(0) is the change in
nonequilibrium free energy Fheq(t) = (Viot(r,t)) —
B~ HInp(r,t)) between the initial and final distributions.
The entropy production is bounded by the squared Lo-
Wasserstein distance between initial and final probability
distributions*?, which for Gaussian distributions is?!+43

W = AFan + ASprod ) (6)

ASprod Z (7)
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with subscripts 0, t, and At respectively denoting the
initial, time-dependent, and final values of the corre-
sponding variable. Equality is achieved and the entropy
production is minimized when following the optimal-
transport map between the initial and final distributions,
which for Gaussian distributions is completely specified
by the mean and covariance:

Ap
P = o+ Rt (8a)
t t t t
(8b)

Here I is the identity

11 1 1
¥%,(2%,20%3,) 223, reduces in 1D to the ratio of
final and initial standard deviations, and Ap = pa, — g
is the total change in mean position. If the covariance
matrix is diagonal, then (8b) simplifies to

matrix, C

— U (9)

with AXz = Eit - Eé. Thus the standard deviation in
each coordinate is linearly driven between the endpoints.

Solving the dynamical equation of motion (1) for the
time-dependent mean and covariance

1 d[,Lt

ﬁiDﬁ :Kt()‘t — Ht) — vvland(u't) (10&)
1 dZt _ T
R =28"" = [Ky 4+ VV  Viana (i) ] Ze
— % [Ki+ YV Viaa(p)]  (10b)

and substituting their optima (8a) and (8b), the trap cen-
ter and stiffness must respectively satisfy (for a detailed



derivation in the absence of an energy landscape see [21])
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where p; is given by (8a), and X; by (8b). If 3 is diago-
nal, then ¥ is given by (9), the integral in (11b) can be
evaluated, and the trap stiffness obeys

_ T L ki -1
K; = VV Viana(p,) + ( I 5 t) DM (12)

These explicit protocol equations (11) are consider-
ably easier to compute compared to previous methods for
determining minimum-dissipation protocols for CFDs,
which require solving differential equations or inverting
the Fokker-Planck equation'®!”. By constraining the fi-
nal covariance matrix after one period (during which the
mean completes one rotation) to equal the initial, we
achieve periodic driving: the first two moments are peri-
odic in time. Therefore, to minimize dissipation of a peri-
odic system the covariance remains unchanged through-
out the protocol (8b). This is achieved when the effective
stiffness is constant, i.e.,

Ky = Ko+ VYV Viana(po) = VV  Viana () - (13)
This results in entropy production

(Ap)?
DAt

ASprod = (14)
that of an overdamped system moving at constant ve-
locity against viscous Stokes drag; i.e., the minimum-
dissipation protocol has perfect Stokes efficiency®*.

For a machine transducing free energy AF;.q between
the initial and final distributions with equal covariance,
the efficiency is the ratio of output free energy to input
work,

BAFneq
ﬁAFneq + ASprod ’

n (15)

with the minimum-dissipation protocol achieving the up-
per bound,

N

TN (16)
BDAtAF,eq

Tmax = 1 +

Since the entropy production is independent of the free-
energy change, a system that travels the same distance
but transduces more free energy is more efficient.
Free-energy estimation.—Free-energy differences be-
tween two equilibrium states of a system can be esti-
mated from nonequilibrium work measurements using

the Jarzynski equality or the Crooks fluctuation theo-
rem!t4%46 The Jarzynski estimator of the free-energy
difference AFeq = Feg[Aat, Kat] — Foq[Ao, Ko] between
equilibrium distributions corresponding to constrained
initial and final control parameters is

o 1 1 @
_ - —BW
AFj,, = 3 In % e , (17)

with W the ith measurement of work from driving
the system, and N the number of samples. In general,
the statistical error of the free-energy estimate based on
Jarzynski’s equality increases with dissipation. The con-
nection between statistical error and dissipation is clear-
est when dissipation is small, where the expected bias
and variance are approximately*!»47

(18a)

<(AAFJM - <@m>)2> ~ (V= AFy). (18

If dissipation is small, minimizing work also minimizes
the bias and variance of free energies estimated from
Jarzynski’s equality. Similar connections can be made
for other free-energy estimators such as Bennett’s accep-
tance ratio?!48:49,

The average work (6) for the minimum-dissipation pro-
tocol is

W Z%Tr (K [S+ (n— 2~ N} + Via(u)])

1 at 1, in
+ §TI' [VVTVIand(N)E]O + BA prod > (19)
with Tr the trace and ASI‘EL“d the lower bound in (7).

To find the protocol that minimizes work for CFCPs we
minimize (19) with respect to the final mean pa; and co-
variance Y a;, for fixed final trap center Aa; and stiffness
KAt .

For equal initial and final covariance and a flat energy
landscape, the final mean is

-1

2K -
par=rot | Gpar T ') [Aae = pol - (20)

In some more general cases (e.g., energy landscapes rep-
resented by low order polynomials), (19) can also be min-
imized analytically, and in general can be solved numeri-
cally with relative ease. Performing this minimization is
a considerably simpler task than finding the minimum-
dissipation protocols based on thermodynamic-geometry
frameworks, which typically require calculating metric
tensors and solving geodesic equations3”°°.  Another
benefit of the present method is that it does not rely
on either slow?? or fast?? protocol approximations and is
valid at any duration provided the trapping potential is
sufficiently strong.



Rotary motor.—We demonstrate the applicability of
our approximation with a model of a rotary motor in-
spired by ATP synthase. We consider a one-dimensional
periodic energy landscape (Fig. 1a),

E 2 AE
Viand(z) = 7}3 (1 — cos A;Tx) + Uz . (21)

The barrier height is F},, the distance from peak to well
iS xm,, the distance between wells is Az, = 22, and the
machine transduces energy AE per barrier crossing. We
assume a periodic protocol with equal initial and final
variances, Yy = XA, starting with the mean position
at the center of a well, yp = 0, and terminating after
three barrier crossings so that pua; = 3Axz,. For the
model’s periodic energy landscape (21) and initial and
final means, substituting (8a) into (11a) and (13) gives
the minimum-dissipation protocol

v L (38t AE 7B, o 6m
"k \BDAt T Az Azn o At
3Ax,
t 22
Ar Lo (22a)
2m2E, 2n%Egm 67
ky =ko + ———2 — -t 22b
EERT A T A A (22b)

Figure la shows the designed intermediate-duration
protocol for driving the system over three barriers, nu-
merically estimated from Langevin dynamics integrated
with the EulerMaruyama method®' with sufficiently
small time steps and numerous samples such that nu-
merical inaccuracies are negligible. To maintain con-
stant variance, the designed protocol tightens the trap
as it crosses the barriers; to linearly drive the mean be-
tween the two wells, the trap center initially jumps ahead
of the mean position g, remaining ahead throughout
the protocol. For a Gaussian distribution, the 9%, 25%,
75%, and 91% quantiles are evenly spaced, consistent
with the linear translation of the quantiles between the
two wells, shown in Fig. la for kg = 2E},/22. For a
weak trap (ko = Ep,/(222))), the quantiles are not evenly
spaced and exhibit significant deviations from linear tem-
poral evolution, implying that the Gaussian approxima-
tion is no longer valid. The crossover from strong to
weak trap occurs when ko ~ E}, /2, since a weaker
trap (ko S Ep/22)) is not sufficient to confine the sys-
tem within a single well and the distribution can become
bimodal, resulting in widely separated quantiles as the
system crosses the barriers (Fig. 1a).

The quadratic approximation is accurate when the ini-
tial stiffness is large (ko > FEy,/x2,). When this condition
holds, the entropy production and efficiency are well ap-
proximated by (14) and (16) at any protocol duration
(Fig. 1 b/c). Additionally, for a fast protocol whose du-
ration is shorter than the diffusion time between adjacent
wells (At < p = Az2 /D), the entropy production and
efficiency agree with (14) and (16) even for a relatively
weak initial stiffness. Large forces are required to rapidly
drive the system, which can only be achieved by the

trap potential (since the energy landscape is not dynam-
ically controlled), resulting in the dominant contribution
to the force arising from the trap potential. Therefore,
the approximation is valid when either the protocol du-
ration is short (At < 7p) or the initial stiffness is large
(k‘o > Eb/xfn)

Despite the quadratic approximation breaking down
when both At 2 m and ko S Ey, /22, the final position’s
mean and standard deviation remain within 20% of their
respective targets, relative to the distance between the
wells (Fig. 1 d/e). Even when the approximations break
down, the designed protocols successfully drive the sys-
tem to the final desired distribution.

Discussion.—By approximating static energy land-
scapes as locally quadratic, we have derived minimum-
dissipation protocols for quadratic trapping potentials.
This approximation does not rely on either slow or fast
limits and therefore offers a complementary result to pre-
vious work on designing minimum-dissipation protocols
in the fast and slow limits?223. Designed protocols based
on the present approximation are considerably simpler
than previous methods for determining the minimum-
dissipation protocols, which require estimating correla-
tion functions and solving geodesic equations. The trap
center linearly drives the mean between the specified end-
points (11a); if the initial and final covariances are equal,
then the stiffness adjusts to maintain constant covariance
throughout the protocol (13).

We demonstrate the applicability of the approximation
with a simple model of a driven rotary motor (Fig. 1).
When either the initial stiffness is large (ko > Ey/z2)
or the duration is short (At < 7p), the motor achieves
the maximum efficiency (16). When the initial stiffness is
small (kg S Fy,/22) and the duration is large (At 2 )
the motor achieves significantly lower efficiency but the
designed protocols still drive the system to within 20% of
the target endpoints relative to the inter-well distance.

Our formalism gives insight into the design principles
of efficient motors. Achieving maximum efficiency re-
quires full control of the system, which in general would
require an infinite number of control parameters; how-
ever, full control of Gaussian probability distributions
can be achieved with a finite number of parameters.
Within our quadratic approximation, for a d-dimensional
system the number of control parameters required for an
arbitrary energy landscape is d(d + 3)/2: d trap center
components (controlling the means) and d(d + 1)/2 stiff-
ness matrix components (controlling the covariances).

We emphasize that the intermediate states remaining
Gaussian in the optimal-transport process is the result of
an optimization over all possible distributions connect-
ing Gaussian end-states and not an imposed constraint
on the intermediate distributions. This is in contrast
to parametric methods for determining the minimum-
dissipation protocols, where the intermediate states are
constrained to those accessible by the small number
of control parameters.??°2 In general, we expect the
minimum-dissipation protocols determined from para-
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FIG. 1: Performance of model rotary motor. (a) Time-dependent protocol for a weak initial stiffness ko/(FEy/22,) = 1/2 (red,
left) and intermediate initial stiffness ko/(Eb/22,) = 2 (blue, right) depicting the static potential (dotted/gray), trap potential
(dashed), median position (solid), and 9%, 25%, 75%, and 91% quantiles (shaded). The two protocols are offset vertically and
horizontally for clarity. (b) Entropy production, (c) efficiency, (d) deviation of the final mean position from the target, and
(e) deviation of the final standard deviation from the target. Different colors/markers represent different initial stiffnesses ko.
Black dashed curves in (b) and (c): strong-trap approximations (14) and (16), respectively. The energy offset is AE = kgT),
the barrier height is Ey, = 4ksT, and in (a) the protocol duration is At = 7p for diffusion time 7p = Az2,/D between adjacent
wells. Error bars representing bootstrap-resampled 95% confidence intervals are smaller than the markers.

metric control to coincide with optimal transport when
there are sufficiently many control parameters to access
the intermediate distributions of the optimal-transport
process; e.g., d(d + 3)/2 control parameters for a d-
dimensional system with a flat energy landscape and a
quadratic trapping potential. Otherwise, the full control
afforded by the optimal-transport process will achieve
less dissipation.

Several of our results are directly applicable to physi-
cal systems. Single-control-parameter (typically the trap
center) designed pulling protocols for unfolding DNA
hairpins can reduce dissipation*®. Our recent theoretical
study®® suggests that dissipation in DNA hairpin experi-
ments can be significantly further reduced by adding one
additional control parameter (trap stiffness), but further
control (beyond trap center and stiffness) would do very
little to reduce dissipation. Within the present frame-
work this is easily understood. Control over the trap
center drives the system over the energy barrier between
the folded and unfolded state, but cannot prevent the in-
crease in variance as it crosses the barrier. By tightening
the trap as it traverses the barrier, the system’s variance
remains constant and the barrier is effectively eliminated.
If the trap is reasonably stiff, then the distribution is ap-
proximately Gaussian, and two control parameters are
sufficient for full control of this one-dimensional system.

The minimum-dissipation protocols described in the
Free-energy estimation section can be directly applied to
improve estimates of free-energy differences. In steered
molecular-dynamics simulations, stiff-trap approxima-
tions are commonly employed when estimating free-

energy differences®®°4; therefore, our method is well sit-
uated to improve these estimates. More generally, sev-
eral enhanced-sampling techniques for free-energy esti-
mation add quadratic potentials to smooth potential-
energy surfaces®®% or trap intermediate states in um-
brella sampling®”. There could be connections between
our minimum-dissipation protocols and the improved
performance from smoothing potential-energy surfaces
and optimally spacing intermediate states®” 63,

A Dbenefit of the present formalism is that it allows
specification of the final distribution by its mean and
covariance while using a finite number of control param-
eters. Previous methods that specified the final distri-
bution using optimal-transport theory required full con-
trol over the potential, in principle requiring infinite con-
trol parameters. General designs for parametric control
typically constrain final control-parameter values but do
not actually achieve a specific target distribution. Be-
ing able to specify the final distribution is particularly
useful for modeling periodic motors like ATP synthase.
Fixing equal initial and final covariance, we periodically
drive the motor with a high degree of precision (Fig. 1
d/e) and give insight into the maximum efficiency of such
driving.

Finally, the ease of determining multidimensional de-
signed protocols opens up the possibility to explore a
host of new systems, from coupled transport motors
pulling cargo®® to steered molecular-dynamics simula-
tions of complex condensed-matter systems.
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