
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Minimum perturbation theory of deep perceptual learning
Haozhe Shan and Haim Sompolinsky

Phys. Rev. E 106, 064406 — Published 12 December 2022
DOI: 10.1103/PhysRevE.106.064406

https://dx.doi.org/10.1103/PhysRevE.106.064406


PRE

A Minimum Perturbation Theory of Deep Perceptual Learning

Haozhe Shan∗

Center for Brain Science, Harvard University,

Cambridge, MA, United States and

Program in Neuroscience, Harvard Medical School, Boston, MA, United States

Haim Sompolinsky

Center for Brain Science, Harvard University, Cambridge, MA, United States

Edmond and Lily Safra Center for Brain Sciences,

Hebrew University of Jerusalem, Jerusalem, Israel and

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel

(Dated: November 28, 2022)

1



Abstract

Perceptual learning (PL) involves long-lasting improvement in perceptual tasks following exten-

sive training and is accompanied by modified neuronal responses in sensory cortical areas in the

brain. Understanding the dynamics of PL and the resultant synaptic changes is important for

causally connecting PL to the observed neural plasticity. This is theoretically challenging because

learning-related changes are distributed across many stages of the sensory hierarchy. In this work,

we modeled the sensory hierarchy as a deep nonlinear neural network and studied PL of fine dis-

crimination, a common and well-studied paradigm of PL. Using tools from statistical physics, we

developed a mean-field theory of the network in the limit of large number of neurons and large

number of examples. Our theory suggests that, in this “thermodynamic” limit, the input-output

function of the network can be exactly mapped to that of a deep linear network, allowing us to

characterize the space of solutions for the task. Surprisingly, we found that modifying synaptic

weights in the first layer of the hierarchy is both sufficient and necessary for PL. To address the

degeneracy of the space of solutions, we postulate that PL dynamics are constrained by a norma-

tive “minimum perturbation” (MP) principle, which favors weight matrices with minimal changes

relative to their pre-learning values. Interestingly, MP plasticity induces changes to weights and

neural representations in all layers of the network, except for the readout weight vector. While

weight changes in higher layers are not necessary for learning, they help reduce overall perturba-

tion to the network. In addition, such plasticity can be learned simply through slow learning. We

further elucidate the properties of MP changes and compare them against experimental findings.

Overall, our statistical mechanics theory of PL provides mechanistic and normative understanding

of several important empirical findings of PL.

I. INTRODUCTION

Perceptual learning, the improvement of performance in perceptual tasks after practice,

is one of the most basic forms of learning in the brain and has been extensively studied ex-

perimentally [1–12]. Physiologically, PL is accompanied by long-lasting changes to neuronal

response properties in cortical areas. Connecting physiological changes to behavioral obser-
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vations has been challenging, in part due to the complex learning dynamics and processing

in the sensory hierarchy, which is composed of multiple cortical regions. As a result, several

important issues concerning the neural mechanisms of PL remain unresolved after decades

of research.

First, which cortical areas undergo modifications and which of the changes causally drive

PL? While behavioral specificity of PL [13, 14] points to an important role for plasticity in

early sensory areas, single-unit response properties in early visual areas (V1, V2) show only

minor changes after visual PL [3, 4]. In addition, PL induces significant changes to single-

neuron properties in intermediate to late stages of visual processing, such as V4 [5, 6, 9, 10],

LIP [15], and IT [16, 17]. Furthermore, it is unclear whether any of such changes necessarily

causes PL. For example, PL of sound and tactile discrimination is correlated with substantial

changes in respective primary sensory areas [1, 12], but such changes may not contribute to

improved neural coding [11].

Second, what are the functional consequences of the observed changes? Analysis of

changes in neuronal responses after PL indicates improved accuracy of the neural coding

of the trained stimuli [8–10]. This appears to be inconsistent with the behavioral finding

that PL does not transfer to a different task even when using the same stimuli [18–20].

The Reverse Hierarchy Theory [21] proposes that PL is initially driven by learning in high

areas, which results in less specific learning; modifications of lower areas follow if the task

is difficult, as for instance in fine perceptual discrimination tasks, leading to more specific

learning. Analysis of a reduced model of perceptual learning has lent support for this theory

[22]. However, recent experimental and computational studies questioned these predictions

[8, 9, 23], providing evidence of changes in primary sensory areas already in the early stages of

PL. On the other hand, experiments in random dot visual motion discrimination tasks found

that PL is correlated with changes in decision-making areas (e.g., LIP) but not sensory areas

(e.g., MT) [15, 24]. From a theoretical perspective, the hierarchical nature of the underlying

sensory system implies that there is an enormous degeneracy of possible synaptic weight

matrices that solve the task of PL.

Most existing theories of PL assume changes only in either the weights of the readout

from a fixed sensory array [25–27] or the input layer to a single cortical circuit [23]. Such

“shallow” models are inconsistent with the sensory hierarchy in the brain and do not address

the neural correlates of PL in multiple cortical regions.
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In the present work, we directly addressed the issue of PL in a deep network by studying

PL of a fine-discrimination task in a deep neural network (DNN) model of the sensory

hierarchy [28–30]. As learning dynamics in DNNs are in general challenging to study [31–

39], we developed a mean-field theory of information propagation in the model in the limit of

large numbers of neurons in every layer and large number of training examples. The theory

reveals that during the perceptual task, the DNN effectively behaves like a deep linear neural

network. This considerably simplifies the theoretical analysis of the space of solutions, as well

as the emergent changes in neural representations. Surprisingly, we found that modifications

of synaptic weights in the first level of the hierarchy are both sufficient and necessary for

PL. To address the degeneracy of the space of solutions, we developed a normative theory

of PL. Specifically, we postulated that in the brain, learning dynamics are constrained by

a normative “minimum perturbation (MP)” principle, which favors weight matrices with

minimal changes relative to their pre-learning values. Interestingly, MP learning induces

changes in weights and neural representations in all layers of the networks, except for the

readout weight vector. While weight changes in higher layers are not necessary for learning,

they help reduce overall perturbation to the network. MP learning predicts changes to

tuning properties of cortical neurons that are consistent with experimental observations and

suggests that signal amplification, not noise reduction, is the primary driver of PL. Our

theory makes the readily testable prediction that PL can simultaneously lead to positive

and negative transfer to different untrained stimuli. Finally, we found that MP learning can

be implemented through slow gradient-descent learning. Overall, leveraging the large size

of the network involved in PL, we have developed a statistical mechanics theory of PL in

deep neural networks which provides mechanistic and normative understanding of several

important empirical findings of PL.

Put in a broader context, this work complements recent theoretical studies of learning

in deep networks [31–39], contributing to the understanding of learning and computation in

these important architectures. In particular, our setting where a deep, nonlinear network

learns a linearly solvable task is a popular paradigm for understanding network learning

in the so-called overparameterized regime [40, 41], where the network is vastly larger and

richer than is required by the trained task [42]. Unlike standard analyses that focus on how

the network starts from random initialization and learns a single task, our work introduces

a continual-learning perspective where the impact of learning on previously learned tasks
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needs to be minimized.

Our deep network model of PL is described in Section II. The mean field analysis is

summarized in Section III. Section IV presents the MP principle and analyzes PL with

minimum perturbation. Section V analyzes the use of gradient descent to learn MP plasticity.

A discussion of the implications for the field of perceptual learning is presented in Section

VI.

II. A DEEP NETWORK MODEL OF PL

A. Input channels

We assume N input channels (Fig. 1A, gray squares) representing a 1D stimulus.

Neurons in the input channels are indexed by a preferred stimulus angle θi = i
N

2π for the

ith neuron. The collective response of input channels to a stimulus with angle θ is given by

the N -dim vector

x0(θ) = f 0(θ) + ε0, (1)

where ε0 is i.i.d. Gaussian noise with zero mean and variance σ2. The noise averaged

response of each input neuron is given by a bell-shaped tuning curve centered on its preferred

stimulus

f 0
i (θ) = Z−1

s exp

(
cos(θi − θ)− 1

σ2
s

)
, (2)

where Zs ensures ‖f 0(θ)‖ =
√
N , making the firing rate of each neuron O(1). σs controls

the input selectivity, assumed to be the same for all channels (Fig. 1B, C). Tuning and

noise properties of input channels are not affected by learning.

B. Model architecture and pre-PL weights

Our model of the sensory system is a feedforward network with L hidden layers and a

linear readout from the top layer (Fig. 1A). Each hidden layer is composed of N rectified

linear (ReLU) neurons (“cortical neurons”). Let xl(θ) denote the noisy population response

vector of neurons in layer l, and f l(θ) its average over noise. {xl(θ)}l=1,.,...,L are recursively

given by

xl(θ) = Φ(W lxl−1(θ)), (3)
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FIG. 1. Model of perceptual learning.

A Diagram of the deep network model of the sensory hierarchy. The output of input channels

(gray squares) is passed through L layers of cortical neurons with ReLU nonlinearity (blue circles)

before getting read out by a linear readout (a).

B Example tuning curves of input channels. Each curve represents a channel with a different

preferred stimulus. The preferred stimuli of input channels uniformly tile [0, 2π]. This panel shows

the regime of high input selectivity and hence narrow tuning curves.

C Same as B, but for the scenario of low input selectivity.

D Example feedforward weight structure before learning. Weights connecting neurons with similar

preferred stimuli tend to be excitatory (positive) and strong while those connecting neurons with

dissimilar preferred stimuli tend to be weak and inhibitory (negative). This panel shows the regime

of high weight selectivity.

E Same as D, but for low weight selectivity.

F Bell-shaped tuning curves of input channels and the initial weight patterns lead to bell-shaped

tuning curves for all cortical neurons before PL.

G Noise-averaged activity of the input channels (f0(θ)) in response to the two presented stimuli,

θ±. The difference between them is exaggerated here for illustration purposes.

H The signal s is in the direction of the difference between f0(θ±).
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where Φ(·) is the element-wise rectified linear function. The linear behavioral readout a

produces a scalar network output from the activity in the last layer

r(θ) = aTxL(θ). (4)

Pre-PL weights are modelled after feedforward synaptic connections between visual areas

in the brain: we chose a circulant structure which is appropriate for propagating angular

signals [43, 44]. Every neuron receives strong, excitatory input from neurons in the previous

layer with similar preferred stimuli and weak, inhibitory input from neurons with dissimilar

preferred stimuli. For simplicity, we assume pre-PL weights to be identical across layers. We

do not expect qualitative predictions of our analysis to differ if initial weights have different

σw across layers. Concretely, pre-PL weights {W l}l=1,2,...,L are given by

W l
ij,pre = Z−1

w exp

(
cos(θi − θj)− 1

σ2
w

)
+ bw, (5)

where Zw is chosen such that each row ofW l
pre has norm 1/

√
N (i.e. each weight is O(N−1)).

This normalization ensures that the input to any hidden neuron is of magnitude O(1). The

offset bw is chosen such that each row sums to 0. The parameter σw controls selectivity of

the pre-learning weights; small σw leads to a high-selectivity weight structure where a few

weights dominate the input (Fig. 1D) and vice versa (Fig. 1E). As a result of the input

tuning curves and the feedforward weight structure, all cortical neurons are tuned to the 1D

stimulus and have bell-shaped tuning curves before learning (Fig. 1F).

C. Fine discrimination

We focus on learning a fine-discrimination task, where one out of two similar visual

stimuli is presented to the subject, who must correctly indicate which one is presented. In

our model, the task consists of discriminating two values of the stimulus, θ± = θtr ± δθ,

where the center stimulus θtr is called the trained stimulus and δθ ∼ O(N−1/2). This choice

of scaling ensures that the total signal-to-noise ratio (SNR) in the input layer is O(1). In

each trial, one of θ± is presented and generates a noisy activation of the input array (Eq. 1,

Fig. 1G). In each trial, the decision neuron activity r indicates whether the input comes

from the θ+ stimulus or from θ− with r > 0 or r < 0, respectively. Stimuli are presented

with equal probability; the optimal performance in the task is thus given by performing
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maximum likelihood discrimination (MLD [25]). Importantly, since the noise is Gaussian,

the task can be performed optimally by a linear discriminator reading out directly from the

input channels and using weights parallel to the signal (Fig. 1H), defined as the unit vector

s =
(
f 0(θ+)− f 0(θ−)

)
‖f 0(θ+)− f 0(θ−)‖−1. (6)

Thus the output in this scenario equals sTx0(θ) which leads to optimal performance in this

setup [45].

D. Pre-PL readout

We assume the pre-PL value of the readout weight vector apre to be optimized for this

task when reading out the pre-PL top-layer representations. Thus, we initialize the pre-PL

readout such that it minimizes the loss function between the network readout and the optimal

output (see below and S. M. Sec. I). The rationale for non-random initialization of the

readout weights is to provide the network with well-above-chance but generally suboptimal

performance (as shown below, it is suboptimal because the top-layer representations may be

suboptimal). In the context of animal experiments, this mimics the situation where animals

understand the task but have not yet acquired the expert skills required for near optimal

performance.

E. Learning

We model the process of PL as modifying weights in order to minimize the discrimination

error. Since the optimal output for this task is given by sTx0(θ) it is convenient to use a

mean-squared error objective function

E(Θ) = 〈(aTxL(θ,W 1, ...,W L)− sTx0(θ))2〉θ=θtr±δθ,ε0 . (7)

where Θ = (W 1,W 2, ...,W L,a) denotes the vector of all weights of the networks and an-

gular brackets denote averaging over the two stimuli and noise. This cost function measures

the deviation of the input-output function of the system from the optimal one.

Python scripts used for analysis can be found at https://github.com/hzshan/perceptual_

learning.
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III. A MEAN-FIELD THEORY OF PL OF THE FINE-DISCRIMINATION TASK

In this section, we describe our mean-field approach to studying sensory processing and

PL in the deep, nonlinear network by approximating it with an equivalent linear network.

We describe the approximation (Sec. III A) and the insights it provides into why pre-PL

cortical representations can be suboptimal (Sec. III B). We discuss the space of possible

solutions that this theory revealed in Sec. III C.

A. Equivalent linear networks

First, we note that, during the fine-discrimination task, signal and noise-induced fluctu-

ations in the input to any neuron are small (they both scale as N−1/2). This can be seen

by considering the scaling relations δθ ∼ O(N−1/2), σ2 ∼ O(1) and W l
ij ∼ O(N−1). In the

large N limit, we can expand activities of cortical neurons around their average inputs by

writing (using � to denote the Hadamard product and f l to denote f l(θtr); this is similar

to the approximation done in [46] for recurrent networks)

xl(θ±) = Φ
(
W lxl−1(θ±)

)
(8)

≈ Φ
(
W lf l−1

)
+ Φ′

(
W lf l−1

)
�
[
±δθW ldθf

l−1 +W lεl−1
]
, (9)

where

dθf
l =

[
f l(θ+)− f l(θ−)

]
2δθ

(10)

and εl = 1
2

[
xl(θ+) + xl(θ−)− f l(θ+)− f l(θ−)

]
are the signal-induced and noise-induced

fluctuations in layer l, respectively. At large N , by the central limit theorem, the components

of noise are Gaussian (though correlated). For the ReLU nonlinearity, the activation slope

Φ′i is 1 for an active neuron and zero for an inactive one. In the limit of large N , fluctuations

in the input to each neuron are small compared to the mean. Thus, inactive neurons remain

quiescent for most of the trials and do not contribute to the network output. For a similar

reason, activities of active neurons are [W lf l−1]i i.e, they are linear functions of activities

of neurons in the previous layer. Thus, we can define effective weight matrices , W l
eff, as(

W l
eff

)
ij

= W l
ij, iff f li > 0 and f l−1

j > 0 (11)

and zero otherwise. Importantly, this approximation holds only during fine-discrimination

around a fixed θtr because of the strong similarity between the different inputs. Inputs with
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angles very different from θtr will be processed by different sets of effective weights. Given

the analysis above, during the fine-discrimination task around θtr the input output function

of the deep network is effectively linear,

r(θ) = aTPx0(θ), (12)

where

P = W L
effW

L−1
eff ...W 1

eff. (13)

We call P the processing matrix (Fig. 2A, right). We proceed to consider how the properties

of P affect task performance.

B. Pre-learning suboptimal representations

Optimizing apre amounts to optimizing a linear readout from an input Px0(θ) which

contains a signal and an additive (correlated) noise. In such a system, the probability of

error under optimal readout is given by H(δθ
√
JL) where H(x) = (2π)−1/2

∫∞
x
e−z

2/2dz and

JL is the linear Fisher information [47]. It is defined as

JL = (dθf
L)TΣ−1

L dθf
L, (14)

where the matrix ΣL is the noise covariance matrix in the top layer. Given the linear

approximation, it is given by ΣL = σ2PP T and the top layer signal is dθf
L = P dθf

0. Even

if P is low-rank (see below), the (pseudo)-inverse (PP T )−1 is well defined when multiplied

by P . Hence,

JL = σ−2(dθf
0)TP T (PP T )−1P dθf

0. (15)

Note that P T (PP T )−1P is a projection matrix. It is identity if P is full-rank. Otherwise,

it projects inputs onto the low-rank subspace spanned by its rows. Thus, Eq. 15 states

that σ2JL is the squared norm of the projection of the signal vector dθf
0 ∝ s onto the

subspace spanned by P . The network is optimal if s resides in the span of P , yielding

JL = J0 = σ−2‖dθf 0‖2.

We now ask whether the pre-PL weights are already optimal for the present task. We

computed the singular value decomposition of the pre-PL P and found that it has a low-

rank structure (Fig. S2). There are two sources of the reduced rank of P depending on

the system parameter regime: a “selective-input-unselective-weights” regime characterized
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FIG. 2. Suboptimal neural representations before learning.

A Schematics showing the relationship between weights (all arrows, left), effective weights (red

arrows, left and center), and the processing matrix (black arrows, right).

B Information for the trained stimulus in the last layer (JL) divided by the input information (J0),

for different input and weight selectivity. The ratio is low for large σs, small σw(red polygon) or

small σs, large σw ( blue polygon). Dots: example parameters used in C, D. N = 1000 in all panels.

L = 1 in this panel. See Fig. S1 for deeper networks.

C Information for the trained stimulus in the last layer of networks of different depths, divided by

the input-layer information (J0).

D Same as C, but assuming that all neurons are in the linear regime.

E Best last-layer information achievable if plasticity is restricted to some weight matrices in a

three-layer network. Dashed line: performance if no weight matrix is modified. Modifying any

weight matrix improves the performance, but only modifying W 1 is sufficient and necessary for

optimizing it.

by small σs and large σw (Fig. 2B, blue) and an “unselective-input-selective-weights”

regime, characterized by large σs and small σw (Fig. 2B, red). In the selective-input-

unselective-weights regime, the pre-PL network weights W l
pre are low-rank (even before

rectification) due to the smoothness of circulant weights, implying that they project to

subsequent layers only part of the signal in the input. In this regime, information loss

occurs regardless of the rectification of representation neurons (Fig. 2C, D, blue line). On
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the other hand, in the unselective-input-selective-weights (large σs, small σw) regime, the

original weight matrices project the full signal. However, due to firing-rate rectification, a

substantial fraction of the neurons are inactive for essentially all training stimuli. Thus, the

effective weights are low-rank. In this regime, the low-rank structure of P disappears if we

remove neuronal rectification (Fig. 2C, D, red line). In both cases, the signal contains

a substantial component perpendicular to the low-rank span of pre-PL P , as evidenced by

computing JL/J0 (Fig. 2B). Hence the pre-PL network exhibits suboptimal performance.

C. Space of solutions

We derived the following necessary and sufficient condition on post-learning effective

weights that solve the PL task by making the performance optimal (derivations in S. M.

Sec. II; hereafter we use W l to denote W l
eff for brevity): for any values of W 2, ...,W L and

a that satisfy ã ≡ (W 2)T ...(W L)Ta 6= 0, the task can be performed optimally if and only

if W 1 satisfies

W 1 = ‖ã‖−2ãsT +W⊥, (16)

where W T
⊥ ã = 0. This result implies that the learning problem can be solved for essentially

arbitrary (non-zero) higher-layer weights as long as W 1 is adjusted accordingly. Conversely,

restricting the plasticity to higher-layer weights while freezing the first layer weights to their

pre-PL values do not obey this condition; thus this is insufficient for optimal performance, as

discussed earlier (Fig. 2E). This result underscores the critical role played by early sensory

areas in PL.

IV. LEARNING WHILE MINIMIZING NETWORK PERTURBATION

The large space of solutions makes it hard to predict the pattern of changes in the

circuit induced by learning. To remove this degeneracy, we propose an optimality criterion,

“minimum perturbation” (MP), that favors a solution with small perturbations to pre-PL

weights. According to this criterion, the optimal weights are

∆Θ = Θpost −Θpre (17)

Θopt = arg min
Θpost

‖∆Θ‖2 s.t. E(Θpost) = 0, (18)
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FIG. 3. Minimum-perturbation plasticity of perceptual learning.

A The magnitude of synaptic changes to each matrix and the readout vector a, for networks

initialized with different σw. Percent change is defined as the Frobenius norm of synaptic changes

divided by that of the pre-PL weight matrix. In both panels, σs = 0.2, L = 3, N = 1000.

B Restricting learning to W 1 leads to more network-wide perturbation (measured by the sum of

matrix norms of ∆W 1,∆W 2,∆W 3) than unrestricted learning. In either case, the readout a is

also allowed to learn but does not change significantly following PL.

where “post” indicates post-PL weights and Θ refers to all weights in the network. This

principle is motivated by the brain’s need to maintain relatively stable representations while

learning a new task. We analytically solved this optimization problem with Lagrange mul-

tipliers by first setting up the Lagrangian

L =
L∑
l=1

‖∆W l‖2 + ‖∆a‖2 − λT [W 1
post

T
W 2

post
T
...W L

post

T
apost − s]. (19)

Extremizing the Lagrangian w.r.t. weight changes reveals a general rank-1 structure for MP

∆W l

∆W l = (W l+1
post

T · · ·W L
post

T
apost)(W

l−1
post · · ·W 1

postλ)T . (20)

Solving the above equations requires introducing 2L scalar order parameters, which obey

2L self-consistent equations that need to be solved numerically. Expressions of the order

parameters and self-consistent equations for L = 1, 2, 3, as well as the numerical procedure

for solving the self-consistent equations, are given in S. M. Sec. III.

We discuss features of the solutions below.

Distribution of MP plasticity: We quantified the magnitude of MP modification

to weights in each layer by computing ‖∆W l‖/‖W l
pre‖ (Fig. 3A; see Fig. S6 for the

unselective-input-selective-weights regime). The analysis reveals two salient features that
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A, B PL-induced changes to signal (A) or noise (B) amplitude across layers for different weight

selectivity. Changes are generally greater in higher layers and in networks with initial weights that

are less selective (larger σw). In both panels, σs = 0.4, N = 1000, L = 3.

are consistent across system parameters. First, MP plasticity predominantly affects lower-

layer weights. Second, surprisingly, MP plasticity does not appreciably alter the readout

(Fig. 3A, red line). This suggests that hidden-layer representation changes, rather than

readout changes, drive performance improvement. Plasticity in higher-layer weights W l≥2

plays the important role of reducing the overall perturbation to the network. Indeed, if we

restrict learning to W 1, the total perturbation is greater (Fig. 3B).

Performance improvement is driven by signal amplification: An important and

long-standing debate in PL research is whether behavioral improvement is driven by signal

amplification, noise suppression, or both [3, 5, 6, 9, 48–51].

To address this question within the framework of MP learning, we define the signal and

noise contributions via JL = (signal/noise)2, where the signal amplitude is ‖dθfL‖ and the

noise amplitude is defined via noise−2 = (dθf
L)TΣL−1dθf

L/‖dθfL‖2. The network after

MP learning exhibits a pronounced amplification of signal (Fig. 4A), with the effect being

stronger in higher layers. Surprisingly, we found that PL also amplifies noise across all

layers, although to a weaker extent than signal amplification (Fig. 4B; further details in

S. M. Sec. VII; effects on noise correlation are shown in Fig. S5). Thus, MP learning

improves perceptual performance by strengthening the signal rather than weakening the

noise. This analysis also reveals that signal/noise changes are generally greater in higher

layers even though weight changes are greater in lower layers, highlighting the difference

between distribution of weight changes and distribution of representation changes.
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FIG. 5. Transfer of PL to untrained stimuli.

A, B Information changes in the last layer for different stimuli after PL, normalized by change

for the trained stimulus. The change for the trained stimulus is 1 by definition. Information

gain is prominent for stimuli close to the trained one (“proximal”), and those dissimilar from

the trained one (“distal”). In all panels, N = 1000, L = 3, and the last layer is analyzed. For

the selective-input-unselective-weights regime (A), σs = 0.4, σw = 1.0. For the unselective-input-

selective-weights regime (B), σs = 1.2, σw = 0.1.

Impact on discrimination around untrained stimuli: MP plasticity breaks the

symmetry of pre-PL representations w.r.t. θ, thus altering the representations of untrained

stimuli. To assess how these changes affect the discrimination ability of angles around

untrained values we define a normalized information gain, [JL,post(θ)−JL,pre(θ)]/[JL,post(θtr)−

JL,pre(θtr)] for an untrained stimulus θ. Our analysis revealed a rich, non-monotonic pattern

of transfer arising from MP plasticity. Consistent with experimental findings, PL increases

information for stimuli similar to the trained one (“proximal transfer”, Fig. 5). In addition,

PL also transfers to distal stimuli, where the distance between trained and test stimuli is

intermediate (“distal transfer”). Importantly, PL can also decrease information for certain

untrained stimuli (negative transfer), as revealed by the dips below 0 in Fig. 5. Finally,

as expected, representations for stimuli far away from the trained one are unaffected by

learning.

V. MP LEARNING WITH GRADIENT DESCENT

So far, our analysis has focused on properties of MP plasticity without addressing the

important question of how such plasticity is learned. We modeled the process of learning by

studying gradient descent (GD), which has been shown to reproduce physiological features

of PL in deep network models [22, 52]. We used GD to optimize Θ for a regularized loss

15



15

20

25

30

35

10-4 10-3 10-2 10-1 100

error at convergence (%)

optimal

λ (perturbation penalty)

A
MP
GD

0.2 0.4 0.6 0.8 1.0
σw (rads)

change (%)

0

10

20

30

40

50
ΔW1

ΔW2

ΔW3

B

σw (rads)

change (%)

MP
GD

0.2 0.4 0.6 0.8 1.0
0

20

40

60 ΔW1

ΔW2

ΔW3 Δa

1st 2nd 3rd

sing. val. ratio
1

0

ΔW1

ΔW2

ΔW3

singular value index

C D

Δa

FIG. 6. MP learning with gradient descent.

A Discrimination error rate at convergence after regularized gradient descent with different

perturbation penalty strength. Arrow: maximum λ with optimal performance. In all panels

σs = 0.2, L = 3; σw = 0.8 except in B, C.

B Magnitude of changes from regularized gradient descent (dots), compared against that of MP

plasticity (line).

C Same as B, but for slow GD without explicit regularization.

D Leading singular values of slow GD induced changes to weight matrices (normalized by the top

singular value). That the first singular value is overwhelmingly large suggests that induced changes

are close to rank-1.

function, defined as

Ereg(Θ) = E(Θ) + λ‖∆Θ‖2, (21)

where the second term imposes a penalty on weight perturbation; strength of the penalty is

controlled by the hyperparameter λ. We implemented GD by iterating Θ(t + 1) = Θ(t) −

η∇Θ(t)Ereg(Θ) until convergence, where η is the learning rate. At convergence, larger λ

results in smaller weight perturbations but potentially suboptimal post-PL performance. To

realize MP learning, λ should be as large as possible without making the final performance

suboptimal (Fig. 6A). GD with such λ results in weight changes that are fully consistent

with MP plasticity (data not shown).

In the deep learning literature, it has been suggested that small changes in learned pa-
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rameters can also be realized through implicit regularization by using small learning rates

[42, 53]. We performed GD on the unreguarlized loss function, E(Θ), with a small learning

rate η. The resultant plasticity agrees reasonably well with MP plasticity (Fig. 6C) in

terms of magnitude. It also has the same salient features as MP plasticity: changes to the

readout are negligible, weight changes are very close to being rank-1 (Fig. 6D) and the

identity of active neurons does not change over learning (S. M. Sec. V), as is the case for

MP plasticity. These results point to the possibility that the slow progression of PL could

be normatively explained as a mechanism to minimize perturbation during PL.

VI. DISCUSSION

We have presented a theory of PL of fine discrimination in a deep network. The theory

leverages similarity of all inputs relevant to the task, large network size and structured

weight initialization to establish the effective linearity of the network input-output function

during training and performance of the task. This input-output function is expressed by a

processing matrix P which has been shown to be low-rank, hence leading to a sub-optimal

representation of the stimulus that cannot be resolved by adapting the readout weight only.

We further derived the space of post-learning weights that resolve the suboptimality by

fully spanning the task-relevant signal direction. Motivated by the brain’s need to strike a

balance between plasticity (acquiring new skills) and stability (preventing previously learned

skills to be affected) in sensory areas [54], we propose the normative minimum perturbation

principle that favors a specific solution. The favored solution, which we call MP plasticity,

induces physiological and behavioral changes largely consistent with current experimental

findings (for a detailed comparison, see S. M. Sec. VIII). It also predicts that PL improves

the sensory code for some untrained stimuli while degrading the representation of others, a

readily testable prediction. We discuss some prominent features of MP plasticity and their

implications for neural mechanisms of PL.

First, MP plasticity predominantly modifies the lowest-level weights while leaving the

readout essentially unchanged. This points to the importance of involving low-level cortical

areas in PL of fine discrimination, consistent with recent numerical experiments with deep

convolutional networks [52]. That the readout is unchanged critically depends on our as-

sumption that the pre-PL readout is already optimized w.r.t. pre-learning representations,
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in contrast to most neural network models of learning where the initial weights are random.

We argue that random initialization is not biologically plausible when considering natural-

istic tasks where subjects perform well above chance with little-to-no training. Note that

while synaptic plasticity is greater in lower layers, the resultant representational changes are

greater in higher layers.

Second, MP plasticity makes rank-1 modifications to weights. While rank-1 weight

changes are sufficient for optimizing neural representations for the trained task, such changes

can be highly task-specific. To demonstrate this, we analyzed performance of the post-PL

network on a width discrimination task where two input-layer patterns with the same θ

but different σs are presented; PL does not improve this performance, despite the fact that

width discrimination and angle discrimination involve the same mean input-layer pattern

(S. M. Sec. IV). Importantly, this absence of cross-task transfer reconciles the apparent

inconsistency of the observed improved sensory representations by PL [3, 7, 8, 10] and the

psychophysical findings that PL for one task did not transfer to another task using the same

stimuli [18–20], which was interpreted as evidence that population codes for these stimuli

did not improve [55]. Our results suggest that the improvement of representations does not

equally benefit all tasks even if they share the same stimuli. Thus, cross-task transfer is not

a reliable indicator of whether representations improve after PL.

Finally, from the perspective of signal and noise, MP plasticity improves task performance

by amplifying the signal. This result is inconsistent with [23], who found that amplification

is not necessary for PL. Their conclusion may be confined to the regime where performance

is dominated by neural noise, not input noise as in ours. Additionally, their plasticity model

differs from ours in that it assumes circularly invariant weights both before and after learning,

which forces a global change of synaptic weights. In contrast, in our model, PL plasticity

is localized to the neurons responding to the stimulus (if we require post-PL weights to be

circularly invariant in our model, post-PL tuning curves have very unnatural multi-modal

shapes. See S. M. Sec. IX). Finally, we note that our prediction of signal amplification stems

from the fact that the readout layer remains essentially unchanged under MP learning. If

the readout were adapted in ways that violate the MP principle, signal amplification is not

always necessary (S. M. Sec. X).

Our current theory can be extended in several interesting directions. First, our plasticity

model does not include a mechanism of unsupervised learning, namely, plasticity triggered
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by the mere exposure to the stimulus, independent of task. Thus, including considerations

for task-irrelevant plasticity, observed in some PL studies [56, 57], is an interesting topic

for future work. Second, the scenario where the input contains stimulus-dependent noise

correlation, which requires nonlinear readouts for optimal performance [58], is worth further

analysis. We expect some qualitative findings from our work to generalize. In particular,

when the first layer weight matrix W 1 is low-rank and not modified by learning, it can cause

irrecoverable loss of the linear component of the input Fisher information [58], making the

network performance suboptimal despite changes to higher layers. Nevertheless, changes in

the higher layers may also be necessary (depending on hyperparameters such as the width

of the first layer) to recover the nonlinear components of the task. We also conjecture that,

MP changes in the higher-layer weights will be more extensive than what is necessary to

solve the task, in order to minimize the overall perturbations in the weights. Finally, our

formulation of the MP principle implicitly assumes that neural representations are stable in

the absence of learning. While this appears to hold true for artificial stimuli commonly used

in PL experiments [59, 60], representations of naturalistic stimuli are known to drift over

time in the absence of explicit training [61–63]. It has been suggested that representational

drift may induce adaptive processes in downstream populations that essentially compensate

for the drift, keeping the underlying computation intact [63]. If this is true, relative to a

given state of the readout population, MP learning may be an adequate strategy.
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