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In the studies of network structures, much attention has been devoted to developing approaches
to reconstruct networks and predict missing links when edge-related information is given. However,
such approaches are not applicable when we are only given noisy node activity data with missing
values. This work presents an unsupervised learning framework to learn node vectors and construct
networks from such node activity data. First, we design a scheme to generate random node se-
quences from node context sets, which are generated from node activity data. Then, a three-layer
neural network is adopted training the node sequences to obtain node vectors, which allow us to
construct networks and capture nodes with synergistic roles. Furthermore, we present an entropy-
based approach to select the most meaningful neighbors for each node in the resulting network.
Finally, the effectiveness of the method is validated through both synthetic and real data.

I. INTRODUCTION

A network is a system-level view of pairwise interac-
tions between nodes, genes, or elements in a complex
system [1–14]. The first step in analyzing a networked
system is to construct the network from data obtained
with different technologies. In most cases, network struc-
tures can be determined through direct measurements,
meaning that pairwise relationships between nodes can
be observed directly. For instance, the edges in friend-
ship networks can be probed through various ways, in-
cluding using questionnaires, checking Facebook or Twit-
ter friendship, and investigating face-to-face interactions
[15–19]. As another example, edges in web graphs can
be directly determined by checking if hyperlinks exist
between web pages. However, there are cases where the
relationships between nodes cannot be observed directly
[20]. Instead, we may only have node activity data that
reflect the properties of nodes from various aspects. In
these cases, we need to estimate the underlying network
structure from nodal data. Such problem exists in many
areas, including the construction of financial, biological,
and climate networks [21–31]. In these areas, measure-
ments of pairwise relationships are not always feasible
[20, 32, 33]. Instead, we can conduct various experiments
to measure node activities under different conditions [34].

This work develops a model to learn node represen-
tations from noisy and heterogeneous data and pro-
poses an entropy-based method to extract network struc-
tures. Specifically, we investigate the problems of feature
learning and network construction for gene co-expression
data. Different high throughput technologies, includ-
ing microarray and RNA-sequencing, allow simultane-
ously evaluating thousands of gene expression data. Usu-
ally, the data can be organized into a matrix that con-
sists of rows representing N genes (nodes) and columns
representing M experimental conditions. To construct
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a network from such expression data, we need to con-
sider three problems. (1) The expression data, mea-
sured through different experimental technologies, are
distributed in various ranges. For example, the raw ex-
pression values obtained from different versions of RNA-
sequencing in different labs are dispersed from zero to
tens of thousands and do not follow any specific distri-
bution. (2) Missing values are frequently present in the
dataset. Some experiments may only test a subset of
genes for specific purposes, or some experimental data
for some genes (nodes) are not available. (3) The levels
of noise are not constant. For instance, the environments,
such as humidity, temperature, and light intensity, could
potentially influence the accuracy of the devices and the
measured node activity data. The method for network
construction is not allowed to be affected by missing val-
ues and noisy data.

There are diverse approaches aiming at constructing
networks from nodal data. A significant volume of works
uses the correlation coefficient to measure the degree to
which a pair of nodes is related, and edges are selected
by thresholding the correlation coefficients [35–37]. How-
ever, the drawbacks of the correlation methods are that:
1) the expression data are required to follow a (quasi-
) normal distribution, 2) the correlation coefficients are
significantly affected by outliers, and 3) the number of
measured conditions and missing values substantially af-
fect the results. [35, 36]. Mutual Information (MI) and
its variants are also used to construct gene co-expression
networks. The MI models do not require the data to
follow the normal distribution. Still, the MI models are
even more complex, since we are expected to find the joint
probability distribution for every pair of genes [38]. We
need to solve the problems mentioned above before ap-
plying either of the two methods. To solve problems (1)
and (3), some researchers have proposed using rescaling
and normalization methodologies to obtain quasi-normal
distributed data from the raw node activity data [39].
According to [40], the number of experimental conditions
significantly influences the correlation coefficients under
the null hypothesis that two nodes are not correlated.
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Theoretical analysis shows that correlations based on ten
conditions tend to be higher than those computed with 50
conditions. Missing values lead to node pairs with a dif-
ferent number of paired elements, meaning that the node
pairs with fewer paired elements are more likely to have
high correlation coefficients. Therefore, some works use
imputation or interpolation to solve problem (2) [41, 42].
The complex data processing procedures pose a severe
challenge for the principle of parsimony when we further
study the resulting network structure [43].

Edge selection is another issue we need to consider
when constructing networks from node activity data.
Both correlation and MI methods return coefficients be-
tween -1 and 1. Many researchers construct unweighted
networks by applying a threshold to select edges of the
network corresponding to node pairs with the highest
coefficients. However, choosing a threshold is always
tricky since a high threshold could generate singleton
nodes, while a low threshold generates networks with
many weakly connected node pairs [39, 44]. Though the
problem can be solved by fixing the minimum number of
neighbors of each node, the choice of the threshold influ-
ences the node degree distribution, meaning that nodes’
roles in the resulting network are related to the choice of
thresholds. As an alternative, we propose an entropy-
based network construction method, which has better
performance in maintaining nodes’ roles (e.g. hubs and
leaf nodes) and avoiding isolating nodes.

This paper proposes a neural network-based method to
extract node representations, and presents an entropy-
based approach to construct networks from noisy node
activity data. Inspired by the application of neural net-
works in natural language processing (NLP) [45–50], we
propose generating node sequences from node activity
data to simulate sentences in documents. The neural
network model can embed node sequences into vectors of
identical dimensions, which allow us to study node fea-
tures and construct networks. The main contributions of
the paper are as follows: First, we design a simple and
direct data processing scheme to generate random node
sequences from M conditions. In our approach, the raw
data are not required to follow any specific distribution.
Thus, re-scaling and normalization are obsolete. In addi-
tion, the M conditions are processed separately, meaning
that negative impacts from missing data and outliers can
be minimized. Second, the node sequences are trained
with a three-layer neural network model, which builds
on the hypothesis that nodes with similar properties tend
to have similar neighbors [50]. As a result, similar nodes
have similar values in the trained node vectors. Third, we
propose an entropy-based method to extract the corre-
sponding network where selected edges can recover node
roles [51, 52]. Finally, we demonstrate the validity of the
proposed approach experimentally using synthetic and
real data.

II. APPROACH

In this section, we define the context set, node sequence
generation, and the entropy-based method for network
construction.

In human language, words in similar contexts tend to
have similar meanings [45]. That is, words with simi-
lar meanings usually show in similar neighborhoods. We
can use NLP models to learn node representations if we
have node sequences in which nodes with similar mea-
surements are in similar contexts. The measurements of
nodes in different conditions represent different proper-
ties, similar to words in various topics that may have
different meanings. Building on these observations, we
design a scalable node sequence generation strategy to
process the M conditions separately.

A. Generate context sets from node activity data

Suppose the N nodes are measured in M conditions.
Given a node vi (i ≤ N), we assume its value in the ωth
condition is vi(ω). We define the context set of node vi
in the ωth condition as:

Cω(vi) = {vj : |vj(ω)− vi(ω)| ≤ δωi }. (1)

where the tolerance δωi can be a parameter such that
δωi = βωvi(ω). By employing the parameter βω, we can
tune the size of the context set per the error levels of dif-
ferent technologies. In this work, we skip the generation
of context set Cω(vi) when a missing value is present in
the ωth condition for node vi, and we do not predict the
missing values from other conditions.

Formally, the context set of node vi is composed of
nodes with measurements falling in the range [vi(ω) −
δωi , vi(ω)+δωi ]. Therefore, the number of elements of the
intersection set Cω(vi)∩Cω(vk) is related to the measure-
ments of the two nodes vi and vk. For example, assume
the measurements of the three nodes vx, vy, and vz in
the ωth condition are respectively vx(ω) = 1000, vy(ω) =
990, and vz(ω) = 950. It is clear that vy(ω) is closer to
vx(ω) than vz(ω), i.e., |vx(ω)− vy(ω)| < |vx(ω)− vz(ω)|.
Therefore, we have the following inequality:

|Cω(vx) ∩ Cω(vy)| ≥ |Cω(vx) ∩ Cω(vz)|, (2)

where | · | denotes the cardinality of the intersection set.
The context set Cω(vy) recapitulates more elements of
Cω(vx) than the context set Cω(vz). For any node vj ∈
Cω(vx), we have the probability

P (vj ∈ Cω(vy)) ≥ P (vj ∈ Cω(vz)). (3)

Furthermore, we assume Gω(vi) is a set consisting of
nodes whose context set contains node vi, such that

Gω(vi) = {vj : vi ∈ Cω(vj)}. (4)
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Based on the same example above, we can say that
there are more context sets containing simultaneously vx
and vy than containing simultaneously vx and vz. There-
fore, we have

|Gω(vx) ∩Gω(vy)| ≥ |Gω(vx) ∩Gω(vz)|, (5)

meaning that the nodes with closer values are more likely
to be present in the same context sets. Similarly, for any
node vj ∈ Gω(vx), we have the probability

P (vj ∈ Gω(vy)) ≥ P (vj ∈ Gω(vz)). (6)

In the generation of node sequences, we always sample
the subsequent node from the context set of the current
node. For example, given a node sequence l, suppose
the ith node is vx, i.e., li = vx. Then, we have a node
sequence

{· · · , li−1 ∈ Gω(vx), li = vx, li+1 ∈ Cω(vx), · · · }. (7)

Based on Eq. 3 and Eq. 6, li+1 tends to be in Cω(vy)
with higher probability than Cω(vz), and li−1 is more
likely to be in Gω(vy) than in Gω(vz). That is, the con-
text nodes of vx tend to be the context nodes of vy rather
than vz, since vy(ω) is closer to vx(ω) than vz(ω). There-
fore, in the generated node sequences, we can say that
nodes with closer values tend to appear in similar con-
texts.

B. Generate random node sequences

The simplest way to generate node sequences from con-
text sets would be to randomly sample the next node
from the context set of the current node, which is ex-
actly the first order Markov chain [53]. Assume the ith
node of a node sequence is li, the next node li+1 ∈ Cω(li)
is chosen with probability

p(li+1 | li) =
1

|Cω(li)|
. (8)

Under this assumption, the nodes in the context set
Cω(li) have an equal probability of being chosen as the
subsequent node.

Alternatively, we can generate biased random node se-
quences. Suppose we have just traversed node li−1, and
now we reside at node li. The probability of sampling
the next node li+1 is biased by the previous node li−1.
Therefore, we introduce a parameter ρ, and the unnor-
malized probability of the next node is

p(li+1 | li, li−1) =

{
1 if if li+1 ∈ Cω(li−1) ∪ {li−1}
ρ else,

(9)

where li+1 ∈ Cω(li). The sampling strategy is similar to
a second order Markov chain [53], in which the probabil-
ity of adding the next node is not only influenced by the

current node but also the previous node. A low value of
ρ boosts the rate of sampling an element from Cω(li−1).
On the contrary, a high value of ρ controls the proba-
bility of exploring a node far from li−1. Higher ρ allows
sampling a node in Cω(li) but not in Cω(li−1). If ρ = 1,
Eq. 9 is equivalent to Eq. 8.

In the ωth condition, we generate K random node se-
quences starting from each node. Repeating the process
for all the M conditions, we obtain a corpus T contain-
ing KNM −KZ node sequences, where Z represents the
number of missing values.

The goal of generating random node sequences is to
feed the corpus T to a three-layer neural networks to
obtain node vectors [48–50, 54, 55]. Please refer to Ap-
pendix A for more information about the neural network
model.

C. Construct network from trained node vectors

After training the neural network model, we obtain
N vectors for the N nodes. With the node vectors, we
can predict relationships between the nodes, visualize the
global structures of the nodes, and construct a corre-
sponding network.

A conventional way to select the edges is by global
thresholding the cosine similarities to filter out weak links
and obtain a backbone of the underlying network. Glob-
ally thresholding edges (GTE) is widely used in determin-
ing gene co-expression networks [37]. However, the draw-
back of the GTE is that some nodes could be isolated
from the network if the threshold is high. Though we
can force isolated nodes connected to some other nodes,
the degree distribution of the constructed network is still
affected by the selection of threshold, meaning that the
roles of nodes in the network are sensible to the choice
of threshold. To avoid these issues, we propose a Rényi
entropy-based method (REM) to extract a network from
the trained node vectors [51, 56, 57, 60].

Once we have the node vectors, we can compute the
cosine similarity to quantify the connection strength for
each pair of nodes. Here, we define S0(vi) as the initial
neighbor set of node vi. S

0(vi) is composed of nodes that
are positively similar to vi, i.e., S0(vi) = {vj : s(vi, vj) >
0}, where s(vi, vj) is the cosine similarity between vi and
vj . The network constructed from S0(vi), ∀i < N is not
helpful in real applications because most node pairs are
weakly connected.

Inspired by the application of entropy in ecology, we
regard the nodes in the set S0(vi) are the states of the
system vi. Then, we associate each state with a proba-
bility, which is computed from the similarity values, such
that:

s0i (vj) =
s(vi, vj)∑

vj∈S0(vi)
s(vi, vj)

. (10)

In information theory, entropy depicts the diversity
and randomness of a system [52]. The Rényi entropy
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for node vi with order α is

H1
α(vi) =

1

1− α
ln

∑
vj∈S0(vi)

(s0i (j))
α, (11)

where α > 0. Note that the Rényi entropy con-
verges to the Shannon entropy in the case α → 1, i.e.,
H1
α(vi) =

∑
vj∈S0(vi)

s0i (vj) log s0i (vj). For any α, the en-

tropy H1
α(vi) varies from zero to ln |S0(vi)|. In the case of

a certain event, i.e., ∃ vj ∈ S0(vi), where s0i (vj) = 1 and
Hα(vi) = 0. Conversely, the entropy H1

α(vi) = ln |S0(vi)|
when s0i (vj) follows a uniform distribution. The diversity
index D1

α(vi) is

D1
α(vi) = exp(H1

α(vi)) =

 ∑
vj∈S0(vi)

(s0i (vj))
α

1/(1−α)

,

(12)

which is also known as the Hill numbers [56]. It is un-
surprising that s0i (vj) is not uniformly distributed, and
H1
α(vi) ∈ [0, ln |S0(vi)|]. In ecology, the diversity index

quantifies the abundance of species in a community. The
diversity index approaches the total number of species
when the species are equally abundant and approaches
one if there is a dominant species. In Eq. 12, the order
α influences the sensitivity of the diversity index. In-
creasing α strengthens the weights of the most abundant
species. That is, higher α allows us to select the more
abundant species, while lower α will detect more species.
Therefore, we can use α to control the number of neigh-
bors of node vi.

We pick bD1
α(vi)e nodes that have highest similarities

from S0(vi) as the effective number of neighbors of node
vi. Then, the selected neighbors compose a new neigh-
bor set S1(vi). The nodes in S1(vi) are more strongly
connected to vi than the nodes in S0(vi). The network
constructed from S1(vi),∀i ≤ N is denser than that con-
structed from S0(vi),∀i ≤ N . We can repeatedly run
Eqs. 10, 11, and 12 to obtain a network with desired
edge density. Assume bDk

α(vi)e is the diversity index of
kth iteration. Then, we have

Sk(vi) = {vj ∈ Sk−1(vi) :

|{vz ∈ Sk−1(vi) : s(vi, vj) < s(vi, vz)}| < bDk
α(vi)e},

(13)

where k ≥ 1. In each iteration, bDk
α(vi)e nodes with

highest similarity values are selected as the neighbors of
vi. Intuitively, the REM can filter out weak links for vi,
and the remaining nodes Sk(vi) are the most meaningful
neighbors of vi.

In real networks, leaf nodes are those connected to a
small number of others, while hubs have many neighbors.
Considering the property of entropy [57, 60], the size of
the resulting neighbor set Sk(vi) is relatively small if the
similarity value distribution of S0(vi) is right-skewed. On
the contrary, the size of Sk(vi) is much larger if the sim-
ilarity value distribution of S0(vi) is left-skewed [51, 58].

That is, the role of node vi in the resulting network is
related to the similarity value distribution.

III. RESULTS

The method we have presented falls in the category of
unsupervised learning. In this section, we use both syn-
thetic and real data to evaluate the performance of the
proposed approach in recovering global and local struc-
tures in terms of feature learning and network reconstruc-
tion.

A. Feature learning

a. Synthetic data. In this part, we used two case
studies with N1 = 5000 and N2 = 5500 nodes to evaluate
the performance of the proposed approach in recovering
a global structure. The nodes in the two case studies
are measured in six conditions (M1, M2, · · · , M6) and
distributed in five communities (G1, G2, · · · , G5). The
first case study has five communities of equal size, i.e.,
each group has 1,000 nodes. The five communities in the
second case study have respectively G1 = 1000, G2 =
1500, G3 = 500, G4 = 750, and G5 = 1750 nodes (The
sizes of the communities are chosen randomly). Note that
the sixth condition is a perturbation. In each condition,
nodes in the same community are assigned random values
from one of the intervals: A = [1, 100], B = [101, 200],
C = [201, 300], D = [301, 400], E = [401, 500] , and
R = [1, 500]. In this work, we created four datasets for
each case study per the tables in Appendix B. In Table.
VI (Data.1), G1 and G2 are adjacent but not overlapped.
In Tables VII (Data.2), VIII (Data.3), and IX (Data.4),
nodes from G1 and G2 are respectively assigned with
values from two, three, and four same intervals, as shown
in bold fonts. The relative distance between G1 and G2

is expected to decrease with respect to the increase of the
number of overlapped intervals.

b. Experimental results. Based on the approach in-
troduced in Section II, we generated context sets with
a tolerance of δωi = 0.1vi(ω) (βω = 0.1). In the experi-
ments, we generated K = 10 random node sequences of
length l = 80 starting from each node in each of the six
conditions. Consequently, the corpus T1 and T2 consist
of 300000 and 330000 node sequences, respectively. In
the neural network, we set the node vector dimension to
d = 128.

To evaluate the training results qualitatively, we
mapped the trained node vectors to a 2D plane via the
Principle component analysis (PCA) [61, 62]. In Fig.
1(a) and 2(a), the nodes from the same communities are
mapped to the same areas, meaning that the proposed
method can recover the global structure of the dataset.
Note that nodes in G1 and G2 are assigned to values
from two, three, and four overlapped sub-intervals from
Data.2 to Data.4 (see the details in Appendix B). That
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FIG. 1. The node vectors trained from the first case study
are visualized via PCA. The five communities have an equal
number of nodes. Panels (a) to (d) are respectively the train-
ing results of Data.1 to Data.4.

is, the distance between G1 and G2 is assumed to be de-
creasing for Data.2, Data.3, and Data.4. In Fig. 1(b)
and 2(b), we observed the relative distance between G1

and G2 was closer than that in Fig. 1(a) and 2(a). Sim-
ilarly, the relative distance between G1 and G2 was even
closer in Fig. 1(c) and 2(c), and the two communities
were almost merged in Fig. 1(d) and 2(d). The results
for the two case studies (eight datasets in total) demon-
strated that the node vectors can reflect the relative dis-
tances of the node communities, which are affected by
the number of overlapped sub-intervals.
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FIG. 2. The node vectors trained from the second case
study are visualized via the PCA. The five communities have
1000, 1500, 500, 750, and 1250 nodes. Panels (a) to (d) are
respectively the training results of Data.1 to Data.4.

In order to quantitatively show the results, we com-
puted the distance between G1 and G2. To this end, we
calculated the cosine distance (1-cosine similarity) be-
tween node pairs. The distance between G1 and G2 was

TABLE I. The relative distance between G1 and G2 and clas-
sification accuracy

First case study Second case study
Data. Distance Accuracy(%) Distance Accuracy(%)

1 2.18 99.98 2.14 100
2 1.82 99.96 1.86 99.98
3 1.52 99.96 1.49 99.90
4 1.18 79.84 1.16 77.92

computed as the summation of all possible node pairs
between the two communities. For example, the cosine
distance between G1 and G2 is

Dis(G1, G2) =
∑

vi∈G1,vj∈G2

1− s(vi, vj). (14)

Then, we calculate the relative distance between G1 and
G2 as:

RelaDis(G1, G2) =
Dis(G1, G2) ∗Dis(G1, G2)

Dis(G1, G1) ∗Dis(G2, G2)
. (15)

Additionally, we perform the simple K -means cluster-
ing method [63] to classify the trained node vectors into
five communities. The classification results are compared
to the ground-truth communities.

The relative distances between G1 and G2 and classi-
fication results are shown in Table. I. We observe that
the cosine distance between G1 and G2 is decreasing for
Data.1 to Data.4, in accord with the visualizations in
Fig. 1 and Fig. 2. Specifically, the distance is close to
one for Data.4, which suggests that the two communi-
ties almost merged. The classification results also agree
with the visualization. The classification accuracy is
above 99% for Data.1, Data.2, and Data.3, and the clas-
sification accuracy has dropped significantly in Data.4
since the two communities are almost overlapped, and
the nodes from the two communities are falsely classi-
fied. From a global view, the node vectors can recover
the mesoscopic structure of the nodes. In the following
experiments, we will only use the first case study to con-
duct further analysis.

TABLE II. The influence of missing values on the distance
between G1 and G2 and classification accuracy

10% missing values 20% missing values
Data. Distance Accuracy(%) Distance Accuracy(%)

1 2.19 100 2.16 99.92
2 1.77 99.92 1.76 99.72
3 1.49 99.64 1.47 98.76
4 1.15 79.68 1.14 79.96

To study the influence of missing values, we generate
incomplete datasets by randomly removing 10% and 20%
of values from each condition. We use the same param-
eters to train the neural network, and the results are
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shown in Table II. It can be observed that the relative
distances between G1 and G2 and the classification accu-
racies are not significantly affected by the missing values.
In Fig. 3, the visualization shows that the global struc-
ture of the nodes can still be recovered even when 20%
data have been removed randomly. Therefore, the results
suggest the proposed method is robust to missing values.

TABLE III. The relative distance between G1 and G2 and
classification accuracy w.r.t. the variation of βω

Distance Accuracy(%)
Data. 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

1 2.08 2.18 2.22 2.16 100 99.98 99.86 99.86
2 1.78 1.82 1.82 1.76 99.98 99.96 99.86 99.88
3 1.49 1.52 1.48 1.47 99.92 99.96 99.06 99.84
4 1.15 1.18 1.16 1.14 80.72 79.84 80.86 81.34

The training results are robust to the choice of train-
ing parameters. In the generation of node sequences, we
assigned different values to βω to control the size of the
context set δiω. The node sequences are trained using the
neural network model with ρ = 1. Similarly, we com-
puted the relative distances between G1 and G2 and the
classification accuracy. Table V shows that the relative
distances are at the same levels for the same datasets,
and the classification accuracies are not significantly af-
fected by βω, meaning that the global structure is still
maintained. Thus, the choice of βω has limited influence
on the embedded node vectors.
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FIG. 3. Visualization of node vectors trained from the first
example with 20% missing values. Panels (a) to (d) are re-
spectively the training results of Data.1 to Data.4.

To compare the proposed approach with the widely
used correlation approach [37, 40], we generated four net-
works from the synthetic data and trained the networks
with semi-supervised learning algorithms to obtain node
vectors. First, the values of each condition are normal-

ized with the z-score:

vi(ω) =
vi(ω)− µω

σω
(16)

where µω is the mean of all the values in the ωth con-
dition, σω is the standard deviation, and vi(ω) is the
normalized expression value.

The Pearson correlation coefficient (PCC) of any two
nodes is:

r(vx,vy) =

∑M
i=1(vx(ω)− vx)(vy(ω)− vy)√∑M

i=1(vx(ω)− vx)2
√∑M

i=1(vy(ω)− vy)2

(17)

where r(vx,vy) is the PCC between node vx and vy, and vx
is the mean of node vx across theM conditions. The PCC
measures how much the two genes are related [37, 39].
In this experiment, we did not consider the missing value
problem, which could substantially influence the corre-
lation coefficients according to the results in [40]. The
edges are selected by thresholding correlation coefficients,
such that PCC ≥ 0.95 [39, 64]. All four networks have
edge densities above 5%, as shown in Table IV.

TABLE IV. The relative distance between G1 and G2 and the
classification accuracy of the PCC networks

Data. Edge density Distance Accuracy(%)
1 6.30% 6.13 100
2 5.81% 3.64 81.30
3 5.21% 2.66 80.82
4 5.73% 1.17 64.26

To study the properties of nodes, different method-
ologies are used to determine node vectors from net-
work structure [45–47, 65]. Here, we used the node2vec
method introduced in [45] to obtain node vectors from the
constructed networks since the approach has shown out-
standing performance in reconstructing networks. Simi-
larly, we computed the relative distances between G1 and
G2 from the trained node vectors, and the results are
shown in Table IV. We observed that the relative dis-
tances between the two communities for the first three
networks are much higher than in our method (Table
I). In the synthetic datasets, G1 and G2 are assumed to
partially overlap. However, this characteristic is not re-
covered from trained node vectors per the visualization of
Fig. 4. In the PCC method, errors could be introduced
in data normalization, network construction, and feature
learning, which consequently influence the accuracy of
trained node vectors. As a comparison, our proposed
approach trains the node vectors directly from the raw
data.

More experimental results on the choice of ρ can be
found in Appendix C.

c. Real data. We used two real Anopheles gambiae
gene expression datasets [20, 42] to show that the learned
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FIG. 4. The visualization of node vectors trained from the
Pearson correlation network. Panels (a) to (d) are respec-
tively Data.1 to Data.4.

node vectors can capture the local structure of the nodes.
The first dataset consists of 10,433 Anopheles gambiae
genes measured in time series after desiccation stress (five
conditions) [66]. The five measurements (conditions) of
each gene are almost at the same level, and the distri-
butions of the coefficient of variation (CV ) and means
of the 10,433 genes are shown in Fig. 5(a) and (c). The
second dataset measures the gene expression values af-
ter mating [67], consisting of four measurements (also in
time series). The distributions of the CV and means are
shown in Fig. 5(b) and (d).
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FIG. 5. The properties of the two real datasets. Panels (a)
(first dataset) and (b) (second dataset) are the distributions
of the CV of the expression values. Panels (c) (first dataset)
and (d) (second dataset) are the distributions of means of the
expression values.

In Fig. 5(a) and (b), we observe that the CV s of most
genes are at a low level. Therefore, we can set the toler-

ance δωi as the average CV of all the nodes, such that

CV =
1

N

∑
i

σi
mi

, (18)

where mi is the mean value of gene vi, σi is the standard
deviation, and σi

mi
is the CV of gene vi. The CV s of the

two data sets are respectively 0.086 and 0.12. Therefore,
we set βω = CV .
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FIG. 6. Visualization of the gene vectors via t-SNE, the
genes are colored by the expression values. Panels (a) (first
dataset) and (b) are the visualizations of node vectors trained
from raw data. Panels (c) (first dataset) and (d) (second
dataset) are the visualizations of node vectors trained from
the incomplete datasets with 20% values randomly removed
from each condition.

d. Experimental results. The trained node vectors
are visualized via the t-distributed stochastic neighbor
embedding (t-SNE) method [68] in Fig. 6. The t-SNE
constructs probability distribution over pairs of vectors
and does not retain the distances of node pairs, but their
probabilities. Therefore, the t-SNE approach has better
performance in preserving local structure. In Fig. 6, we
can observe that the genes with similar expression values
are mapped closer, even when 20% of values have been
removed from each condition.

As a comparison, we construct a PCC network for the
first real data. The raw expression values are rescaled
with log2 [20, 39] and normalized per Eq. 16 (the distri-
bution of the raw data is heterogeneous as shown in Fig.
5(c)). Then, a PCC network is constructed by threshold-
ing the edges with a threshold PCC≥ 0.95 (the network
is not sparse). The resulting network consists of 756,330
edges. Similarly, the node vectors are obtained by train-
ing the node2vec model. In Fig. 7, we observed that
nodes are distributed randomly in the 2D plane, suggest-
ing that nodes with close values are not mapped to the
same area. For example, the expression values of the two
genes AGAP004677 and AGAP012093 are respectively
[2764, 2869, 3276, 3690, 3671] and [129, 149, 184, 221,
265], and it is apparent that the expression values of the
two genes are at different levels. However, the PCC be-
tween the two genes is 0.983, suggesting the two nodes
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FIG. 7. The visualization of node vectors trained from the
PCC network.

are highly related. The reason is that the PCC method
does not depend on the scale of expression values but de-
tects the linear dependence of two genes. In contrast, our
approach assumes that similar nodes have more shared
elements in their context sets.

B. Results of network extraction

Thresholding similarity value is the most straightfor-
ward and widely used approach in network construction.
However, some nodes could be isolated from the network
since these nodes may have relatively low similarities to
all other nodes. In Fig. 8, we applied different thresholds
to the cosine similarities computed from the node vectors
trained with the synthetic data (Fig. 1(a)) and the real
data (Fig. 5(a)). We observed that the percentage of
isolated nodes increases rapidly when the thresholds are
greater than 0.8 (synthetic data) and 0.95 (real data), re-
spectively. In this paper, we define such threshold as the
critical value. If we use a threshold smaller than the crit-
ical value, most nodes are connected to at least one other
node. On the contrary, if the threshold is larger than the
critical value, we possibly obtain a network with a large
percentage of singleton nodes.

We can force isolated nodes to connect with highly sim-
ilar nodes in real applications. However, the neighbors
selected through a single threshold are not affected by
the distribution of similarity values. It is not rare that
hubs are connected to many other nodes but with rela-
tively low similarity values, while leaf nodes may connect
to a small number of nodes with high similarities. That
is, the distribution of similarity values is not considered
in the selection of edges.

The proposed REM will maintain every node con-
nected to at least one other node since the ”threshold”
of each node is determined via the distribution of simi-
larity values per Eq. 12. In the experiments, we applied
the REM to the two datasets used in Fig. 8, and the re-
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FIG. 8. Experimental results when different thresholds are
applied. (a) shows the percentages of isolated nodes w.r.t.
the thresholds. (b) shows the edge densities of networks when
different thresholds are used.

sults are shown in Fig. 9. We observed that edge density
decreases drastically in the first several iterations, and
then the edge density decreases gradually. The reason
is that the weakly connected edges are removed imme-
diately from the network in the first several cycles. In
contrast, the remaining edges have relatively high simi-
larities, which are removed at a slower speed. In addition,
the parameter α allows us to control the removal speed
and edge density. Higher α removes weak links more ef-
ficiently, which aligns with our analysis in Sec. II C. In
real applications, we can fix α and update Eq. 10 to Eq.
10 iteratively until we obtain a network with desired edge
density.
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FIG. 9. Edge density analysis of the REM. (a) Synthetic data.
(b) Real data.

Furthermore, we generated four GTE-based networks
with different thresholds for the datasets used in Fig. 8.
The properties of the networks are shown in Table V.
Specifically, The GTE networks are respectively gener-
ated with thresholds less and equal to the critical thresh-
olds. In addition, we generated four REM networks,
which have similar edge densities to their GTE counter-
parts. In Table V, we found that both GTE and REM
return networks with similar average degrees when the
edge densities are the same. However, the GTE networks
always have a higher average clustering coefficient, sug-
gesting that nodes in the GTE networks are more likely
to cluster together. In Fig. 10, we compared the degree
distributions of the eight networks. We observed that
the degree distributions of the GTE and REM networks
almost overlap when the thresholds are less than the crit-
ical values (panels (a) and (c)). When the thresholds are
at the critical values (panels (b) and (d)), some nodes in
the REM networks still have high degrees, which are sim-
ilar to the hubs in many real networks. Besides, we ob-
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TABLE V. The properties of networks constructed with the GTE and REM

<CTa (Syn.b) =CT (Syn.) <CT (Real. c) =CT (Real)
Property GTE REM GTE REM GTE REM GTE REM
Threshold 0.7 - 0.8 - 0.92 - 0.95 -

Isolated nodes 0 0 287 0 372 0 849 0
Edge density 1.03% 0.972% 0.164% 0.160% 2.88% 2.81% 1.18% 1.18%
Ave. degree 51.5 48.6 8.2 8 300.8 293.2 123.2 123.4

Ave. clustering 0.46 0.41 0.38 0.32 0.66 0.55 0.59 0.37

a CT denotes Critical threshold
b Syn. denotes the synthetic data used in Fig. 8 and 9
c Real. denotes the real data used in Fig. 8 and 8
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FIG. 10. The degree distributions of networks generated
from the GTE and REM. (a) and (b) are the degree dis-
tributions of the networks constructed from synthetic data.
(c) and (d) are the degree distributions of the networks con-
structed from real data. Panels (a) and (c) show the results of
densely connected networks, while (b) and (d) are the results
of sparsely connected networks.

served that all four REM networks have many low-degree
nodes, which account for the lower average clustering co-
efficients in Table V.

(a) (b)

FIG. 11. The comparison of node degrees between densely
and sparsely connected networks.

Finally, we compared how edge density affects the roles
of nodes. In Fig. 11, each point represents a node.
The horizontal coordinate represents the nodes degree
in the densely connected network, while the vertical co-
ordinate represents the nodes degree in the sparse net-
work. We observed that the node degree of the GTE
networks is remarkably affected by the threshold selec-

tion. The highest node degrees have dropped from 345
to 73 for the synthetic data and from 704 to 370 for the
real data. In the REM network, the highest node degrees
have dropped from 321 to 210 for the synthetic data and
682 to 493 for the real data. In Fig. 11, the REM ap-
proach is more likely to remove edges from low-degree
nodes. Edges from high-degree nodes are removed pro-
portionally, which means the nodes roles are maintained
and not significantly influenced by edge densities. On
the other hand, the nodes degree in the resulting GTE
networks is strongly related to the choice of edge density.
In Fig. 11(b), we can see that the points of the GTE
networks are over-dispersed in the diagram.

More experimental results on real data are discussed
in Appendix D.

IV. CONCLUSION AND FUTURE WORKS

This paper presents a neural network-based approach
for learning node vectors from noisy node activity data.
The primary advantage of the proposed method is that
data are not required to follow any specific distribution
since we generate context sets from raw data for each
condition. The proposed approach is not constrained by
missing values that ubiquitously exist in experimental
results. Inspired by the application of neural networks
in natural language processing, we generate a corpus of
node sequences to simulate sentences in documents. The
corpus is trained by a neural network model, which pro-
duces node vectors and allows comparing and identifying
nodes with synergistic roles. The experimental results
show that the proposed approach is robust to the choice
of parameters and missing values. In addition, we offer
an alternative method to select edges for the underlying
network. The REM method is based on the Rényi en-
tropy and selects edges according to the distribution of
similarity values. The proposed approach constructs net-
works without isolating nodes and can recover the roles
of nodes.

In this work, we designed two experiments to test the
proposed method. With both synthetic and real data, we
showed that the proposed method could unveil the global
and local structure of the nodal data even when 20%
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values are randomly removed from the datasets. Fur-
thermore, we tested the proposed entropy-based network
extraction method. We can obtain a network with de-
sired edge density without isolated nodes by controlling
the parameter α and the number of iterations.

The experiments in this paper show promising results
in detecting global and local structures from noisy nodal
data. We expect the proposed data processing method-
ology to be used in different areas, including biology and
finance, especially where node activity data are measured
with different techniques and missing values are present.
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figuresection

Appendix A: The skip-gram model

The goal of generating random node sequences is to
feed the corpus T to neural networks to train node vec-
tors. In this work, we adopt the simple three-layer skip-
gram model as shown in Fig. 12. This neural network
framework has three layers; input, hidden, and output
layer [48–50, 54, 55]. In this work, the goal is to find the
d dimensional vector for each of the N nodes.

In our assumption, nodes with similar values tend to
appear in a similar context. Given a neighborhood H
consisting of 2c nodes, we denote P (vx | H) as the con-
ditional probability of node vx is neighboring to the 2c
nodes in H. Based on Bayes theorem, we have

P (vx | H) =
P (H | vx)P (vx)

P (H)
, (A1)

where P (H) and P (vx) are respectively the probability
of H and vx, and P (H) and P (vx) can be regarded as
constants. Then, we have

P (vx | H) ∝ P (H | vx). (A2)

Now, we take one of the node sequences from the cor-
pus. Let li denote the ith node of the sequence, and
H = {li−c, , li−1, li+1, , li+c}. That is, we have an out-
come H given li. Since the goal is to determine f(li), we
replace vx in Eq. A2 with f(li), and assume the 2c nodes
are independent [48]. We have

P (f(li) | H) ∝ P (H | f(li)) =∏
−c≤j≤c,j 6=0

P (li+j | f(li)), (A3)

where P (li+j | f(li)) is the occurring probability of node
li+j given the vector f(li). To determine f(li), we have
the optimization problem after taking the log form of Eq.
A3:

E = −min
f

∑
−c≤j≤c,j 6=0

logP (li+j | f(li)). (A4)

Input layer Hidden layer Output layer

FIG. 12. The three-layer neural network model. Each input
node is associated with an N dimensional one-hot vector [48],
which is mapped to the node vector f(vi) (the hidden layer)
of dimension d by matrix W1. The hidden layer is mapped
to the output vector by matrix W2. The elements of W1 and
W2 are initialized with random values, which are expected to
be optimized by backpropagation [49].

In the model, the node vector f(li) is projected to an
N dimensional output vector ui as shown in Fig. 12.
The N dimensions of ui are associated to the N nodes
in the corpus. Then, we use the softmax function [49,
50, 69] to map the entries of ui into probabilities, which
all together give a probability distribution. For example,
the probability of the rth entry of ui given f(li) is

P (vr | f(li)) =
exp(uri )∑

r′∈N exp(ur
′
i )
, (A5)

where uri is rth entry of ui and P (vr | f(li)) is the prob-
ability of node vr to be the context of li. According to
Eq. A5, nodes in H have higher probabilities to be the
context of node li. Combining Eq. A4 and Eq. A5, we
have the loss function [70, 71]

E = −min
f

∑
−c≤j≤c,j 6=0

ui+j + log(
∑
r′∈N

exp(ur
′

i )). (A6)

which is applied to every node in the sequence. Eq. A6
is optimized by using the stochastic gradient descent ap-
proach [45, 49, 50], which backpropagates [69] errors to
update the elements of the matrices W1 and W2 in Fig.
2.

The method we have introduced falls in the category
of unsupervised learning, in which we learn node vectors
from nodal data. The node vectors can be used to extract
networks or detect nodes with similar properties.
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Appendix B: Synthetic datasets

The four synthetic datasets for the two case studies are
generated according to Tables. VI, VII, VIII, and IX.

TABLE VI. The synthetic dataset 1

Conditions
group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 B C D E A R
G3 C D E A B R
G4 D E A B C R
G5 E A B C D R

TABLE VII. The synthetic dataset 2

Conditions
group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B D E D R
G3 B C E A C R
G4 C D A B B R
G5 D E B C A R

TABLE VIII. The synthetic dataset 3

Conditions
group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B C E D R
G3 B C D A C R
G4 C D E B A R
G5 D E B C B R

TABLE IX. The synthetic dataset 4

Conditions
group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B C D D R
G3 B C D E C R
G4 C D E A B R
G5 D E B C A R

Appendix C: Parameter choice

We study the influence of ρ on the relative distance
between G1 and G2, and the results are shown in Table.
X. We observe that the distance between the two com-
munities slightly increases when we employ a low value
of ρ since a small ρ encourages adding nodes that also

exist in the context set of the previous node. As a result,
far away nodes will become closer, reflected in the re-
duced distance between the two communities. However,
the results are not significantly influenced by ρ since the
relative distances of two communities are maintained at
the same level for the same data. Therefore, we recom-
mend using ρ = 1 in most cases.

TABLE X. The relative distance between G1 and G2 w.r.t. ρ

Data. 1/10 1/5 1/3 3 5 10
1 2.23 2.22 2.19 2.18 2.17 2.07
2 1.84 1.83 1.82 1.80 1.78 1.67
3 1.53 1.52 1.52 1.48 1.42 1.32
4 1.22 1.21 1.20 1.17 1.16 1.13

TABLE XI. The prediction accuracy w.r.t. ρ

Data. 1/10 1/5 1/3 3 5 10
1 98.24 98.24 98.72 98.80 98.90 98.82
2 98.26 97.22 98.68 98.00 97.30 98.12
3 97.52 97.48 97.72 98.22 97.58 97.32
4 78.14 78.58 78.62 79.72 79.32 79.78

Appendix D: Study the REM approach with AUC
metrics on real data

In this part, we use two real datasets with both net-
work structure and node activity data to study the pro-
posed approach. It is often hard to quantitatively de-
termine the relationships between the network structure
and node activity data because they describe the proper-
ties of nodes from different aspects. In the experiments,
we learn node vectors from the node activity data, com-
pute similarity and construct networks. The constructed
network is compared to the network structures, and we
use the AUC to evaluate our REM approach.

a. The cora dataset. The cora dataset [73] contains
a sparse citation network with 2708 nodes and 5278 edges
(the edge density is 0.144%), where nodes represent pub-
lications and edges represent the citation relationships
between the papers. Each node in the network is de-
scribed by a 0/1-valued word vector, indicating the ab-
sence/presence of the corresponding word from a dictio-
nary. The dictionary consists of 1433 unique words pre-
sented at least ten times in one of the 2708 publications.

b. The pubmed dataset. The pubmed dataset [74]
contains a sparse citation network with 19717 nodes and
44324 edges (the edge density is 0.0228%), where nodes
represent publications and edges represent the citation
relationships between the papers. Each node in the net-
work is described by a TF/IDF weighted word vector
from a dictionary consisting of 500 words.

The two networks represent citation relationships be-
tween the publications (nodes), while the node activ-
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ity data are extracted from the content of each publica-
tion. We implement the proposed approach on these two
real datasets to generate node vectors (128 dimensions).
Then, we calculate the similarity for every node pair, and
the performance of the approach is evaluated by compar-
ing it to the true citation networks. The AUCs of the two

datasets are respectively 0.81 and 0.73. Though the true
relationship between network structure and node activity
data is unknown, the results reveal that the node activity
data are related to the network structure. Therefore, one
of the advantages of our approach is that it allows us to
compare two different types of data.
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