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We derive new algebraic equations for the folding angle relationships in completely general degree-
four rigid-foldable origami vertices, including both Euclidean (developable) and non-Euclidean cases.
These equations in turn lead to novel, elegant equations for the general developable degree-four case.
We compare our equations to previous results in the literature and provide two examples of how
the equations can be used: In analyzing a family of square twist pouches with discrete configuration
spaces, and for proving that a new folding table design made with hyperbolic vertices has a single
folding mode.

I. INTRODUCTION

The folding of stiff, two-dimensional materials along
straight crease line segments so that the material re-
mains planar between creases is commonly known as
rigid-foldable origami. It has garnered the attention of
designers, engineers, and physicists as a source of easy-
to-manufacture, collapsible mechanisms for use in ev-
erything from metamaterials to solar sail deployment in
space to furniture design [1–4]. Of particular interest
have been rigid origami structures that flex with only a
single degree of freedom, thus giving controllable fold-
ing mechanics. One way to study such mechanics is to
quantify the folding angle at each crease as the origami
structure flexes. A folding angle ρi is the amount the
material deviates from a flat, unfolded state at a crease
ei; see Figure 1(a). When four creases meet at a ver-
tex, as in Figure 1(b), the folding mechanism will have
one degree of freedom, meaning that one crease’s fold-
ing angle will determine the folding angles of the other
three creases. Finding equations for these determined
folding angles in terms of the indeterminate folding an-
gle has been an essential part of many studies of rigid
origami in applications [5–8]. Such folding angle equa-
tions provide a pure mathematical model of rigid folding
that ignores thickness of the material or bending energy
at the creases. They nonetheless provide valuable infor-
mation on the configuration and relative speeds of the
folded creases as the mechanism flexes.

In this paper we provide folding angle equations that
hold for the full range of possibilities for a degree-4 rigid
origami vertex (i.e., where four crease lines meet). The
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FIG. 1. (a) Folding angles ρi define valley and mountain
creases. (b) Sector angles αi defining examples of flat- and
non-flat-foldable vertices. (c) Examples of non-Euclidean ver-
tices.

flat-foldable case, where the folding angles may flex to
the point where they all equal ±π (see Figure 1(b) left)
has very elegant folding angle equations that are well
known; these will be summarized along with other back-
ground material in Section II. In Section III we present
our new equations which not only cover the flat- and non-
flat-foldable degree-4 vertex cases, but also work for the
so-called non-Euclidean degree-4 vertex cases where the
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sum of the sector angles αi between adjacent creases on
the folded material do not sum to 2π (see Figure 1(c).
These new, fully-general equations lead to novel and sur-
prisingly elegant equations for the Euclidean, non-flat-
foldable degree-4 case, such as the one shown in Fig-
ure 1(b) right; this will be the subject of Section IV.
Finally, in Section V we use our new equations in two ap-
plications: (A) a family of twist-based origami pouches
that have finite, disconnected rigid origami configuration
spaces and therefore exhibit bistability by “snapping”
into their target form when folded; and (B) the design
of a foldable table with hyperbolic vertices.

II. BACKGROUND ON FOLDING DEGREE-4
VERTICES

We define the crease pattern of a rigid-folding origami
to be the planar graph of straight line segments drawn
on the material that is to be folded. In this paper we
focus on crease patterns that have only one vertex in the
material’s interior, sometimes called single-vertex crease
patterns. The angles between consecutive creases at the
vertex on the unfolded material are called sector angles.
We denote the sector angle between creases ei and ei+1

by αi (where the indices are taken cyclically, mod 4 for
a degree-4 vertex). A single-vertex crease pattern whose
sector angles sum to 2π is called developable, aka Eu-
clidean. Some of the many studies of the kinematics of
degree-4, developable origami vertices are [5, 6, 9–13].
More recent studies have explored rigid foldings of non-
developable, aka non-Euclidean degree-4 vertices [14, 15],
where

∑
αi 6= 2π. Non-Euclidean origami vertices come

in two types: the synclastic case of an elliptic, convex
polyhedral cone crease pattern where the sector angles
have

∑
αi < 2π and the anticlastic case of a hyperbolic

vertex with
∑
αi > 2π (see Figure 1(c)).

We denote the folding angle of a crease ei by ρi. If
ρi > 0 we call ei a valley crease, whereas if ρi < 0 it
is called a mountain crease. As seen in Figure 1(a) and
(b), valley creases are denoted in illustrations by a dashed
line, while mountains are drawn with a solid bold line.

If we can fold an origami crease pattern to a point
where it lies in a plane, with all the folding angles equal
to π or −π, then we say that the crease pattern is flat-
foldable. One of the basic results of flat-foldable origami
is Kawasaki’s Theorem, which states that a necessary
and sufficient condition for a degree-4 vertex to be flat-
foldable is that the sector angles between creases satisfy
α1 − α2 + α3 − α4 = 0 [16, 17].

We define the configuration space of a degree-4 rigid-
foldable origami vertex V to be the set of points
(ρ1, ρ2, ρ3, ρ4) ∈ R4 such that V can be rigidly folded
with folding angles ρi at each crease ei. If we let R(ei, ρi)
denote the orthogonal matrix that rotates R3 about the
line containing crease ei by angle ρi, then a necessary con-
dition for an origami vertex to be rigidly foldable with
folding angles ρi is

∏
R(ei, ρi) = I where I is the identity

matrix [18]. The action of the matrices R(ei, ρi) is shown
in the degree-4 crease patterns of Figure 1(b).

When V is a flat-foldable degree-4 origami vertex, we
have the following (see Figure 2(a) to aid in the notation).

Theorem 1. For a developable, flat-foldable origami
degree-4 vertex with sector angles labeled so that
α1 ≤ α2 < α3, α4, the folding angles ρi satisfy one
of the following sets of equations:

ρ1 = ρ3, ρ2 = −ρ4, tan
ρ2
2

= −cos α1+α2

2

cos α1−α2

2

tan
ρ1
2
, (1)

and

ρ1 = −ρ3, ρ2 = ρ4, tan
ρ1
2

=
sin α1−α2

2

sin α1+α2

2

tan
ρ2
2
. (2)

For a proof, see [17] or [19]. The two sets of equations
in Theorem 1 trace two curves in the configuration space,
called the modes of the rigid folding, that intersect at the
origin (the unfolded state). A example of (ρ1, ρ2) graphs
of these two modes is shown in Figure 2(b).

These relationships were first described by Huffman in
1976, although not in this exact form [20, 21]. We see
that developable, degree-4 flat-foldable origami vertices
have opposite folding angles that are congruent up to
sign, and adjacent folding angles have a linear relation-
ship when parameterized by the tangent half-angle.

For the developable, non-flat-foldable case Huffman
[20] provides a relationship for the opposite folding an-
gles,

sin2 ρi
2

=
sinαi+1 sinαi+2

sinαi sinαi+3
sin2 ρi+2

2
, (3)

where the indices are taken cyclically (mod 4), and for the
adjacent folding angle relationships Huffman gives a very
convoluted expression, lamenting that a more simple ex-
pression does not seem possible [20, p. 1014]. Izmestiev
[22] provides formulas that are of similar, but simplified,
form to Huffman’s. However, they exist in a complexified
configuration space and are thus challenging to use.

Numerical methods have also been employed to cal-
culate folding angles, such as in Tachi’s Rigid Origami
Simulator software [23]. Numerical methods have also
been used to compute configuration space curves of non-
developable degree-4 vertex rigid foldings, such as those
in [14, 15], which classify the possible combinations of
mountains and valleys that can exist in non-Euclidean
vertices.

We now turn our attention to deriving folding angle
equations for rigid foldings of degree-4 origami vertices
in general.

III. KINEMATICS OF GENERAL DEGREE-4
VERTICES

The following Theorem describes the folding angle rela-
tionships, and thus the configuration space, of rigid fold-
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FIG. 2. (a) The two folding modes of a developable, flat-foldable vertex of degree 4. (b) The configuration space curves for
folding angles ρ1 and ρ2.

ings of general degree-4 origami vertices.

Theorem 2. Given a general degree-4 rigid origami ver-
tex with sector angles α1, . . . , α4 and creases ei between

sectors αi−1 and αi, the configuration space of the vertex
is the set of folding angles (ρ1, . . . , ρ4) of the creases ei
that satisfy the following two equations, where the sub-
script index arithmetic is taken cyclically (mod 4):

tan2 ρi
2

= − (1 + tan2 ρi+2

2 ) cos(αi−1 + αi) + tan2 ρi+2

2 cos(αi+1 − αi+2) + cos(αi+1 + αi+2)

(1 + tan2 ρi+2

2 ) cos(αi−1 − αi)− tan2 ρi+2

2 cos(αi+1 − αi+2)− cos(αi+1 + αi+2)
(4)

and

cosαi+2

(
1 + tan2 ρi

2

)(
1 + tan2 ρi+1

2

)
= cos(αi+1 − αi − αi−1) tan2 ρi+1

2

+ cos(αi+1 + αi − αi−1) tan2 ρi
2

+ cos(αi+1 − αi + αi−1) tan2 ρi
2

tan2 ρi+1

2
+ cos(αi+1 + αi + αi−1)

+4 sinαi+1 sinαi−1 tan
ρi
2

tan
ρi+1

2
.

(5)

Proofs of these equations can be found in Appendix A.

Remark 1. Equation (4) describes the relationship be-
tween opposite pairs of folding angles at the degree-4
vertex, while Equation (5) describes adjacent pairs of
folding angles. These equations capture the entire config-
uration space of a degree-4 rigidly-folding vertex, but to
obtain functions for individual folding angles they need

to be manipulated, whereby the choice of square root
branches determines the various folding modes. To enu-
merate these modes, note that since degree-4 origami ver-
tices have one degree of freedom, we may choose any an-
gle to parameterize the rigid folding. For example, if we
let t = ρ4 be the parameter, then from Equation (5) we
obtain two solutions for ρ1. That is, we can isolate the
tan(ρ1/2) terms to obtain

tan
ρ1
2

=

2 sinα1 sinα3 tan ρ4
2 ±

√√√√√
4 sin2 α1 sin2 α3 tan2 ρ4

2
−(cosα2 − cos(α1 − α3 − α4) + (cosα2 − cos(α1 + α3 − α4)) tan2 ρ4

2 )
×(cosα2 − cos(α1 + α3 + α4) + (cosα2 − cos(α1 − α3 + α4)) tan2 ρ4

2 )

cosα2 − cos(α1 − α3 − α4) + (cosα2 − cos(α1 + α3 − α4)) tan2 ρ4
2

, (6)
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giving two choices for ρ1. If we keep the sector with an-
gle α4 fixed and fold the creases on either side of this
sector with the folding angles ρ1 and ρ4, then this will
position the sectors α1 and α3, resulting in only one way
to place the sector with angle α2 between them, deter-
mining the folding angles ρ2 and ρ3 (although this may
result in the material self-intersecting). In other words,
Equation (5) provides a proof of the following (which is
already generally known, e.g. see [9, 20, 22]):

Corollary 1. Degree-4 rigid-foldable vertices have ex-
actly two folding modes, meaning that their configuration
space consists of two curves in R4.

Remark 2. Care must be taken when trying to use
Equations (4) and (5) to isolate the different folding
modes, such as to express one folding angle as a func-
tion of another folding angle. For example, when taking
square roots of both sides of Equation (4) one needs to
track which branch of the square root is needed to pre-
serve the folding mode.

A guiding principle that can help, especially for non-
Euclidean degree-4 vertices, is to choose a folding angle
ρi as the independent parameter that can achieve the full
range of [−π, π] in the rigid folding motion. For example,
consider a bird’s foot vertex, which is a degree-4 vertex
with α1 = α2 < α3 = α4, so that creases e1-e3 look like
the toes of a bird’s foot (see Figure 10(a) for an example).
In the elliptic case one should choose ρ2, the folding angle
of crease e2, to be the free parameter, since all the other
folding angles only remain in the range [0, π] while in
mode 1; if we make any of ρ1, ρ3, or ρ4 negative, then we
jump to a different connected component of the configu-
ration space and will be in mode 2. (More details of how
the folding angles equations from Theorem 1 inform the
rigid folding of bird’s feet can be found in Appendix C.)

Example 1. Equations (4) and (5) can be used to ver-
ify many of the qualitative behaviors of degree-4 rigid
origami vertices as documented by Waitukaitis et al. for
the developable case in [9] and the non-developable case
in [15]. For example, in [15] the developable degree-4 ver-
tex with plane angles α1 = π/3, α2 = π/2, α3 = 3π/4,
and α4 = 5π/12 is studied; see Figure 3(a)-(b) for images
of this vertex and a plot of the folding angle relationships
between ρ1 and ρ2, ρ3, and ρ4 for both folding modes,
from [15] (reprinted with permission). Using Equations
(4) and (5) from Theorem 2, we can plot these curves as
shown in the first graph of Figure 3(c), showing our equa-
tions match previous work in the developable case. In the
remaining two plots of Figure 3(c) we show our algebraic
configuration space curves for this vertex where the sector
angles αi have been perturbed by −0.05/(2π), making a
synclastic convex cone vertex, and by 0.05/(2π) to make
an anticlastic hyperbolic vertex. Our curves match the
approximation curves made for such non-Euclidean ver-
tices near the origin given in [15, Fig. 2]. Note that in this
Figure we plot all solutions of the Theorem 2 equations
that give ρi ∈ [π, π], which includes rigid foldings that

cause the material to self-intersect or cause other folding
angles to go beyond ±π; such solution curve parts are
drawn in faded line widths in Figure 3(c).

Many things can be inferred from the curves in Fig-
ure 3(c). For one thing, in both the elliptic and hy-
perbolic cases the configuration spaces are disconnected,
whereas in the developable vertex they are connected.
This makes intuitive sense because when

∑
αi 6= 2π, it

is impossible to unfold the vertex so that all the creases
have folding angles of zero at the same time. In the
elliptic case this means that the vertex can “pop up”
or “down” and cannot switch between the two with-
out bending faces. It is less intuitive that one cannot
switch between modes 1 and 2 in the hyperbolic case,
yet their curves clearly do not intersect. This topologi-
cal distinction of the configuration spaces in the elliptic,
developable, and hyperbolic cases has further implica-
tions on the definitions of modes 1 and 2. E.g., in the
developable vertex the folding angles ρ3 and ρ4 are de-
creasing functions of ρ1 in mode 1 passing from valley, to
unfolded (zero), to mountain, ensuring a smooth folding
motion. But in the elliptic case ρ3 and ρ4 remain valleys
throughout mode 1, joining two branches that were in
different branches in the developable case. Such obser-
vations could be useful in practice when, say, trying to
decide which crease to use to drive a rigid folding mech-
anism.

IV. GENERAL EQUATIONS FOR
DEVELOPABLE DEGREE-4 VERTICES

Despite the elegant folding angle equations for flat-
foldable degree-4 vertices, as shown in Theorem 1,
equally elegant equations for general degree-4 devel-
opable vertices have been elusive in the literature. How-
ever, the equations in Theorem 2 can be used to prove
(see Appendix B) the following:

Theorem 3. For a general, developable degree-4 rigid
origami vertex with sector angles αi and folding creases
ei between sectors αi−1 and αi, the folding angles ρi at
ei satisfy the following equations:

sinαi+1 sinαi+2

tan2 ρi
2

+
cos(αi+1 − αi+2)

2
=

sinαi−1 sinαi
tan2 ρi+2

2

+
cos(αi−1 − αi)

2

(7)

and

sin(αi+1 + αi+2)

tan ρi
2

=
sinαi

tan ρi−1

2

+
sinαi−1
tan ρi+1

2

. (8)

Remark 3. Equation (7) can be manipulated to become
Huffman’s Equation (3) from [20], but the formulation in
(7) shows how the general equation for opposite folding
angles can be expressed with tangent of half the folding
angles.
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Equation (8) reveals a pattern that was hidden in the
flat-foldable equations in Theorem 1. Since in the flat-
foldable case we have ρi−1 = ±ρi+1, the right-hand side
of Equation (8) becomes either

sinαi + sinαi−1
tan ρi−1

2

or
sinαi − sinαi−1

tan ρi−1

2

,

which, using αi+1 = π − αi−1 and αi+2 = π − αi, makes
Equation (8) one of the two folding modes of Theorem 1
(since, for example, sin(αi + αi−1)/(sinαi + sinαi−1) =
cos((αi + αi−1)/2)/ cos((αi − αi−1)/2)). Thus, the flat-
foldable case collapses the folding angles ρi−1, ρi+1 of the
two opposing creases to relate them to ρi, whereas Equa-
tion (8) shows how they should be separated in the gen-
eral, developable case.

V. APPLICATIONS

We now illustrate how the equations from Theorem 2
can be used to analyze specific examples of rigid-foldable
crease patterns and explain their mechanical behavior.

A. Square twist pouches

A square twist is a flat-foldable crease pattern made
of four degree-4 vertices forming a square in the paper,
whereby flat-folding all the creases causes this square of
paper to rotate, or twist. Square twists have been studied
extensively for their bistable properties and as a building
block for larger origami mechanisms [8, 24]. For instance,
if the creases of the square connecting the four vertices
are made to be all valleys (or all mountains), then the
square twist will have only two rigidly-folded states, the
unfolded state and the flat-folded state where all folding
angles are ±π.

The classic, flat-foldable square twist crease pattern is
as shown in Figure 5(a) with θ = 45◦. If we increase θ
at all four vertices (so that the crease pattern is still ro-
tationally symmetric) then the vertices become non-flat-

✓ ✓ ✓ ✓

✓ = 52.2� ✓ = 59.63� ✓ = 67.55� ✓ = 76.3�

FIG. 4. Square twist crease pattern variations and their folded
results. If θ = 45◦ this is the classic square twist. For θ > 45◦

the vertices become non-flat-foldable and fold to a pouch-like
non-flat state.

foldable and the crease pattern, when making the inner
square be all valleys, will form a 3D pouch when folded.
Examples for various θ > 45◦ are shown in Figure 4.
Such origami pouches have been explored by a number of
origami artists and researchers such as Chris Palmer [25]
and Jun Mitani [26]. Like the flat-foldable square twist,
these square twist pouches have only two rigidly-foldable
states, and when folding these crease patterns physically
one can feel the paper “snap” into the rigid folded state.
That is, these crease patterns exhibit bistability (between
the unfolded state and a unique rigid-folded state) like
the flat-folded studies in [8].

To prove the bistabiity of these square twist pouches
we can plot Equation (6) with α1 = θ = 45◦ + ∆,
α2 = 90◦ − ∆, α3 = 135◦, and α4 = 90◦ for various
values of θ, with 0 ≤ θ ≤ 90◦. Such plots on a (ρ4, ρ1)
axis are shown in Figure 5(b). Where these plots cross
the ρ4 = ρ1 line represent configurations for this degree-4
vertex that have equal folding angles at creases e1 and
e4 (see Figure 5(a)). This is the only case that will al-
low non-zero folding angles to be used at each vertex to
rigidly fold the whole crease pattern and maintain a con-
sistent folding angle loop condition (i.e., rotational sym-
metry) around the square e1-e4. One can use spherical
trigonometry to prove that the folding angle that allows
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FIG. 6. A rigid folding of a non-developable, hyperbolic ver-
tex with α1 = α2 = 5π/8, α3 = π/2, and α4 = 3π/4.

ρ1 = ρ4 is π − arccos(cot θ). Therefore the rigid origami
configuration space of the square twist pouch determined
by sector angle θ is discrete, consisting of only the un-
folded state and the two states where the folding angles
around the square are all equal to π−arccos(cot θ) or its
negative.

B. A non-Euclidean folding table

As described in [14, 15], the folding mechanics of
non-developable degree-4 vertices can be significantly
different from developable vertices. In particular non-
developable vertices cannot fold to a state where all the
folding angles are zero, and therefore, as seen in Exam-
ple 1 of Section III, the configuration spaces for the two
folding modes are disconnected. In the hyperbolic case
sometimes (but not always [27]) one of the folding modes
generated by the Theorem 2 equations will result in the
paper self-intersecting. Such cases can be leveraged in ap-
plications, since the self-intersections would make one of
the folding modes impossible, guaranteeing a single way
to fold the mechanism. These features are attractive in
furniture and architecture designs that employ folding,
where controllability (one degree of freedom) and consis-
tency (one folding mode) are essential.

An example is a folding table designed by author Foschi

whose crease pattern is made of eight degree-4 hyperbolic
vertices, all with sector angles α1 = α2 = 5π/8, α3 =
π/2, and α4 = 3π/4. Such a vertex is shown in Figure 6.
Entering these into Equation (4) and simplifying reveals

tan2 ρ2
2

=
2
√

2

2 +
√

2 cos ρ4
sin2 ρ4

2
. (9)

The two folding modes can be separated from Equa-
tion (9) as

tan
ρ2
2

=





√
2
√

2/(2 +
√

2 cos ρ4) sin ρ4
2 for mode 1,

−
√

2
√

2/(2 +
√

2 cos ρ4) sin ρ4
2 for mode 2.

Similarly, entering our sector angles αi into Equation (6)
and simplifying produces the corresponding mode folding
angle equations for ρ1:

tan
ρ1
2

=





2+2
√
2− 4√

23
√

3+2
√
2+tan2 ρ4

2

2 tan
ρ4
2

for mode 1,

2+2
√
2+

4√
23
√

3+2
√
2+tan2 ρ4

2

2 tan
ρ4
2

for mode 2.

Graphs of the mode curves for (ρ4, ρ2) and (ρ4, ρ1) are
shown in Figure 7 along with images of the folded vertex
at a few points. This Figure also suggests that the vertex
is a valid rigid fold in mode 1 but self-intersects in mode
2. This can be verified by noting that, according to the
graphs of our folding angle equations, for mode 1 we have
an alternating MV assignment MVMV whereas for mode
2 we have MMVV. The latter cannot be folded rigidly
with this collection of sector angles without forcing a self-
intersection. (See [15] for a detailed description of which
MV combinations can be achieved in non-Euclidean ver-
tices.) Note that hyperbolic vertices do not always force
self-intersections in one of their folding modes; the dis-
cussion of bird’s feet vertices in Appendix C shown one
example.

Therefore the non-developable vertex with sector an-
gles (5π/8, 5π/8, π/2, 3π/4) has only one physically fold-
able folding mode, which is mode 1 in Figure 7. Note
that the origin of Figure 7(a) represents the folding where
ρ2 = ρ4 = 0 and we have a double-covered flat fold. Also,
comparing the graphs in Figure 7(a) and (b), we see that
as ρ4 approaches 0 in the negative direction in mode 1,
we will have ρ1 → π, whereas if ρ4 approaches 0 in the
positive direction in mode 1 we have ρ1 → −π. Thus
ρ4 = 0 is a discontinuity for the ρ1 (and ρ3) folding an-
gle, as can be seen in Figure 7(b). In other words, in a
physical model we cannot fold from negative ρ4 values to
positive ρ4, since doing so would cause the crease e1 to
turn from a valley to a mountain as we pass through the
origin, and this would require the folded material to pass
through itself.

When the non-developable (5π/8, 5π/8, π/2, 3π/4) ver-
tices are placed together to make an octagonal ring, the
non-developable folding table is formed, as shown in Fig-
ure 8. Note that the construction of the table has the
layers of material arranged from the start so that the
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FIG. 7. (a) The configuration space of ρ2 graphed with ρ4,
following Equation (9), with some points indicated with their
rigid foldings. (b) The curves for ρ1 graphed with ρ4 using
Equation (5) and the same rigid folding sample points.

creases labeled e4 in our single-vertex analysis must fold
into mountain creases, implying that ρ4 < 0 throughout
the folding process. In other words, the rigid folding mo-
tion shown in Figure 8 is the only valid folding motion
for this table, leading to a mechanical folding design that
cannot misfold into an undesired shape.

VI. CONCLUSION

We have devised folding angle equations that hold for
all cases of degree-4 rigid origami vertices. While it was
previously known that such equations exist, the ones pre-
sented here have the advantage of being expressed in
terms of tangents of half the folding angles, which al-
lows us to make connections to the flat-foldable case. In
addition, we used these equations to prove surprisingly
simple folding angle equations for arbitrary degree-4 ver-

FIG. 8. The complete non-developable folding table.

tices in the developable case which nicely generalize the
flat-foldable case. Also, we provided some examples of
how these equations can easily help analyze the kine-
matic behavior of degree-4 rigid origami vertex designs.

The fact that the tangent half-angle representation is
so prevalent in degree-4 folding angle equations remains
to be fully understood. As detailed in [28], sometimes
this phenomenon can be explained by proving that a
given crease pattern is kinematically equivalent to a de-
velopable flat-foldable crease pattern, where the folding
angle equations are linear in terms of tan(ρi/2). It could
be that this technique can provide a different proof of
the general degree-4 equations in Theorem 3, but it is
not clear how this would be done for non-developable
degree-4 vertices.
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Appendix A: Proof of the general degree-4 equations

A schematic of an arbitrary degree-4 vertex is shown in
Figure 9, which we consider lying in the xy-plane with the
vertex at the origin and the crease e1 along the positive
x-axis (note that rigid foldability requires 0 < αi < π for
each αi). In order to make the vertex lie flat in the xy-
plane, and to aid our kinematic analysis, we split crease
line e3 and insert an angle θ. If θ = 0 then the vertex
is developable (

∑
αi = 2π). The non-developable cases

are θ > 0, where the vertex forms an elliptic polyhedral
cone, and θ < 0 which gives us a hyperbolic vertex.

We will follow an approach to modeling the kinematics
of all these cases based on rotation matrices (e.g., [29,
30]). We let the sector of paper with angle α4 to remain
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α1

α3 α4

θ

ρ1

ρ2

ρ4

pl

pr

e1 = x-axis

e2

e3

e4

α2

FIG. 9. A degree-4 vertex crease pattern. If θ = 0 the vertex
is developable; θ 6= 0 is non-developable.

fixed and let ρ4 = t be the free parameter. This means
that the point pl = (cos(2π−α3−α4), sin(2π−α3−α4))
will fold to position

Rz(−α4)Rx(t)Rz(α4)pl (A1)

where Rx(β) and Rz(β) are the 3×3 matrices that rotate

R3 by β about the x- and z-axes, respectively. On the
other hand the point pr = (cos(α1 + α2), sin(α1 + α2))
will fold into position

Rx(ρ1)Rz(α1)Rx(ρ2)Rz(−α1)pr. (A2)

The x-coordinate of (A2) does not involve ρ1 because the
matrix Rx(ρ1), which leaves the x-coordinate invariant,
is the only part of (A2) that involves ρ1. Therefore we
can equate the x-coordinates of (A1) and (A2) and solve
for ρ2. Doing this gives us

cos ρ2 = cotα1 cotα2 +
sinα2 sinα4 cos t− cosα3 cosα4

sinα1 sinα2
(A3)

Since cosine is an even function and ρ2 ∈ [−π, π],
Equation (A3) implies that there are two possibilities for
ρ2 for a given input of ρ4 = t, and thus there are at least
two folding modes for the vertex which we could denote
by ±ρ2(t). An exception for this is when α3 = α2 and
α4 = α1, in which case Equation (A3) reduces to ρ2 = t
and there is only one solution for ρ2.

The folding angle ρ1 may then be determined by
finding the angle between the vector in (A2) and
Rz(α1)Rx(ρ2)Rz(−α1)pr, which is just (A2) with the
Rx(ρ1) removed. This becomes

ρ1 = arctan

(
(cosα4 sin(α3 + α4)− sinα4 cos(α3 + α4)) sin t

cos(α3 + α4) sinα4 cosα4(cos t− 1)− sin(α3 + α4)(sin2 α4 + cos2 α4 cos t)

)

− arctan

(
(sin(α1 + α2)− cos(α1 + α2) sinα1) sin ρ2

cos(α1 + α2) cosα1 sinα1(1− cos ρ2) + sin(α1 + α2)(cos2 α1 cos ρ2 + sin2 α1)

) (A4)

However, this equation does not lend itself to simplifi-
cation. Another approach for relating ρ1 and ρ4 = t
is to, keeping the sector α4 in the xy-plane fixed, fold
e1 and e4 and compute the images of e2 and e3 from
this. The trajectory of e2 = (cosα1, sinα1, 0) and e3 =
(cos(−(α3 + α4)), sin(−(α3 + α4)), 0) is

T1 := Rx(ρ1)e2 and T2 := Rz(−α4)Rx(−ρ4)Rz(α4)e3,

respectively. We want the angle between T1 and T2 to
be α2, so T1 ·T2 = cosα2. Expanding this, dividing both
sides by cos ρ1 cos ρ4 and rearranging yields

cosα1 cosα3 cosα4 − cosα2

cos ρ1 cos ρ4
= sinα1 sinα3 cosα4

+
sinα1 cosα3 sinα4

cos ρ4
+

cosα1 sinα3 sinα4

cos ρ1
− sinα1 sinα3 tan ρ1 tan ρ4.

(A5)

We then perform the Weierstrass substitution sin ρ4 =
2x/(1+x2) and cos ρ4 = (1−x2)/(1+x2), giving us that

x = tan(ρ4/2). Then to express ρ1 as a function of ρ4,
we also substitute sin ρ1 = 2y/(1 + y2) and cos ρ1 = (1−
y2)/(1 + y2), which means y = tan(ρ1/2). Substituting
these into Equation (A5) and simplifying gives us

cos(α1 + α3 + α4) + x2 cos(α1 − α3 − α4)

+x2y2 cos(α1 + α3 − α4) + y2 cos(α1 − α3 + α4)

+4xy sinα1 sinα3 − (1 + x2)(1 + y2) cosα2 = 0.

(A6)

Re-substituting x = tan(ρ4/2) and y = tan(ρ1/2) gives
us exactly Equation (5) from Theorem 2.

Equation (A3) above may also be improved by a Weier-
strass substitution. Here we let sin t = 2x/(1 + x2) and
cos t = (1 − x2)/(1 + x2) and sin ρ2 = 2y/(1 + y2) and
cos ρ2 = (1− y2)/(1 + y2). Substituting these into the x-
coordinates of (A1) and (A2) and isolating the ρ2 terms
gives us Equation (4), which captures both folding modes
for ρ2.

Since the choice of placing e1 on the positive x-axis in
this derivation was arbitrary, we could rotate the vertex
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to place e2, e3, or e4 on the x-axis and create similar
equations. This proves Theorem 2.

Appendix B: Proof of Theorem 3

Proving Theorem 3 is a matter of performing extensive
trigonometric manipulations to the equations in Theo-

rem 2 along with the fact that, since we’re in the devel-
opable case, we have

∑
αi = 2π. We provide an outline

of the manipulations needed for the interested reader.

To prove Equation (7), we use Equation (4) from The-
orem 2, where we let αi+2 = 2π − αi−1 − αi − αi+1 and
simplify to obtain

tan2 ρi
2

=
2 sinαi+1 sin(αi−1 + αi + αi+1) tan2 ρi+2

2

cos(αi−1 + αi)− cos(αi−1 − αi) + (cos(αi−1 + αi + 2αi+1)− cos(αi−1 − αi)) tan2 ρi+2

2

.

Reciprocating, letting αi−1 + αi + αi+1 = 2π − αi+2

again, and separating fractions yields

1

tan2 ρi
2

=
cos(αi−1 − αi)− cos(αi−1 + αi)

2 sinαi+1 sinαi+2 tan2 ρi+2

2

− cos(αi+1 − αi+2)− cos(αi−1 − αi)
2 sinαi+1 sinαi+2

.

Then using the identity cos(a−b)−cos(a+b) = 2 sin a sin b
and simplifying gives us Equation (4).

To verify Equation (5) we can start with this equation,
take the square root of Equation (4) to replace tan(ρi/2),
and use Equation (6) to replace tan(ρi+1/2), making sure
to take the square root branches that correspond to the
same folding mode (e.g., the positive branch of Eq. (4)
goes with the negative branch of Eq. (6)). Simlifying this,
as well as letting αi+2 = 2π − αi−1 − αi − αi+1, gives us

cos ρi+2 sinαi+1 sin(αi−1 + αi + αi+1)

+ cosαi+1 cos(αi−1 + αi + αi+1)− cos(αi−1 − αi) =

(1 + cos ρi+2)(sinαi+1 sin(αi−1 + αi + αi−1)

− sin(αi−1 + αi+1) sin(αi + αi+1)(1 + tan2 ρi+2

2
).

This equation may then be shown to be true using the
identities cosαi+1 cos(αi−1+αi+αi+1)−cos(αi−1−αi) =
2 sin(αi−1+αi+1) sin(αi+αi+1)−sinαi+1 sin(αi−1+αi+
αi+1) and 1 + cos ρi+2 = 2 cos2(ρi+2/2) and simplifying.

Appendix C: Bird’s foot vertex examples

For another example showing the utility of the Theo-
rem 1 equations, let us consider degree-4 vertices where
two pairs of consecutive sector angles are equal, e.g.,
α1 = α2 and α3 = α4 (see Figure 10(a)). In the de-
velopable case, this is the flat-foldable “bird’s foot” ver-
tex that forms the vertices in the much-studied Miura-
ori crease pattern [3]. In this case previous results
give us that the two folding modes in Theorem 1 be-
come tan(ρ2/2) = − cosα1 tan(ρ1/2) for mode 1 and

tan(ρ1/2) = 0 for mode 2, implying that one of the fold-
ing modes has two creases (the left and right “toes” of
the bird’s foot) being unfolded and the other two creases
folding together in a straight line.

Our equations can replicate this and go further for
the non-developable case. Substituting α1 = α2 and
α3 = α4 = π − α1 with i = 2 into Equation (4) yields
tan2(ρ2/2) = tan2(ρ4/2), implying that ρ2 and ρ4 are
congruent up to sign. Using Equation (4) with i = 1 also
gives us ρ1 = ρ3 up to sign. Then substituting this case
into Equation (5) with i = 4 produces

tan
ρ1
2

(
(cosα1 − cos(3α1)) tan

ρ1
2
− 4 sin2 α1 tan

ρ4
2

)
= 0.

(C1)
Therefore either ρ1 = 0, implying ρ3 = 0 and ρ2 =
ρ4 and we are just folding the straight line made by
creases e2 and e4, or the other factor in Equation (C1)
is zero, giving us tan(ρ4/2) = cosα1 tan(ρ1/2). Then
using Equation (5) with i = 1 gives us tan(ρ2/2) =
− cosα1 tan(ρ1/2), which exactly supports the results
from Theorem 1 but with slightly more generality; if
α1 < π/2 then ρ1 will have the opposite sign as ρ2 and
the same sign as ρ4, whereas if α1 > π/2 then the reverse
is true, ρ1 will have the same sign as ρ4 and be opposite
from ρ2.

In the non-developable case, substituting α1 = α2 and
α3 = α4 with i = 1 and then i = 2 into Equation (4)
simplifies to

tan2 ρ1
2

= tan2 ρ3
2

and cos
ρ2
2

=
sinα3

sinα1
cos

ρ4
2
,

(C2)
while Equation (5) with i = 1 and i = 4 gives us

tan
ρ2
2

=
sinα1 cotα3 + cosα1 cos ρ1

sin ρ1
(C3)

and

tan
ρ4
2

=
sinα3 cotα1 + cosα3 cos ρ1

sin ρ1
. (C4)

To our knowledge, these are new folding angle equations
for non-developable bird’s foot-type vertices.
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FIG. 10. (a) A bird’s foot vertex, where
∑
αi need not

equal 2π. (b) Graphs of the (ρ1, ρ2) and (ρ′1, ρ
′
4) relations

from Equations (C3) for a convex cone bird’s foot with sec-
tor angles (π/4, π/3) and a hyperbolic bird’s foot with sectors
(2π/3, 3π/4). (c) Placing the two vertices from (b) together
to visualize the folding angle congruence.

Note that previous studies on rigid foldings of bird’s
foot vertices show that if all four creases are to be rigidly
folded (with no folding angles constantly zero), then the

“left and right toe” creases e1, e3 in Figure 10(a) must
have the same MV parity [17]. Therefore the (ρ1, ρ3)
relation in Equation (C2) implies ρ1 = ρ3.

Furthermore, the symmetry evident in the Equa-
tions (C3) and (C4) can be exploited. If we substitute
α1 = π − α3 and α3 = π − α1 into Equation (C4) we get

tan
ρ4
2

= − sinα1 cotα3 + cosα1 cos ρ1
sin ρ1

, (C5)

which is exactly the (ρ1, ρ2) relation in Equation (C3) but
with a sign difference. Therefore if we let C be an ellip-
tic bird’s foot degree-4 vertex with sector angles (α1, α3),
say with α1 < α3 and folding angles ρi, and let C ′ be
a hyperbolic degree-4 bird’s foot vertex with sector an-
gles (π − α3, π − α1) and folding angles ρ′i, we will have
ρ2 = −ρ′4 and, similarly, ρ′2 = ρ4. An example of this
is illustrated in Figure10(b), showing the graphs of our
folding angle equations, identical up to sign. Geomet-
rically this can be verified by placing the convex cone
C and hyperbolic vertex C ′ together with e1 = e′1 and
e3 = e′3, so that the folded structure is really two inter-
secting planes of paper folding along the straight lines
e2 ↔ e4 and e′2 ↔ e′4, as shown in Figure 10(c). This
also proves that ρ1 = ρ′1 and ρ3 = ρ′3. The above verifies,
and offers alternate proofs of, the compatible kinematics
of certain eggbox and Miura-ori crease patterns shown
in [31] as well as the nested convex cone and hyperbolic
vertices of the “zippered” origami tubes of [7].
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