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We report experimental evidence of a Gardner-like crossover from variable to persistent force con-
tacts in a two-dimensional, bidisperse granular crystal by analyzing the variability of both particle
positions and force networks formed under uniaxial compression. Starting from densities just above
the freezing transition, and for variable amounts of additional compression, we compare configu-
rations to both their own initial state, and to an ensemble of equivalent, reinitialized states. This
protocol shows that force contacts are largely undetermined when the density is below a Gardner-
like crossover, after which they gradually transition to being persistent, being fully so only above
the jamming point. We associate the disorder that underlies this effect to the size of the microscopic
asperities of the photoelastic disks used, by analogy to other mechanisms that have been previously
predicted theoretically.

INTRODUCTION

Granular materials differ from elastic solids in their
response to external forces: rather than homogeneously
supporting an applied load, the forces are transmitted
by a sparse percolating network of particles [1–5]. If in-
terparticle contacts are allowed to break, and the gran-
ular material yields, the topology of the force network
changes even if no particle-scale rearrangement takes
place [6, 7]. By contrast, if contacts are preserved, cyclic
(un)loading does not affect the structure of the force net-
work. While recent theoretical and numerical studies
suggest the preservation of contacts might not coincide
with the jamming transition [8, 9], it is yet to be experi-
mentally verified whether such a distinction exists.

The distinction between the onset of contact mem-
ory and jamming is reminiscent of the critical transi-
tion reported for certain amorphous solids and crystals
of slightly polydisperse particles [10–16]. The associ-
ated Gardner transition is often depicted using an energy
landscape roughened by a hierarchy of metastable basins.
Outside of the Gardner regime, the energy scales are well-
separated from the landscape roughness, and the system
responds elastically [17]. By contrast, within the Gardner
regime, the landscape roughness gives rise to easier path-
ways to escape from marginally stable sub-basins and
thus to minute structural rearrangements (much smaller
than the particle scale) that result in a different spatial
distribution of contact forces at jamming [12, 18].

This landscape roughness in the Gardner phase also
leaves a dynamical signature. Outside of the Gardner
regime, the long-time mean squared displacement (MSD)
∆ of the constituent particles plateaus at a value that de-
pends on the particle cage size (and thus density/pressure
for a hard sphere system) [8]. By contrast, within the
Gardner regime, particles can’t effectively sample the
landscape over accessible time scales, which results in a
MSD that doesn’t saturate with time. Its asymptotically
long-time value can nevertheless be estimated from the
distance ∆AB between two system copies, A and B, that
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FIG. 1. A) Schematic of the experimental setup, side view,
with the height of the air layer not to scale. B) Typical image
(top view) from which the particle positions (red channel) and
force transmission (cyan channel) are extracted. The hexagon
marks an H1 unit cell [21].

started from the same reference configuration at a den-
sity below the Gardner regime and then evolved along
different stochastic trajectories. One can thus define the
Gardner regime as the density for which ∆ < ∆AB at
(sufficiently) long times. This was first shown experi-
mentally in a granular glass former by Seguin and Dau-
chot [19], who captured a signature of Gardner physics in
the dynamics of a vibrated, two-dimensional (2D), disor-
dered packing of granular disks. More recently Xiao et al.
[20] found signatures of Gardner physics in quasi-thermal
(air-fluidized) star-shaped particles. However, the corre-
sponding contact force network has not been observed
experimentally, nor have the factors that control the dis-
tance of the Gardner transition to jamming been assessed
[12].

In this article, we investigate the crossover from vari-
able to persistent contacts in a granular crystal (see
Fig. 1). We find that this transition is strongly analogous
to that predicted by Gardner physics, is clearly distinct
from the jamming transition, and that the distance be-
tween the two appear here to be controlled by the scale
of the microscopic asperities of the experimental disks.
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METHODS

Despite numerical studies of ultrastable glasses [22]
and polydisperse crystals [12] which successfully sup-
press particle-scale rearrangements to reveal the Gardner
regime, it remains an open challenge to translate these
numerical protocols for generating ultrastable glasses to
experiments. We, instead, study marginally-stable states
generated from a well-defined 2D crystalline packing to
suppress rearrangements via an alternative means. We
selected the H1 crystal symmetry, containing a unit cell
of three large and six small disks (see Fig. 1), from
among those identified by [21], for having no basis vectors
aligned with the compression axis. This choice thereby
limits the putative contribution of low-energy, local buck-
ling excitations [15, 23–25], and focuses the dynamics
on the quenched disorder that arises through variability
in particle size and surface roughness [12]. We found
that this crystal successfully suppresses rearrangements;
when one does occur, the system can readily be reinitial-
ized. Although the resulting crystalline axes create an
additional coordinate system that is neither orthogonal
nor aligned with the natural axes of the apparatus (see
Fig. 1), we are able to account for these effects during
the data analysis.

We performed our experiments on a single-layer pack-
ing of bidisperse photoelastic disks (NS = 507 small disks
with RS = 5.5 mm and NL = 273 large disks with
RL = 7.7 mm, Vishay PhotoStress PSM-4) with a re-
flective back layer levitated on a gentle layer of air forced
through a porous grid; this setup has been previously
described in [26, 27]. By reducing basal friction, such
that interparticle forces dominate, particles are free to
explore their cages and sample available configurations
under gentle perturbations. We randomize particle po-
sitions within their cage by sweeping a turbulent airflow
across the upper surface of the packing (see Fig. 1a);
time is measured in units of these tr = 20 s randomiza-
tion sweeps. We explore cage sizes and separations as a
function of density φ by uniaxially compressing the sys-
tem in discrete increments of δφ/φ = 6 × 10−4, moving
one boundary with a stepper motor. Each of the four
boundaries are laser-cut from acrylic sheets. The par-
ticles along both the moving boundary, and the static
boundary opposite, are pinned to suppress large-scale
crystal rearrangements.

Particle positions and the network of interparticle
forces were imaged using a single camera and two light
sources: an unpolarized red LED light for the positions,
and a circularly-polarized green LED light for the pho-
toelastic visualization of stresses (see Fig. 1b). We lo-
cated the centroid of each particle using the convolu-
tion of the red channel of the image with a predefined
mask matching the particle size [28, 29]; this allows us
to determine locations within ≈ 0.1 px (≈ 1/250 RL)
precision. Because we are studying well-defined crystal
configurations, for which all particle displacements are
at least an order of magnitude smaller than the particle

size, we were able to bypass traditional particle-tracking
algorithms and their caveats. Each particle position was
instead determined from the first image, hand-checked
for completeness, and then used as a reference position
for subsequent images. Within these images, the sole
particle located within RL of the reference particles was
attached to its trajectory. To minimize edge effects, par-
ticles within 4RL of the walls were discarded from the
dataset, leaving Np = 628 particles for our analysis.

RESULTS

Gardner crossover

We have adapted the protocol of [19] to identify tran-
sitions in the cage dynamics as a function of φ, using
overhead airjets to randomly promote cage exploration
rather than supplying a global vibration of the bottom
plate. We determine the cage dynamics at 20 differ-
ent φ, equally spaced between φmin = 0.8006 ± 0.0002
(the limit of mechanical stability of the crystal) and
φmax = 0.8162± 0.0002 (slightly larger than φJ , guaran-
teeing that the Gardner regime is traversed but without
activating the out-of-plane buckling mode that develops
deeper into the jammed phase). From an initial state at
φmin, the system is compressed to φmax, and then decom-
pressed step-wise and allowed to equilibrate for t = 100tr
at each intermediate density. Upon reaching φmin, the
system is deemed reinitialized. We performed a total of
10 initializations, shown schematically in Fig. 2A.

For each φ, the cage separation distance ∆AB is ob-
tained by comparing particle positions between two dif-
ferent initializations, A and B, taken at the same φ:

∆AB(t;φ) =
1

Np

Np∑
i=1

|rBi (t)− rAi (t)|2 (1)

where rαi (t) is the position of particle i at time t in initial-
ization α. The cage size ∆ (within a single initialization
A) at a given φ is obtained from particle displacements
after a long experimental time of 100tr, according to

∆(t;φ) =
D

Np

Np∑
i=1

|r’Ai,y(t)− r’Ai,y(0)|2. (2)

In both cases, the average at each φ over all runs is then
calculated, denoted by 〈·〉. The corrections D and r’ in
Eq. (2) ensure that 〈∆〉 = 〈∆AB〉 in the vicinity of φmin;
they are experimentally motivated as follows. First, even
at φmin the MSD of a caged particle plateaus at longer
times than are experimentally accessible; we measured
this time to be ≈ 1000tr, while our experiments can only
reach 100tr. Because we expect the relative ratio of these
lengthscales to be constant at low φ, we have rescaled our
measurement of ∆ by the ratio D = 1.2, our estimate of
this ratio [30]. Second, we observed that for φ > φG,
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FIG. 2. A) Schematic representation of the protocol used to determine the cage size, ∆, and the mean cage separation, ∆AB ,
via the MSD. B) Schematic representation of the protocol used to determine the persistence of inter-particle contacts, via the
force-similarity analysis.

histograms of the (x, y) displacements displayed multi-
ple distinct peaks, each aligned with the direction of one
of the lattice vectors of the unit cell, rather than be-
ing azimuthally symmetric around zero, as observed for
φ < φG. To correct for the biased motions introduced
by the crystalline axes that give rise to these peaks, we
applied a linear transformation to orthogonalize the sys-
tem. Equation (2) therefore defines ∆ as the MSD of the
Gaussian part of the displacement (along the y′-axis) in
the orthogonalized system r′y, and ignores the displace-
ments along the more-complicated (x′) axis [30].

Figure 3 presents the histograms of ∆ and ∆AB mea-
sured at various φ. At low φ, the statistical distribu-
tions of ∆ and ∆AB are nearly identical, which is char-
acteristic of a normal solid. In contrast, for φ & 0.807
we observe that 〈∆〉 < 〈∆AB〉, indicating the onset of
a Gardner-like regime at φG = 0.807 ± 0.0005. As φ
further increases, force chains emerge, thus identifying
the jamming point, φJ = 0.8100± 0.0005 (Fig. 4C); this
value is determined by measuring the average propor-
tional change of the pixel intensity Ig of the photoelastic
(green) channel above the minimum observed value [30].
Note that, although we expect ∆ = 0 in the jammed
phase, a finite value is measured; this captures the noise
floor of our system and analysis.

Inter-particle forces

Having identified a Gardner-like crossover using the
particle displacement data, we now separately con-
sider the evolution of inter-particle forces within each
(marginally stable) state at different φ. We observe
changes in the persistence of the photoelastic fringes (as
proxy for inter-particle forces, see Fig. 4A-B), of a given
state by compressing the system to a jammed reference
density φref = 0.8147 ± 0.0002, which is slightly above
φmax = 0.8127 ± 0.0002, at which a better imaging is

obtained. All values of φ were measured during a poste-
riori image analysis, and thus do not necessarily match
between the two types of experiments. The lowest densi-
ties for MSD measurements, φmin = 0.8006 and for force-
similarity measurements, φmin = 0.8002, are nevertheless
identical within measurement error, but the densest sys-
tem for MSD measurements, φmax = 0.8162, was sig-
nificantly denser than for force-similarity measurements,
φmax = 0.8127. This difference arises from the observa-
tion that deep in the jammed phase, forces become more
homogeneous, thus making it harder to detect changes.
Choosing φmax for force-similarity measurements closer
to φJ therefore makes changes in the fringes more ap-
parent. In both experiments, φmax is nevertheless above
the determined jamming density φJ = 0.8100. In this
context, because the system is arrested above φJ and the
contact network is fully formed, the difference in φmax is
not deemed significant. For systems with few interparti-
cle contacts, the correlation between fringes is dominated
by noise, whereas in well-jammed systems the force net-
work is completely percolated (due to the crystalline na-
ture of the system), thus making changes to the force net-
work insignificant compared to the average inter-particle
force.

Changes in the photo-elastic fringes at φref are deter-
mined as follows. We first image the photoelastic fringes
of the initial state, I. The system is then decompressed
to φmin < φ < φmax, and evolved for 10tr (sufficient for
the force network to randomize), before recompressing
to φref and to image the photoelastic fringes of this fi-
nal state, F . We repeat this protocol for 30 equidistant
densities within the interval [φmin, φmax]. In all cases,
the system is decompressed to φmin before moving to the
next φ to erase any memory of the previous experiment.
The protocol is schematically represented in Fig. 2B. We
quantify the degree of similarity between the I and F
states for a given φ using a normalized cross-correlation
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FIG. 3. Side-by-side histograms of the probability density functions of ∆ (magenta, left) and ∆AB (green, right) measured at
each density φ. Both ∆ and ∆AB are non-dimensionalized using the radius of the large particle, RL. At φ < φG (crossover
denoted by gray rectangle), the histograms of ∆ and ∆AB agree (both in mean and width of the distribution), whereas for
φ > φG, we see that ∆ < ∆AB . Above the jamming point φJ (transition denoted by gray rectangle), the histograms of ∆ and
∆AB differ markedly. Histograms 3A and 3B correspond to the two snapshots presented in Fig. 4.

A) ϕ = 0.8068 B) ϕ = 0.8089

C) ϕG

ϕ
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C

FIG. 4. Overlay of two marginally stable states (red and blue)
and their overlap (white) for (A) φ < φG and (B) φ > φG.
The two states have little overlap for φ < φG, whereas for
φ > φG the two states have a large overlap between their
force network. A movie of overlays with increasing density
makes this point even more saliently [30]. (C) Overlay of 〈∆〉
(magenta �) and 〈∆AB〉 (green •) as a function of φ on the
top axis; force correlation C (black N) and fringe intensity I
(purple H) on the bottom axis, both as function of φ. Both
∆ and ∆AB are non-dimensionalized using the radius of the
large particle, RL.

of the photoelastic fringes, taken 10tr apart:

C(φ) =

〈 ∑
x,y[Ii(x, y)− Ii][Fi(x, y)−F i]√∑

x,y[Ii(x, y)− Ii]2
∑
x,y[Fi(x, y)−F i]2

〉
(3)

with Ii(x, y) the pixel intensity of pixel (x, y) of particle
i, Ii the average pixel intensity of particle i in state I,
and the average, 〈·〉, running over all particles in all pairs
I and F of states at a given φ.

Figure 4 shows two superimposed images of force
chains: I (blue) obtained before the airjet sweeps, and F
(red) after, such that white denotes regions where force
chains did not change, while red and blue denote force
chains present in only one of the two images. For φ < φG
(Fig. 4A) the rare force chain overlaps (white) indicate
that inter-particle contacts remain variable at low φ. In
contrast, for φ > φG (Fig. 4B) white regions dominate,
indicating that inter-particle contacts persist. Similar
images obtained over the full density range further re-
veal that force-chain rearrangements are long-range, even
though the particle rearrangements are not [30].

Figure 4C compares these perspectives, showing 〈∆〉
and 〈∆AB〉, the measure for inter-particle forces 〈Ig〉,
and the normalized cross-correlation C, all as a func-
tion of φ. Note that we chose the average green channel
intensity 〈Ig〉 as a measure for the inter-particle forces
because standard force detection algorithms do not work
well on the minute contact forces present at the onset
of jamming. This choice is further motivated by noting
that 〈Ig〉 scales linearly with the applied load at low loads
[30, 31]. This plot therefore shows that the onset of the
Gardner-like regime (for which 〈∆〉 < 〈∆AB〉) coincides
with the onset of the conservation of inter-particle con-
tacts (given by the sharp rise in C), and is distinct from
φJ (defined in the onset of the rise of 〈Ig〉, suggesting
that the force network gets increasingly determined as
soon as φ > φG.
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FIG. 5. (a) Micrograph of a single photoelastic particle that is (b) enlarged so as to illustrate the edge-detection (blue); the
green circle traces a perfect circle for reference. (c) Fractional deviation of the particle edge r from the average radius R along
the circumference.

By analogy to what has been reported for numeri-
cal simulations of size-polydisperse particles in otherwise
crystalline systems [12], we expect the distance to jam-
ming to be controlled by particle disorder. Given that all
particles were cut from flat sheets with the same fixed-
radius metal cutter [29], disorder is here expected to
be dominated by irregularities along the disk edges (see
Fig. 5). Generalizing the polydispersity argument of [12]
to this case, we expect the onset of the Gardner regime
to be set by the particles’ dimensionless deviation from
a constant radius:√

φJ − φG ∝ 1− r

R
. (4)

Two key features emerge from the image analysis: as-
phericity of ∼ 1%, superimposed with a surface rough-
ness of ∼ 0.3%. Both quantities are of the same order of
magnitude as the relative distance between the Gardner-
like crossover in and the jamming point for our system,
s =
√

0.810− 0.807 ≈ 1%. Because our particles were all
cut using the same fixed-radius metal cutter, they have
similar irregularities along the disk edges. A systematic
investigation of particle roughness is therefore not possi-
ble for this system and is left for future consideration.

CONCLUSION

We have shown that small particle irregularities—
always present in experiments but often neglected—in
an otherwise crystalline system exhibit Gardner-physics-
like features near jamming. Although 2D systems are ex-
pected not to exhibit proper Gardner criticality [13], the
finite size of our system suppresses the long wavelength
fluctuations that would normally occlude this effect in the
thermodynamic limit, thus preserving some of its physi-
cal features. This choice of system further allowed us to

study changes in the force network of one specific con-
figuration, where we found experimental evidence corre-
lating the onset of that regime to the determination of
force contacts near jamming. For the particles we used,
the distance from jamming of the Gardner crossover was
similar to the inherent roughness of the particles, a find-
ing consistent with the study of size polydispersity in
Charbonneau et al. [12].

Future work should measure the role of irregularities
directly, perhaps through the printing of particles with
systematically-controlled roughness. This work moti-
vates delving further into the influence of particle rough-
ness on a micromechanical level. Whereas surface rough-
ness has been investigated on a macroscopic level, such as
for relating surface roughness and friction in glass spheres
[32, e.g.], we showed that roughness could also influence
interactions on a microscopic level. This finding raises
questions about what signatures of frictional jamming
found for smooth particles [33] match those needed to
describe, more realistic, rough particles [34]. In this con-
text, including geometrical asperities [35] in numerical
simulations could provide particularly invaluable insight.
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