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Abstract
The patterns produced by dragging an atomic force microscope (AFM) tip over a polymer surface

are studied using a mesoscopic model introduced by Gnecco and coworkers (E. Gnecco et al., New

J. Phys. 17, 032001 (2015)). We show that the problem can be reduced to solving a closed integro-

differential equation for a single degree of freedom, the position of the AFM tip. We find the

steady-state solution to this equation and then carry out a linear stability analysis of it. The

steady state is only stable if the dimensionless indentation rate α is less than a critical value αc

which depends on dimensionless velocity of the rigid support r. Conversely, for α > αc, periodic

stick-slip motion sets in after a transient. Simulations show that the amplitude of these oscillations

is proportional to (α − αc)1/2 for α just above αc. Our analysis also yields a closed equation that

can be solved for the critical value αc = αc(r). If the steady-state motion is perturbed, as long the

deviation from the steady state is small, the deviation of the tip’s position from the steady state

can be written as a linear superposition of terms of the form exp(λkt), where the complex constants

λk are solutions to an integral equation. Finally, we demonstrate that the results obtained for the

two-dimensional model of Gnecco et al. carry over in a straightforward way to the generalization

of the model to three dimensions.
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I. INTRODUCTION

Quite a number of experiments have shown that when an atomic force microscope (AFM)

tip is rastered over an initially flat polymer surface in contact mode, nanoscale surface ripples

form [1–11]. The AFM tip produces viscoplastic flow in the polymer as it indents the surface,

and so it reshapes the surface as it moves along it. The ripples are found to have a wavelength

comparable to the size of the AFM tip, and their wave vector is oriented at an oblique angle

to the scan direction.

The main features of the experimentally observed ripple patterns have recently been

reproduced in simulations of a phenomenological mesoscopic model [12, 13]. This model

was originally introduced by Gnecco et al. to study a simpler problem: the pattern formed

by scanning the AFM tip through a single line [9]. Clearly, the first step toward a deeper

understanding of the ripples formed by scanning the tip over multiple parallel lines is to

better understand what happens when a single line is scanned.

If an AFM tip rests on a polymer surface and a constant normal force Fn is applied to

it, the surface is indented as the polymer flows and the tip progressively moves deeper and

deeper into the solid. On the other hand, if the tip is dragged across the surface and Fn is

sufficiently large, periodic stick-slip motion occurs [9, 12, 13]. The tip indents the surface

and its lateral motion is slow during the “stick” phase of the motion. At the same time,

the elastic energy stored in the cantilever builds. Slip then suddenly takes place. During

this phase of the motion, the tip’s lateral motion is rapid, most of the elastic energy in the

cantilever is released, and little indentation occurs. Another stick phase then ensues. After

a transient, the height of the surface behind the moving tip is a periodic function of position.

If the normal force Fn on the AFM tip is small, stick-slip motion does not occur. Instead,

a steady state is approached in which the tip simply moves with a constant velocity. If Fn
is increased, however, at some point a critical value of Fn is exceeded, an instability occurs,

and stick-slip motion sets in. The model introduced by Gnecco et al. in Ref. [9] exhibits just

such an instability. Gnecco and coworkers carried out simulations of their model and then

compared the results with experiments on contact-mode AFM scanning of a polystyrene

surface. The simulations agreed well with the experiments.

In this paper, we study the model of Gnecco et al. [9] in greater detail using a combination

of analytical work and simulations. The focus of our investigation is the pattern produced by
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a single line scan. To begin, we derive a closed integro-differential equation for the position

of the AFM tip and show that once this equation of motion (EOM) has been solved, the

surface morphology can be determined. From a physical standpoint, this means that the

system consisting of the tip and surface — which would appear at first to have an infinite

number of degrees of freedom — in fact has a single degree of freedom. We find the steady-

state solution to the EOM and then carry out a linear stability analysis of this solution. This

yields a closed equation that can be solved for the critical value of Fn. If the steady-state

motion is perturbed, so long the deviation from the steady state is small, the deviation of

the tip’s position from the steady state can be written as a linear superposition of terms

of the form exp(λkt), where the complex constants λk are solutions to an integral equation.

Thus, provided it is small, the deviation of the tip’s position from the steady state is a sum

of sinusoidally oscillating terms with exponentially increasing or decaying amplitudes. For

Fn greater than the critical value Fn,c, after a transient, there are persistent oscillations of

the tip position about the steady state — this is stick-slip motion. Our simulations show

that the amplitude of these oscillations grows as (Fn − Fn,c)1/2 for Fn just above Fn,c. In

addition, a pair of λk’s that are complex conjugates of each other have a real part that

changes sign from negative to positive as Fn is increased through its critical value. Thus,

the transition from steady-state to stick-slip motion is a supercritical Hopf bifurcation.

This paper is organized as follows. In Sec. II, the two-dimensional (2D) model of Gnecco

et al. is described. We recast the problem in dimensionless form in Sec. III and then derive

the closed integro-differential equation for the position of the AFM tip. We find the steady-

state solution and carry out a linear stability analysis of it in Sec. IV. In Sec. V, we carry

out simulations of the model. These confirm many of the predictions of the analytical work

presented in Sec. IV and yield the amplitude of the steady-state oscillation just above the

transition to stick-slip motion. The generalization of the model of Gnecco et al. to three

dimensions (3D) is briefly discussed in Sec. VI, and it is shown that results obtained for the

2D model carry over in a straightforward fashion to 3D.

II. MODEL

We will primarily study the 2D model introduced by Gnecco et al. in Ref. [9]. Let x0(t)

denote the position of the AFM tip’s apex at time t, and let u(x, t) be the height of the solid
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surface above the point x on the x axis at time t. In the model of Gnecco et al., the motion

of the AFM tip is entirely dissipative and is given by

Γẋ0(t) = F , (1)

where Γ is a damping coefficient and F is the total lateral force on the tip. This force is

given by

F = −∂U
∂x

(x0(t), t), (2)

where the potential U = U(x, t) is the sum of two terms: the cantilever spring energy Us

and the surface interaction potential Ui. Explicitly,

Us(x, t) =
1

2
k(x− v0t)

2, (3)

where k is the spring constant and v0t is the position of the rigid support at time t. The

surface interaction potential

Ui(x, t) = au(x, t) (4)

describes the tendency of the tip to move downward on the surface. Here a is a positive

constant. Combining Eqs. (1) - (4), we obtain

Γẋ0(t) = −aux(x0(t), t) + k[v0t− x0(t)], (5)

where the subscript on u denotes a partial derivative.

The time evolution of the surface height is given by

ut(x, t) = −f(x− x0(t)), (6)

where once again the subscript on u denotes a partial derivative. The function f(x), which

describes how the AFM tip indents the surface, depends on the shape of the tip and the

normal force Fn. In Ref. [9], f(x) was taken to be the sum of three Gaussians:

f(x) = N exp

(
− x2

2σ2

)
− 1

2
N

[
exp

(
−(x+ 2σ)2

2σ2

)
+ exp

(
−(x− 2σ)2

2σ2

)]
, (7)

where the positive constants σ and N are measures of the tip width and the indentation

rate, respectively. Importantly, the value of N is an increasing function of the normal force

Fn, and so there is an implicit dependence on the latter quantity. The “tip function” f given

by Eq. (7) is meant to mimic the typical footprint left by the AFM tip when it indents the

polymer without scanning [9].
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In this paper, in addition to the triple Gaussian (7), we will consider more general tip

functions f . We assume that

f(x) = Nf̃(x/σ), (8)

where f̃ is dimensionless, f̃(0) = 1 and f̃(x̃) tends to zero for x̃ → ±∞. The tip function

given by Eq. (7) clearly satisfies these requirements.

The initial conditions needed at the starting time t = t0 are the tip location x0(t0) and the

surface height u(x, t0) ≡ u0(x) for all x. Once the tip function and the initial conditions have

been specified, the coupled dynamics of the solid surface and the AFM tip are completely

determined by Eqs. (5) and (6).

We will also consider the problem in which a time-dependent lateral external force Fext(t)

is applied to the tip during its motion. In this case, Eq. (5) is replaced by

Γẋ0(t) = −aux(x0(t), t) + k[v0t− x0(t)] + Fext(t) (9)

and Eq. (6) is unaltered.

In the model of Gnecco et al., it is assumed that the damping is so strong that the inertia

of the AFM tip is completely negligible. This damping comes in large part from interfacial

friction between the AFM tip and the polymer surface. In addition, the normal force Fn that

is applied to the AFM tip produces viscoplastic flow in the polymer as it is indented. Some

of the work done on the polymer by the tip is dissipated by the internal friction within the

polymer. Thus, interfacial and internal friction are included in the model, and dissipative

effects are an integral part of the theory.

III. CLOSED EQUATION FOR THE TIP DYNAMICS

We introduce the dimensionless distance x̃ ≡ x/σ, time t̃ = kt/Γ, surface height ũ(x̃, t̃) =

au(x, t)/(kσ2), tip position x̃0(t̃) = x0(t)/σ and external force F̃ext(t̃) = Fext(t)/(kσ). After

dropping the tildes, the equations of motion (6) and (9) become

ẋ0(t) = −ux(x0(t), t) + rt− x0(t) + Fext(t), (10)

and

ut(x, t) = −αf(x− x0(t)). (11)
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Here

r ≡ Γv0

kσ
(12)

is a dimensionless measure of the tip velocity and

α ≡ ΓNa

σ2k2
(13)

is a dimensionless gauge of the indentation rate.

Integration of Eq. (11) with respect to time yields

u(x, t) = −α
∫ t

t0

f(x− x0(t′))dt′ + u0(x). (14)

Inserting Eq. (14) into Eq. (10), we obtain

ẋ0(t) = −
∫ t

t0

F (x0(t)− x0(t′))dt′ + rt− x0(t) + Fext(t)− αu′0(x0(t)), (15)

where F (x) ≡ −αf ′(x). Equation (15) is a closed integro-differential equation for x0(t).

If we succeed in solving it for x0(t), then the surface morphology at any time t > t0 can

be obtained from Eq. (14). Thus, the surface morphology is effectively “slaved” to the tip

dynamics. Equation (15) also shows that an initial disturbance u(x, t0) = u0(x) has the

same effect as a position-dependent external force.

We will now specialize to the case in which the surface is initially flat and set t0 = −∞.

The equation of motion (15) can be simplified by introducing the time lag τ ≡ t− t′ and by

setting

l(t) ≡ rt− r − x0(t). (16)

Aside from the additive constant −r, l is the dimensionless distance that the tip lags behind

the rigid support. Equation (15) reduces to

l̇(t) =

∫ ∞
0

F (rτ + l(t− τ)− l(t))dτ − l(t)−Fext(t). (17)

By including the term −r on the right-hand side of the definition (16), we have eliminated

a constant term that would otherwise have appeared in Eq. (17).

We will now focus on the case in which there is no external force. The equation of motion

is then

l̇(t) =

∫ ∞
0

F (rτ + l(t− τ)− l(t))dτ − l(t). (18)

Equation (18) is readily solved for the trivial special case in which α vanishes. When α is

zero, so is F and hence l̇(t) = −l(t) and

l(t) = l(0)e−t. (19)
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IV. THE STEADY STATE AND ITS STABILITY

A. The steady-state solution

Equation (18) has a steady-state solution in which l(t) is simply a constant l0 given by

l0 =

∫ ∞
0

F (rτ)dτ. (20)

Recalling that F (x) ≡ −αf ′(x) and f(0) = 1, we find that

l0 = α/r. (21)

Equation (16) now yields

x0(t) = rt− r − α/r. (22)

As it must, the tip moves with constant velocity ẋ0 = r in the steady state. This is just

the velocity of the rigid support in dimensionless units. Equation (22) also shows that

the dimensionless distance that the tip lags behind the rigid support in the steady state is

r + α/r. Once the dimensions have been restored, this distance is

D =
1

k

(
Γv0 +

Na

v0

)
. (23)

As we could have anticipated, the steady-state lag D is an increasing function of the inden-

tation rate N and a decreasing function of the spring constant k. What is perhaps surprising

is that D is not a monotone function of v0, and that it becomes large in both the v0 → 0

and v0 →∞ limits. It is also independent of the tip width σ.

Inserting Eq. (22) into Eq. (14) and setting u0(x) = 0 and t0 = −∞ as before, we obtain

u(x, t) = −α
r

∫ ∞
x−x0(t)

f(ξ)dξ. (24)

This equation gives the surface morphology for the steady-state solution. Notice that u(x, t)

depends only on x−rt, and so the surface profile propagates with constant velocity r without

changing its form. Equation (24) also gives the surface height at points far behind the tip,

us:

us = lim
t→∞

u(x, t) = −α
r

∫ ∞
−∞

f(ξ)dξ. (25)

If the substrate is composed of an incompressible material, us = 0. Conversely, if the

material is compressible, the magnitude of us increases with the dimensionless indentation

rate α and decreases with the dimensionless tip velocity, as one would expect.
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B. Linear stability of the steady-state solution

We will next study the linear stability of the steady-state solution. To that end, we set

l(t) = l0 + l1(t), where l1(t) is assumed to be small. We discard terms of second and higher

order in l1, i.e., we linearize the equation of motion (18) about the steady-state solution.

This yields

l̇1(t) = −l1(t)− r−1M1l1(t) +

∫ ∞
0

F ′(rτ)l1(t− τ)dτ, (26)

where

M1 ≡ r

∫ ∞
0

F ′(rτ)dτ = F (∞)− F (0). (27)

Recall that F (x) ≡ −αf ′(x). Following Ref. [9], we assume that f ′(x) → 0 as x → ∞ and

take f(x) to be an even function of x, so that f ′(0) = f ′(∞) = 0. We then have M1 = 0.

We seek solutions to Eq. (26) of the form

l1(t) = l1,0 exp(λt), (28)

where λ and l1,0 are complex constants. l1,0 is arbitrary because Eq. (26) is linear. λ, on the

other hand, must be a solution to the equation

λ = −1 +

∫ ∞
0

F ′(rτ)e−λτdτ. (29)

Suppose that the steady state is perturbed at some time by a weak external force. As

we show in the Appendix, shortly after the steady state has been disturbed, the deviation

from the steady state l1(t) can be written as a linear superposition of solutions of the form

(28) where the λ’s are solutions to Eq. (29). Therefore, if Reλ is negative for all solutions

λ to Eq. (29), then the steady-state solution is stable. Conversely, if Reλ is positive for any

λ, then the steady-state solution is unstable.

For convenience, we set Λ ≡ λ/r and τ̂ ≡ rτ . Equation (29) becomes

rΛ + 1 = −α
r

∫ ∞
0

f ′′(τ̂)e−Λτ̂dτ̂ . (30)

Notice that the integral that appears on the right-hand side of Eq. (30) is the Laplace

transform of the second derivative of the tip function, f ′′. In addition, if Λ is a solution to

Eq. (30), then so is its complex conjugate Λ∗. Finally, if α = 0, then Eq. (30) has the single

solution Λ = −1/r which gives λ = −1. This is precisely the result we obtained earlier for

this special case — see Eq. (19).
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Consider a particular value of r that is positive. For α = 0, Eq. (29) has a single solution,

namely λ = −1. The steady state is therefore stable. If we now begin to increase α, this

solution to Eq. (29) changes continuously, and additional solutions may appear. At first, all

of these solutions λ1, λ2, . . . and λn to Eq. (29) have negative real parts, and the steady-state

solution remains stable. However, for all of the tip functions we will consider, the real part

of one or more of these solutions reaches zero at a critical value of α that we will denote

by αc(r). For α > αc(r), at least one of the λ’s has a positive real part and the steady-

state solution is therefore unstable. A stick-slip transition therefore occurs as α is increased

through the critical value αc(r)

A value of λ that has zero real part at α = αc(r) must have a nonzero imaginary part. To

see this, suppose the opposite were true, so that λ = 0 is a solution to Eq. (29) for α = αc(r).

Equation (29) then reduces to

−1 +

∫ ∞
0

F ′(rτ)dτ = 0, (31)

where F (rτ) = −αc(r)f ′(rτ). The integral that appears in Eq. (31) is M1/r, which we have

already shown is zero. We therefore have a contradiction.

Because λ∗ is a solution to Eq. (29) if λ is, an even number of λ’s must have a vanishing

real part for α = αc(r). The simplest scenario is that there is a single pair of pure imaginary

λ’s at the critical value of α, and this will be the case save for very unusual tip functions

f . This pair of λ’s must be complex conjugates of one another and so the transition from

stability to instability is a Hopf bifurcation.

Suppose that α = αc(r) and that there is a single pair of pure imaginary λ’s, iω and −iω,

where ω is real and positive. In addition, we suppose that the system is in its steady state

and then the tip is briefly disturbed by a small external force. As shown in the Appendix,

after the perturbation has ended, l1(t) may be written

l1(t) =
n∑
j=1

Aje
λjt, (32)

where the Aj’s are complex constants. Once sufficient time has passed, only the terms

with pure imaginary λj’s will make a significant contribution to l1(t) and hence to a good

approximation

l1(t) = Aeiωt + c.c. (33)
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Here A is a complex constant with a value that depends on the nature of the perturbing

force. Consider a point x that the tip passes long after its motion has been perturbed. The

surface height at x long after the tip has passed is

u∞(x) ≡ lim
t→∞

u(x, t). (34)

Equation (14) shows that

u∞(x) = −α
∫ ∞
−∞

f(x− x0(t))dt. (35)

Let x0,s(t) = rt− r−α/r be the steady-state solution given by Eq. (22). Equation (35) can

be written

u∞(x) = −α
∫ ∞
−∞

f(x− x0,s(t) + l1(t))dt. (36)

Linearizing this about the steady state, we obtain

u∞(x) =us − α
∫ ∞
−∞

f ′(x− x0,s(t))l1(t)dt

=us −
α

r

∫ ∞
−∞

f ′(ξ)l1(r−1(x− ξ + r + α/r))dt. (37)

Finally, inserting Eq. (33) into this result, we obtain

u∞(x) = us +A cos(qx+ φ), (38)

where the wave number q ≡ ω/r and the values of the constants A and φ depend on the

nature of the perturbing force. Equation (33) shows that the tip position x0(t) oscillates

sinusoidally about the steady-state position x0,s(t) with period T = 2π/ω. Equation (38),

on the other hand, shows that the surface height varies sinusoidally with position with

wavelength L = 2πr/ω. Naturally, these two conclusions remain approximately valid if α

differs slightly from αc(r).

The critical value of α is αc(r) for a given value of r. Equation (30) can be used to

determine αc(r), and we will follow that route in Sec. IVC for a particular choice of tip

function f . For other tip functions, it is best to reformulate the problem. Given r, we can

try to simultaneously find values of α and λ = iω that satisfy Eq. (29). However, making

use of Eq. (30), this task can be reduced to solving first for ω and then for α. To see this,

we first set Ω = ω/r. Equation (30) becomes

irΩ + 1 +
αc(r)

r

∫ ∞
0

f ′′(τ̂)e−iΩτ̂dτ̂ = 0. (39)
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The real and imaginary parts of Eq. (39) are

1 +
αc(r)

r

∫ ∞
0

f ′′(τ̂) cos(Ωτ̂)dτ̂ = 0 (40)

and

rΩ− αc(r)

r

∫ ∞
0

f ′′(τ̂) sin(Ωτ̂)dτ̂ = 0. (41)

Equations (40) and (41) may be solved for r and αc(r) to give

r = r(Ω) = −
∫∞

0
f ′′(τ̂) sin(Ωτ̂)dτ̂

Ω
∫∞

0
f ′′(τ̂) cos(Ωτ̂)dτ̂

, (42)

and

αc(r) = − r∫∞
0
f ′′(τ̂) cos(Ωτ̂)dτ̂

=

∫∞
0
f ′′(τ̂) sin(Ωτ̂)dτ̂

Ω
(∫∞

0
f ′′(τ̂) cos(Ωτ̂)dτ̂

)2 . (43)

Given r, the value of Ω may be determined numerically from Eq. (42) if it is not possible to

solve for it analytically. Equation (43) then yields the value of αc(r).

C. An example

We next study a relatively simple, illustrative choice of tip function: we set f(x) = J0(x),

where J0 is the Bessel function of order zero. This choice of tip function satisfies all of

the assumptions we have made on the form of f and has the virtue of being analytically

tractable. However, it is not expected to model a real tip function particularly well. The

dynamics with more realistic tip functions will be treated numerically in Sec. V.

For f(x) = J0(x), Eq. (30) becomes

rΛ + 1 =
α

r

(
Λ− Λ2

√
Λ2 + 1

)
(44)

after some algebra. Equation (44) has the single solution Λ = −1/r for α = 0, as we have

already noted. For positive α, Λ satisfies

√
Λ2 + 1[(1− αρ2)Λ + ρ] = −αρ2Λ2, (45)

where ρ ≡ 1/r. (For α = 0, Eq. (45) has the roots Λ = −ρ, i and −i. The latter two roots

are extraneous.) There are two purely imaginary, nonzero roots of Eq. (45) for α = αc(r).
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These will be denoted iω and −iω, where ω is real and positive. We will now show that

αc(r) = r2. For α = αc(r), Eq. (45) becomes

√
1− ω2{[1− αc(r)ρ2]iω + ρ} = αc(r)ρ

2ω2. (46)

There are two cases to be considered: 0 < ω < 1 and ω ≥ 1. If 0 < ω < 1, we take the

imaginary part of Eq. (46) and so obtain
√

1− ω2{[1−αc(r)ρ2]ω = 0. This gives αc(r) = r2.

If ω ≥ 1, on the other hand, taking the imaginary part of Eq. (46) yields ρ
√

1− ω2 = 0 and

hence ω = 1. However, ω = 1 is clearly not a solution to Eq. (46). We are therefore led to

the conclusion that αc(r) = r2. Equation (46) therefore reduces to ρ
√

1− ω2 = ω2 which

implies that

ω =

(√
1 + 4r2 − 1

2r2

)1/2

. (47)

αc(r) = r2 is an increasing function of r. This is not surprising, since we would expect that

the faster the tip is dragged, the greater the indentation rate needed to produce stick-slip

motion.

V. NUMERICAL SIMULATIONS

We study the dynamics through numerical integrations of the system given by Eqs. (10)

and (11) with no external forcing (Fext(t) ≡ 0) and a tip function of the form

f(x) = exp

(
−x

2

2

)
− β

2

[
exp

(
−(x+ 2)2

2

)
+ exp

(
−(x− 2)2

2

)]
. (48)

As seen from Eq. (11), the rate of change in volume of the material due to compression is

d

dt

∫ ∞
−∞

u(x, t)dx = −α
∫ ∞
−∞

f(x− x0(t))dx = −α(1− β). (49)

We carried out simulations for the parameter choices β = 0 and β = 1. In the latter case,

there is no compression and Eq. (48) is the dimensionless form of the triple-Gaussian tip

function (7) studied in Ref. [9]. The tip function f(x) is a Gaussian for β = 0.

The initial state in all of our simulations was the steady-state solution for x0(t) and u(x, t)

evaluated at time t = t1, except that spatial white noise with a maximum amplitude of 10−4

was added to u(x, t1). For the case of incompressible material (β = 1), the initial surface

was therefore simply low-amplitude spatial white noise. So that the solutions could be nicely
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displayed, the initial tip position was taken to be positive rather than zero; we somewhat

arbitrarily chose x0(t1) = 14. Thus, in accord with Eq. (22), t1 = r−1(r + αr−1 + 14).

To implement the numerical simulations, the system of equations given by Eqs. (10) and

(11) was converted to a system of ordinary differential equations for N + 1 time-dependent

variables, namely the tip position x0(t) and the surface heights u(xj, t) at positions xj = j∆x,

where 1 ≤ j ≤ N . The resulting system was solved using the Runge-Kutta (4,5) method

(ode45 in MATLAB) with the choice ∆x = 0.001 and an adaptive time step of approximately

∆t = 0.04.

To begin, we will fix the value of the dimensionless velocity of the rigid support r at 1

and vary the dimensionless indentation rate α. As we saw in Sec. IVB, for α = αc(r), the

period of the temporal oscillation of the tip velocity is T = 2π/ω and the period of the

spatial oscillation of u∞(x) is L = 2πr/ω. Therefore, T and L coincide for r = 1.

For β = 1, we find that Eq. (29) has the roots λ = ±0.943i at α = αc = 1.069. The real

part of these roots is negative (positive) for α slightly smaller (larger) than αc and all other

roots have negative real parts. The prediction, therefore, is that the steady-state solution is

stable for α − αc < 1.069 and unstable to oscillations with T = L = 2π/0.943 = 6.665 for

α slightly larger than αc. Numerical simulations confirm this prediction: Fig. 1 (top panel)

shows the surface u(x, t) at time t = 361 for α = αc−0.01; although there are oscillations at

early times, the amplitude of the oscillations decays to zero. The analogous surface plot for

α = αc+0.01, shown in Fig. 1 (center panel), exhibits persistent oscillations that approach a

bounded amplitude. The velocity of the tip ẋ0(t) oscillates about the predicted mean value

r = 1, as shown in Fig. 1 (bottom panel) for α = αc + 0.01. As shown in Fig. 2 (left panel),

the squares of the amplitudes of the periodic oscillations of x0(t) and u(x, ·) are linearly

proportional to α − αc for small values of α − αc once the system has reached a steady

state. This is consistent with the prediction of a Hopf bifurcation [14]. Since a stable

periodic solution develops as α is increased above αc and the steady-state solution given

by Eqs. (22) and (24) becomes unstable, the bifurcation is a supercritical Hopf bifurcation.

Figure 3 (left panel) shows that the wavelength L approaches the predicted value of 6.665

as α → α+
c and that the deviation of L from its value at α = αc is proportional to α − αc

for small values of α− αc. (In the original units, the wavelength of the surface pattern left

behind the tip is 6.665σ in the limit that α approaches αc from above.)
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FIG. 1: Results of simulations of the system given by Eqs. (10) and (11) with Fext(t) ≡ 0,

dimensionless tip velocity r = 1, and tip function (48) with β = 1. For t1 = 15 + α, the

initial conditions are x0(t1) = 14, with u(x, t1) equal to the steady-state solution

u(x, t1) ≡ 0 plus low-amplitude spatial white noise. Shown are graphs of u(x, t = 457) for

α = αc − 0.01 (top panel) and α = αc + 0.01 (center panel), and a graph of ẋ0(t) for

α = αc + 0.01 (bottom panel). The critical value of α is αc = 1.069.

For the parameter choice β = 0, we find that for r = 1 Eq. (29) has the roots λ = ±0.934i

at α = αc = 1.608. The linear stability analysis predicts the steady-state solution u(x, ·) to

14



FIG. 2: The square of the amplitude of the steady-state spatial oscillation of u(x, ·) (dots)

and temporal oscillation of x0(t) (triangles) vs. α− αc, found by numerical integrations of

the system given by Eqs. (10) and (11) with Fext(t) ≡ 0, parameter choice r = 1 and tip

function (48) with β = 1 (left panel) and β = 0 (right panel). For β = 1, αc = 1.069, and

for β = 0, αc = 1.608. The lines of best fit to the first four data points with α > αc are

plotted.

be stable for α − αc < 1.608 and unstable to oscillations with T = L = 2π/0.934 = 6.727

for α just above αc = 1.608. Figure 4 displays the surface u(x, t) at time t = 954 (solid line)

for a simulation with α = αc + 0.03. The dotted line shows the initial surface u(x, t1) given

by Eq. (24). The amplitude of the oscillation approaches a finite value, albeit much more

slowly than in the simulation with β = 1 shown in Fig. 1 (middle panel). The right panel

of Fig. 2 shows that for β = 0, the squared amplitudes of the oscillations are proportional

to α − αc for small values of α − αc, just as they are for β = 1. Figure 3 (right panel)

shows that the wavelength approaches the predicted value of 6.727 as α→ α+
c and that the

deviation of L from its value at α = αc is proportional to α− αc for small values of α− αc.

A transition from steady-state to stick-slip motion also occurs if the dimensionless inden-

tation rate α is held fixed and the dimensionless tip velocity r is varied instead. Figure 5

shows the squared amplitudes of the oscillations in x0(t) and u(x, ·) for simulations with

the value of α held fixed at 1 and with β = 1. For these parameter values, Eq. (29) has

roots λ = ±0.915i at r = rc = 0.96. The period of the temporal oscillations approaches

2π(0.96)/0.915 = 6.59 as r approaches rc from below, as predicted.
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FIG. 3: The wavelength of the steady-state spatial oscillation of u(x, ·) vs. α− αc, found

by numerical simulations of the system given by Eqs. (10) and (11) with Fext(t) ≡ 0,

parameter choice r = 1 and tip function (48) with β = 1 (left panel) and β = 0 (right

panel). For β = 1, αc = 1.069, and for β = 0, αc = 1.608. The lines of best fit are also

plotted.

FIG. 4: The surface pattern u(x, t = 460) resulting from a simulation of the system given

by Eqs. (10) and (11) with Fext(t) ≡ 0, parameter choice r = 1 and tip function (48) with

β = 0. The initial tip position was x0(t1) = 14 at time t1 = 15 + α. The initial surface

u(x, t1), which graphed with a dotted line, is given by Eq. (24). (Low amplitude spatial

white noise was added to u(x, t1) as described in the text.) The parameter α was

α = αc + 0.03, where αc = 1.608.

The region in (r, α) parameter space for which the steady-state solution is unstable may

be determined from Eqs. (42) and (43). These expressions give, as functions of Ω, points
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FIG. 5: The square of the amplitude of the steady-state spatial oscillation of u(x, ·) (dots)

and of the temporal oscillation of x0(t) (triangles) vs. r − rc, found by numerical

simulations of the system given by Eqs. (10) and (11) with Fext(t) ≡ 0, parameter choice

α = 1 and tip function (48) with β = 1. The critical value of r is rc = 0.96. The lines of

best fit to the first four data points with r < rc are plotted.

(r(Ω), αc(Ω)) on the boundary between the regions of stability and instability in (r, α) pa-

rameter space. In Fig. 6, we show the parametric curve (r(Ω), αc(Ω)) for the tip function

(48) for β = 1 (left panel) and β = 0 (right panel). The steady-state solution is unstable for

pairs (r, α) with α > αc(r). The unstable regions are shaded in the two panels.

VI. TIP DYNAMICS IN THREE DIMENSIONS

To this point, we have studied the 2D model introduced by Gnecco et al. [9]. Naturally, in

the real world, the dynamics of the tip occurs in three dimensions rather than two. However,

as we will show in this section, the dynamics in 3D can be reduced to the 2D problem we

have already studied if certain conditions apply.

We begin by briefly describing the natural generalization of the model of Gnecco et al. to

3D. Let u(x, y, t) be the height of the solid surface above the point (x, y) in the x− y plane

at time t. In addition, x0(t) = x0(t)x̂ + y0(t)ŷ will denote the position of the AFM tip’s
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FIG. 6: The critical value of α as a function of r, αc(r), for the tip function (48) for β = 1

(left panel) and β = 0 (right panel). The curves were determined from Eqs. (42) and (43)

as parametric plots (r(Ω), αc(Ω)) parameterized by Ω. The steady-state solution is

unstable in the region with α > αc(r) which is shaded in the two panels.

apex at time t projected onto the x− y plane. The 3D analog of Eq. (1) is

Γẋ0(t) = F . (50)

The total force F on the tip is given by

F = −∇U(x0(t), y0(t), t), (51)

where U = Us + Ui as before and ∇ ≡ x̂∂x + ŷ∂y denotes the 2D gradient. Equation (3) is

replaced by

Us(x, t) =
1

2
k(x− v0t)

2 + k′y2, (52)

where the longitudinal and transverse spring constants k and k′ differ in general. The surface

interaction potential is

Ui(x, y, t) = au(x, y, t). (53)

Combining Eqs. (50) - (53), we obtain

Γẋ0(t) = −aux(x0(t), y0(t), t) + k[v0t− x0(t)], (54)

and

Γẏ0(t) = −auy(x0(t), y0(t), t)− k′y0(t), (55)
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The time evolution of the surface height is given by

ut(x, y, t) = −f(x− x0(t), y − y0(t)). (56)

where f = f(x, y) is the tip function.

We assume that the tip function f(x, y) is an even function of both x and y and that the

tip apex initially lies above the x axis, so that y0 = 0 at time t = t0. In addition, we take

the surface to be flat at time t = t0. Nothing breaks the y → −y symmetry in this case, and

so y0(t) = 0 for all t ≥ t0.

A note of caution must be added at this point. If fyy(x, 0) is positive for any value of x,

then the solution with y0(t) = 0 could be unstable against small perturbations. This will

occur if the AFM “tip” is actually two tips that are symmetrically placed relative to the y

axis, for example. However, if the AFM tip has a reasonable shape, fyy(x, 0) will be negative

for all x and the solution to the problem with y0(t) = 0 will be stable. We assume that this

is indeed the case.

If y0(t) = 0 for all t ≥ t0, Eq. (54) is formally equivalent to Eq. (5). In addition, Eq. (56)

gives

ut(x, 0, t) = −f(x− x0(t), 0). (57)

which is formally identical to Eq. (6). Thus, the problem of finding x0(t) is exactly the same

problem in 2D and 3D. Once x0(t) has been found for the equivalent 2D problem, Eq. (56)

with y0(t) set to zero can be integrated with respect to time to give the surface morphology

in 3D.

If the tip function f(x, y) = g(x)h(y) is a product of a function g(x) of x and a function

h(y) of y, the 3D surface morphology is especially simple. In that case,

u(x, y, t) = −h(y)

∫ t

t0

g(x− x0(t′))dt′ = u2D(x, t)h(y), (58)

where u2D(x, t) is the solution to the 2D problem with tip function g(x). Thus, the surface

height u(x, y, t) in the 3D problem can be obtained simply by multiplying the surface height

u2D(x, t) in the equivalent 2D problem by h(y).

The 3D analog of the 2D tip function (48) with β = 0, namely

f(x, y, t) = exp

(
−x

2 + y2

2

)
, (59)
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satisfies the conditions. Therefore, given the solution u(x, t) shown in Fig. 4, the solution of

the 3D problem with tip function (59) is

u(x, y, t) = u(x, t) exp

(
−y

2

2

)
. (60)

The surface height for the 3D problem at time t = 460 is shown in Figure 7.

FIG. 7: Gray-scale image of u(x, y, t = 460) in the domain with 400 < x < 450 and

−2 < y < 2 for the tip function (59), constructed from the solution u(x, t = 460) shown in

Fig. 4 using Eq. (60). Darker shading corresponds to smaller values of u(x, y, t = 460).

VII. DISCUSSION

As we have seen, in pioneering work, Gnecco et al. introduced a phenomenological model

for the stick-slip motion that occurs as an AFM tip is scanned in a single line across a

polymer surface [9]. This model was subsequently extended to three dimensions and was

modified to mimic the slowing rate of indentation observed if the tip is not dragged across

the surface [12, 13]. The resulting model gives excellent agreement with experiments in

which the AFM tip is rastered in parallel lines across the surface, producing ripples [12, 13].

In this paper, we have studied the model introduced by Gnecco et al. in Ref. [9]. Our

results on the model differ from theirs in some important respects. In particular, Gnecco

and coworkers argued that an approximate criterion for the stick-slip transition for the

triple Gaussian tip function (7) is k = 1.406N/(σv0) [9]. Recast in terms of dimensionless

quantities, their prediction is that αc(r) = 0.7112r. Using the exact result Eq. (29), we

found that αc = 1.069 for r = 1. The value αc = 0.7112 given by the criterion of Gnecco et
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al. for r = 1 differs widely from the correct value. In addition, the results shown in the left

panel of Fig. 6 show that αc(r) is not simply proportional to r.

In the simulation results given in Ref. [9], the ripple amplitude A appears to jump dis-

continuously from zero to a nonzero value as the indentation rate N is increased through its

critical value. Similarly, the results of Gnecco et al. suggest that A jumps discontinuously

from zero to a nonzero value as the scan velocity v0 is reduced through its critical value.

In our approach to the numerical work, the task of determining how the ripple amplitude

changes in the immediately vicinity of the stick-slip transition is simplified considerably by

the knowledge of the precise parameter value where the transition occurs. We also learned

that it is necessary to use a very small grid spacing ∆x to insure accuracy close to threshold.

In contrast to the conclusion of Gnecco et al., we found that A varies continuously as the

dimensionless indentation rate α is increased through its critical value αc. In addition, we

determined that A ∝ (α − αc)1/2 for α just above αc. Analogous results were obtained for

the behavior of the ripple amplitude A as the dimensionless scan velocity r was reduced

through its critical value rc. The experimental results obtained by Gnecco et al. seem to be

consistent with a continuous change in A as the threshold for stick-slip motion is crossed.

It is important to note, though, that these experimental results are for tip rastering over

multiple parallel lines rather than for scanning through a single line.

In the model of Gnecco et al., if the AFM tip is not dragged across the surface, it will

sink deeper and deeper into it [9]. In fact, as Eq. (6) shows, the depth of the tip will increase

linearly with time. As noted by Gnecco and his coworkers, this is unrealistic because as the

tip indents the polymer, the contact area increases, the average pressure decreases, and the

indentation rate declines. In accord with this, experiments show that the indentation depth

grows in a sublinear fashion and that it may ultimately saturate [9].

To address this issue with the model of Gnecco et al., the indentation rate was taken to

be a function of the depth of the tip in Refs. [12] and [13]. In this modified version of the

model, Eq. (8) still applies but Eq. (6) is replaced by

ut(x, t) = − exp(−|u(x0(t), t)|/b)f(x− x0(t)), (61)

where u(x0(t), t) is the depth of the tip and b > 0 has dimensions of length. If the tip is

not dragged, its depth does not saturate after this modification has been made. Instead, it

grows logarithmically in time [13].
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The change in the model described by Eq. (61) makes analytical work much more chal-

lenging because it is no longer possible to write down a closed equation that governs the

dynamics of the tip position when v0 is nonzero. In this paper, therefore, we elected to

study the unmodified model, i.e., the limit in which b = ∞. It is natural to ask when the

unmodified model is a good approximation to the dynamics.

Equation (61) makes it clear that the unmodified model is a good approximation if the

ripple amplitude A is small compared to b. As we have seen, A is small or zero close to

the transition to stick-slip motion. The unmodified model can therefore be safely applied in

that regime.

VIII. CONCLUSIONS

In this paper, we studied the patterns produced by dragging an AFM tip over a compliant

surface using a mesoscopic, phenomenological model introduced by Gnecco et al. [9]. We

showed that the problem can be reduced to solving a closed integro-differential equation for

a single degree of freedom, the position of the AFM tip. The equation of motion depends

on just two parameters: the dimensionless indentation rate α and the dimensionless velocity

of the rigid support r. We found the steady-state solution to this equation and then carried

out a linear stability analysis of it. This yielded a closed equation that can be solved for the

critical value of either α or r. If the steady-state motion is perturbed, so long the deviation

from the steady state is small, the deviation of the tip’s position from the steady state can be

written as a linear superposition of terms of the form exp(λkt), where the complex constants

λk are solutions to an integral equation. For α greater than the critical value αc, periodic

stick-slip motion sets in after a transient. Our simulations show that the amplitude of these

oscillations grows as (α − αc)
1/2 for α just above αc. In addition, a pair of λk’s that are

complex conjugates of each other have a real part that changes sign from negative to positive

as α is increased through its critical value. This means that the transition from steady-state

to periodic stick-slip motion is a supercritical Hopf bifurcation. Analogous statements can

be made about the behavior if r is reduced below its critical value rc and α is held fixed.

Finally, we established that the results we obtained for the 2D model of Gnecco et al. carry

over in a straightforward fashion to the generalization of the model to 3D.

The work described in this paper pertains to a single line scan of the AFM tip over a
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polymer surface. The advances made in this paper should allow fresh progress to be made

on the problem of the ripples formed by rastering the AFM tip over the surface in a sequence

of parallel lines. This will be the subject of our future work in this field.

Appendix

Suppose the system is in its steady state for t < 0. Then, starting at time t = 0, a weak

external force Fext(t) is briefly applied. In this Appendix, we will show that shortly after

the steady state has been disturbed, the deviation from the steady state l1(t) = l(t)− l0 can

be written as a linear superposition of solutions of the form (28) where the λ’s are solutions

to Eq. (29).

l1(t) is small for sufficiently small times t because the applied external force is weak. We

can therefore discard terms of second and higher order in l1 in the equation of motion (17).

This gives

l̇1(t) =

∫ ∞
0

F ′(rτ)l1(t− τ)dτ − l1(t)−Fext(t), (A.1)

which naturally reduces to Eq. (26) when there is no external force. For convenience, we set

K(τ) ≡ F ′(rτ). We also let t′ = t− τ . Equation (A.1) becomes

l̇1(t) =

∫ t

−∞
K(t− t′)l1(t′)dt′ − l1(t)−Fext(t). (A.2)

Because Fext(t) = 0 for t < 0, the deviation from the steady state l1(t) must also vanish for

t < 0. Equation (A.2) therefore reduces to

l̇1(t) =

∫ t

0

K(t− t′)l1(t′)dt′ − l1(t)−Fext(t). (A.3)

Notice that the integral that appears on the right-hand side of Eq. (A.3) is the convolution

of K and l1.

Our next step will be to take the Laplace transform of Eq. (A.3) and apply the convolution

theorem. This gives

sl̃1(s) = K̃(s)l̃1(s)− l̃1(s)− F̃ext(s), (A.4)

where, for an arbitrary function h(t),

h̃(s) ≡
∫ ∞

0

e−sth(t)dt (A.5)
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i.e., h̃(s) denotes the Laplace transform of h(t). Solving Eq. (A.4) for l̃1(s) yields

l̃1(s) =
F̃ext(s)

K̃(s)− s− 1
. (A.6)

Our final step is to invert the Laplace transform and so obtain l1(t) for t ≥ 0. Let the

roots of K̃(s)− s− 1 be λ1, λ2, . . . and λn. We select a real number γ that is greater than

Reλ1, Reλ2 . . . and Reλn. Then, according to Mellin’s inverse formula,

l1(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
est

F̃ext(s)

K̃(s)− s− 1
ds. (A.7)

If the integrand in Eq. (A.7) falls to zero with sufficient rapidity as |s| → ∞, we can close

the contour and apply the residue theorem. This gives

l1(t) =
n∑
k=1

Res

(
est

F̃ext(s)

K̃(s)− s− 1
, λk

)
, (A.8)

where Res(h(s), λ) denotes the residue of h(s) at the point s = λ. Assuming that the poles

are all of order 1, we obtain

l1(t) =
n∑
k=1

F̃ext(λk)

K̃ ′(λk)− 1
eλkt. (A.9)

(l1(t) can also be written as a linear superposition of eλ1t, eλ2t . . . , and eλnt if one or more of

the poles is not of order 1.) A solution λ of the equation K̃(λ)−λ−1 = 0 satisfies Eq. (29).

Thus, the deviation from the steady state l1(t) can be written as a linear combination of

solutions of the form (28) where the λ’s are solutions to Eq. (29), as claimed.

ACKNOWLEDGMENTS

We are grateful to Enrico Gnecco and Juan J. Mazo for valuable discussions and corre-

spondence. We are also indebted to Prof. Gnecco for his critical comments on the manuscript.

This work was supported by Grants DMS-1814941 and DMR-2116753 awarded by the

U.S. National Science Foundation.

[1] O. M. Leung and M. C. Goh, Science 255, 64 (1992).

24



[2] Z. Elkaakour, J. Aime, T. Bouhacina, C. Odin, and T. Masuda, Phys. Rev. Lett. 73, 3231

(1994).

[3] R. H. Schmidt, G. Haugstad, and W. L. Gladfelter, Langmuir 19, 898 (2003).

[4] R. Leach, F. Stevens, C. Seiler, S. Langford, and J. Dickinson, Langmuir 19, 10225 (2003).

[5] M. D’Acunto, S. Napolitano, P. Pingue, P. Giusti, and P. Rolla, Materials Letters 61, 3305

(2007).

[6] E. Gnecco, E. Riedo, W. P. King, S. R. Marder, and R. Szoszkiewicz, Phys. Rev. B 79, 235421

(2009).

[7] S. Napolitano, M. D’Acunto, P. Baschieri, E. Gnecco, and P. Pingue, Nanotechnology 23,

475301 (2012).

[8] Y. Yan, Y. Sun, J. Li, Z. Hu, and X. Zhao, Nanoscale Research Letters 9, 1 (2014).

[9] E. Gnecco, P. Pedraz, P. Nita, F. Dinelli, S. Napolitano, and P. Pingue, New Journal of

Physics 17, 032001 (2015).

[10] P. Pedraz, R. Wannemacher, and E. Gnecco, ACS Nano 9, 8859 (2015).

[11] Y. Yan, X. Cui, Y. Geng, and Y. He, Micro & Nano Letters 12, 1011 (2017).

[12] J. J. Mazo, P. J. Martínez, P. Pedraz, J. Hennig, and E. Gnecco, Phys. Rev. Lett. 122, 256101

(2019).

[13] P. J. Martínez, E. Gnecco, and J. J. Mazo, Phys. Rev. E 103, 022802 (2021).

[14] S. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry,

and Engineering (Westview Press, Boulder, CO, 2015).

25


