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Motivated by the recent observation of liquid glass in suspensions of ellipsoidal colloids, we ex-
amine the structure of (asymptotically) saturated RSA ellipse packings. We determine the packing
fractions φs(α) to high precision, finding an empirical analytic formula that predicts φs(α) to within
less than 0.1% for all α ≤ 10. Then we explore how these packings’ positional-orientational or-
der varies with α. We find a transition from tip/side- to side/side-contact-dominated structure at
α = αTS ' 2.4. At this aspect ratio, the peak value gmax of packings’ positional-orientational pair
correlation functions is minimal, and systems can be considered maximally locally disordered. For
smaller (larger) α, gmax increases exponentially with deceasing (increasing) α. Local nematic order
and structures comparable to the precursor domains observed in experiments gradually emerge as α
increases beyond 3. For α & 5, single-layer lamellae become more prominent, and long-wavelength
density fluctuations increase with α as packings gradually approach the rod-like limit.

I. INTRODUCTION

Recent advances in colloidal synthesis and microscopy
techniques have dramatically improved our ability to
characterize how particle ordering and relaxation in ther-
mal liquids varies with particle shape. For example, high-
quality monodisperse colloidal rods and cylinders can
now be produced [1], and their liquid-state dynamics (in
suspensions) can be observed using confocal microscopy
and allied techniques [2, 3]. Of particular interest is the
recent experimental observation of “liquid glass”. Roller
et al. found [4] that suspensions of ellipsoidal colloids
with aspect ratio αR = 3.5 exhibited two distinct glass
transitions at packing fractions φrotg and φtransg . In the

liquid glass state (φrotg < φ < φtransg ), particles rotations’
are arrested, but they remain free to translate within
locally-nematic precursor domains. This phenomenon
had been predicted by simulations [5], but had previously
only been experimentally observed in quasi-2D systems
[6–8]. Experiments like Ref. [4] offer both a new avenue
for understanding the physics of anisotropic molecular
glassformers and an obvious motivation for theoretical
studies of related models.

For hard ellipses and ellipsoids of revolution with as-
pect ratio α, complex liquid-state dynamics are expected
for packing fractions in the range φo(α) < φ < φg(α),
where φo(α) is the “onset” density [9, 10] and φg(α)
is either the rotational or translational glass transition
density. Evaluating φo(α) and φg(α) using simulations
is very computationally expensive [11–14]. A more eas-
ily obtained yet physically relevant packing fraction that
lies between φo(α) and φg(α) is the random sequential
adsorption (RSA) density φs(α), the maximum density
at which impenetrable ellipses of aspect ratio α can be
packed under a protocol that sequentially inserts them
with random positions and orientations. The differences
φg(α)− φs(α) and φJ(α)− φs(α) are of particular inter-
est because they indicate how much packing efficiency
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can be gained (before glass formation and jamming, re-
spectively) by allowing particles to move freely while re-
maining positionally and orientationally disordered. For
example, in the α→∞ limit one expects φJ(α) = φs(α)
because particle rotations are completely blocked [15, 16].

While jamming of ellipses and ellipsoids is now fairly
well understood [17–20], RSA of these systems remains
relatively poorly characterized. φs(α) values for ellipses
have been reported only for 1 ≤ α ≤ 5 [21–24], and de-
tailed characterization of RSA ellipse packings’ structure
has only been performed for the aspect ratio α ' 1.85
that maximizes φs [23]. Thus there is a need to substan-
tially expand our knowledge of these packings.

In this paper, we characterize saturated RSA ellipse
packings over a wider range of aspect ratios and in much
greater detail than has been previously attempted. First
we determine their packing fractions φs(α) to within
∼ 0.1% for 1 ≤ α ≤ 10. Then we characterize their
positional-orientational order using several metrics. We
find a previously-unreported structural transition at α =
αTS ' 2.4. For 1 < α < αTS (α > αTS), packings have
an excess of tip-to-side (side-to-side) contacts. The peak
prevalence of the favored type of contact, an effective
order parameter for these systems, increases exponen-
tially with |α − αTS|. We also show that (i) local ne-
matic order and structures comparable to the precursor
domains observed in experiments [4, 6] gradually emerge
as α increases beyond 3, and (ii) the increasing size of
single-layer lamellae that are randomly oriented within
these packings makes their long-wavelength density fluc-
tuations increase rapidly with α for α & 5.

II. GENERATING SATURATED PACKINGS

Saturated RSA packings of anistropic 2D particles are
generated by placing them with random positions and
orientations, typically within square domains of size L×
L, until no more particles can be inserted. In practice,
RSA packing generation’s inherently slow kinetics [25]
make achieving complete saturation for L that are large
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enough to minimize finite-size effects extremely difficult.
Therefore we employ an efficient protocol that generates
packings that are demonstrably within < 1% (and for
most α, much less than 1%) of their saturation densities,
for system sizes that are in the L→∞ limit. Specifically,
we use L = 1000σ, where σ is the length of the ellipses’
minor axes. This is the same L employed in Refs. [23, 24]
and is sufficiently large that finite-size errors on φs should
be less than 0.1% [23]. Below, we set σ = 1.

We divide our periodic domains into Λ = floor(L/α)2

linked cells of size (L/Λ) × (L/Λ). Here floor[x] rounds
x downward to the nearest integer, e.g. floor[4.6] = 4.
Thus, when insertion of an ellipse i at position ~ri is at-
tempted, only ellipses in the cell containing ~ri and its
8 neighboring cells need be checked for overlap. Checks
for overlap with the set {j} of all ellipses that have al-
ready been inserted in these cells (at positions {~rj}) in-
clude three steps: (1) Since we assume ellipses’ minor
axes have unit length while their major axes have length
α, any center-to-center distances rij = |~rj − ~ri| < 1 im-
ply overlap, and the insertion attempt is rejected. (2) If
rij > α, the ellipses do not overlap and the code contin-
ues to the next j. (3) If 1 ≤ rij ≤ α, overlap is possible.
We determine whether the ellipses overlap using Zheng
and Palffy-Muhoray’s exact expression [26] for their dis-
tance of closest approach dcap. For monodisperse ellipses
with unit-length minor axes, their expression reduces to

dcap =
d′√

1− (1− α−2)(k̂i · r̂ij)2
, (1)

where d′ is obtained using a complicated formula involv-

ing rij and the ellipses’ orientation vectors k̂i and k̂j .

Note that k̂j does not appear in Eq. 1 because it has
been absorbed into d′; cf. Eqs. 33, 36 of Ref. [26]. If
dcap > rij , the ellipses overlap and the insertion attempt
is rejected. Otherwise the ellipse is inserted and the next
insertion attempt begins.

We examined 81 different particle aspect ratios over
the range 1 ≤ α ≤ 10. To allow extrapolation of the
runs’ progress to the infinite-time limit, we tracked the
packing fractions φ(α, t) after t insertion attempts per
unit area had been completed. Each run continued until
2.5×105 trials per unit area had been attempted; this was
sufficient to reach well into the asymptotic t−1/3 regime
[25] for all α. Then we determined the RSA densities
φs(α) by fitting the results to

φ(α, t) = φs(α)

(
1−

[
t

τ(α)

]−1/3)
, (2)

where τ(α) is a “time” characterizing the α-dependent
RSA kinetics.

Figure 1 shows φ(α, t) for selected α. There is some
crossing of the curves at intermediate t for α < 2 because
φs(α) is non-monotonic, but as expected for anisotropic
particles [27], τ increases with α. All α ≤ 10 had τ < 0.13
and hence had φs(α)/φ(α, 2.5 × 105) − 1 < .0082. In
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FIG. 1. RSA kinetics for ellipses. Results are shown for α =
1.3, 1.85, 2.4, 3.5, 5, 6.5, 8, and 10.

other words, at the end of our packing-generation runs,
all α ≤ 10 have φ that are within less than 1% of φs(α).

III. STRUCTURE OF SATURATED PACKINGS

Figure 2 shows the extrapolated φs(α). Results for all
α ≤ 5 agree with previous studies. In particular, they are
consistent with the well-known disk RSA packing fraction
φs(1) = φdisks = .54707 [28, 29] and the known density
maximum at α ' 1.85, i.e. φs(1.85) ' .584 [21–24]. For
large aspect ratios, our results show a surprisingly slow
decrease of φs with increasing α. Specifically, since the
area swept out by ellipses as they rotate about their cen-
ters is Asw = πα2/4 whereas the area of the ellipses them-
selves is πα/4, Onsager’s classical arguments [30] predict
φs ∼ A/Asw = 1/α. Our data show that this asymptotic
regime is not reached until α� 10.
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FIG. 2. Packing fractions of saturated RSA ellipse pack-
ings.. Red circles show the φs(α) estimated from Eq. 2, while
the blue curve shows Eq. 3. The dashed gray line shows
φ = 0.775α−1/5 and is included only to illustrate the lack
of convergence to α−1 scaling.
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We find that the extrapolated φs(α) are well fit by

φs(α) = φdisks ×
1 + (3/8) ln(α) + (17/25)(α− 1)

1 + (80/99)(α− 1) + (α− 1)2/96
. (3)

φs(α) > φdisks for all 1 < α . 4.40, indicating that
particles’ anisotropy enhances their packability over this
range of aspect ratios. Equation 3 is an empirical for-
mula designed to capture the known trends: convergence
to φdisks as α → 1, and 1/α scaling at large α [15, 16].
Its mean and rms fractional deviations from the extrap-
olated φs(α) are respectively 0.02% and 0.06%. We do
not claim that Eq. 3 is an exact expression valid for all
α, or even that its functional form is the same as that of
the “true” φs(α) which could be obtained given infinite
computer power.

Next we turn to detailed analyses of these packings’
positional and orientational order. Figure 3 shows the
pair correlation functions g(r) and structure factors S(q)
for the same eight aspect ratios highlighted in Fig. 1.
Three major trends are apparent.

First, all results for α ≤ 2.2 are consistent with previ-
ous studies [23, 24]. The g(r) exhibit a primary nearest-
neighbor peak at rnn ' (α + 1)/2 and a much smaller
second-nearest-neighbor peak at rsn = 2 + O(α). Both
peaks rapidly broaden as α increases. The primary peak’s
position indicates that it corresponds to tip-side contacts.
A similar peak is present in RSA packings of low-α sphe-
rocylinders; this feature is likely universal for packings of
convex anisotropic objects [23, 31]. The peak at rsn van-
ishes for α & 1.9; ellipses with α & 1.9’s failure to form an
approximately-isotropic second coordination shell during
RSA helps explain why their φs is maximized at this α.

Second, for all 4 . α . 8, g(r) < 1 for all r < (α+1)/2.
This “correlation hole” [32] can be understood in terms
of two-body impenetrability constraints. Suppose ∆θ is
the difference in the orientation angles of two ellipses.
If the ellipses are in contact, the maximal distance rmax

between their centers ranges from 1 for ∆θ = 0, which
corresponds to side-to-side contacts of perfectly aligned
ellipses, to (α+ 1)/2 for ∆θ = 90◦, which corresponds to
tip-to-side contacts of perpendicularly oriented ellipses.
Therefore, for any pair of ellipses (contacting or not) with
r < (α+1)/2, the allowed ∆θ are restricted, increasingly
so as r decreases towards 1. This tends to reduce the
number of ellipse pairs with center-to-center distances
r < (α + 1)/2 relative to the number that would be
present in an ideal gas. The correlation hole emerges
when this effect overwhelms the natural tendency of par-
ticles in RSA packings to form coordination shells [25].
It disappears when a side-to-side contact peak at r ' rss
[defined by g(rss) > 1] emerges as α increases beyond 8.

Third, examining the S(q) curves reveals how den-
sity fluctuations evolve with increasing α. Low-α sys-
tems’ S(q) are qualitatively similar to disks’ S(q). They
have prominent peaks at q ' 2π/rnn and q ' 4π/rnn,
which respectively correspond to the first- and second-
nearest neighbor peaks shown in Fig. 3(a). Two features
which are not readily apparent from Fig. 3(a) are: (i)
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FIG. 3. Pair correlation functions g(r) [panel (a)] and struc-
ture factors S(q) [panel (b)] for the same systems highlighted
in Figure 1 [33]. Dotted curves show results for disks. The
inset to panel (b) shows estimated S0 = limq→0 S(q), here
defined as S(0.25).

intermediate-wavelength (1 . q . 4) density fluctuations
increase monotonically with α, and (ii) longer-wavelength
density fluctuations increase rapidly – as shown in the in-
set, roughly exponentially – for α & 5. We will show be-
low that the second trend corresponds to the emergence
of lamellae that grow larger with increasing α.

The abovementioned trends can be better under-
stood by visualizing saturated RSA packings and their
positional-orientational order. Figure 4 shows snap-
shots of typical packings for the eight α highlighted
above, along with results for the pair correlation func-
tion g(r,∆θ), which is the ratio of the number of ellipse
pairs with center-to-center distance r and orientation-
angle difference ∆θ to the number that would be present
in an ideal gas of these particles. In other words g(r,∆θ)
is just the generalization of the standard pair correlation
function g(r) to include orientation-angle differences [33].

Results for α . 2 are consistent with previous studies
[21–24], but shed new light on low-aspect-ratio RSA el-
lipse packings’ structure because these systems’ g(r,∆θ)
has not been previously reported. The snapshots show
the expected excess of tip-side contacts, and the g(r,∆θ)
plots illustrate the degree to which this favored ordering
diminishes as r and ∆θ vary away from the ideal tip-side
configuration [rits = (α+ 1)/2, ∆θ = 90◦]. The primary
peaks in g(r,∆θ) occur at distances rts = rits + O(α)
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FIG. 4. Representative snapshots and g(r,∆θ) for α = 1.3, 1.85, 2.4, and 3.5 (top rows) and α = 5, 6.5, 8, and 10 (bottom
rows) from left to right. The snapshots show only ellipses whose centers lie within the central 50 × 50 regions of the overall
L× L ≡ 1000× 1000 domains.

that increase with α, but remain near ∆θ = 90◦. Sec-
ondary peaks at distances r2(α,∆θ) that increase with
increasing α and decreasing ∆θ, roughly mirroring the
small-r excluded-area cutoffs rmin(α,∆θ) below which
g(r,∆θ) = 0, are also evident. These reflect the fact
that there are at least two distinct favored near-neighbor
configurations for any given ∆θ.

The snapshot and g(r,∆θ)-plot for α = 3.5 illustrate
how the structures of saturated ellipse packings with
α = 3 − 4 differ from their lower-aspect-ratio counter-
parts. Local nematic precursors comparable to those ob-
served in both previous Monte Carlo simulations of hard
ellipses and spherocylinders [31, 34] and experiments on
quasi-2D colloidal-ellipsoid suspensions [6, 7, 35, 36] are

readily visible. Such precursor domains are believed to
be largely responsible for these systems unusual liquid-
state dynamics, and in particular for their ability to ex-
hibit separate rotational and translational glass transi-
tions [4, 6, 7, 35, 37].

The bottom rows of Fig. 4 show that for α & 5, sat-
urated RSA ellipse packings possess a common struc-
ture that evolves quantitatively but not qualitatively
with increasing α. These packings’ g(r,∆θ) are simpler,
with little structure aside from their side-to-side-contact
peaks near (rss, 0). The snapshots indicate that packings
are largely composed of randomly-oriented, single-layer
lamellae. In contrast with the longer-range nematic order
that develops in sufficiently dense systems of ellipses and
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other anisotropic particles in thermodynamic equilibrium
[31, 34, 38], these lamellae appear have a kinetic origin;
see below for a potential explanation. The combination
of random lamellar orientation and increasing lamellar
width (i.e. increasing particle length) with increasing α
directly explains these packings’ rapidly increasing long-
wavelength density fluctuations [Fig. 3(b)]. Local parti-
cle density is high inside lamellae and low where lamel-
lae of different orientations intersect (or, more precisely,
where they would intersect if they were able to grow fur-
ther). Since (i) the size of the lamellae and (ii) the density
disparity between the lamellae and their intersection re-
gions both increase rapidly with α, so does S0. The same
effect is seen in RSA of zero-thickness line segments [39].

One natural order parameter for these packings is
gmax = max[g(r,∆θ)], the maximal excess positional-
orientational correlation, here defined to occur for pairs
with center-to-center distance rmax and orientation-angle
difference ∆θmax. Comparing the snapshots and g(r,∆θ)
shown in the top rows of Fig. 4 highlights our central
result: the existence of a previously-unreported transi-
tion in RSA ellipse packings’ structure. gmax decreases
rapidly with increasing α over the range 1 < α ≤
αTS ' 2.4 as the peaks in g(r) and g(r,∆θ) [respec-
tively at rnn and rts] broaden and shift outward. As α in-
creases beyond αTS, the positions of the peaks in g(r,∆θ)
change discontinuously. Specifically, rmax decreases from
rts ' (α + 1)/2 to rss ' 1.1, and ∆θmax decreases from
just below 90◦ to just above 0◦. Although the heights
of the peaks in g(r,∆θ) at rts and rss both evolve con-
tinuously with increasing α, this discontinuous change in
(rmax, ∆θmax) can be regarded as a structural transition
from tip-side- to side-side-dominated contact [40].
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FIG. 5. Exponential increase in maximal positional-
orientational correlations with increasing |α − αTS|. Dotted
lines show Eq. 4. The inset shows the orientation-angle dif-
ferences ∆θmax at which the maxima occur, highlighting the
transition from tip-side- to side-side-dominated contact.

For α > αTS, gmax increases rapidly with α as side-to-
side nearest-neighbor contacts with r ' rss become in-
creasingly prevalent. We find that in fact gmax increases
exponentially with |α − αTS|. As shown in Figure 5,

gmax(α) is well fit by

gmax '

{ g0 exp

(
α∗TS − α
α∗low

)
, α < αTS

g0 exp

(
α∗TS − α
α∗high

)
, α > αTS

, (4)

for all α . 5, with g0 ' 2.70, α∗TS ' 2.36, α∗low ' 1.79
and α∗high ' 2.90. Systems with α = α∗TS can be consid-
ered maximally locally disordered. They are frustrated in
the sense that tip-side- and side-side-contact-dominated
ordering are mutually incompatible yet equally likely.

While the values of the parameters g0, α∗TS, α∗low
and α∗high depend on how the binning used to calculate

g(r,∆θ) is performed, the functional form of Eq. 4 is ro-
bust. Rigorously explaining this result is challenging. In
particular, two-body geometry alone does not explain it,
because although the range of ∆θ [0 ≤ ∆θ ≤ ∆θ∗(r)]
over which a new ellipse can be inserted with a center-
to-center distance r . rss from its nearest neighbor de-
creases with increasing α, this decrease would only pro-
duce gmax ∼ 90◦/∆θ∗(r) ∼ α. We suspect that, at least
for α > αTS, the exponential increase of gmax arises
from a combination of geometry and kinetics. The lo-
cally densest configurations of ellipses with r ' rss are
single-layer lamellae. As RSA proceeds, the gaps into
which new particles may be inserted increasingly corre-
spond to configurations that increase the length of such
lamellae, i.e. grow the lamellae at their ends. Thus gmax

increases much faster than linearly with α, falling below
its initial exponential trend only when lamellar growth
becomes limited by their intersection with other, differ-
ently oriented lamellae, i.e. at α ' 5. For α > 5 the
growth of gmax with α appears to be linear.

IV. DISCUSSION AND CONCLUSIONS

Hard ellipse liquids’ dynamics exhibit multiple non-
trivial features arising from the asymmetry of their con-
stituent particles [6–8, 12–14, 35, 37]. Thus they provide
a minimal, single-parameter model for understanding as-
pects of the dynamics of small-molecule glassforming liq-
uids that are tightly coupled to particle asymmetry, such
as translational-rotational decoupling [41]. They also
provide an easily-visualized system that can be used as
a basis for understanding their more complicated three-
dimensional-ellipsoidal counterparts [4, 42–46].

In this paper, we characterized the structure of asymp-
totically saturated RSA ellipse packings, over a far wider
range of aspect ratios and in substantially more detail
than had been previously reported. We obtained a sim-
ple analytic expression for the saturation density φs(α)
[Eq. 3] that captures results for all α ≤ 10 to within less
than 0.1% and has the correct 1/α scaling [15] in the
large-α limit. The crossover to this asymptotic scaling
was slower than expected; while it must eventually occur
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since φs is necessarily below the jamming density φJ(α)
[17–20], we showed that it does so only at some α� 10.

We also characterized how positional-orientational cor-
relations in these packings evolve with increasing α. Our
main result for relatively low aspect rations (α ≤ 5)
was finding a previously-unreported structural transition
from tip/side- to side/side-contact-dominated structure
at α = αTS ' 2.4. At this aspect ratio, the peak value
gmax of packings’ positional-orientational pair correlation
function g(r,∆θ) is minimal, and packings can be consid-
ered maximally frustrated owing to competition of these
two, mutually incompatible types of structural order.
gmax increases exponentially with increasing |α − αTS|,
presumably owing primarily to kinetic effects.
α ' 2.4 is also the aspect ratio above which el-

lipses possess an equilibrium nematic liquid-crystalline
phase [38], suggesting that the abovementioned struc-
tural transition is intimately connected to the equilib-
rium isotropic-nematic transition. Explaining such a con-
nection – if indeed one exists – will be nontrivial be-
cause saturated RSA packings of anistropic 2D particles
often have local structure that is substantially different
than that of their equilibrium counterparts at the same φ
[31]. One potential strategy for obtaining such an expla-
nation is extending replica-trick-based techniques, which
were very recently employed to successfully predict RSA
sphere packings’ structure [47], to anisotropic particles.

RSA ellipse packings with α > 5 had not been previ-
ously investigated. We found that these packings pos-
sess a common structure that varies quantitatively but
not qualitatively with increasing α: they are primar-
ily composed of randomly oriented single-layer lamellae.
gmax falls below the abovementioned exponential trend,
presumably because lamellar growth is limited by “col-
lisions” with other, differently oriented lamellae. The
same collisions drive a rapid increase in long-wavelength
density fluctuations as the size of and density disparity
between lamellae and their intersection regions increase
with increasing α.

In conclusion, the detailed characterization of satu-
rated RSA ellipse packings performed in this work, in
addition to being of interest in its own right, lays the
groundwork for followup studies of the structure and dy-
namics of thermally-equilibrated, glassy and jammed el-
lipses. For example, it would be interesting to check
whether a comparable structural transition and compara-
ble behavior of gmax are present in jammed ellipse pack-
ings, and if so, at which aspect ratio it occurs. Our results
suggest that followup studies examining g(r,∆θ) and/or
systems with α > 5 may prove especially fruitful.

This material is based upon work supported by the
National Science Foundation under Grant No. DMR-
2026271.
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