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Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively,
stay together, or invade new areas. This collective cell migration depends on cell-cell interactions,
which are often studied by colliding pairs of cells together. Can the outcome of these collisions be
predicted? Recent experiments on trains of colliding epithelial cells suggest that cells with a smaller
contact angle to the surface or larger speeds are more likely to maintain their direction (“win”)
upon collision. When should we expect shape or speed to correlate with the outcome of a collision?
To investigate this question, we build a model for two-cell collisions within the phase
field framework, which allows for cell shape changes. We can reproduce the observation that
cells with high speed and small contact angles are more likely to win with two different assumptions
for how cells interact: (1) velocity-aligning, in which we hypothesize that cells sense their own
velocity and align to it over a finite timescale, and (2) front-front contact repolarization, where cells
polarize away from cell-cell contact, akin to contact inhibition of locomotion. Surprisingly, though
we simulate collisions between cells with widely varying properties, in each case, the probability
of a cell winning is completely captured by a single summary variable: its relative speed (in the
velocity-aligning model) or its relative contact angle (in the contact repolarization model). Both
models are currently consistent with reported experimental results, but they can be distinguished
by varying cell contact angle and speed through orthogonal perturbations.

I. INTRODUCTION

Eukaryotic cells do not just live in isolation, but can
function in small clumps, sheets, or complex tissues. Un-
derstanding the collective cell migration of these groups
of cells is essential to the study of embryonic devel-
opment, wound healing, and cancer metastasis [1–4].
Groups of cells can have different properties than single
cells, including the ability to sense shallow chemical or
mechanical gradients [5–13], the ability to amplify cues
and develop guided migration over long distances remi-
niscent of the swarming behavior in insects [14, 15], and
an increased efficacy of cancer metastasis [16]. These
properties arise from intercellular interactions, including
in particular the effect of direct cell-cell contact.

A dramatic and well-studied example of an interaction
arising from direct cell-cell contact is “contact inhibition
of locomotion” (CIL), first observed decades ago by Aber-
crombie and Heaysman [17] and later observed in neural
crest cells [18] and epithelial cells [19, 20]. In CIL, cells
that come in contact with one another retract their local
protrusions, repolarize, and subsequently migrate away
from contact. CIL is regulated by transmembrane pro-
teins such as cadherins and Eph/ephrins, which regulate
the Rho GTPases that ultimately mediate the cell’s pro-
trusive activity [18, 21]. CIL and related properties are
essential for the collective chemotaxis of neural crest cells
in the developing embryo [5], as well as the spreading of
Drosophila hemocytes [22]. CIL has also been shown to
promote collective migration in epithelial cells in narrow
confinement by establishing cell trains [19].

Contact-based interactions can be affected by the ge-

ometry of contact between cells – an example of the
broader topic of how confinement and geometry can con-
trol collective cell migration [23–25]. For instance, inter-
actions may be asymmetric between the head and tail of a
polarized migrating cell [20, 26]. In addition, cells crawl-
ing on suspended nanometer-scale fibers, which can have
very small amounts of cell-cell contact, may crawl past
one another instead of exhibiting CIL [27]. In particular,
we are motivated by recent work from the Ladoux group
[28], in which two trains of Madin-Darby canine kidney
(MDCK) cells collided head-on within narrow confine-
ment. Interestingly, they reported that the train that
maintained its direction on collision (“won”) had a lead-
ing cell with a smaller contact angle with the substrate
[28].

How should we interpret the experimental observations
of correlations between collision outcome and geometry?
Cell geometry is correlated with cell-substrate adhesion
and cell speed [29, 30], which both might separately influ-
ence collisions. To understand the role of contact geome-
try in controlling the outcome of cell collisions, we build
a 2-dimensional model for cells within the phase field ap-
proach. Here, we study head-on collisions between two
cells on adhesive substrates, and we characterize the con-
tact geometry by defining the contact angle as the angle
formed by the lamellipodium on the substrate. We con-
trol the cell’s contact angle by varying interfacial energies
and active forces through cell-substrate adhesion, mem-
brane tension, and protrusion strength. Furthermore, we
implement two distinct mechanisms for how cell polar-
ity is influenced by the cell-cell interaction: the velocity-
aligning [31, 32] and front-front contact repolarization
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[27, 33] models, both broadly used to describe collective
migration in different contexts [27, 31–36]. Though the
models are fundamentally different, both can produce re-
sults nominally consistent with experiment, wherein cells
with smaller contact angles and faster speeds are more
likely to win. Further analysis, however, could distin-
guish these two approaches, as we find that within the
velocity-aligning model, outcomes are best predicted by
difference in speeds between cells, while in the contact
repolarization model, outcomes depend most strongly on
difference in contact angles. Surprisingly, though we are
varying three independent parameters over a broad range
of different values, we find in both cases that a single rel-
evant summary parameter predicts the cell-cell collisions
well.

FIG. 1. A side-view of two phase field cells wetting on an
adhesive substrate and migrating toward each other to un-
dergo a head-on collision. The wide range of accessible con-
tact geometries are shown by varying cell tension γ, adhesion
A, and protrusion strength β in the right cell (dark gray):
(top) γ = 0.9γ0, A = 0.64γ0, β = 10γ0, (middle) γ = 1.26γ0,
A = 0.48γ0, β = 6γ0, (bottom) γ = 1.8γ0, A = 0.32γ0,
β = 4γ0. The left cell (light gray) has constant attributes
with the default values listed in Table I. The contact angle of
the cell is computed by fitting a line to a few points from the
cell’s contour (see Appendix A, Fig. 10b for more details).

II. MODEL

We build a model for cells within the phase field ap-
proach [29, 33–35, 37, 38], which can describe cells with
an arbitrary deforming shape. Because the experiments
of [28] study cells tightly confined on a microstripe, we
simplify our model to two dimensions – a “side view”
of the cell [29] (Fig. 1). Our model includes cell self-
propulsion, adhesion to a substrate, cell tension, and cell-
cell repulsion and adhesion. Each cell is given a phase

field φ(r, t), which is zero outside the cell and one inside
the cell, implicitly defining the cell boundary as φ = 1/2.
The evolution of the field for cell i is governed by en-
ergy minimization and advection of the cell boundary
[34, 39, 40],

∂φi(r, t)

∂t
+ vi(r, t) · ∇φi = −M δF

δφi
, (1)

where M is the transport coefficient and vi(r, t) is the
velocity field of the cell.

The total free energy of the system of N cells is

F =
∑N
i=0 [FCH,i + Farea,i + Fχ,i + Fadh,i + Frep,i]. The

Cahn-Hilliard energy [34]

FCH,i =

∫
dr
γ

λ

[
4φ2

i (1− φi)2 + λ2 (∇φi)2
]

(2)

has a double-well potential with minima at φi = 0, 1
(the outside and inside of the cell) and a gradient term
that penalizes interface deformations. γ controls the line
tension of the cell, and λ has units of length and sets the
phase field interface thickness (see Appendix B).

Additionally, we penalize deviations of the cell away
from a preferred area Ã = πR2

0 via [34]

Farea,i = µ

[
1− 1

Ã

∫
drφ2

i

]2

. (3)

Thus, in the absence of cell-cell interactions, motility
forces, and cell-substrate forces, cells relax to circles with
radius R0.

To study lamellipodium contact angles, we must have
adhesive substrates onto which cells can wet and extend
lamellipodia. We introduce substrates through a static
phase field χ(y) that indicates the substrate, transition-
ing from zero above the substrate surface to one below
the substrate surface (see Appendix A,B). The energy of
interaction with the substrate is [29]

Fχ,i =

∫
drφ2

i (2− φi)2×[
−36A

ξ
χ2(1− χ)2 +

g

2
χ(x, y + λ)

]
.

(4)

The term proportional to A models adhesion. It is
nonzero at the boundaries of the cell and the substrate,
and it favors increased contact between these two in-
terfaces by reducing the total energy of the cell by an
amount proportional to A. The term proportional to g
prevents the cell from penetrating into the substrate. It
is nonzero where the boundary of the cell is in contact
with the body of the substrate.

Lastly, we account for cell-cell interactions [33, 34, 37]:
cells are favored to adhere to each other when their in-
terfaces are in contact,

Fadh,i = −
∑
j 6=i

ω

λ

∫
drφ2

i (1− φi)2φ2
j (1− φj)2, (5)
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and they are discouraged from overlapping,

Frep,i =
∑
j 6=i

κ

λ

∫
drφ2

iφ
2
j , (6)

where ω and κ set the energy scale for each interaction,
respectively. We further note that because φ = 0 is the
exterior and φ = 1 is the interior of the cell, φ2

i (1− φi)2

in Eq. 5 is used to indicate the interface of cell i.
To complete the phase field description, we obtain the

velocity field vi by noting that cells are overdamped sys-
tems. Balancing forces per unit area locally, we write
[41]

ηvi =
δF
δφi
∇φi + fmotility,i. (7)

The left hand side represents the friction force per area,
with η a friction coefficient, while the first term on
the right dictates the velocity of the cell boundary driven
by energy minimization. The last term, fmotility,i, is the
motility force per area. The motility force (Section II D)
propels the front of the cell forward and depends on cell
polarity.

A. Defining cell polarity

Crawling cells are generally polarized, i.e. they have
an asymmetric distribution of proteins and cell shape.
For instance, in single cells, Rho GTPase proteins are
asymmetric, with Rac1 upregulated in the leading edge
of the cell and RhoA active in the cell rear [21]. Rather
than explicitly modeling Rho GTPases [33, 35, 42–46],
we summarize cell polarity as a single direction ψ, with
an associated unit vector, p̂ = (cos(ψ), sin(ψ)).

Choosing how cell polarity reacts to the presence of
other cells is an essential stage in modeling collective mi-
gration, but there is no single established approach [47].
Here, we implement two separate widely-used alterna-
tives (Fig. 2): a “velocity-aligning” or “self-aligning”
polarity, in which cells sense and respond to their own
velocity (Section II B), and a “contact repolarization”
model, in which cells sense cell-cell contact and repolarize
based on that contact (Section II C). We keep the equa-
tions of motion between these two approaches as closely
analogous as possible.

B. Velocity-aligning cell polarity

The velocity-aligning (VA) model originates from the
flocking behavior observed in fish keratocytes [31], and
has been extensively used to capture collective migration
in different contexts [31–34, 36]. Here, we assume that
cells can sense their velocity and repolarize to align to it
over a finite timescale τVA (Fig. 2). That is, the evolution
of the cell polarity vector is [31, 32]

d

dt
ψi = − 1

τVA
sin−1 [(v̂cm,i × p̂i)z] +

√
2Dψ Ω(t), (8)

where v̂cm,i is a unit vector in the direction of cell
i’s center-of-mass velocity, Dψ is the angular diffusion
constant, and Ω(t) is a Gaussian Langevin noise with
〈Ω(t)〉 = 0 and 〈Ω(t)Ω(t′)〉 = δ(t− t′). Given this mecha-
nism, the cell polarity integrates information about cell-
cell and cell-substrate interactions through the center-of-
mass velocity. The inverse sine of the cross product will
return the difference between the angle of the center-
of-mass velocity and ψ when these two angles are close
together, but correctly predicts no repolarization when
these angles differ by 2π. Though each cell only senses
its own velocity, because cell-cell collisions lead to corre-
lated velocities, alignment to the cell’s own velocity leads
to correlated, coherent migration [31].

FIG. 2. Schematics for velocity-aligning (top) and front-front
contact repolarization (bottom) models. In the VA model,
cell polarity aligns to the direction of center-of-mass velocity.
In the FFCR model, many vectors (light orange) are drawn
from the contact region (shaded area) through the center-of-
mass of the cell. Cell polarity then aligns to the repolarization
vector r̂CR, which is calculated as their average (dark orange).

C. Front-front contact repolarization cell polarity

In contact inhibition of locomotion (CIL) [17–20], cells
polarize away from cell-cell contact and then migrate
away from one another. How do we describe “away from
cell-cell contact” in our phase field model? The direction
away from a contact point r′ is rcm,i − r′, where rcm,i is
the centroid of cell i. To define the repolarization direc-
tion of cell i due to its contact-based interaction with cell
j, we integrate over all contact points within the contact
region φiφj > 0 and constrained to cell i. This direction
is captured by r̂CR,i = rCR,i/|rCR,i| with

rCR,i =

∫
cell i

dr′ (rcm,i − r′)φi(r
′) [φi(r

′)φj(r
′)] . (9)

Contact repolarization should only occur when the cells
are in contact, which occurs when their phase fields over-
lap. We thus evaluate Eq. 9 only when max(φiφj) > 0.1
and set rCR,i = 0 when cell i is not in contact with cell j.
Moreover, we restrict the integral to the region of space
where φj(r) > 0.2 to avoid potential minor issues at high
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wetting when values of φj outside of the contour φj = 1/2
may be relevant.

Because we are modeling cells that travel together
as a train, cells should no longer repolarize away from
contact after one cell has turned around. One possible
mechanism is having interactions between cell front
and back be different, as supported by [20]. We thus
implement a modified version of CIL, front-front contact
repolarization (FFCR), in which cells repolarize away
from contact only if their fronts are touching [27, 33, 35].
We implement this with a term aligning the polarity
of the cell toward the repolarization direction r̂CR:
− 1
τCR

sin−1 [(r̂CR,i × p̂i)z] Θ(−pxi pxj )Θ(rxCR,ip
x
j ), where

Θ(x) is the Heaviside step function, and p̂j is the polarity
of the cell colliding with cell i. Θ(−pxi pxj ) is true when
either the fronts of cells or the rear of cells are pointing
toward each other. To restrict polarity repolarization
to only front-front contact, we use Θ(rxCR,ip

x
j ), which

is true when one cell’s repolarization vector is pointing
away from the other cell’s front. Together, these two
conditions activate contact repolarization only when the
fronts of cells are in contact.

With just the contact repolarization term, we would
find that the polarity of a single cell would not tend
to align along the direction of the substrate, but could
point in any direction – this is very different from the
VA model. We address this by creating a tendency for
the cell to align its polarity along the substrate (±x̂) –
a “contact guidance” term [21, 27, 48]. In addition, we
include an angular noise term Ω(t) as in the VA model.

Together, the complete FFCR polarity model is:

d

dt
ψi =− 1

τCG
sin−1 [sgn(p̂i · x̂)(x̂× p̂i)z] (10)

− 1

τCR
sin−1 [(r̂CR,i × p̂i)z] Θ(−pxi pxj )Θ(rxCR,ip

x
j )

+
√

2Dψ Ω(t),

where sgn is the sign function. The contact guidance
term (the first term of Eq. 10) aligns the polarity toward
+x̂ for cells moving to the right and −x̂ for those moving
to the left.

D. Generating lamellipodium-like protrusions via
active forces

We introduce lamellipodia-like protrusions via an ac-
tive force modeling actin polymerization [21, 49] that is
localized to the leading edge of the cell near the substrate
[29, 50–52]. Mathematically,

fmotility,i = β(p̂i · x̂)|∇φi||∇χ|Θ(p̂i · n̂i)x̂. (11)

Cells extend lamellipodia on adhesive substrates, and
|∇φi||∇χ| ensures the active force acts only where the
cell is in contact with the substrate. To localize protru-
sions to the leading edge, we compute the normal vector

to the boundary, n̂i ≡ −∇φi/|∇φi|, and only allow pro-
trusions when p̂i · n̂i > 0. Thus, Eq. 11 yields a motility
force that is at the front of the cell, near the substrate,
and has a strength proportional to β – larger β values
cause larger protrusions (Fig. 1).

E. Parameter setting

When possible, the value of a given parameter of the
simulation is calibrated to the typical value observed ex-
perimentally for trains of MDCK cells confined in narrow
channels [28]. Otherwise, values are chosen such that the
simulated behavior of cell trains confined in geometries
considered in [28] is comparable to what is observed ex-
perimentally. The length and time scales of the simula-
tion are chosen such that typical cell sizes and cell speeds
are on the order of 40µm and tens of microns per hour,
respectively [28].

Line tension γ has units of energy/length and sets the
energy scale. For living cells, tension consists of mainly
two components [53, 54]: (1) membrane tension of the
lipid bilayer, and (2) cortical tension from linkage to the
actomyosin cortex. We phrase our model so that we do
not need to specify γ, but only its value relative to some
characteristic scale γ0, which has units of energy/length.
All phase field parameters whose units match that of γ0

are then written as scalar multiples of it: γ ∼ γ0, A ∼ γ0,
β ∼ γ0, ω ∼ γ0, and κ ∼ γ0. The remaining parameters
can be written in the following way: M∼ `/γ0τ , µ ∼ γ0`,
g ∼ γ0/`, and η ∼ γ0τ/`, where ` and τ are our units of
length and time (µm and min).

Parameter Value
γ 1.26γ0
A 0.48γ0
β 6γ0
ω 30γ0
κ 1γ0
λ 4.8 µm
R0 21 µm
ξ 3 µm
µ 6000γ0 µm
g 8.3γ0/µm
η 0.67γ0 min/µm
M 0.75 µm/γ0 min
τVA 24 min
τCG 24 min
τCR 12 min
Dψ 0.075 rad2/hr

TABLE I. Default values of all parameters used in the simu-
lation; any variation from these will be noted. In particular,
the values of cell tension γ, adhesion to the substrate A, and
protrusion strength β apply to the left cell, whose parameters
remain unchanged across all simulations. Numerical integra-
tion parameters are given in Appendix D.
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Table I outlines the default values used in the simu-
lation. We set the adhesion strength between cells, ω,
large enough so that cells with different self-propulsion
strengths can still travel cohesively. We set the strength
of cell-cell repulsion, κ, low enough to ensure cell inter-
faces can wet against one another to enable intercellular
adhesion, yet large enough to prevent cells from over-
lapping. Strength of repulsion between the cell and the
substrate, g, is also set following this logic. The con-
straint penalizing deviations from the preferred area, µ,
is set relatively strongly to ensure the area varies less than
0.1% from the target area. The alignment time for the
VA model is set close to 30 min, the time scale over which
the speed of HaCaT cells correlates with their traction
forces [55]. In the FFCR model, we choose τCG = τVA, so
that the single-cell behavior of the two models will be as
similar as possible. Lastly, we note that the steady-state
target direction in the FFCR model is determined by a
competition between the contact guidance and repolar-
ization terms: if contact guidance is too strong (τCG too
small), cells will have their polarity strongly constrained
to ±x̂ and be unable to repolarize on contact. Solving
the deterministic part of Eq. 10, we find that reversals
in cell polarity are possible when τCG ' 2τCR (See Ap-
pendix E).

III. RESULTS

We simulate collisions between two cells, initialized
with a separation distance of 222 µm, migrating toward
each other on an adhesive substrate (see numerical meth-
ods in Appendix D). In each of these simulations, the left
cell has constant parameters (Table I), while the right
cell has its properties varied, ranging over (i) tension
γ ∈ [0.9γ0, 1.8γ0], (ii) strength of adhesion to the sub-
strate A ∈ [0.32γ0, 0.64γ0], and (iii) protrusion strength
β ∈ [4γ0, 10γ0]. Each set contains nγ = 7, nA = 11,
and nβ = 6 equally spaced points. Together, these form
a three-dimensional grid of parameters for the right cell
with 462 cell attribute tuples (γ,A, β).

We want to see if 1) we reproduce the experimental
results showing that winning cells are flatter and faster,
and 2) we can understand and predict the outcomes of
cell-cell collisions by observing cell properties before col-
lision. We track the contact angle and speed of each cell
prior to and during collisions. We also track the “win-
ning probability” Pwin, the probability that the cell on
the right, whose properties are changing, remains persis-
tent after the collision [28]. To observe this stochastic
outcome, we need to run a large number of simulations:
we simulate N = 96 collisions for each parameter com-
bination (γ,A, β) in the feature-space. We exclude rare
simulations where a cell reverses prior to colliding or both
cells reverse.

For both models, we found that two characteristics of
a collision were crucial: the relative center-of-mass speed
δv ≡ vR−vL and the relative contact angle δθ ≡ θR−θL

(Fig. 1). Here, vR,L is the speed of the cell on the right
(left), averaged over the pre-collision time, and θR,L is the
contact angle averaged over the pre-collision time. The
pre-collision time begins 80 minutes after the start of the
simulation, by which point the two cells have equilibrated
on the substrate, and ends at the time of collision, where
collision is identified with the conditional max(φiφj) >
0.1. Fig. 1 showcases three examples of cell collisions:
the top shows a cell pair with δv > 0 but δθ < 0, the
middle shows identical cells, so δv = δθ = 0, and the
bottom has δθ > 0 but δv < 0.

A. Relative cell speed controls the winning
probability under the VA model

We plot the winning probability as tension γ, adhe-
sion A, and protrusion strength β are varied in the VA
model, showing the variation of two parameters at a time,
holding the third fixed (Figs. 3A, D, G). Increasing the
protrusion strength β of a cell increases its probability
to win, as does increasing its adhesion to the substrate
(Fig. 3A). However, in general, changes in cell tension
do not affect the winning probability significantly (Figs.
3D, G).

The tension γ, adhesion A, and protrusion strength β
can also strongly influence the relative speed and contact
angle of the two colliding cells. Increasing the right cell’s
protrusion strength pushes its front out further, making
the cell on the right flatter, leading to negative δθ, as
does increasing the adhesion to the substrate (Fig. 3C).
Meanwhile, increasing the right cell’s tension rounds it
up, increasing its contact angle relative to the left cell,
making δθ positive (Figs. 3F, I). Increasing the protru-
sion strength increases the speed of the cell, as does an
increase in the substrate adhesion (Fig. 3B). The latter
effect can be explained by noting that a higher degree of
wetting increases the magnitude of |∇φ||∇χ|, and thus
results in a higher motility force density. Interestingly,
we see that the tension of the cell does not generally affect
its speed significantly (Figs. 3E, H).

Are flatter cells or faster cells the winners? When ten-
sion is held fixed, the highest winning probabilities corre-
spond to the most negative differences in contact angles
(compare top right section of Figs. 3A and C). That is,
if we only vary adhesion to the substrate and protrusion
strength, we find that flatter cells win more frequently.
However, this trend is not true universally: compare Pwin

and δθ when we vary the cell’s tension (Figs. 3D vs F, 3G
vs I). Instead, the pattern that holds true globally is the
striking similarity between the distributions of the win-
ning probability and relative cell speed (first and second
columns of Fig. 3).

We replot the results of Fig. 3 in Fig. 4, showing how
the winning probability depends on δv and δθ as the pa-
rameters γ, A, and β are varied. We find that, as we
expected from Fig. 3, winning probability is higher for
flatter cells, i.e. Pwin is larger when δθ is negative (Fig.
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FIG. 3. VA model: Winning probability and summary features plotted as a function of two cell attributes with fixed values of
(A-C) tension γ = 1.2γ0, (D-F) strength of adhesion to the substrate A = 0.48γ0, and (G-I) strength of protrusion β = 6.4γ0.
Contour maps are constructed by running 96 simulations with identical initialization for each parameter set, and the axes are
the ratio of the varying cell’s attributes to the left cell’s parameters, which are the default values listed in Table I. Cell polarity
is modeled by the velocity-aligning mechanism with τVA = 24 min and Dψ = 0.075 rad2/hr.

4A). We also see that Pwin correlates well with δv (Fig.
4B). Consistent with [28], then, we see that both flatter
cells and faster cells are more likely to win. This occurs,
however, in part because the speed and contact angle of a
cell are highly correlated (Fig. 4C) – cells with larger pro-
trusive strengths in particular are both faster and flatter
on average. Comparing Figs. 4A and B, relative speed
seems to be a better predictor. Does relative contact
angle also predict collision outcomes, or does it simply
correlate with relative speed? To address this question,
we color the points in Fig. 4 according to which quad-
rant of the δv-δθ plot in Fig. 4C they are in. Parameters
where δv and δθ have the same sign are shown in blue
and purple, while those where δv and δθ have different
signs are shown in red and green. For the red and green
points, the measured contact angle and speed differences
predict qualitatively different outcomes. When we look
at this subset of parameter values, we no longer observe
that flatter cells are more likely to win, but that faster
cells are still more likely to win (Figs. 4D, E). In fact, if
we perform logistic regressions on Pwin(δv) and Pwin(δθ)
limited to the subspace where δv and δθ anti-correlate,
we would predict that while faster cells are still more

likely to win, cells with smaller contact angles are more
likely to lose. (We note that here, and in all logistic
regressions shown, the regressions are done with scikit-
learn’s L2 regularization [56]). This is opposite to what
we see in the full parameter set. Based on these results,
we expect that – within the VA model of cell polarity –
relative cell speed is the essential controlling factor while
contact angle merely correlates with speed: when con-
tact angle and speed disagree, we should pay attention
to speed. It might seem unavoidable, from our assump-
tions of the VA model, that cell speed is the controlling
variable. However, as we will see in the next section, this
is not guaranteed.

B. Relative speed controls the winning probability
only when alignment timescales are long

The alignment timescale τVA plays a large role in con-
trolling collective migration [31, 32, 57], with smaller val-
ues of τVA promoting longer, more coherent “trains” of
cells in a self-propelled particle model [32]. However, we
see a more complex dependence of outcomes on align-
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FIG. 4. VA model: (A) Pwin(δθ), (B) Pwin(δv), and (C) (δv, δθ) are plotted and colored based on whether δv and δθ correlate
(True: blue, purple; False: green, red). Each scatter point corresponds to different tuples of cell attributes from the feature-
space (γ,A, β), and it is the average value obtained from 96 simulations. L2-regularized logistic regressions of the form
Pwin = [1 + exp(a0 + a1X)]−1 are performed on the subspace in which δv and δθ do not correlate, where (D) X = δθ and (E)
X = δv. The training data for these regressions are individual simulations, in which a binary question of winning or losing is
asked.

ment time. In Fig. 5, we repeat the collision simulations
for the whole range of parameters β, γ, and A studied in
Figs. 3-4, but vary τVA over three values: 80 min, 24 min
(our default value), and 4 min.

Decreasing τVA suppresses noise in the polarity angle
ψ, and makes the cell’s polarity quickly repolarize to its
velocity. Our initial expectation about the results of Fig.
5 was that when two cells collided, each cell’s velocity
would quickly reach the center-of-mass velocity of the
cell pair, which would point in the direction of the faster
cell. We would then expect that both cells would tend
to polarize in the direction of the faster cell, i.e. the
faster cell would win nearly deterministically, predicting
that Pwin(δv) would be essentially a step function. We
do see, consistent with this view, that as we decrease τVA

from 80 minutes to 24 minutes, the transition becomes
sharper and more like a step function (Fig. 5). To some
degree this is inevitable – if we took τVA →∞, each cell’s
polarity angle would be an unbiased random walk, and be
independent of cell-cell interactions. In this limit, we’d
expect Pwin = 1/2 independent of δv. However, when
τVA = 4 min, instead of a step function in δv we see
that Pwin no longer collapses neatly as a function of δv:
there is a huge amount of scatter. This indicates that at
small τVA, we can no longer reliably summarize all the

varying properties of the cells, A, γ, and β, solely by the
difference in speeds between the two cells.

The scatter in Pwin is not just due to the finite num-
ber of collisions simulated for each point. Suppose δv
were the sole predictor of the winning probability, such
that Pwin = f(δv), for some function f . How large a
change in Pwin would we expect to see due to the fi-
nite sample size of ncol = 96 collisions? We plot in Fig.
5 the 95% binomial confidence intervals for this binary
outcome if Pwin(δv) were given by the logistic regression
fit. (We compute these intervals using the exact Clopper-
Pearson method [58].) For the shortest alignment time,
τVA = 4 min, the measured Pwin are far more scattered
than would be expected if δv were a good summary vari-
able. At the longest alignment time we study, τVA = 80
minutes, the quality of the collapse is much stronger, and
we are more confident in arguing that δv is sufficient to
completely predict the outcome of the cell-cell collision.

Why is δv no longer a reasonable predictor of the col-
lision outcomes when τVA is small? δv is a measure of
the difference between cell speeds, averaged over the pre-
collision time: it reflects the relative speed in steady
state. However, during collision, each cell’s center-of-
mass velocity can be altered by local deformations in cell
shape. This leads to a transient relative speed during
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FIG. 5. Average winning probability is obtained from 96 simulations with τVA = 80 min (A), 24 min (B), and 4 min (C). While
we observe a sharpening in Pwin as the alignment time decreases, we uncover that at small τVA = 4 min, relative cell speed
is no longer predictive of the winning probability, with Pwin scattered far away from the logistic regression fit. Each scatter
point corresponds to one tuple in the feature-space (γ,A, β), colored as in Fig. 4.

collision, which could be different from δv depending on
how much each cell deforms. When the alignment time is
short, cell polarity integrates velocity information quickly
and is affected by instantaneous velocities more strongly
– i.e. cell velocity during collision matters more. In this
regime, the steady-state relative speed δv, which does
not properly reflect the transient relative speed present
during collision for some simulation parameters, can be-
come a poor predictor of collision outcome. Indeed, when
the alignment time is large, cell polarity is driven by cell
velocity averaged over that large timescale, and as such,
δv is able to capture the dynamics of cell collisions more
robustly.

Timescales as short as τVA = 4 min are, however, much
shorter than current estimates. Recent work reported
correlations between the traction forces exerted by Ha-
CaT cells and their speed with a time lag of 30 min [55],
and interpreted that in terms of a alignment timescale of
30 min.

C. Relative contact angle controls the winning
probability under the FFCR model

We now switch to studying the contact-based FFCR
model, and repeat our simulations and analyses from Sec-
tion II B using a fundamentally different assumption –
that cells repolarize away from front-front contact (Eq.
10).

How do relative cell speed and contact angle predict
the winning probability when we vary the parameters γ,
β and A in the FFCR model? Given its definition in Eq.
9, the repolarization vector rCR is affected by the contact
angle of the cell. Cells that extend further on the sub-
strate and form smaller contact angles are also flatter,

placing their center-of-mass closer to the substrate and
resulting in a repolarization vector closer to the horizon-
tal (Fig. 6). Since contact angle controls the repolar-
ization vector, which is the target direction cell polarity
strives to reach, could it also dictate the persistence of
the cell and its chances to win?

FIG. 6. The contact region (dark orange) and contact repolar-
ization vectors r̂CR (orange arrows) are drawn for two phase
field cells with different shapes. This schematic highlights
how the shape of the cell controls the repolarization vector,
and how far its polarity (blue arrow) must rotate to reach the
desired target direction. While the polarity of flatter cells has
a larger angular difference to close, that of rounder cells has
a smaller one.

To visualize the outcome of collisions within the
feature-space spanned by γ, A, and β, we plot the av-
erage winning probability of 96 simulations as a function
of two features with the third held constant (Figs. 7A, D,
G). Similar to the VA model, we see that increasing the
protrusion strength of the cell increases its probability
to win, as does increasing its adhesion to the substrate
(Fig. 7A). In direct contrast to the VA model, however,
we report that increasing the cell’s tension decreases its
chances to win (Figs. 7D, G).

We also visualize relative speed and contact angle of
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FIG. 7. FFCR model: Winning probability and summary features plotted as a function of two cell attributes with fixed values
of (A-C) tension γ = 1.2γ0, (D-F) strength of adhesion to the substrate A = 0.48γ0, and (G-I) strength of protrusion β = 6.4γ0.
Contour maps are constructed by running 96 simulations with identical initialization for each parameter set, and the axes are
the ratio of the varying cell’s attributes to the left cell’s parameters, which are the default values listed in Table I. Cell polarity
is modeled by the front-front contact repolarization mechanism with τCG = 24 min, τCR = 12 min, and Dψ = 0.075 rad2/hr.

the two colliding cells as a function of our varied param-
eters. How the shape and speed of the cell depend on
the parameters is highly similar to the results of Fig. 3.
Similar to the VA model, we see that increasing the pro-
trusion strength results in flatter and faster cells, as does
increasing the adhesion to the substrate (Figs. 7B, C).
Moreover, increasing the cell’s tension rounds it up (Figs.
7F, I), while it does not significantly affect its speed (Figs.
7E, H). This correspondence between Fig. 7 and 3 is un-
surprising, since δv and δθ are pre-collision properties.
While in principle changing properties of the polarity
mechanism can change single-cell properties [32, 33], we
chose our two models (Eq. 8 and Eq. 10) to be as close
as possible in single cell behavior.

Similar to the VA model, we note that when tension is
held fixed, the highest winning probabilities correspond
to the most negative differences in contact angles (Figs.
7A and C). In direct contrast to the VA model, however,
flatter cells are observed to have higher winning proba-
bilities across the entire feature-space (Figs. 7D and F,
G and I). Moreover, the distribution of Pwin is not simi-
lar to that of relative speed, but rather to the inverse of
relative contact angle (first and third columns of Fig. 7).

We replot the data from Fig. 7 as a function of δθ
and δv in Fig. 8. As in the experiments of [28] and in
our earlier VA model, winning probability is generally
larger for the faster cell (δv > 0, Fig. 8B) as well as
for the flatter cell (δθ < 0, Fig. 8A). However, in this
case it is clear that relative contact angle is the better
predictor – the winning probability plotted as a function
of δθ collapses to a single clear curve, while Pwin only
correlates loosely with δv.

As in Section III A above, we explore whether contact
angle or speed differences are more relevant in the sub-
space of parameters where δθ and δv have opposite signs
(red and green points). Within this set of parameters,
the winning probability’s dependence on δv is opposite
to the full space – faster cells are less likely to win when
speed and contact angle disagree (Fig. 8E). However,
even when speed and contact angle disagree, flatter cells
are more likely to win (Fig. 8D). These trends are sup-
ported by L2-regularized logistic regressions (black line).

At a surface level, the contact-based FFCR model gives
similar predictions to the VA model: faster and flatter
cells are more likely to win. However, the underlying
driving factor is completely different – cell collision out-
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FIG. 8. FFCR model: (A) Pwin(δθ), (B) Pwin(δv), and (C) (δv, δθ) are plotted and colored based on whether δv and δθ
correlate (True: blue, purple; False: green, red). Each scatter point corresponds to different tuples of cell attributes from the
feature-space (γ,A, β), and it is the average value obtained from 96 simulations. L2-regularized logistic regressions of the form
Pwin = [1 + exp(a0 + a1X)]−1 are performed on the subspace in which δv and δθ do not correlate, where (D) X = δθ and (E)
X = δv. The training data for these regressions are individual simulations, in which a binary question of winning or losing is
asked.

comes are completely predicted by the relative contact
angle, and the role of speed is only relevant to the extent
that it correlates with contact angle.

Why does the FFCR model, Eq. 10, give such a
strong dependence on contact angle? At the collision,
both cells are being repolarized away from contact –
and the cell which turns around first “loses” the col-
lision, as the other cell is no longer in contact with a
cell front. We then have to understand why, on aver-
age, flatter cells repolarize slower on contact. The FFCR
model describes cells repolarizing toward the direction
r̂CR, which is strongly influenced by the contact an-
gle of the cells (Fig. 6). Within Eq. 10, the rate of
change of cell polarity due to contact repolarization is
controlled by a term sin−1 [(r̂CR × p̂)z] = sin−1 (sin(Φ)),
where Φ = ψ − ψCR with ψ ≡ ∠(p̂) and ψCR ≡ ∠(r̂CR)
(this term is essentially used to compute the distance be-
tween the two angles without giving unphysical results
when one angle wraps past 2π [31, 32]). sin−1 (sin(Φ))
is a sawtooth-shaped graph, which decreases monotoni-
cally for Φ ∈ [−π,−π/2) and increases monotonically for
Φ ∈ [−π/2, 0]. This means that when the angle from r̂CR

to p̂ is larger than π/2 – i.e. Φ < −π/2 – the rate of re-
polarization decreases as Φ becomes more negative. As
an extreme case, if Φ = −π and p̂ = −r̂CR, there would

be no repolarization – like a pendulum exactly opposed
to gravity, this is an unstable equilibrium. For our collid-
ing cells, Φ ∈ (−π,−π/2). In a typical collision, we see
that the flatter cell is repolarized toward a direction r̂CR

nearly π away from its polarity, while the rounder cell
has r̂CR closer to its polarity (Fig. 6). This means that
Φflatter < Φrounder < −π/2. Therefore, the rate of repo-
larization for flatter cells is smaller and we would expect
them to repolarize more slowly and be more likely to win.
We can make this argument more explicit by solving a
simplified FFCR model (Eq. 10), neglecting stochastic
noise and assuming a fixed repolarization direction r̂CR.
We compute the cell’s repolarization time as a function
of the repolarization orientation (see Appendix E). For
the most part, this deterministic toy model exhibits a
repolarization time that increases with increasing ψCR,
supporting the notion that flatter cells turn more slowly.
However, we do find in some cases, that the deterministic
model predicts flatter cells can lose, because of a compli-
cated dependence on the angle ψCR (see Appendix E for
a more detailed discussion). We will see in Fig. 9 that, as
we make the model more deterministic by decreasing the
angular diffusion coefficient Dψ, contact angle differences
do become less predictive of collision outcomes.

Our argument above suggests that the outcomes of cell-
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cell collisions can be sensitive not only to cell geometry,
but also to the detailed assumptions of the cell polarity
model. This makes cell-pair collisions potentially quite a
sensitive test of these assumptions.

D. Angular noise controls how strongly relative
speed and contact angle predict Pwin

In both the VA and FFCR models, we include an an-
gular Brownian noise: in the absence of polarity mecha-
nisms, the polarity would diffuse with orientational diffu-
sion coefficient Dψ. These random reorientations model
stochasticity arising from finite numbers of molecules in
the polarity pathway and from other sources [33, 59–61].
As we have found cell-cell collisions to have stochastic
outcomes [19, 28], we would expect this noise, the only
random driver in the problem, to play a large role. How
does altering Dψ change outcomes?

We simulated cell collisions at Dψ = 0.15 rad2/hr,

0.075 rad2/hr, and 0.0075 rad2/hr, with all other param-
eters kept fixed. Similar to lowering the alignment time,
lowering the angular diffusion coefficient makes Pwin a
sharper, more step-like function of its relevant predictor,
while increasing the scatter of Pwin away from the logis-
tic regression curves (Fig. 9). Similar to our results at
small alignment time (Fig. 5), at small Dψ, these points
can be far outside the scatter expected from finite sam-
pling error, as computed by binomial confidence inter-
vals (dashed lines in Fig. 9). As Dψ decreases – and our
model becomes more deterministic – we see that we can
no longer summarize the winning probability as a func-
tion of a single variable. Again, this indicates that other
factors like cell deformability, shape beyond the contact
angle, etc., become relevant in this limit.

These results are very similar to those seen in Fig.
5, and likely have a similar origin. We can construct
a simple toy model that explains these features qualita-
tively. A single cell will, because of the angular noise,
have a range of possible polarity angles ψ. If we linearize
the equation of motion of a noncolliding cell’s polarity
(Eqs. 8 or 10) around its equilibrium direction (ψ = 0
for a cell traveling to the right), we find an Ornstein-
Uhlenbeck process, d

dtψ = − 1
τeff
ψ +

√
2DψΩ(t), with

τeff being τVA or τCG for the VA or FFCR models, re-
spectively. This means that the steady-state probability
distribution P (ψ) for a single cell traveling to the right
will be a Gaussian with mean zero and variance propor-
tional to Dψτeff [62]. If this variance is large, then even
if the cell on the right has a larger speed than the one
on the left on average, at the time of the collision, its
speed might be quite different due to the fluctuations in
cell polarity. What, then, is the distribution of cell veloci-
ties entering the collision? Suppose we have two colliding
cells with pre-collision average speeds v̄R and v̄L. We can
model the speeds at collision by adding some fluctuations
around the mean: vR = v̄R + ζR, vL = v̄L + ζL. Then,
the true difference in speeds at the time of contact will

be δvtrue ≡ vR−vL = v̄R− v̄L+ζR−ζL = δv+(ζR−ζL),
where δv is the relative speed averaged over the pre-
collision time. Instead of solving the full VA dynamics,
we make a simple assumption that the right cell wins
when δvtrue > 0 (we can make a similar argument for the
FFCR model with δθtrue < 0). With this toy model, the
winning probability is then the probability of observing
positive true relative speeds: Pwin = P (δvtrue > 0). If
ζR and ζL are Gaussian with mean zero and standard
deviation σ, then P (δvtrue) = N (δv, 2σ2). Then, Pwin =
P (δvtrue > 0) =

∫∞
0
N (δv, 2σ2)dδvtrue = 1

2erfc
(
− δv

2σ

)
,

which transitions from 0 to 1 as δv moves over a region
of order σ. If the noise σ is small, we would expect even
a small change in δv = v̄R − v̄L to lead to a large change
in Pwin. However, if the noise σ is large compared to δv,
then Pwin will not depend much on δv. So far, this ar-
gument predicts that at low noise levels (small values of
Dψτeff), we would expect Pwin to become more switch-like
and sharper as a function of its relevant variable δv or δθ.
We do see this in Figs. 5 and 9, but we also see that the
scatter away from the switch-like curve increases. This
can be explained by factors that weaken the correlation
between outcome and the predictor – e.g. the deformabil-
ity at short times or, in case of the FFCR model, the con-
tact angle not correlating with collision outcome in cer-
tain cases (see Appendix E). Whatever these factors may
be, we can characterize their effect by adding some sys-
tematic shift to the relevant variable. For instance, in the
VA model, the relevant parameter δvtrue → δvtrue+ε, and
the winning probability becomes Pwin = 1

2erfc
(
− δv+ε

2σ

)
.

We see that these small, systematic shifts ε – that differ
from parameter set to parameter set – begin to matter
more at small values of noise σ2 ∼ Dψτeff. Additionally,
we would predict that as Dψτeff increases, Pwin becomes
more weakly dependent on these shifts. Further increas-
ing Dψτeff to very large levels, we expect Pwin to weakly
depend on the predictors and reach a constant value. In
this limit, we expect cell polarity to evolve at random and
anticipate the outcome of collisions to tend toward 50-50.
For instance, the smoothening of the logistic curves we
observe in Fig. 5 as the alignment time increases can be
explained by the corresponding increase in the variance
of P (ψ).

E. Predictability of individual cell-cell collisions

Cell-cell collisions are often viewed as entirely stochas-
tic, and models assuming no ability to predict collisions
have been successful in understanding some elements of
collective migration [19]. However, in our models, we
have seen in Figs. 4 and 8 that for a broad range of pa-
rameters β, A, and γ, we can reliably predict the prob-
ability of outcome by knowing only the relative speed
(for the VA model) or only the relative contact angle (for
the FFCR model). Suppose we observe a single pair of
cells prior to their collision and measure the differences in
speeds and contact angles averaged over the pre-collision
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FIG. 9. The winning probability plotted against the two summary parameters for different values of Dψ. L2-regularized logistic
regression curves and binomial confidence intervals are computed for each predictor. We note that lowering the angular diffusion
coefficient sharpens the winning probability curve and increases the scatter of points away from the regression curves. Each
scatter point corresponds to one tuple in the feature-space (γ,A, β), colored as above.

time, δv and δθ, respectively. Given this knowledge and
our fits above, how reliably can we predict the outcome
of this cell-cell collision?

The simplest way to quantify a binary prediction
is with a percentage associated with successful label-
ing of the outcome. We used logistic regression to
find a prediction for the winning probability, Pwin =
[1 + exp(a0 + a1X)]

−1
, where X = δv or δθ (see curves

in Figs. 4, 8). If, for an individual collision in the VA
model, we measure δv and predict a win if Pwin > 1/2,
what percentage of the time are we correct? We find that
(79.5± 0.8)% of the time, we can predict the outcome of
the VA model with the logistic regression (see Appendix
F for details). How does this compare with the simpler
– and experimentally accessible – approach of just pre-
dicting a win if δv > 0? With this criterion, we find that
(79.6 ± 0.4)% of the time, we can predict the outcome
correctly. Similarly, for the FFCR model, if we use the
logistic regression on δθ, we can predict the outcome of
an individual simulation (72.1± 0.7)% of the time, while
simply choosing the cell with the smaller contact angle –
i.e. δθ < 0 – is successful (71.7± 0.7)% of the time. We
see in both the FFCR and VA models, outcomes are far
from a coin flip.

While simply choosing the cell with the faster speed or
smaller contact angle to win predicts outcomes well, it
doesn’t provide a reliable probability of an outcome, es-
sentially assuming Pwin = Θ(δv) for VA and Θ(−δθ) for
FFCR. A widely used metric for assessing the “goodness
of the fit” of a probabilistic binary classifier is the Brier
score, the mean squared error between the observed and
predicted probabilities, B = 1

N

∑
n(pn,pred−outcomen)2,

where outcomen = 1 for a win and 0 for a loss, and
the sum is over all the N collisions in the test set (see
Appendix F). This penalizes the classifier more if it is
overconfident: e.g. for a loss with outcome = 0, B is
larger when the predicted probability is p = 1 than if
p = 1/2. Lower Brier scores correspond to better classi-
fiers. For the VA model, the logistic regression has a Brier
score of 0.140± 0.003, while the step-function, assuming
Pwin = Θ(δv), scores 0.204±0.004. For the FFCR model,
the logistic regression has a Brier score of 0.182± 0.003,
while Pwin = Θ(−δθ) scores 0.283 ± 0.007. This signi-
fies that a logistic regression is better at capturing the
outcome of simulated collisions with either model than
naively choosing the faster or flatter cell.
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IV. DISCUSSION

Cell-cell collisions are broadly used to probe how cells
interact and test biochemical regulators of cell interac-
tions [19, 20, 27, 28, 35, 63–66]. To what extent are
cell-cell collisions predictable vs purely stochastic? Do
cell-cell collisions unavoidably reflect biochemical inter-
actions [18], or do physical properties such as cell shape
provide any universal guideline, as is observed in unjam-
ming [67, 68]? How can we use cell-cell collisions to dis-
criminate between competing models of cell interactions?
Here, we have focused on answering these ques-
tions with a minimal model of cell-pair collisions
motivated by experiments of Jain et al. [28], who
found that in trains of colliding cells, the winning
cell was more likely to have a smaller contact an-
gle and a higher speed. In our framework, we
controlled cell speed and contact angle through
tension, adhesion to the substrate, and strength
of lamellipodium protrusion. We further em-
ployed two distinct mechanisms for cell polarity,
the velocity-aligning (VA) and front-front contact
repolarization (FFCR) models, and showed that
both capture the experimentally observed results
of [28]: faster and flatter cells are more likely
to win. Interestingly, we showed that for suffi-
ciently stochastic systems (those with large Dψ

or large τVA), the effects of tension, adhesion, and
protrusion strength on the cell’s chances to win
can be reliably summarized by a single variable.
This predictor of winning probability was relative
speed δv for the VA model and relative contact
angle δθ for the FFCR model. When the sys-
tem nears a deterministic regime, however, sub-
tle, short-timescale fluctuations begin to affect
the long-timescale behavior of the cell, as dis-
cussed in Section III D and Appendix E. This
behavior might be expected: in a deterministic
simulation between two near-identical cells, the
outcome of a collision would be determined by,
e.g. rounding error. This limit, though, is un-
physical – cells will inevitably have large amounts
of stochasticity in their motility.

Our results show that, in order to discriminate be-
tween potential polarity mechanisms, it may be essential
to study varying multiple cell attributes simultaneously.
Our simulations can qualitatively reproduce the results
of [28] on cell speed and contact angle with two opposed
assumptions, in part because relative cell speed and rela-
tive contact angle are correlated in our model. We would
be unable to discern whether cell shape is playing an im-
portant role in the collision solely based on the result
that collision outcome and contact angle are related. To
understand this in our modeling, we had to use the multi-
variable approach of Figs. 4 and 8. Altering parameters
like cell-substrate adhesion and protrusion strength si-
multaneously changed cell speed and contact angle, while
altering cell tension allowed us to understand the influ-

ence of contact angle independent of speed. Similar ap-
proaches could be implemented in cell-cell collision exper-
iments, either via multiple modulations of tension, adhe-
sion, etc., or by exploiting natural cell-to-cell variability.
These manipulations might include altering tension via
the RhoA-ROCK pathway, adhesion via regulating the
concentration of surface proteins or integrin affinity, or
lamellipodium protrusion by modulating the activity of
membrane-bound Rac [21]. Surface treatment, for in-
stance, has already been seen to regulate contact angle
[29, 30]. However, these correlations may be more com-
plex in experimental systems and vary from cell type to
cell type. Our minimal model leads to faster cells gener-
ally being flatter and more in contact with the substrate;
some experiments show shorter cells tending to be faster
[69]. Cell-cell collision outcomes may also differ depend-
ing on cell type and environment: cell speed and outcome
were not noticeably correlated in fibroblast cell-cell col-
lisions on nanofibers [27].

The two polarity mechanisms employed here are rela-
tively simple mathematical caricatures of a complex bio-
logical process, but they are commonly employed in mod-
eling collective cell migration [27, 31, 32, 34–36, 70]. Our
work shows that these mechanisms can reproduce some
essential features of cell-cell collisions. However, in par-
ticular for the FFCR model, our results depend not only
on the general qualitative structure of the interaction but
the specific mathematical details of the mechanism. In
particular, we modeled cell polarity as a rigid rotor, such
that when given a repolarization cue, it has to traverse
a continuum of angles to reach the target direction. The
commonly used arcsin approach for handling this sort of
cue [31, 32, 71] also controls the outcome, as it ensures
stronger responses when the target polarity orientation
is closer to the current direction and weaker responses
otherwise. These assumptions should ideally be further
tested in different contexts. Experimental observations
inform us that cell polarity can behave both as an in-
plane switch and as a rigid rotor, depending on the cell
type and context. Dictyostelium cells are reported to
experience a switch-like, in-plane reorientation of their
polarity when the source of chemoattractant cAMP is
suddenly moved from facing the front of the cells to the
back of the cells [72, 73]. Meanwhile, HL-60 cells and
neutrophils have been observed maintaining their polar-
ity and instead executing U-turns to follow the reversal
cues [74, 75]. The type of reversal and repolarization
can also depend on the amplitude and timescale of the
changing signal. The limits of these minimal models can
also be better understood by detailed reaction-diffusion
modeling of, e.g. Rho GTPases like Rac1 and RhoA on
the cell surface [33, 35, 42, 45, 46, 76, 77].

Our result that cell-cell collisions may be predictable,
and that varying multiple parameters may be summa-
rized in a single controlling factor, suggests a tantalizing
possibility that there may be some degree of universal-
ity in cell-cell collision response. To be confident in this
idea, experimental tests to see if outcome collisions truly
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collapse as a function of δv or δθ are necessary. The key
caveat of our results is that – if this universality exists –
it is only true to the extent that the underlying repolar-
ization mechanism is conserved.
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Appendix A: The phase field model

(a)

θ

(b)

(c)

FIG. 10. (a) Elements of the model: The cell is represented by a smooth, 2-dimensional phase field φ(r, t), which is 1
inside the cell and 0 outside the cell. The body of the cell is shown in a grey colormap, and its boundary is drawn in black at

φ = 1/2. The black dot marks the cell’s center-of-mass rCM ≡
∫
d2rφ(r)r∫
d2rφ

, and the arrows depict cell velocity (red) and polarity

(blue). The adhesive substrate is defined via the phase field χ(y) = 1
2

[
1− tanh

(
y−y0
ξ

)]
, where y0 defines the location of its

interface (χ(y0) = 1/2 drawn in black). Note that ŷ points in the direction above the substrate. The plot below the cell shows
the profile of the cell’s field along the x-dimension by considering a y-slice passing through its center-of-mass. (b) Contact
angle computation: We compute the contact angle of the cell θ formed at the cell-substrate interface by first discretizing
the boundary of the cell, located at φ = 1/2. These contour points (blue circles) are readily obtained from the scikit-image
package [78]. A subset of these points, which are appropriately located at the front of the cell (orange circles), are selected
and a line is fitted through them. Then, the slope m is calculated, and θ = arctanm. To select the required subset of contour
points, we visually inspected the measured contact angle across many simulation parameters and chose the range of points
that yielded the most accurate measurements. We then used the same, fixed range across all simulations. (c) Assumptions
of the model: We model the cell based on the physics of liquid droplets. The cell is incompressible, which in 2D amounts
to maintaining a preferred area, and experiences tension across its membrane. It can also wet over an adhesive substrate to
lower its energy. Cells interact with each other through cell-cell adhesion, which favors the wetting of their interfaces across
one another, and volume exclusion, which penalizes overlap.

Appendix B: The Cahn-Hilliard energy: what do λ
and γ mean?

The Cahn-Hilliard energy

FCH =

∫
dr
γ

λ

[
4φ2(1− φ)2 + λ2 (∇φ)

2
]
, (B1)

serves to stabilize the outside and inside of the cell and
penalizes interface deformations. From dimensional anal-
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ysis, we conclude that λ has units of length and γ has
units of energy per length. But what length and line
tension are they exactly describing? We briefly derive
the energy here; see also [79].

Consider the one dimensional profile of the cell’s phase
field taken across a segment perpendicular to its surface
(Fig. 10a). Since φ(x) = 0 outside the cell and transi-
tions smoothly to φ(x) = 1 inside the cell, we can pos-
tulate the field to be proportional to a sigmoid function
around the cell interface: φ(x) = 1/2 + 1/2 tanh((x −
x0)/ξ), with ξ setting the interfacial thickness. To mini-
mize the Cahn-Hilliard energy, this functional form must
satisfy the condition δFCH/δφ = 0. With fCH denoting
the integrand in Eq. (B1):

δFCH

δφ
=
∂fCH

∂φ
−∇ · ∂fCH

∂∇φ
(B2)

=
γ

λ

[
8φ(1− φ)2 − 8φ2(1− φ)

]
− 2λγ∇2φ.

Plugging in the sigmoid function, we obtain ξ = λ. Thus,
we conclude that λ sets the thickness of the cell’s inter-
face.

Moreover, we can compute the total energy of the cell
by slicing its boundary into infinitesimally small seg-
ments of width dy, each of which perpendicular to the
cell interface, such that φ(r) = φ(x) for that segment.
Then,

FCH =

∫ ∞
−∞

dx
γ

λ

[
4φ(x)2(1− φ(x))2 + λ2

(
d

dx
φ(x)

)2
]

×
∫ L

0

dy =
2

3
γL, (B3)

where the integral over x computes the energy associated
with each segment, and the integral over y runs over the
total length of the interface L. Note that although φ(x)
is only valid near the interface of the cell, we can con-
sider the integration bounds {−∞, ∞} for each segment
without any issues since the integrand is uniquely zero
away from the interface. Notably, we conclude that 2/3γ
is the line tension of the cell.

Appendix C: Explicitly writing the phase field
equations of motion

The phase field equations of motion for cell i are
∂φi(r, t)

∂t
+ vi(r, t) · ∇φi = −M δF

δφi
,

ηvi =
δF
δφi
∇φi + fmotility,i,

(C1)

where the total free energy of the system of N cells is

F =
∑N
i=0 FCH,i + Farea,i + Fχ,i + Fadh,i + Frep,i. The

functional form of each term is given in the main text,

and here we will focus on computing δF/δφi term by
term. Focusing on the Cahn-Hilliard energy term:

FCH =

N∑
i=0

FCH,i (C2)

∴
δFCH

δφi
=
δFCH,i

δφi

= 8
γ

λ
φi(2φi − 1)(φi − 1)− 2λγ∇2φi.

Focusing on the area constraint term:

Farea =

N∑
i=0

Farea,i (C3)

∴
δFarea

δφi
=
δFarea,i

δφi

= 2µG[φi]
δG

δφi

= 2µ

[
1− 1

Ã

∫
drφ2

i

] [
− 2

Ã
φi

]
.

Here, Farea,i = µG[φi]
2, with G[φi] = 1 − 1/Ã

∫
drφ2

i .
Focusing on the cell-substrate energy term:

Fχ =

N∑
i=0

Fχ,i (C4)

∴
δFχ
δφi

=
δFχ,i
δφi

= 4φi(φi − 1)(φi − 2)W [χ] ,

where W [χ] = −36A
ξ χ2(1− χ)2 + g

2χ(x, y + λ). Focusing

on the cell-cell adhesion term:

Fadh =

N∑
i=0

N∑
j 6=i

−ω
λ

∫
drφ2

i (1− φi)2φ2
j (1− φj)2. (C5)

Unlike the previous energy terms, where minimizing the
total energy was equivalent to minimizing the energy of
the ith cell, interaction energies involve cell-pairs. If we
expand the terms in Eq. (C5), we would find that the
integrand appears twice: once when the outer sum is over
i and once with the outer sum is over j 6= i and the inner
sum picks i. This is due to the integrand being symmetric
under i→ j. Thus,

δFadh

δφi
= 2

δFadh,i

δφi
(C6)

= −4
ω

λ
[φi(2φi − 1)(φi − 1)]

N∑
j 6=i

φ2
j (1− φj)2.

Focusing on the cell-cell repulsion term:

Frep =

N∑
i=0

N∑
j 6=i

κ

λ

∫
drφ2

iφ
2
j . (C7)
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Similar to the cell-cell adhesion energy, the pairwise na-
ture of this term and the symmetry of its integrand under
i→ j results in an extra factor of 2. Thus,

δFrep

δφi
= 2

δFrep,i

δφi
= 4

κ

λ
φi

N∑
j 6=i

φ2
j . (C8)

Finally,

δF
δφi

=
δFCH

δφi
+
δFarea

δφi
+
δFχ
δφi

+
δFadh

δφi
+
δFrep

δφi
, (C9)

and we have a complete description of the phase field
equations of motion (Eq. (C1)) that we can solve numer-
ically.

Appendix D: Numerical implementation of the
model

We numerically solve the phase field equations of mo-
tion (Eq. (C1)) within a simulation box of size 300 µm×
300 µm using the explicit finite difference method. With
a sufficiently small timestep ∆t, the temporal evolution
of the phase field is discretized and approximated as

∂φ

∂t
≈ φn+1 − φn

∆t
= −vn · (∇φ)

n −M
(
δF
δφ

)n
, (D1)

where (·)n denotes the value of the quantity at time t =
n∆t. The gradient operator ∇ ≡ (∂x, ∂y) is discretized
in space at a fixed time as follows, given sufficiently small
lattice spacings ∆x = ∆y:

(∇φ)
n

(x, y) =

(
φn(x+ ∆x, y)− φn(x−∆x, y)

2∆x
, (D2)

φn(x, y + ∆y)− φn(x, y −∆y)

2∆y

)
,

and the Laplacian ∇2 ≡ ∂xx+∂yy is discretized using the
4-point nearest neighbor stencil:(
∇2φ

)n
(x, y) =

1

∆x2
[φn(x+ ∆x, y) + φn(x−∆x, y)

+φn(x, y + ∆y) + φn(x, y −∆y) (D3)

−4φn(x, y)] ,

where (∇φ)
n

(x, y) and
(
∇2φ

)n
(x, y) are the gradient

and Laplacian of the field at time t = n∆t evaluated
at the coordinate (x, y). In our simulations, we use
∆t = 0.96s, and with a resolution of 200×200 grid points,
∆x = 1.5 µm.

We further assess the stability of our numerical solu-
tions by monitoring how the conclusions depend on the
timestep ∆t. For this, we simulate a single cell-pair colli-
sion at different timesteps for both the velocity-aligning
and front-front contact repolarization models. We repeat
runs at each timestep 384 times and plot the average win-
ning probability in Fig. 11. In particular, we note that

the main simulation uses ∆t = 0.96s, which is at least
a healthy factor of 2 smaller than a timestep at which
convergence can become an issue.

Appendix E: Solving a simplified contact
repolarization model

We can solve a simplified version of the contact repolar-
ization model analytically, determining the time it takes
each cell to turn around. To do this, we neglect stochas-
tic noise, as well as assuming that cell shapes (and hence
the repolarization directions r̂CR) stay constant over the
collision. We have defined cell polarity with an angle ψ
associated with the vector p̂ = (cos(ψ), sin(ψ)), and con-
tact repolarization by aligning the polarity of the cell to-
ward the repolarization vector r̂CR over a finite timescale,
and we limit this interaction to only front-front contact.
Mathematically, we describe this process with

d

dt
ψ =− 1

τCG
sin−1 [sgn(p̂ · x̂)(x̂× p̂)z] (E1)

− 1

τCR
sin−1 [(r̂CR × p̂)z] Θ(−pxp′x)Θ(rxCRp

′x)

+
√

2Dψ Ω(t).

The first term is the contact guidance term ensuring the
polarity of the cell remains parallel to the substrate. The
second term models repolarization due to interactions
with another cell with polarity p̂′, and the last term in-
troduces Gaussian noise. Θ(·) is the Heaviside step func-
tion and the two step functions here are used to limit
contact repolarization to only happen when cells are in
front-front contact.

Here, we consider the deterministic case with Dψ =
0 and solve Eq. (E1) analytically. Note that for unit

vectors â and b̂, (â × b̂)z = sin(ψb − ψa), where ψa ≡
∠(â) is the orientation of the unit vector â, and similarly

ψb ≡ ∠(b̂). Now, consider a cell with polarity p̂ traveling
to the right and about to collide head-on with another cell
with polarity p̂′ traveling to the left. Let ψ denote the
direction of cell polarity, and ψCG ≡ ∠(sgn(p̂ · x̂)x̂) and
ψCR ≡ ∠(r̂CR) denote the contact guidance and contact
repolarization angles, respectively. The contact guidance
angle will be ∠(+x̂) = 0 when ψ < π/2, then switch
to ∠(−x̂) = π for ψ > π/2. Because the collision takes
place between the cell fronts, Θ(−pxp′x)Θ(rxCRp

′x) = 1.
Lastly, we assume the repolarization vector r̂CR for the
cell remains constant in time. Then, Eq. (E1) becomes

d

dt
ψ =− 1

τCG
sin−1 [sin(ψ − ψCG)] (E2)

− 1

τCR
sin−1 [sin(ψ − ψCR)] .

For Φ ∈ [−π/2, π/2], sin−1[sin(Φ)] = Φ. However, given
the initial condition ψ(t = 0) = 0 and ψCR > π/2, during
the repolarization process, regions exist where Φ ≡ ψ −
ψCR < −π/2 (Fig. 12: segment 1). For such cases,
sin−1[sin(Φ)] = −π − Φ. We can then rewrite Eq. (E2)
piece-wise in terms of the value of ψ(t):
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FIG. 11. The average winning probability associated with a particular cell-pair collision is plotted against the timestep used in
solving the equations of motion numerically. We see that the numerical solutions are stable over a healthy range of timesteps
for both the (A) velocity-aligning and (B) front-front contact repolarization models. The averages are over n = 384 trials, and
the error bars are the 95% binomial confidence intervals. ∆t = 0.96s is used in the main simulation.

d

dt
ψ =



− 1
τCG

ψ + 1
τCR

(ψ − ψCR + π) if ψCR − π/2 > ψ and ψ ≤ π/2 (segment 1 in Fig. 12)

− 1
τCG

ψ − 1
τCR

(ψ − ψCR) if ψCR − π/2 ≤ ψ and ψ ≤ π/2 (segment 2 in Fig. 12)

− 1
τCG

(ψ − π) if ψ > π/2 (segment 3 in Fig. 12).

(E3)

Note that when ψ > π/2, the cell has repolarized and
its front is no longer in contact with the front of the other
cell, and the repolarization term turns off – i.e. τCR →∞
– and cell polarity relaxes toward ψCG = π with the time

constant τCG.
With a little algebra, we can write Eq. (E3) more

clearly and reveal the effective timescales and steady-
state angles for each segment:

d

dt
ψ =



− τCR−τCG

τCRτCG

[
ψ − τCG(π−ψCR)

τCR−τCG

]
if ψCR − π/2 > ψ and ψ ≤ π/2

− τCR+τCG

τCRτCG

[
ψ − τCGψCR

τCR+τCG

]
if ψCR − π/2 ≤ ψ and ψ ≤ π/2

− 1
τCG

[ψ − π] if ψ > π/2.

(E4)

Each segment admits a solution of the form ψi(t) =
Φi + ci exp[−t/τi], where Φi, τi, and ci are the steady-
state angle, time constant, and constant of integration
for each segment i = [1, 2, 3] (Fig. 12). Let us now focus
on each segment individually.

When ψCR− π/2 > ψ and ψ ≤ π/2 (segment 1 in Fig.

12), we have ψ1(t = 0) = 0. Thus, c1 = −Φ1 and,

ψ1(t) = Φ1

(
1− e−t/τ1

)
, (E5)

with Φ1 = τCG(π−ψCR)
τCR−τCG

and τ−1
1 = τCR−τCG

τCRτCG
. To ensure

we proceed to the second region, we must have Φ1 ≥
ψCR − π/2. This condition translates to a constraint on
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FIG. 12. A schematic showing the time evolution of cell po-
larity ψ(t) within each of the three segments derived in Eq.
(E3). Here, the cell starts at ψ0 = 0 and has a fixed repo-
larization vector r̂CR. The color of each region refers to its
analytical solution in Fig. 13A.

the timescales:

τCG

τCR
≥ 2

π

(
ψCR −

π

2

)
. (Condition 1)

Lastly, we calculate the time at which the dynamics of
cell polarity switch to that of the next segment – i.e. t′,
such that ψ1(t′) = ψCR − π/2:

t′ =
τCGτCR

τCG − τCR
ln

[
π(τCG + τCR)− 2τCRψCR

2τCG(π − ψCR)

]
. (E6)

When ψCR − π/2 ≤ ψ and ψ ≤ π/2 (segment 2 in
Fig. 12), the initial condition is ψ2(t = t′) = ψCR − π/2.
Instead of plugging this directly into the exponential form
and solving for c2, it would be easier to shift the solution
temporally and let it begin at t′: t → t − t′. Then,
c2 = ψCR − π/2− Φ2, and

ψ2(t) = Φ2 + (ψCR − π/2− Φ2) e−(t−t′)/τ2 , (E7)

where Φ2 = τCGψCR

τCR+τCG
and τ−1

2 = τCR+τCG

τCRτCG
. To ensure the

cell can properly repolarize away from contact, we require
Φ2 > π/2. This condition places another constraint on
the timescales:

τCG

τCR
>

π/2

ψCR − π/2
. (Condition 2)

Lastly, we compute the time at which the dynamics of
the cell polarity switch to that of the next segment – i.e.
the repolarization time t′′, such that ψ2(t′′) = π/2:

t′′ = t′ +
τCGτCR

τCG + τCR
ln

[
π(τCG + τCR)− 2τCRψCR

2ψCRτCG − π(τCR + τCG)

]
.

(E8)
When ψ > π/2 (segment 3 in Fig. 12), the initial con-

dition is ψ3(t = t′′) = π/2. Again, if we shift this solution
temporally by an amount t′′, we can effortlessly compute
the constant of integration, c3 = π/2− Φ3. Then,

ψ3(t) = Φ3 + (π/2− Φ3) e−(t−t′′)/τCG , (E9)

where Φ3 = π. Note that since the cell’s front is no
longer in contact, the repolarization term turns off and
cell polarity relaxes toward Φ3 with the time constant
τCG.

At last, we have found the full piece-wise solution to
Eq. (E3):

ψ(t) =



Φ1

(
1− e−t/τ1

)
t ≤ t′

Φ2 + (ψCR − π/2− Φ2) e−(t−t′)/τ2 t′ < t ≤ t′′

Φ3 + (π/2− Φ3) e−(t−t′′)/τCG t > t′′.

(E10)
Here, t′ denotes the first transition point in time with
ψ(t′) = ψCR − π/2, and t′′ defines the time it takes the
cell to repolarize, that is ψ(t′′) = π/2. Fig. 13A plots
these analytical solutions against the numerical solution
of Eq. (E2).

The above derivation serves two main purposes. First,
it allows us to choose the timescales of the model prop-
erly. As detailed above, Condition 1 and Condition 2
must be satisfied to ensure the polarity of the cell can
trace through the appropriate angular range to undergo a
proper repolarization. With some algebra, one can prove
that Condition 2 is stricter than Condition 1. Thus,
it suffices to satisfy the former. In our simulations,
the roundest cells – which determine the lowest bound
on the inequality – have a repolarization vector with
ψCR ≈ 140◦ on average. Plugging this into Condition
2, we see that we must satisfy τCG/τCR > 1.8 to ensure
all cells deterministically repolarize. This restriction in-
formed our choice of τCG = 2τCR.

Moreover, the analytical solutions have allowed us
to explicitly calculate the repolarization time for a cell
whose polarity begins at ψ = 0. More precisely, this is
the time it takes cell polarity to reach ψ = π/2, which is
denoted by t′′ in Eq. (E8). How does this repolarization
time depend on the repolarization angle ψCR? Consider
the extreme – albeit unphysical – case of ψCR = π/2.
Then, according to ψ2(t) from Eq. (E7), it would take
an infinitely long time to reach π/2. As ψCR moves
away from the vertical, cell polarity can reach π/2 more
quickly. As an analogy, think of an overdamped har-
monic oscillator that would take an infinitely long time
to reach its equilibrium point. If a new equilibrium point
is chosen past the previous one, then the former point
can be reached in finite time. However, we do not ex-
pect t′′ to decrease monotonically with increasing ψCR.
Consider another extreme case of ψCR = π. This puts us
in the region where ψCR − π/2 > ψ and ψ ≤ π/2, and
according to Eq. (E4), dψ/dt = 0. This is indeed a point
of unstable equilibrium for the cell’s polarity, exactly like
a pendulum perfectly balanced to point “North” is sta-
tionary, but unstable. In this case, it would again take
an infinitely long time to reach π/2. Thus, we would ex-
pect t′′(ψCR) to decrease from infinity as ψCR grows away
from π/2, reach a minimum at an angle determined by
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FIG. 13. (A) Analytical solutions to the FFCR model are plotted for each segment against the numerical solution. Here, we
consider a cell traveling to the right with ψ(t = 0) = 0, τCG = 2τCR, and ψCR = 140◦. Note that the angle ψ3(t) has not yet
reached its steady state in this plot – it will asymptotically approach π at long times. (B) The time it takes cell polarity to
reach ψ = π/2 starting from ψ = 0 (t′′ in Eq. (E8)) is plotted as a function of the repolarization direction ψCR.

the timescales, and grow toward infinity as ψCR nears
π. The exact behavior of t′′ is plotted in Fig. 13B for
timescales used in simulation and for a subset of repolar-
ization angles that were observed within our simulations,
ψCR ∈ [140◦, 170◦].

What insight can we gain from t′′(ψCR)? Recall
sin−1[sin(Φ)] = −π − Φ when Φ ∈ [−π,−π/2), which
arises from the sawtooth nature of the function. In our
simulations, the center-of-mass of flatter cells and the re-
polarization vector passing through it lie closer to the
horizontal. Consequently, flatter cells have larger repo-
larization angles, and compared to rounder cells, they
have an angular difference Φ ≡ ψ − ψCR that is more
negative. Citing the sawtooth shape of sin−1[sin(Φ)], we
have argued that flatter cells take longer to repolarize as
compared to rounder cells because the strength of their
repolarization term is weaker. This has been our core jus-
tification for why flatter cells are more likely to win colli-
sions under the front-front contact repolarization model.
The repolarization time as a function of repolarization
angle, which is plotted using simulation parameters, sup-
ports this notion to some extent: for ψCR > 150◦, time
to repolarize monotonically increases with increasing re-
polarization angle (Fig. 13B). This means that flatter
cells take longer to flip, and when colliding with rounder
cells, which repolarize sooner, they will emerge as the
“winner”. The function t′′(ψCR) also tells us something
very interesting: a flat cell with ψCR ≈ 150◦ will – de-
terministically – flip sooner and lose to a rounder cell
with ψCR ≈ 140◦. Do we have simulation points of
this nature? Yes. Are they evidence against the no-
tion that collision outcome correlates with how flat a cell
is? That depends on how important the dip in t′′(ψCR)
is. Our phase field simulations are not deterministic, but
rather noisy. For two cells to have repolarization angles

ψCR ∈ (140◦, 150◦), they would have to be very similar
in their physical properties. In addition, the difference
in the time to reach π/2 observed in Fig. 13B between
ψCR = 140◦ and 150◦ is much smaller than that between
150◦ and 170◦. Repolarization will also depend strongly
on the initial polarity direction ψ at collision; when the
angular diffusion coefficient Dψ is nonzero, this will vary
stochastically. Which cell turns around first will also be
affected by stochastic fluctuations in the polarity angle’s
trajectory. Even though the flatter cell with ψCR = 150◦

would deterministically turn first and lose to the rounder
cell with ψCR = 140◦, angular noise will tend to wash
out the small differences in repolarization time and drive
the collision closer to a 50-50 outcome. This means that
sufficiently large levels of noise can mask the influence of
the dip in t′′, and we would observe that flatter cells are
generally slower to turn and more likely to win. However,
if the system has low levels of noise, then it behaves more
deterministically, and the dip in the repolarization time
matters more. This is a potential reason for why relative
contact angle – a measure of how flat a cell is – becomes
a poor predictor of collision outcome when Dψ is very
small (bottom row of Fig. 9 in main text).

Appendix F: How accurately do δv and δθ predict
Pwin?

One question motivating our work has been whether
the outcome of collision can be predicted. We have shown
that a single observable – relative speed δv or relative
contact angle δθ – can robustly characterize the outcome
of collision between cells with widely varying attributes.
Given a value for one of these observables, how accurately
can we predict the winning probability?
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Tables II-V show two assessment metrics for each lo-
gistic regression performed on either of the predictors. A
particular table (e.g. Table II) focuses on a given polarity
mechanism – velocity-aligning (VA) or front-front contact
repolarization (FFCR) – and angular diffusion coefficient
Dψ. To compute a given assessment metric, we employ
the k-fold cross-validation method. Here, we randomly
shuffle and split the entire dataset obtained from simula-
tions into k = 10 equally sized segments. We then train
the regression model on nine segments (ntrain = 39, 917
points), and we compute the assessment metric on the
remaining one segment (ntest = 4, 435 points). At the
end, we have k = 10 assessment metrics, from which we
report the average and standard deviation (Tables II-V).

One widely used assessment metric is the score func-
tion, the percentage of correctly labeled points. Here,
the class label of a point is determined by applying a bi-
nary threshold to the predicted winning probability: the
class label of point δv is “win” if Pwin(δv) ≥ 0.5, else
it is “loss”. Shown in the first row of Tables II-V, this
metric yields a percentage value characterizing how suc-
cessfully the model classifies observations. We find that
when the velocity-aligning model is employed, relative
cell speed predicts collision outcomes with 79.5 ± 0.8%
(Dψ = 0.075 rad2/hr) success rate, and it is significantly
better at predicting the winning probability compared to
relative contact angle. Moreover, under the contact repo-
larization model, relative contact angle predicts collision
outcomes with 72.1± 0.7% (Dψ = 0.075 rad2/hr) success
rate, and it is significantly the better predictor compared
to relative speed. Additionally, as detailed in Section III
D of the main text, as Dψ decreases, the winning prob-
ability tends toward a step-function, and we expect the
score to increase. Comparing Tables III and V with Ta-
bles II and IV, we see a large increase in the score values
of the appropriate predictor (δv for VA model, δθ for
FFCR model).

We also compute the Brier Score, which is the mean
squared error between the predicted probability and the
class label (1: “win”, 0: “loss”) and avoids the binary
threshold altogether. This metric is a cost function pe-
nalizing the classifier according to how incorrectly it la-
bels points. As such, lower values correspond to better
models. According to the Brier score, δv is the robust
predictor of collision outcome under the VA model, while
δθ best captures Pwin under the FFCR model. Brier
scores show that prediction is better (lower Brier score)
at smaller values of Dψ for both models (Compare Tables
III and V with Tables II and IV).

Appendix G: Supplementary movies

Here we present movies of typical phase field colli-
sions between two cells with different attributes. In each
movie, the top panel tracks the evolution of the cells,
while the bottom panels track the center-of-mass speed
and contact angle of each cell as a function of time, re-

TABLE II. VA model, Dψ = 0.075 rad2/hr

Predictor δv δθ
Score 79.5 ± 0.8% 70.5 ± 0.6%

Brier Score 0.140 ± 0.003 0.196 ± 0.003

TABLE III. VA model, Dψ = 0.0075 rad2/hr

Predictor δv δθ
Score 88.2 ± 0.3% 73.8 ± 0.4%

Brier Score 0.082 ± 0.002 0.172 ± 0.002

TABLE IV. FFCR model, Dψ = 0.075 rad2/hr

Predictor δv δθ
Score 64.3 ± 0.7% 72.1 ± 0.7%

Brier Score 0.222 ± 0.002 0.182 ± 0.003

TABLE V. FFCR model, Dψ = 0.0075 rad2/hr

Predictor δv δθ
Score 68.1 ± 0.7% 84.2 ± 0.3%

Brier Score 0.199 ± 0.003 0.107 ± 0.002

spectively. Note that upon collision, we no longer com-
pute these statistics and so the time series stop. In
the following movies, the values of tension, adhesion to
the substrate, and protrusion strength of the left cell
are γ = 1.46γ0, A = 0.48γ0, and β = 5γ0, respec-
tively. Meanwhile, the right cell has attributes γ = 1.1γ0,
A = 0.4γ0, and β = 10γ0. These movies are primar-
ily meant to be illustrative; note that the left cell’s pa-
rameters are not the default parameters. We have also
set the angular diffusion coefficient to a small value,
Dψ = 0.0075 rad2/hr so the collision is simpler to fol-
low by eye.

• Movie S1. Collision of two cells whose polarity is
modeled by the velocity-aligning (VA) mechanism
with the alignment timescale τVA = 24 min.

• Movie S2. Collision of two cells whose polarity
is modeled by the front-front contact repolariza-
tion (FFCR) mechanism with the alignment times
τCG = 24 min and τCR = 12 min. When the cells
approach each other head-on and form contact, the
repolarization vector rCR is computed according to
Eq. 9 and plotted with a black arrow. Once one of
the cells turns, head-head contact is lost and con-
tact repolarization is turned off. The cells continue
to travel as a train with their newly formed head-
tail contact.
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