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The modulational instability (MI) phenomenon is addressed in a nonlocal medium under control-
lable saturation. The linear stability analysis of a plane wave solution is used to derive an expression
for the growth rate of MI that is exploited to parametrically discuss the possibility for the plane
wave to disintegrate into nonlinear localized light patterns. The influence of the nonlocal parameter,
the saturation coefficient, and the saturation index are mainly explored in the context of a Gaussian
nonlocal response. It is pointed out that the instability spectrum, which tends to be quenched by
the high nonlocality parameter, gets amplified under the right choices of the saturation parame-
ters, especially the saturation index. Via direct numerical simulations, confirmations of analytical
predictions are given, where competing nonlocal and saturable nonlinearities enable the emergence
of trains of patterns as manifestations of MI. The comprehensive parametric analysis carried out
throughout the numerical experiment reveals the robustness of the obtained rogue waves (RWs), of
A- and B-types Akhmediev breathers, as the nonlinear signature of MI, providing the saturation
index as a suitable tool to manipulate nonlinear waves in nonlocal media.

I. INTRODUCTION

Generation and propagation of nonlinear structures
have been an active research direction for the last
few decades. A relevant mathematical model that has
been extensively used for many physical realizations in
optics [1], Bose-Einstein condensates (BECs) [2], and
physics of Langmuir waves in plasmas [3] is the nonlin-
ear Schrödinger (NLS) equation with the self-attractive
nonlinearity and its extension, due to the enhancement of
nonlinear absorption and nonlinear refractive index [4, 5].
In fact, with the emergence of composite optical mate-
rials aiming at photonic applications, the nonlinear op-
tical properties of the constitutive colloidal systems of
particles can be controlled, allowing nonlinearity to be
managed. Specifically, a suitable choice of nanoparticle
volume fraction can allow nullifying the cubic nonlinear-
ity and promote the effects from higher-order nonlineari-
ties [6], including competing nonlinearities. In the latter
context, the global nonlinearity results from a few differ-
ent physical processes, as in BECs with concomitant local
and long-range interactions [7] and nematic liquid crys-
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tals under competitive thermal and orientational thermal
nonlinearities [8]. In other contexts, nonlinearity can be
controlled via an adapted nonlocal function of the inci-
dent field, commonly known as nonlocal nonlinearity.

Contrary to media with conventional nonlinearities,
the nonlinear response of nonlocal media depends on the
spatial variability of the material’s refractive index, i.e.,
determined by the intensity of the incident field in a cer-
tain neighborhood of a given location [9]. Such prop-
erties which come with stabilizing features for solitons,
can suppress instability [10–12], and support the emer-
gence of new soliton states [13–16]. For instance, non-
locality appears to be an inherent property of thermal
media [17, 18], nematic liquid crystals [19], atomic va-
pors [20], and BECs [21], etc. The nonlocal nonlin-
earity also exists in liquid infiltrated photonic crystal
fibers [22], which supports the existence of nonlocal gap
soliton [23]. Another very general important class of
nonlocal materials is materials with quadratic nonlin-
earity [24], from which it was shown that the nonlocal
nature of the quadratic nonlinearity could give rise to
soliton pulse compression [25], the exotic X waves [26]
and can analytically provide the limits of the achievable
pulse length [27]. On the same note, it was recently
shown that nonlocal Kerr nonlinearity and electromag-
netically induced transparency effect might couple and
cooperatively support Rydberg-Rydberg interaction be-
tween atoms for high-dimensional, nonlocal, and nonlin-
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ear optical X waves to emerge, with manageable charac-
teristics such as low propagation loss, ultraslow propaga-
tion velocity, and ultralow generation power [28].

Albeit these advanced and sophisticated theoretical in-
vestigations, questions related to competing nonlinear
effects, due to their important role in creating stable
multidimensional solitons, remain debated. For exam-
ple, combinations of self-focusing cubic and, particularly,
self-defocusing quintic have been frequently reported in
optical settings such as liquid waveguides [29–31], special
kinds of glasses [29, 32, 33], ferroelectric films [34], and
colloidal suspensions of metallic nanoparticles [35, 36],
where the colloids offer remarkable flexibility, making it
possible to adjust parameters of the cubic-quintic (CQ)
nonlinearity (the signs and magnitudes of both the cubic
and quintic terms) through the selection of the diameter
of the nanoparticles and the filling factor of the suspen-
sion. The realization of the CQ nonlinearity was also
theoretically elaborated in terms of the Gross-Pitaevskii
equation [37] for BECs, where the quintic term accounts
for three-body collisions, provided that inelastic effects
may be neglected [38–41]. In this context, the adjust-
ment of the nonlinearity may be provided by the Fesh-
bach resonance, which affects the sign and strength of the
cubic term [42]. For competing nonlinearities involving
saturable nonlinearities, a combination of Kerr nonlin-
earity and a saturable n-photon resonance was shown to
support bistable-soliton pulse propagation [43]. In gen-
eral, for low field intensities, the saturable nonlinearities
depict the usual Kerr response. However, for very in-
tense fields, the dependence of the refraction index on the
field intensity saturates. Let us recall that the investiga-
tion of saturable nonlinearity, which has been commonly
described by two-level atom or exponential models, has
been proposed by Maradudin [44]. Any real material has
an upper limit to the refractive-index change that can be
induced optically. The field strength at which saturation
occurs depends on the particular physical processes that
cause the nonlinear refractive-index change. In partic-
ular, contributions bringing together nonlocal and sat-
urable nonlinearities are still in their infancy. Such a
combination implies a nonlinear change of the proper-
ties of the medium by the wave itself in a context of
very intense fields that cause the refraction index to sat-
urate with increasing field intensity. It is well-known
that the evolution of optical materials and laser systems
are related. For example, the propagation of picosec-
ond optical pulse in standard silica fibers is governed by
the well-known cubic (Kerr effect) NLS equation that
includes the group velocity dispersion (GVD) and self-
phase modulation (SPM) [45, 46]. In other words, the
nonlinear property we are principally concerned with is
the field dependence of the refractive index. Moreover,
with the advent of robust femtosecond laser systems,
nonlinear optical methods such as the optical Kerr ef-
fect technique has been extensively used to clarify the
nonlinear properties of many organic and inorganic sol-
vents, namely, in a polydiacetylene film, the vibrational

dephasing in dimethylsulfoxide and the relaxation of op-
tical Kerr effect in CS2 and nitrobenzene [47, 48]. In-
terestingly, as one increases the intensity of the incident
light power to produce shorter (femtosecond) pulses, ad-
ditional nonlinear effects come into play, changing the
physical features and the stability of optical soliton prop-
agation essentially, and the dynamics of pulses needs to
be described in the frame of a generalized NLS equation
that includes higher-order nonlinear terms [49–52] such
as Kerr and non-Kerr nonlinearities. Based on particular
cases, the saturable nonlinearity can take several forms.
In a more generalized formulation, the nonlinear refrac-
tive index that describes the nonlinearity saturation is
characterized by three independent parameters, mainly
the saturation intensity (Isat), the maximum change in
the refractive index (n∞), and the Kerr coefficient (n2)
which appears for small intensities. It is given by the
phenomenological expression [53]

∆nsat(x, z) = n∞

[

1− 1

(1 + I(x, z)/Isat)p

]

, (1)

where the corresponding Kerr coefficient is such that
n2 = n∞p/Isat, with p being the saturation index re-
lated to the light beam intensity power. Numerical so-
lutions for the NLS equation in presence of the above
term were discussed for p = 1 [54]. Additionally, ex-
act bright solitons were derived for p = 2 [55–58], and
more recently, dark and bright solitons were derived for
p = 2 and p = 3 [59]. The nonlinear dynamics of a
periodically perturbed second-order ordinary differential
equation was also recently addressed through traveling
wave variables in a saturable NLS model for p = 2 [60].
Obviously, the generalized expression given by Eq. (1) of-
fers the possibility to tune the saturation index with the
possible generation of a broad range of nonlinear struc-
tures. That is the main motivation of the present investi-
gations since the propagation of intense continuous waves
in dielectric media leads to several major nonlinear phe-
nomena having fundamental interests and practical ap-
plications. A well-known example of those phenomena is
the modulational instability (MI), which arises from the
interplay between dispersive and nonlinear effects and
manifests itself in the exponential growth of weak per-
turbations [61, 62]. The gain leads to amplification of
sidebands, which break up the otherwise uniform wave
and generate fine localized structures. Thus, it may act
as a precursor for the formation of solitons. The phe-
nomenon of MI has been identified and studied in vari-
ous physical systems, such as fluids [63], plasmas [64–66],
nonlinear optics [67–69], metamaterials [70, 71], discrete
nonlinear systems [72–75], and BECs [76–79], to cite a
few. It has been shown that MI is strongly affected by
mechanisms such as saturation of nonlinearity [80], co-
herence properties of optical beams [81], linear and non-
linear gratings [82], and generation of super-continuum
spectra [83], and so on. Interestingly, the first experimen-
tal studies of MI in a nonlocal medium were reported by
Peccianti et al. [84], where nematic liquid crystals were
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used. They showed that due to their inherent orienta-
tional nonlocal nonlinearity, the sign-definite exponen-
tial response can efficiently contribute to quenching the
MI. Albeit the same remark was made in other physical
settings, the question related to the coupled influence of
nonlocal and saturable nonlinearities remains unmarked,
especially in the context of MI, when there is a possibil-
ity of parametrically playing on the index of saturation.
Such a question is exclusively addressed in the present
paper. In this paper, we show that the quenching ef-
fect of the nonlocal nonlinearity on the MI is corrected
by the presence of the saturable nonlinearity, especially
when the saturable index and the nonlocality range are
well-balanced.
The rest of the paper is outlined as follows: in Sec-

tion II, we first introduce the proposed model and there-
after proceed to the linear stability analysis of MI. An
expression for the growth rate of MI is derived and used
to discuss the manifestation of MI parametrically. Par-
ticular attention is given to the impact of the satura-
tion index, the nonlocality parameter, the input power,
and the nonlinearity strengths. Section III presents full
numerical results, where the link between the analytical
predictions and nonlinear pattern formation, and RWs
in particular, is established. The effect of system pa-
rameters is explored, especially different combinations of
the saturation index and the nonlocality parameter un-
der various nonlinearity strengths. Section IV is devoted
to concluding remarks.

II. MODEL AND MODULATIONAL INSTABILITY

PROCESS

The dynamics of optical pulses in the regime of slowly
varying envelope amplitude is usually described by an
NLS equation that includes both dispersion and nonlin-
earity. For the case of instantaneous response, it is writ-
ten in the form

iqz + qxx +∆n(x, z)q(x, z) = 0, (2)

where q(x, z) is the complex envelope amplitude of the
pulse, with x and z representing transverse and longitudi-
nal coordinates, respectively. As is well-known, in nonlin-
ear Kerr media, the intensity-dependent refractive index
change is given by ∆n(x, z) = I(x, z), with the intensity
of the beam I = |q(x, z)|2. In the case of nonlinear me-
dia with competing nonlocal and saturable nonlinearities,
the nonlinear refractive index change of the medium can
be represented by the following phenomenological model

∆n(x, I) = ∆n1(x, z) + ∆n2(x, z)

= α

∫ +∞

−∞

R(x− x
′

)I(x′, z)dx
′

−m

[

q − q

(1 + aI(x, z))p

]

,

(3)

where α represents the strength of the nonlocal cubic
nonlinearity, m = n∞ is the nonlinear saturation coef-
ficient, a = 1/Isat 6= 0 is the saturation intensity, p is
the power of the intensity of the light beam or saturation
index, and the minus sign indicates self-defocusing inter-
action. Introducing Eq. (3) into Eq. (2), one obtains the
following nonlocal and saturable NLS equation governing
the evolution of the beam [9, 59]:

iqz + qxx + αq

∫ +∞

−∞

R(x− x
′

)|q(x′

, z)|2dx′

−m

[

q − q

(1 + a|q|2)p
]

= 0.

(4)

The form of the convolution integral represents the nonlo-
cal nonlinear response. Typically, the response functions
are either exponential (as in liquid crystals) or Gaussians
[85]. Below, we assume the latter by setting

R(x) =
1

σ
√
π
exp

[

−x2

σ2

]

, (5)

where the coefficient σ determines the corresponding non-
locality ranges of the cubic nonlinearity, while the coeffi-
cient in front of the Gaussians follows from the normal-
ization condition,

∫ +∞

−∞
R(x)dx = 1. In the case of the

Gaussian nonlocal response function, the Fourier trans-
form is given by

R̂(k) = exp

[

−1

4
σ2k2

]

. (6)

The saturable nonlocal NLS Eq. (4) permits exact plane
wave solutions of the form:

q(z, x) =
√

P0e
i(k0x−ω0z), (7)

where P0, k0, and ω0 are linked through the nonlinear
dispersion relation

ω0 = k20 − αP0 +
mapP0

(1 + aP0)p
. (8)

The stability of the steady state can be examined by
introducing a perturbed field by assuming that

q(z, x) =
[

√

P0 + u(z, x)
]

ei(k0x−ω0z), (9)

with u(z, x) being a small complex modulation. Substi-
tuting Eq. (9) into Eq. (4) and linearizing about the
plane wave (7), we get a linear equation for u(z, x):

iuz + uxx + 2αP0

∫ +∞

−∞

R(x− x
′

)ℜ{u(z, x′

)}dx′

− 2mapP0

(1 + aP0)p
ℜ{u(z, x)} = 0,

(10)

where ℜ{u(z, x)} represents the real part of u(z, x).
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Figure 1: The panels show the MI growth rate spectra under the competition between the nonlocal nonlinearity and the
saturable nonlinearity with α = 0.4 (panel (aj)j=1−3) and α = 1 (panels (bj)j=1−3). The other parameter values are such that
m = 0.8, P0 = 2 and a = 2, and the saturation index taking the respective values p = 1, p = 2 and p = 3, corresponding to
columns from left to right.

Figure 2: The panels show the MI growth rate versus the wavenumber k and the nonlinear parameter m for: (a) p = 1, (b)
p = 2 and (c) p = 3, with α = 0.4, a = 2, P0 = 2, and σ = 0.1.

Decomposing the perturbation u into real and imagi-
nary parts, u = ur+iui, we obtain two coupled equations

∂ur

∂z
+

∂2ui

∂x2
= 0, (11a)

∂ui

∂z
− ∂2ur

∂x2
− 2αP0

∫ +∞

−∞

R(x− x
′

)ur(z, x
′

)dx
′

+
2mapP0

(1 + aP0)p
ur(z, x) = 0.

(11b)

By introducing the Fourier transforms

ûr =

∫ +∞

−∞

ur exp(ikx)dx,

ûi =

∫ +∞

−∞

ui exp(ikx)dx,

R̂(k) =

∫ +∞

−∞

R(x) exp(ikx)dx,

(12)

where R̂(k) is the Fourier spectrum of R(x), ûr is the
Fourier transform of ur, and ûi is the Fourier transform
of uI , respectively. Exploiting the convolution theorem
for Fourier transforms, the linearized system is converted
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Figure 3: The panels show the MI growth rate versus the wavenumber k and the nonlinear parameter a for: (aj)j=1−3 m = −0.8,
(bj)j=1−3 m = 0.8, from left to right, columns correspond to p = 1, p = 2 and p = 3, with α = 0.4, p0 = 2, and σ = 0.1.

Figure 4: The panels show the MI growth rate versus the wavenumber k and the input power P0. Panels (aj)j=1−3 m = −0.8
and panels (bj)j=1−3 m = 0.8, with columns from left to right corresponding to p = 1, p = 2 and p = 3, and α = 0.4, σ = 0.1.

to a set of ordinary differential equations in k space

∂ûr

∂z
− k2ûi = 0,

∂ûi

∂z
+ k2ûr − 2αP0R̂ûr +

2mapP0

(1 + aP0)p
ûr = 0,

(13)

which can be written in the following compact matrix
form

∂zX = AX, (14)

where the vector X and the matrix A are defined as

X =

(

ûr

ûi

)

,

A =

(

0 k2

−k2 + 2αP0R̂(k)− 2mapP0

(1+aP0)p
0

)

.

(15)

The eigenvalues λ of the matrix A are given by

λ2 = −k2P0

[

θk2 − 2

(

αR̂(k)− map

(1 + aP0)p

)]

, (16)

where we have defined θ = 1/P0, with k denoting the
wavenumber. The general dispersion relation (16) consti-
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Figure 5: Propagation of the perturbed plane wave intensity and wave pattern formation under the strong influence of the
nonlocal nonlinearity, i.e., α > m, with p = 1, P0 = 1, k = 0.75, a = 0.2, m = 0.1 and σ = 0.5. Panels (a), (b) and (c)
correspond, respectively to values α = 0.8, α = 1.2 and α = 2 of the cubic nonlinearity coefficient.

Figure 6: Propagation of the perturbed plane wave intensity and development of MI under strong influence of the nonlocal
nonlinearity, i.e., α > m, with p = 1, P0 = 1, k = 0.75, a = 0.2, m = 0.1 and α = 1.2. Panels (a), (b) and (c) correspond,
respectively to values σ = 0.4, σ = 0.6 and σ = 0.8 of the non locality parameter.
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tutes the basis of our study of MI. Therefore, plane-wave
solutions are stable if perturbations at any wavenumber
k do not grow with propagation. This is the case as long
as λ is purely imaginary. Physically, modulational sta-
bility means that small-amplitude waves can propagate
along with the background intense plane wave, although
their propagation parameter λ depends on the plane wave
intensity P0. Since k

2P0 > 0, plane wave solution are un-
stable if

θk2 − 2

(

αR̂(k)− map

(1 + aP0)p

)

< 0. (17)

The MI gain is defined as the positive real part of the
eigenvalue λ, i.e.,

ζ(k) = |k|
√

P0

∣

∣

∣

∣

∣

ℜ
{
√

2

(

αR̂− map

(1 + aP0)p

)

− θk2

}∣

∣

∣

∣

∣

,

(18)
where ℜ{·} indicates the real part of an expression.
The panels of Fig. 1 show, for example, the depen-

dence of the MI growth rate on the wavenumber k and
the nonlocality parameter σ. In general, the instabil-
ity spectrum is manifested by a set of symmetrical lobes,
with a maximum growth rate for small values of σ. When
σ increases, the instability tends to disappear. Another
significant effect is related to the strength of the nonlocal
nonlinearity coefficient α, confronted with the strength
of the saturable nonlinearity coefficient m. In fact, for
m = 0.8, α takes the value 0.4 in Fig. 1(aj)j=1−3 and 1
in Fig. 1(bj)j=1−3. With increasing the saturation index
p, the bandwidth of instability increases and covers large
intervals of the wavenumber k, especially when α > m.
While the defocusing case (α < 0) offers marginal mod-
ulation stability [85, 86], it is shown in Fig. 2 that the
saturation strength m takes both positive and negative
values, with the possibility of instability when the sat-
uration index p changes. For p = 1, negative values
of m offer the maximum growth rate of instability that
decreases with m and disappears. However, the cases
p = 2 and p = 3 show a continuous MI growth rate
for all values of m, even though the bandwidth and in-
tensity decrease. In the context where the advantage
is given to the saturation nonlinearity (α = 0.1), the
saturation parameter a importantly modifies the growth
rate spectrum both when m = −0.8 [see Fig. 3(aj)] and
m = 0.8 [see Fig. 3(bj)]. In the first case, increasing
the saturation index p reduces the growth rate intensity
and creates humps of high growth rate for small values
of a. In the second case, the instability windows start
with a high growth rate that drops and expands more
when p increases. Following the same procedure as in
Fig. 3, the input power, combined with the wavenumber
k, also offers some windows of instability that are very
sensitive to competition between the nonlocal and the
saturating nonlinearities via the coefficients α and m, re-
spectively, under the impact of the saturation index p.
Results corresponding to m = −0.8 and α = 0.4 are re-
ported in Fig. 4(aj), where the instability growth rate is

-10 -5 0 5 10

x

0

1

2

3

4

5

|q
(x

,z
=

1
1
)|2

 = 0.4  = 0.8  = 1.2 (b)

Figure 7: Panel (a) show a section of Fig. 6 confirming indi-
vidual object to be RWs. This is further supported by the
inset that displays the structure of such individual objects
whose train forms an Akhmediev breather. Panel (b) shows
the impact of the nonlocality parameter σ on the characteris-
tics of the MI, along with the subsequent emergence of RWs
for lower values of σ.

an increasing function of the input power P0, with the
wavenumber bandwidth being distributed between two
lobes of instability. With increasing the saturation index
p, the instability bandwidth along the k−axis shrinks,
while the window of instability offered by small values
of P0 tends to close. The scenario offered by m = 0.8,
with α keeping the same value, rather shows symmetri-
cal lobes that expand the instability bandwidth when p
increases, with the bandgap given by small values of P0

getting extended to P0 → 0. Even in this particular case,
ζ(k) is an increasing function of the input power P0.

III. NUMERICAL EXPERIMENT

One of the previous section’s main objectives was de-
termining regions of parameters where combined nonlo-
cal and saturable nonlinearities can balance with disper-
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Figure 8: The panel summarizes the effect of the nonlocality
parameter σ on the development of MI under the strong effect
of the nonlocal nonlinearity ( α > m), with parameter values
p = 1, P0 = 1, k = 0.75, a = 0.2, m = 0.1 and α = 1.2.

sion and give rise to modulated waves and nonlinear pat-
terns. Obviously, the linear stability analysis does not
say anything about the long-time evolution of the CW,
which requires direct numerical simulations to be vali-
dated. Therefore, for the completeness of our study, the
set of equations (4) has been integrated using the split-
step Fourier method. An initial signal input of the form

q(x, z = 0) =
√

P0 + ε cos(kx), (19)

has been injected, with k = 0.75, ε = 10−4 and P0 = 1,
values that are supposed to support the development
of MI. Moreover, the results are extracted in terms of
the signal intensity I = |q(x, z)|2, where attention is
mainly paid to the competition between the nonlinear
and saturable nonlinearities in the generation of modu-
lated waves.
As stress so far, one of the advantages of the studied

system is the tunable saturable nonlinearity through the
index p, which is given the values p = 1, 2 and 3 in the
rest of this paper. On the other hand, the originality
of the present contribution also lies in the inclusion of
the nonlocal Kerr nonlinearity that is manifested by the
two parameters α and σ. In a situation where the non-
local nonlinearity is slightly predominant, i.e., α > m,
one obtained the features of Fig. 5, where wave patterns
and their corresponding density plots highlight the im-
pact of the cubic nonlinearity coefficient. Although the
value α = 0.8 supports the plane wave stability, decreas-
ing α delays the occurrence of MI. Interestingly, the cho-
sen values of parameters support wave modulation for
α = 1.2 and α = 2, which shows a good agreement be-
tween our analytical predictions and the numerics. Be-
yond the described features, one may notice an increase
in wave intensity when α increases. Under the same con-
ditions where the nonlocal nonlinearity is predominant,
the effect of the nonlocality parameter σ is addressed in

Fig. 6, for α = 1.6. From panels (a) to (c), it is ostensi-
ble that increasing σ produces a contrary effect, i.e., de-
layed formation of patterns under MI. In the process, the
solitonic objects are more localized; their intensity drops
for higher values of σ, which corroborates the finding of
Fig. 1, from which high values of σ drop the growth rate
and tend to quench instability. This latter aspect can be
clearly appreciated in Fig. 8, where increasing values of
σ delay MI and reduce the amplitude of the wave train
with propagation distance increasing. On exploring in-
dividual objects closely, one notices their similarity with
RWs, where a train displayed against the space displays
an Akhmediev breather [see Fig. 7(a)]. Confirmation is
further given in panel (b) of Fig. 7, in which lower val-
ues of the nonlocality parameter support the occurrence
of RWs, showing their straightforward relationship with
the occurrence of MI. This is not, therefore, a surprise but
instead reinforces the fact that the exact solutions of the
NLS equation that describes the nonlinear mode of MI
are the Akhmediev breathers. However, beyond the MI
excitation, other linear and nonlinear underlying physical
processes can drive the emergence of RWs, among which
are the integrable turbulence [87, 88], supercontinuum
generation [89], optical filamentation [90], asymmetry,
and inhomogeneity [91], supercontinuum generation [89].
Of course, the strong link between the occurrence of MI
and the regime of several recurrences of nonlinear opti-
cal waves was experimentally addressed in the seminal
work by Pierangeli et al. [92], where it was additionally
demonstrated that the recurrent behavior vanishes as in-
tegrability is lost and that the complex evolution of the
exact initial condition can be accurately predicted in ex-
perimental conditions leading to its reconstruction after
several return cycles. Along the same line, a novel non-
destructive technique was experimentally proposed as a
critical tool to characterize mixing processes, new RW
formation regimes, and wave turbulence in the optical
fiber [93]. Besides, it was shown by Soto-Crespo et al. [94]
that there are two ways of adiabatic transformations of a
plane wave solution into a train of pulses, with the possi-
bility of explicitly differentiating the A-type Akhmediev
breather from the B-type one. Indubitable, from that
nomenclature, the Akhmediev breather constituting the
patterns in Figs. 5 and 6 are of A-type.

Before going further, let us mention that the effect of
the saturable nonlinear response is governed by three im-
portant parameters, m, Γ, and p. In previous contribu-
tions, the effect of the saturation index taking the values
1 and 2 has been studied both in the context of MI and
exact soliton solutions [56, 57]. Here, it appears to be
a key parameter that can be used to regulate the satu-
ration effect as witnessed by the features of Figs. 9 and
10. In Fig. 9, where m = −0.8, the instability is char-
acterized by a train of coupled modulated waves with
a solitonic shape. In general, for p = 1, the modu-
lated impulses identically travel along with the distance
z, forming a series of wave packets that tend to lose in-
tensity along with the propagation distance. The latter
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Figure 9: Propagation of the perturbed plane wave intensity and MI development for α = 0.8 and m = −0.8, with a = 2, p = 1,
P0 = 1, k = 0.75, and σ = 2. Panels (a), (b) and (c) showing wave propagation with corresponding density plots are obtained
for the saturation index taking the respective values p = 1, p = 2 and p = 3.

Figure 10: Propagation of the perturbed plane wave intensity and MI development for α = 0.8 and m = 0.8, with a = 2, p = 1,
P0 = 1, k = 0.75, and σ = 2. Panels (a), (b) and (c) showing wave propagation with corresponding density plots are obtained
for the saturation index taking the respective values p = 1, p = 2 and p = 3.
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Figure 11: Panel (a) shows a section of the density plot of the
wave patterns of Fig. 10, where a train of solitonic molecules
is displayed. For different values of the saturation index p,
the spatial section, at a distance z = 9, of panel (a) is shown
in panel (b), where p is revealed to influence the shape of
the train at that specific position. For a longer propagation
distance, still with p changing, one gets the features of panel
(c), where values 2 and 3 of the saturation index lead to RWs
at distance z = 3, with the other parameter values being:
α = 0.8 and m = 0.8, with a = 2, P0 = 1, k = 0.75, and
σ = 2.

behavior appears earlier when the saturation index is set
to p = 2, for which the erratic signal takes over from
z = 12. Noticeably, increasing p also causes the signal
intensity to decrease. Albeit the same behavior is shared
by Fig. 9(c), the strong nonlocality, confronted with the
negative value of m, changes the propagation features of
the signal, which, after z = 12, is described by two sym-
metric trains of solitons and lateral waves at the bound-
aries. Of course, such behaviors could not also be pre-
dicted by the linear stability analysis but agree well with
its predictions based on the chosen parameters. Contrary
to the previous observations, the patterns of Fig. 10, cor-
responding to m = 0.8, do not display any significant
intensity drop and keep the same characteristics. How-
ever, for p = 3, the generated impulses of solitonic waves
are more separated into sequences of wave molecules as
depicted in Fig. 10(c). This occurs at a distance z = 12
and justifies the spectrum of behaviors already displayed
by Fig. 9(c). Obviously, the sign of the saturation coef-
ficient, when well balanced with the nonlocal nonlinear
coefficient, can regulate the spatial and distance distri-
bution of the generated patterns. Moreover, the tunabil-
ity of the saturating nonlinearity, through the index p,
gives a direct way to produce richer behaviors of the op-

tical signal, which earlier calculations could not support,
therefore showing the advantage of the proposed model,
which under other nonlocal response functions may sup-
port more exotic behaviors and give more insights for
experimental investigations. This particular scenario is
summarized in Fig. 11, where panel (a) shows a section
of the molecular structures forming the trains. At prop-
agation distance z = 9, the same of structures varies de-
pending on the value of the saturation index p as depicted
in Fig. 11(b). For p = 1, the instability is characterized
by a train of extended bell-shaped solitons. The scenario
changes when the index p takes the respective values 2
and 3, where one notices the emergence of two-humped
soliton trains, with a lower band in-between. Over long-
distance propagation, the results displayed in Fig. 11(c)
are obtained, where p takes values as previously. Re-
markably, for p = 2 and p = 3, there is a persistence of
RW train formation, which confirms their robustness in
the studied model. To proceed further, we should also in-
dicate that such Akhmediev breathers were classified as
B-type in Ref. [94], where their occurrence was also re-
lated to the development of MI. The investigation of the
tools to control the shape and the characteristics of such
structures has been debated recently, where it was shown
that the frequency of the modulation could play a signif-
icant role under conditions where coefficients are period-
ically varying [95]. This could lead to wave compression
in some contexts, requiring additional bifurcation theory
tools to be predicted and controlled [95]. However, in the
present case, combining the nonlocality and controllable
saturation also offers the possibility to generate trains of
solitons that include several modes, the only requirement
being a judicable choice of wave and system parameters.
For example, fixing the saturation index p = 3, with
m = 2 and α = 1.2, the variation of the nonlocality pa-
rameter σ gives rise to the features of Fig. 12, where wave
modulation adopts different behaviors as σ increases.

It is well-known that the current manufacturing mate-
rial of fiber optic strands is made from plastic or glass
(Silica), depending on the requirement. Due to the
advancement of fiber optic technology, several research
teams have concentrated their efforts on designing opti-
cal fibers with nonsilica glasses, including tellurite [96]
or chalcogenide glasses [97], to name a few. The interest
in such glasses relies on their specific properties that are
significantly different from those of silica. Their partic-
ularity is due to their high nonlinear indices that orig-
inate from high refractive indices, leading to nonlinear
coefficients higher than that of silica. Complex nonlin-
ear expressions mathematically give this for the refractive
index that can be polynomial or saturable. In doing so,
models including saturable nonlinearity provide a good
description of the features of optical glass materials far
from resonance. In the context where pump powers are
high, leading to large nonlinear absorption with compli-
cated practical applications, a relatively moderate non-
linear absorption[98, 99] may be provided by a saturation
of the cubic nonlinearity of sulfide and heavy-metal oxide
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Figure 12: The panels show the output signal intensity versus space for different values of the nonlocality parameter σ. The
dynamical features shows the emergence of different modes corresponding to the value of σ in the context of Fig. 9, with other
parameter values being: α = 0.8 and m = 0.8, with a = 2, p = 3, P0 = 1, and k = 0.75.

glasses. It has, in fact, been demonstrated experimentally
that sulfide and heavy-metal oxide glasses could satisfac-
torily replace semiconductor-doped glasses for effective
practical applications when absorption constitutes a se-
rious drawback [100, 101]. Such enhanced properties of
suitable nonlinearly saturable materials require improved
models that picture their tunability, conditioned by an
adjustable absorption capacity while pumped by photons
that are in resonance with no energy level of the core ma-
terials. Intrinsically, the nonlinear response of the mate-
rials is a more complex function of the light intensity.
Interestingly, from the nonlocal z-scan theory, when such
optical materials are placed in a certain medium, their
nonlinear response can be significantly affected due to the
nonlocal properties of the medium [102]. In our case, the
materials and the nonlocal medium may then constitute a
composite material with specific properties. Examples of
such include the incorporation of Au nanoparticles that
can significantly enhance the nonlinear optical proper-
ties of graphene oxide [102]. More recently, castor oil
was also listed as a promising nonlinear medium due to
its interesting nonlocal properties that can boost the op-
tical features of materials, such as absorptive properties
of nanoparticles for optical applications [103]. Moreover,
it is a well-known fact that the range of nonlocality is
naturally adjusted by saturation effects, like in photore-
fractives where the Debye length tunes the strength of
nonlocality [104] and liquid crystals where the orienta-
tion molecules angle has a maximum value [105]. Our
work, therefore, suggests the experimental realization of
the MI process on glass with combined inherent optical,
and thermal nonlinearity in which the absorption of the
incident perturbed CW is relatively moderated, provid-
ing a favorable ground for the manifestation of satura-
tion, where increasing the power P0, after adjusting the
saturation index p and the range of nonlocality σ, can
cause the CW to disintegrate into structures of any types
depending on the nonlinearity strengths α and m.

IV. CONCLUDING REMARKS

This paper’s primary purpose was to analyze MI’s
properties in an extended nonlinear medium with con-
trollable saturation and nonlocal cubic nonlinearity. Us-
ing the linear stability analysis, an expression for the MI
growth rate has been derived, and we have investigated
the competitive effects between the nonlocal cubic non-
linearity and saturation using tools like the nonlinearity
coefficients α and m, the saturation index p and the non-
locality parameter σ under Gaussian nonlocal response.
The MI growth rate is sensitive to changes in such param-
eters, interchangeably under saturation and nonlocality
domination. Moreover, it has been found that high values
of the nonlocality parameter tend to quench instability.
In contrast, when the saturation index increases, high in-
put power values tend to amplify the instability through
enlarged wavenumber bandwidth. The analytical predic-
tions have been assessed via direct numerical simulations,
where the activation of MI has been confirmed to trig-
ger pattern formation through the emergence of RWs,
namely A- and B-types Akhmediev breathers, and other
exotic types of solitonic molecules. The robustness of
such in the proposed model has been tested using param-
eter variations, especially the nonlocality parameter, the
saturation coefficient, and the saturation index. We have
also demonstrated that in the context where the satura-
tion parameter is well-tuned, increasing the nonlocality
parameter does not quench instability but rather gives
rise to a broad range of modes whose characterization
and application may be a starting point for experimen-
tal control and manipulation of soliton dynamics in the
proposed saturable model.
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Soc. Am. B 37, A214 (2020) .
[68] K. K. Ndebele, C. B. Tabi, C. G. Tiofack Latchio, and
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