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Natural processes occur in a finite amount of time and dissipate energy, entropy, and matter. Near
equilibrium, thermodynamic intuition suggests that fast, irreversible processes will dissipate more
energy and entropy than slow, quasistatic processes connecting the same initial and final states. For
small systems, recently discovered thermodynamic speed limits suggest that faster processes will
dissipate more than slower processes. Here, we test the hypothesis that this relationship between
speed and dissipation holds for stochastic paths far from equilibrium. To analyze stochastic paths
on finite timescales, we derive an exact expression for the path probabilities of continuous-time
Markov chains from the path summation solution to the master equation. We present a minimal
model for a driven system in which relative energies of the initial and target states control the speed
and the nonequilibrium currents of a cycle control the dissipation. While the hypothesis holds near
equilibrium, we find that faster processes can dissipate less under far-from-equilibrium conditions
because of strong currents. This model serves as a minimal prototype for designing kinetics to sculpt
the nonequilibrium path space so that faster paths produce less dissipation.

INTRODUCTION

Biological systems balance the timely formation of
structure with the thermodynamic costs of dissipated
heat, entropy production, and wasted free energy [1, 2].
For example, cells regulate the speed at which micro-
tubules assemble and dynamically reorganize, which nec-
essarily dissipates energy [3, 4]. If the reorganization of
these structures is too slow, or driven by chemical re-
actions that are too dissipative, the fluctuating dynam-
ics of microtubules would inhibit, not facilitate, cellular
functions. A quantitative understanding of the relation-
ship between speed and dissipation is important not only
for biological functions, but also for implementing these
functions in synthetic, dissipative materials. Particular
progress has been made controlling the transient forma-
tion of structure in active materials with dissipative cy-
cles of chemical reaction networks [5–7] and accessing
the richer set of structures that can be formed outside
of chemical, thermal, and diffusive equilibria [8–11]. De-
spite this progress, when open to external sources of en-
ergy and matter, kinetic trapping [12, 13] and dissipative
cycles [14, 15] are prevalent, making it an open question
how these systems use time and energy in the formation
of structure.

The relationship between speed and energy efficiency
is particularly challenging for nonstationary, nonequilib-
rium processes [16, 17]. One expectation that might
come from equilibrium thermodynamics is that fast, irre-
versible processes will dissipate more energy and entropy
than slow, quasistatic processes connecting the same ini-
tial and final states [18]. Included in near equilibrium
processes is the constraint that the system has enough
time at each step for local inhomogeneities to relax. In
this case, the dissipation, often quantified by the entropy
production rate, is roughly the inverse timescale of the

dominant nonequilibrium effects. However, intuition es-
tablished for large systems near equilibrium need not
hold for systems that are small, strongly driven, or un-
dergo transient or fluctuating nonequilibrium processes.
Nevertheless, accumulating evidence in stochastic ther-
modynamics [19] seems to support this tradeoff between
speed and dissipation and the idea that more time will
be required for processes that are less dissipative [20–25].
For example, some thermodynamic speed limits suggest
that rates of dissipation have an upper bound set by the
intrinsic timescale of the system, regardless of its size
or its “distance” from equilibrium. These results might
be taken to suggest that the more time required for a
process, the smaller the associated dissipation. However,
these global bounds on stochastic processes have not yet
been fully analyzed at the level of stochastic paths.

Here, we test the hypothesis that there is a positive cor-
relation between speed and dissipation away from equi-
librium by controlling the currents exchanged between
a system and its surroundings. Fluctuations in energy,
entropy, and concentrations are important for testing
this hypothesis for finite-size systems, a regime where
stochastic paths are known to provide useful quantitative
information [26–28] about both the internal timescales
set by the kinetics and dissipation [29–32]. These ob-
servables can be extracted from Markov models parame-
terized based on deterministic trajectories [33, 34] or ki-
netic theory [35]. However, an open technical challenge
is the probability of stochastic paths constrained by time
in continuous time Markov chains [36–38]. We overcome
this challenge by deriving an explicit form for the path
probability of any continuous-time Markov process. This
closed form expression provides a direct method for com-
puting the average speed and dissipation of nonequilib-
rium paths over a fixed period of time. Applying this
formula, we quantitatively analyze stochastic paths to
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determine when faster processes dissipate more entropy.

CONTRACTED PATH PROBABILITY

Consider a small system with a discrete set of N states,
one designated as the initial state and one as the final
state. Take the transitions between these states to be
a Markov jump process [39]. These stochastic dynamics
have been used to describe various processes, including
self-assembly [40], quantum dots [41] and molecular mo-
tors [42]. Mathematically, they are represented by a col-
lection of time-homogeneous transition rates w(y|x) for
a jump from state x to state y with total escape rate
wx =

∑
y 6=x w(y|x) from x. The dynamics of occupation

probabilities for each state are described by the master
equation [39], ṗ(x, t) =

∑
y w(x|y)p(y, t). Its path sum-

mation solution [45] gives the marginal probability,

p(xf , t) =

∞∑

n=0

∑

Cn

µ(Cn = x0, x1, . . . , xf , t), (1)

in terms of the joint probability µ that the system takes
a path Cn = x0, x1, . . . , xn of n jumps that ends in xf
after a time t. Each path, Cn, is a time-ordered sequence
of states.

Stochastic thermodynamics has measures of dissipa-
tion for these stochastic paths [46, 47]. Assuming local
detailed balance [48], the entropy change of the equilib-
rium reservoirs mediating the fluctuating dynamics puts
a constraint on the asymmetry of the transition rates:
−se[Cn]/kB =

∑n−1
i=0 lnw(xi+1|xi)/w(xi|xi+1). This en-

tropy flow is interpreted as the amount of entropy dissi-
pated from the system to the surroundings in traversing
a path [49–51]. When the transition rates are exponen-
tially related to the energy, −se[Cn]/kB is the energy ex-
changed as heat between the system and surroundings,
kBT lnw(x, y)/w(y, x) = q(x, y) [52], at a temperature
T [19, 46, 47]. However, imposing a fixed observation
time t ≥ tn for the process constrains the possible paths
included in the path summation [36, 37] and, in turn,
the thermodynamic costs. That is, fixing the observa-
tion time alters nonequilibrium ensemble averages over
paths and the associated dissipation.

To account for a time constraint on stochastic pro-
cesses, we need the probability that a path is traversed
by an ensemble of stochastic trajectories; trajectories
here are a time-ordered sequence of states and stochastic
transition times, Tn = x0, t0;x1, t1; . . . ;xn, tn [38, 53–55].
This contracted path probability, µ(Cn, t), depends on the
path probability and the probability of a stochastic time
sequence through Bayes’ theorem:

µ(Cn, t) = p(t|Cn)p(Cn). (2)

The probability of a path is relatively straightforward to

compute from the transition rates and the escape rates,

p(Cn) = p(x0)

n∏

i=1

w(xi|xi−1)

wxi−1

. (3)

However, given the path Cn occurs, the probability it
completes in a certain amount of time t,

p(t|Cn) = ρ0 ∗
[
ρ1 ∗

[
. . . ∗

[
ρn−1 ∗

[
e−wxn (t−tn)

]]]]
, (4)

is more difficult to determine analytically. The nested
convolutions, represented by ∗ here, are of the exponen-
tial distributions of waiting times along a path. The
waiting time, ∆t = ti − ti−1, in each state, xi, along
a trajectory is exponentially distributed,

ρ(∆ti|xi) = ρi = wxie
−∆tiwxi , (5)

and independent of the other escape rates and states [43,
44]. The last exponential factor in these convolutions is
the survival probability of the final state. Because of the
stochastic transition times, some trajectories remain in
the final state for t − tn ≥ 0, but others may not reach
xn or may leave xn within the chosen time t.

What complicates (or simplifies) the formula for the
contracted path probability is the combinatorics of the
escape rates along the path: states along the path can
have degenerate escape rates that require an accounting
for their indistinguishability. In Ref. [38], Sun derived
the contracted path probability,

µ(Cn, t) = p(x0, t0)

n−1∏

i=0

w(xi+1|xi)

×
n′∑

j=1

νj
∂mj−1

∂w
mj−1
xj




e−wxj t

n′∏
k=1,
k 6=j

(wxk − wxj )mk



, (6)

where the sum is over the n′ unique escape rates. Pre-
ceding the sum is the product of the path probability
p(Cn) in Eqn. 3 and the prefactor,

∏n−1
i=0 wxi , in the con-

volutions of the waiting time distributions, Eqn. 4. The
function νj

νj =
(−1)mj−1

(mj − 1)!
. (7)

corrects for the indistinguishability of escape rates using
the degeneracy, mj , of the jth unique escape rate.

Our main analytical result is an exact expression for
the contracted path probability, µ(Cn, t) (Appendix) [56],

µ(Cn, t) = p(x0, t0)

n−1∏

i=0

w(xi+1|xi) (8)

×
n′∑

j=1

νjf
(0)
j

mj∑

l=1

(
mj − 1

l − 1

)
(−t)mj−l d(l−1)

j ,
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which consists of three functions. The first, νj , in Eqn. 7
again accounts for the multiplicity mj of the jth of the
n′ unique escape rates along a path. The second is a
function proportional to the exponential distribution of

waiting times in each state, f
(0)
j ∝ e−wxj t. The third,

d
(l−1)
j , is a combinatoric function of the escape rate mul-

tiplicities that derives from the nested convolutions of the
waiting time distributions; these combinatorics were pre-
viously pointed out as a particular challenge in deriving
the closed-form solution [38, 57, 58]. Equation 8 over-
comes this challenge and has advantages for describing
the stochastic thermodynamics of processes constrained
by time. It allows direct quantification of the relative
importance of paths with respect to their stochastic time
sequences, making it useful for extracting insights into
dynamical mechanisms. For example, the magnitude of
the probability can be used to assess the relative impor-
tance of competing mechanisms.

To validate this contracted path probability formula,
we generated a sample of stochastic trajectories for an
arbitrarily chosen path of length n = 1000 using kinetic
Monte Carlo [70, 71]. From this sample, we found the
histogram of occurrence times agreed with the analytical
distribution of occurrence times for the trajectories. This
theoretical distribution is:

p(t|Cn) =

n−1∏

i=0

wxi

n′∑

j=1

(−1)mj−1

(mj − 1)!

e−wxj t

n′∏
k=1
k 6=j

(wxk − wxj )mk

×
mj∑

l=1

(
mj − 1

l − 1

)
(−t)mj−ld(l−1)

j . (9)

Another point of comparison was the mean occurrence
time:

〈τ〉Cn =

∫ ∞

t0

t p(t|Cn)dt =

n∑

i=0

1

wxi
, (10)

which can be derived using the statistical independence of
the exponentially-distributed waiting times along a path.
We found good agreement between the analytical and
numerical mean path occurrence time.

To further validate the explicit contracted path proba-
bility formula, we compared symbolic and numerical cal-
culations for paths with length n ≤ 10. We evaluated
the convolution integrals in Eqn. 4, the path probability
p(Cn) in Eqn. 3, the non-explicit contracted path prob-
ability formula in [38], and the explicit contracted path
probability in Eqn. 8 for paths of lengths n ≤ 10. We also
analyzed paths with n ≤ 10 with all possible combina-
tions of degeneracies; for example, for n = 3 we checked
this formula for degeneracies of (1,1,2), (1,3), and (2,2)
as well as (1,1,1,1), the fully non-degenerate case, and 4
in the fully degenerate case. Analytically, we confirmed

that this formula also simplifies to known expressions [36]
when the escape rates are distinct,

µ(Cn, t) = p(x0, t0)

n∏

i=1

w(xi|xi−1)×

n∑

j=0

e−wxj t∏n
k=1
k 6=j

(wxk − wxj )mk
, (11)

and when the escape rates along a path are identical,

µ(Cn, t) = p(x0, t0)
tn

n!
e−wt

n∏

i=1

w(xi|xi−1). (12)

In the former case, the sum is over the f
(0)
j for each escape

rate j along the path, Appendix. This formula can be
evaluated for any path with known escape rates and a
given observation time, regardless of the path length n
or the size of the system.

Using the general expression for the path probability,
µ(Cn, t), we consider two ensemble average observables,
one for speed and one for dissipation, for the paths from
an initial state x0 to a target state xf . The amount of
time it takes a stochastic trajectory on average to follow a
path Cn is the path occurrence time 〈τ〉Cn =

∑n
i=0 w

−1
xi ,

the cumulative mean of the independent and exponen-
tially distributed waiting times along the path. Its in-
verse 1/〈τ〉Cn is a measure of the “speed” at which the
system traverses a single path. We first analyze paths
of length n connecting two states, measuring the speed
with the ensemble average for a given n: 〈1/τ〉n :=∑
Cn〈τ〉

−1
Cn µ(Cn, 〈τ〉Cn), and evaluating the path proba-

bility at the path occurrence time, 〈τ〉Cn . For the set of
paths with length n, we also analyze the average entropy
dissipated, −∆eSn/kB = −∑Cn(se[Cn]/kB)µ(Cn, 〈τ〉Cn).

MARKOV MODEL FOR RELATIONSHIP
BETWEEN PATH SPEED AND DISSIPATION

Equipped with the contracted path probability, we
built a minimal model to control these measures of speed
and dissipation and to test the hypothesis that faster
paths will dissipate more, Fig. 1(a). At small length and
time scales, if systems dissipate more to actuate struc-
ture formation on a specified timescale [59–62] they must
often evolve through a set of intermediate states that
separate the initial and target states [63, 64]. To rep-
resent this physical scenario, we adapt Onsager’s three-
state cycle, which he used for illustrating detailed bal-
ance (breaking) [65], by adding additional states. This
expanded model is a discrete state Markov model of dis-
sipative self-assembly in which paths that lead downhill
when εb > 0 (or uphill if εb < 0) in energy connect an
initial state to a final state, with an impeding dissipative
cycle.
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FIG. 1. Completing a nonequilibrium process more quickly
can result in more or less dissipated entropy on average. (a)
Model with three energy levels in which a potentially dissi-
pative cycle is intermediate between initial (high energy) and
final (low energy) states. Transition rates up the energy gradi-
ent (gray) are a function exp(−βεb/2) of the effective binding
energy βεb in units of kBT . Those down the energy gradi-
ent (thin black) represent the concentration of monomers, c.
Transitions around the cycle can dominate the entropy flow.
Clockwise (thick black) transitions with rate constant d can be
tuned relative to counterclockwise (thin black) with rate con-
stant c to control the dissipation. (b) Dissipation −∆eSn/kB
versus speed 〈τ−1〉n, both conditioned on path length n, for
the model in (a). When c = d (blue), dissipation increases
with the average speed of paths that connect unassembled
and assembled states. However, when c < d (gray), dissipa-
tion decreases with the average rate of path completion.

Stochastic paths are often numerically sampled or ex-
plicitly enumerated [28, 66–69]. Computationally, we
evaluate the path ensemble averages of speed and dissipa-
tion by enumerating paths up to n = 15 that connect the
high and low energy states. Taking the initial marginal
probability p(x0 = 1) = 1, we compute the probabil-
ity of each with our exact expression, but we could also
compute the probability of preferred paths (e.g., high
probability paths accounting for specified percentage of
probability flux) for larger networks using a depth-first
search procedure with path-culling criteria [37].

The model has three parameters representing common
experimental control variables: the relative stability of
the monomers and assembled structure (the binding en-
ergy, εb), the concentration of the monomeric units, c,
and a dissipation parameter d. The relationship between
c and d controls the dissipation associated with traversal
of a step of the cycle, ± ln c/d, which is zero when c = d.
In a physical system, the parameter d could be the con-
centration of a fuel consumed to drive the process, the
diffusion of matter in space, or some energy input driving
the system through the cycle states.

By design, these parameters provide control over both
the speed of paths connecting the high (low) energy ini-
tial state and the low (high) energy final state and the
associated dissipation. With increasing path length, n,
the entropy dissipated −∆eSn/kB can increase or de-
crease, depending on the exact values of the parame-
ters. However, the speed 〈1/τ〉n decreases with n because

longer paths have more terms (1/wxi) contributing to the
mean path occurrence time; a longer amount of time to
complete results in a slower speed, hence the decrease
with n. (We note, however, that this correlation may
not hold in networks whose escape rates are not simi-
lar in magnitude.) Varying these control parameters also
modulates the competition between the speed of path
completion and the associated entropy dissipated, show-
ing that faster paths do not necessarily dissipate more.
Figure 1(b) shows that in kinetic networks of this type,
the dissipation −∆eSn/kB can increase with the speed
〈1/τ〉n, as one would expect from equilibrium thermody-
namics, when there is no preferred direction among the
intermediate states. However, when there are nonequilib-
rium currents and a strongly preferred direction among
the intermediate states, then faster paths dissipate less,
Fig. 1(b) (gray).

To understand this behavior, first suppose that the
concentration parameters are nearly equal, c ≈ d. In
this case, the energy gradient determines the depen-
dence of dissipation on the timescale of path comple-
tion, Fig. 1(b)(blue). Only the sequence of states down
the energy gradient contribute to the path entropy flow
−se[C2]/kB = 2 ln(c) + βεb. [The behavior is similar
when cycle transitions are removed, Supplemental Mate-
rial (SM).] Longer paths, which necessarily include ad-
ditional jumps around the cycle, take longer, but do
not dissipate more. Consequently, the ensemble averages
−∆eSn/kB and 〈1/τ〉n are positively correlated because
they both decrease with path length n. Now, when c 6= d
and paths are long enough that jumps around the cy-
cle are significant, each transition adds ± ln c/d to the
entropy flow. Contributions to the entropy flow in one
direction of the cycle can be negated by subsequent tran-
sitions in the reverse direction, so only net transitions
on the cycle contribute. Paths that make K transitions
around the cycle in a particular direction will dissipate
an additional ±K ln c/d. The average entropy dissipated
increases with path length n. As a result, it is neg-
atively correlated with the mean path occurrence time
〈τ〉n, which increases linearly with n, Fig. 1(b)(gray).

Because of this balance between dissipation (traversal
of the cycle) and speed (traversal of the energy gradi-
ent), there are regions of parameter space where the dis-
sipation is an increasing or decreasing function of the
rate of path completion, Fig. 2. Transitions between
these regimes, where equilibrium thermodynamic intu-
ition does and does not hold, are controlled by the rela-
tive magnitudes of the cycle transition rates, c/d, and the
relative binding energy, βεb. Dissipation and speed are
positively correlated for c/d ≈ 1, when jumps around the
cycle do not significantly increase dissipation. Overall,
increasing the speed only increases the dissipation when
the cycle is weakly dissipative, c ≈ d.

Further, the thermodynamic stability of the assem-
bled state (determined by the binding energy βεb) has
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FIG. 2. Model parameters control whether faster paths dissipate more or less entropy on average. (a) Diagram mapping the sign of the
slope from −∆eSn/kB as a function of 〈1/τ〉n for a cross section of the parameter space (βεb, d | c = 5). For βεb > 0, the dissipation
increases with speed when c ≈ d (blue). For βεb < 0, the width of this region grows with increasingly negative βεb. Arrows indicate the
parameter sweeps shown in (b-e). (b) When paths are resolved by the number of jumps between the initial and final states (and averaged),
the entropy dissipated to the surroundings, −∆eSn/kB , can increase or decrease as a function of the mean rate of path completion 〈1/τ〉n.
The slope is controlled by the current around the cycle, which we tune by sweeping d ∈ [0.5, 10] in increments of 0.5 at fixed c = 5 and
βεb = 1. Dissipation increases with the rate of path completion (blue) for c ≈ d but decreases sharply when |c− d| � 0 (grayscale). Solid
lines connecting the slowest paths for the parameter sweep show a parabolic trend (black). (c) Dissipation, −∆eSn/kB , as a function of
the mean rate of path completion 〈1/τ〉n resolved (averaged) by the path length n. The slope is controlled by sweeping βεb ∈ [−10, 10] in
increments of 1 with fixed c = 5 and d = 8. (d) The yield

∑
Cn µ(Cn, 〈τ〉Cn ) has the same relationship to the dissipation −∆eSn/kB as

the speed 〈1/τ〉n. (e) Dissipation, −∆eSn/kB , as a function of the yield
∑
Cn µ(Cn, 〈τ〉Cn ) resolved (averaged) by the path length n. The

yield plateaus above βεb = 1.

an effect on where exactly this border between dissipa-
tive and weakly/non dissipative cycles lies in parameter
space. Widening the energy-level gap when βεb < 0 in-
creases the width of the area in | log c/d| parameter space
where the hypothesis holds, Fig. 2(a)(blue). Under these
conditions, paths are uphill in energy (βεb < 0), so an in-
creasing amount of energy is required to force the system
into the energetically unfavorable assembled state. These
paths are then generally lower in probability with less
entropy dissipation than their counterparts with higher
βεb, Fig. 2(e). Further, the probability decays (exponen-
tially with n) more quickly than the entropy dissipation
increases (linearly) with n. Therefore, the average dis-
sipation decreases with n and, as a result, speed and
dissipation are positively correlated for sufficiently neg-
ative βεb, Fig. 2(b). We see the same correlation when
the cycle transitions are removed and the binding energy
is negative (SM).

These observations for paths conditioned on their
length translate into the average speed, 〈1/τ〉, and dis-
sipation, −∆eS/kB , over the entire ensemble of paths,
Fig. 3. For example, the dissipation can be averaged
over paths of various lengths 0 ≤ n ≤ nmax, −∆eS/kB =
−∑n=0

∑
Cn(se[Cn]/kB)µ(Cn, 〈τ〉Cn). We systematically

varied the model parameters and identified conditions
where speed is maximal and this measure of dissipation
is minimal. Scanning values of βεb with fixed c and d,
there is a maximum average speed located at c = e−βεb ,

when jumps up and down the energy gradient have the
same transition rate, Fig. 3(a). Scanning d with fixed
values of βεb and c, there is a minimum average entropy
dissipation located at c = d, Fig. 3(b). These extrema
are also apparent in Fig. 2(b-e). Their locations mark
the transition of ensemble averages between regimes of
positive and negative correlation between speed and dis-
sipation.

Extremizing with respect to the model parameters, we
find that minimizing dissipation does not simultaneously
maximize speed or vice-versa in this model. Hence, dissi-
pation cannot be at its global minimum when speed is at
its global maximum. The maximal speed is dictated by
the thermodynamic stability of the final state controlled
by the binding energy βεb, Fig. 3(a). The minimal dissi-
pation is largely dictated by the nonequilibrium currents
around the intermediate states controlled by the kinetic
coefficients d/c, Fig. 3(b). To simultaneously minimize
dissipation and maximize speed, we use the fact that the
parameters provide independent control and extremize
each observable in sequence. Fig. 3(d-bottom) shows that
the minimum average entropy dissipated increases expo-
nentially with βεb, and with different growth rates on
either side of βεb = − ln c. We see in Fig. 3(b) that this
minimum entropy dissipated occurs for a given value of
βεb at c = d. At approximately the same relative bind-
ing energy, the associated average rate has a maximum,
Fig. 3(d-top). This maximum suggests that the most op-
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FIG. 3. Speed and dissipation extrema in the parameter
space. (a) Entropy dissipated −∆eS/kB versus speed 〈1/τ〉
averaged over all paths varying βεb ∈ [−10, 10] with fixed
c = 5 and d = {0.5, 0.6, 1, 1.5, 4}. Darker gray indicates larger
values of d. Dashed horizontal lines indicate c = e−βεb for
each d. Solid black line connects vertices for different d val-
ues. (b) Ensemble level dissipation −∆eS/kB versus speed
〈1/τ〉 for d ∈ [1.5, 10] in increments of 0.5 and other pa-
rameters fixed at c = 5 and βεb ∈ [1, 4] in increments of 1
(darker gray indicates lower value of βεb). Dashed vertical
lines indicate c = d for each fixed βεb value. Solid black
line connects vertices for different βεb values. (c) Maximum
average speed (bottom) and associated average entropy dissi-
pated −∆eS

∗/kB := −∆eS/kB |max〈1/τ〉 (top) for d ∈ [0.5, 10]
and fixed c = 5. (d) Minimum entropy dissipated on average
(bottom) and associated speed 〈1/τ〉∗ := 〈1/τ〉|min(−∆eS/kB)

(top) for βεb ∈ [−10, 10] for fixed c = 5. Dashed lines are
exponential trends for βεb > − ln c (blue) and βεb < − ln c
(gray).

timal combination of extremizing both the entropy dis-
sipated and the rate is obtained with a homogeneous ki-
netic network, c = d = e−βεb . Similarly, the maximal
average rate occurs for log d/c < 0.4, Fig. 3(c-bottom).
We see from Fig. 3(a) that the maximum average rate
for a given d occurs at c = e−βεb . Within this range the
associated entropy dissipated has a minimum at c ≈ d,
Fig. 3(c-top). So, for this model, the minimization of the
mean entropy dissipated and maximization of the mean
speed at this level commute.

CONCLUSIONS

Natural and synthetic systems often balance the speed
of transitioning between states and the associated cost
of dissipation. Understanding this balance has the po-
tential to benefit the rational design of synthetic systems

that are adaptive and responsive to their environment.
As a step in this direction, we derived an analytical for-
mula for the occurrence probability of stochastic paths
through the path summation solution of the master equa-
tion. This formula provides a means to identify and as-
sess the kinetic relevance of paths for stochastic processes
over a specified time frame and without necessarily con-
straining endpoints. This contracted path probability
is necessary to directly calculate ensemble-level observ-
ables, such as entropy production and flow, from a set
of paths explicitly constrained to complete the process in
a fixed time. Applying this formula to a model for self-
assembly showed that increasing speed need not be ac-
companied by increasing dissipation and, in some cases,
dissipation cannot be minimized when speed is maxi-
mized. Based on these results, networks governing the
dynamics of other physical and chemical systems, such
as biochemical reaction cycles and the dissipative cycles
of chemically-active materials, might be tuned to con-
trol whether faster paths dissipate less than slower paths
on average, counter to the equilibrium thermodynamic
intuition that “more haste” brings “more waste”.
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APPENDIX

We derived an explicit, closed form expression for the
contracted path probability:

µ(Cn, t) = p(x0, t0)

n−1∏

i=0

w(xi+1|xi)
n′∑

j=1

(
(−1)mj−1

(mj − 1)!

)




e−wxj t

n′∏
k=1
k 6=j

(wxk − wxj )mk




mj∑

l=1

(
mj − 1

l − 1

)
(−t)mj−ld(l−1)

j . (13)

One way to derive this result is to explicitly evaluate the
successive derivatives in Eqn. 6. These are derivatives of
the function

f
(0)
j =

e−wxj t

n′∏
k=1
k 6=j

(wxk − wxj )mk
(14)

with respect to the jth unique escape rate wxj . Here,

f (l) indicates the lth derivative of f . These derivatives

can be evaluated using the product rule, where f
(0)
j =

g(wxj )h(wxj ) is composed of the functions g(wxj ) =

e−wxj t and h(wxj ) =
[∏n′

k=1,k 6=j(wxk − wxj )mk
]−1

. Be-

cause of the product in h(wxj ), each derivative of fj re-

sults in a series of terms, all of which have a factor f
(0)
j .

Each successive derivative (with respect to the same cho-
sen unique escape rate) also accumulates a series of terms
t0 to tmj−1. These terms have an alternating sign from
the qth derivative of g(wxj ): (−t)qe−wxj t. The terms of
order t0 and tmj−1 correspond to the pure derivatives of
the h and g, respectively.

The pure derivative of the denominator, h, has a form
that is harder to evaluate; each factor the product within
h(wxj ) requires application of the product rule and chain
rule. The lth derivative for the kth factor is:

∂l

∂wlxj

1

(wxk − wxj )mk
=

(−1)l
l−1∏
u=0

(mk + u)

(wxk − wxj )mk+l
. (15)

This formula is sufficient to determine the first derivative
of h(wxj ),

h(1)(wxj ) =
−1∏

k=1
k 6=j

(wxk − wxj )mk
n′∑

l=1
l 6=j

ml

wxl − wxj
, (16)

where the sum accounts for the derivative of each factor
in the product.

For higher order derivatives of h(wxj ) with respect to
a unique escape rate, we must take into account all com-
binations of orders of derivatives among the terms in the
product. In each combination, the order of the deriva-
tives of each term in the product must sum to the total
order of the derivative of h(wxj ). The original function
h(wxj ) is an eigenfunction with respect to the deriva-
tive operator, just as every derivative of g(wxj ) contains

g(wxj ): ∂k/∂wkxj
(
e−wxj t

)
= (−t)ke−wxj t. So, f

(0)
j is

also an eigenfunction of ∂k/∂wkxj with eigenvalues that
account for the multiplicities of the unique escape rates.
The eigenvalues have mj terms, where mj is the degen-
eracy of the unique escape rate chosen. One of the terms
is the pure kth derivative of h (multiplied by g) and an-
other is the pure kth derivative of g (multiplied by h).
The remaining mj−2 terms of index l account for mixed
derivatives of h and g. The number of occurrences of each
of these mixed terms is represented by the binomial co-
efficient

(
mj−1
l−1

)
appearing in Eqn. 13. Each mixed term

is the product of the (l − 1)th derivative of g(wxj ) and
the (mj − l)th derivative of h(wxj ).

The closed form expression of the contracted path

probability in Eqn. 13 has one remaining term, d
(l−1)
j .

This term has the form of the h(wxj ) portion of the eigen-

value of fj (i.e., the portion of f
(mj−1)
j /f

(0)
j correspond-

ing to the derivative(s) of the denominator in Eqn. 14).
For the first derivative, l − 1 = 1, this function is:

d
(1)
j =

n′∑

α=1
α 6=j

mα

wxα − wxj
, (17)

which is what we expect from the first derivative of
h(wxj ) in Eqn. 16. The key to finding the explicit ex-

pression for the function d
(l−1)
j is recognizing that their

structure is related to the unrestricted partitions Ul−1 of

l − 1. The number of terms in d
(l−1)
j is the number of

unrestricted partitions |Ul−1| of l − 1. For example, if
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l − 1 = 2 then:

d
(2)
j =

n′∑

α=1
α6=j

mα(mα+1)

(wxα − wxj )2

+

n′∑

β=1
β 6=j

n′∑

γ=1
γ 6=j,β

mβmγ

(wxβ − wxj )(wxγ − wxj )
, (18)

with two terms corresponding to the two partitions
|U2| = 2 of l − 1 = 2. The sums are over the n′ unique
escape rates where wxα 6= wxj ; the multiplicity of the
unique escape rate α is mα. We can recognize that each
term is related to an unrestricted partition: the first term
corresponds to the partition (2) and the second term cor-
responds to the partition (1,1). More generally, we can
label each term as the qth partition, Uqk−1.

Also noteworthy is that each term has numerical coef-

ficients. In the examples above, these coefficients are all
one. However, for the qth partition, the number of coef-
ficients, χ, in the partition |Uqk−1| is the number of sums

for that term. The coefficient of the kth term in d
(l−1)
j is

also related to the unrestricted partitions of l − 1 by:

C(l − 1, k) =
(l − 1)!

|Ukl−1|∏
v=1

(χv)!
|Ukl−1|′∏
w=1

(λw)!

(19)

where there are |Uql−1|′ unique values in the qth parti-

tion of l − 1 and the vth unique coefficient χv in the qth

partition of l−1 has a multiplicity of λv. With these ob-

servations, we can construct any d
(l−1)
j . For example, in

Eqn. 18 we can recognize that the first term corresponds
to the partition (2) and has coefficient C(2, 2) = 1, while
the second term corresponds to the partition (1,1) and
has coefficient C(2, 1) = 1. We confirmed these coeffi-
cients for l − 1 ≤ 12.
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