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Wesley W. Erickson and Daniel A. Steck
Oregon Center for Optical, Molecular, and Quantum Science and Department of Physics,
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Extreme events are by nature rare and difficult to predict, yet are often much more important
than frequent, typical events. An interesting counterpoint to the prediction of such events is their
retrodiction—given a process in an outlier state, how did the events leading up to this endpoint
unfold? In particular, was there only a single, massive event, or was the history a composite of
multiple, smaller but still significant events? To investigate this problem we take heavy-tailed
stochastic processes (specifically, the symmetric, α-stable Lévy processes) as prototypical random
walks. A natural and useful characteristic scale arises from the analysis of processes conditioned
to arrive in a particular final state (Lévy bridges). For final displacements longer than this scale,
the scenario of a single, long jump is most likely, even though it corresponds to a rare, extreme
event. On the other hand, for small final displacements, histories involving extreme events tend
to be suppressed. To further illustrate the utility of this analysis, we show how it provides an
intuitive framework for understanding three problems related to boundary crossings of heavy-tailed
processes. These examples illustrate how intuition fails to carry over from diffusive processes, even
very close to the Gaussian limit. One example yields a computationally and conceptually useful
representation of Lévy bridges that illustrates how conditioning impacts the extreme-event content
of a random walk. The other examples involve the conditioned boundary-crossing problem and the
ordinary first-escape problem; we discuss the observability of the latter example in experiments with
laser-cooled atoms.

PACS numbers: 05.40.Fb, 02.50.Ey, 02.50.-r

I. INTRODUCTION

Extreme events affect us in many ways, from geologi-
cal and meteorological phenomena to market crashes and
epidemics, and both science and society have been in-
creasingly appreciating the need to understand and plan
for such events [1, 2]. Gaussian stochastic models fail
to predict extreme events, which are commonly associ-
ated with probability distributions with “heavy” power-
law tails. Lévy processes (specifically, stable Lévy pro-
cesses [3–5]) in particular are important prototypes for
heavy-tailed random processes exhibiting large jumps or
“Lévy flights” (Fig. 1), as they are universal for ran-
dom walks generated by heavy-tailed distributions, in
the same sense that Gaussian processes are universal for
finite-variance steps. Lévy processes play an important
role in understanding a wide range of phenomena [6, 7],
including ecology [8], finance [3], fluid flows [9], chaotic
transport [10], stochastic searches [11, 12], and particu-
larly in laser-cooled atoms [13–20]. The stable processes
also produce strikingly counterintuitive behavior; for ex-
ample, intriguing work has shown that the image method
fails to predict their first-passage times [21–24].

Of general importance in probability and statistics
is the question of inference, which in stochastic pro-
cesses is embodied by conditioned evolution. The Brow-
nian bridge—a continuous-time Gaussian stochastic pro-
cess specified to arrive at some final location (state)—
is a well known and widely used examples of a condi-
tioned process. The properties and statistics of Brownian
bridges have been thoroughly studied [25]; they are pro-

ductively applied in diverse areas, occurring in financial
mathematics [26, 27], models of animal movements [28],
Monte Carlo methods in quantum mechanics [29, 30],
random interfaces and potentials [31–33], and extreme-
value statistics [34]. Because Lévy-type statistics arise in
a similarly diverse range of applications, and are also a
cornerstone of extreme-event science, clearly a detailed
study of similarly conditioned, heavy-tailed processes is
needed. (An analogous generalization is to fractional
Brownian bridges [35], which have been applied to the
study of biological autoluminescence [36].) Work on such
Lévy bridges is at a nascent stage, however: they have
been formalized conceptually and applied to finance and
insurance [37, 38], and a few functionals of Lévy bridges
have been characterized [39–41].

This paper explores the dynamics of continuous-time
Lévy processes x(t) conditioned to arrive at the final state
L = x(T ). A key question that we address is: Was this
arrival a result of a single, large event, or a composite
of multiple, smaller events? From the typical behavior
of heavy-tailed processes, where rare but large events
dominate the evolution, one may expect that when ar-
riving at an extreme state, only a single extreme event
is responsible, simply due to their rarity. However, a
proper accounting of the responsible events is only pos-
sible by analyzing the conditional probabilities for the
state at intermediate times. The structure of conditional
probability densities for intermediate times t ∈ (0, T )
makes a transition from unimodal to bimodal as the ar-
rival point L varies, leading to interesting and counter-
intuitive effects, particularly in rare but important cases
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FIG. 1. (Color online.) Sample path of an unconditioned α-
stable Lévy process, α = 1.9. Simulated path has time steps
∆t = T/500 with increments ∆x > Lb(∆t/T )1/α emphasized
(bold/red).

where an extreme jump occurred. Above the bimodal
transition, the typical conditioned history contains only
a single large event, while below the transition the ten-
dency is towards a composite of smaller events. This
analysis provides insight into first-passage problems for
stable processes, highlighting dramatic qualitative differ-
ences between Gaussian and heavy-tailed processes, even
when the latter are “close to” Gaussian. This work also
provides a more precise, mathematical basis for the intu-
ition that random variations that occur in between rare,
extreme events tend to seem Gaussian, so much so that
there is a strong temptation to ignore extreme events in
mathematical models, with sometimes devastating con-
sequences [42].

A closely related existing result is the “big-jump prin-
ciple” [43], which observes under fairly general conditions
that for a sum of random variables, in the limit of a large
summed value, the distribution of the sum agrees with
the distribution of the maximum of the variables. The
implication is again that extreme events are dominated
by a single largest jump, rather than many small dis-
placements. This holds true even in the case of stretched-
exponential processes, with sub-power-law tails [44]. An-
other closely related concept is that of “condensation” in
probability space, which is analogous to the condensation
phase in stochastic mass transport where a macroscopi-
cally large mass forms at a single site on a lattice [45].
In a stochastic process, the analogous phenomenon is the
emergence of one or more jumps responsible for a macro-
scopic fraction of the total displacement after many steps.
Condensation occurs in heavy-tailed processes, but can
also occur even in light-tailed processes in the presence of
multiple constraints (e.g., conditioning on the values of
both the total sum and the sum of squared steps) [46, 47].
In another example, a double transition to the condensed
state occurs in the run-and-tumble particle [48]. Our re-
sults augment this prior work by providing a length scale
defining the crossover to the large-jump regime, which is
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FIG. 2. (Color online.) Bifurcation diagram showing max-
ima (solid/red) and minima (dashed/blue) of the conditioned
density (1) for α = 1. Inset: conditioned density before and
after the bifurcation.

based on the analysis of conditioned probabilities.

II. DEFINITIONS

The continuous-time α-stable Lévy processes are spec-
ified in terms of the characteristic function 〈eikx(t)〉 =
e−tσ

α|k|α at time t, provided x(0) = 0 [5]; the Fourier
transform yields the probability density fα(x; t) for x(t),
thus being “stable” under iterated convolutions. For sim-
plicity we will only consider symmetric stable processes.
Also, σ is a width-scaling parameter, and α ∈ (0, 2] char-
acterizes the long tails of the densities. The case α = 2
is Gaussian, while α < 2 densities have heavy, power-law
tails scaling as |x|−(1+α). The variance diverges for α < 2
and the mean absolute deviation diverges for α ≤ 1. The
power-law tails are responsible for jump discontinuities
in the stochastic evolution that are absent in the Gaus-
sian case. To be precise about terminology, we will refer
to these jump discontinuities as “jumps,” while instead
using “steps” or “displacements” to refer to the change
in state over a finite time interval.

III. BIFURCATION LENGTH

A. Lévy bridges

In a Lévy bridge, the arrival point is specified as
x(T ) = L for some arrival time T > 0. Then the in-
termediate position x1/2 := x(T/2) has the conditional
density (“midpoint density”)

fα(x1/2;T/2|x=L;T ) =
fα(x1/2;T/2) fα(L−x1/2;T/2)

fα(L;T )
(1)

in terms of the unconditioned density fα(x; t). Once
x(T/2) is sampled, the bridge is effectively bisected into
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FIG. 3. (Color online.) Variation of the midstep density (1) with Lévy index α and arrival point L. Curves highlighting
maxima (solid/red) and minima (dashed/blue) are superimposed.

two bridges, and the midpoint-sampling process may be
iterated to sample the Lévy bridge to any desired time
resolution. For α = 2 the midpoint density retains the
same Gaussian form as the unconditioned density, but
the conditioned and unconditioned forms differ for any
α < 2.

The Cauchy (α = 1) case is a good example of what
happens for α < 2. For L < σT , this distribution has a
single peak at x1/2 = L/2, which has a seemingly intuitive
interpretation: if a particle travels from x = 0 to L in
time T , the most probable intermediate position at T/2
is L/2. However, this intuition breaks down at the spe-
cial arrival point Lb = σT , beyond which the midpoint
density becomes bimodal, and the single maximum bifur-
cates into a pair at x1/2 = [L±(L2−σ2T 2)1/2]/2 (Fig. 2).
For L � Lb the peaks are well separated, with maxima
approaching asymptotes x1/2 ∼ 0, L. In this case, the
interpretation of the midpoint changes: the large final
displacement L tends to break down into one large step
of order L and one small step, rather than two steps
roughly equal to L/2. A bridge with sufficiently large
overall transition length L will tend to maintain this as
a single jump discontinuity.

Similar structural changes in the midpoint density oc-
cur for all α < 2. Fig. 3 shows typical possibilities of how
the bifurcation occurs as L increases. For α = 1.5 there
is a pitchfork bifurcation [49], as in the Cauchy case,
where two maxima and a minimum are created from a
single maximum. However, closer to the Gaussian limit
(α = 1.99 and α = 1.99999), the structure is more com-
plicated: first, a pair of side peaks is born via tangent
bifurcations; second, the side peaks grow to match the
central peak in height; and third, a central minimum
forms in a reverse-pitchfork bifurcation. For any α the
end results are the same: a unimodal density transforms
into a bimodal density with well separated peaks.

B. Variation with α

An obvious characterization of the bifurcation length
Lb is the value of L for which the curvature of the mid-

point density (1) at x1/2 = L/2 changes sign (Fig. 4).
However, for α above a critical value αc, as we have seen,
the midpoint density does not exhibit a simple bifurca-
tion to a bimodal density; rather, there are three distinct
transitions. [The critical value αc ≈ 1.7999233 occurs
when the fourth derivative of the midpoint density (1)
vanishes at x1/2 = L/2 (in addition to the vanishing of the
second derivative, which already defines Lb).] All three
bifurcation lengths are shown in Fig. 4 for α > αc. They
all usefully characterize the structural changes of the dis-
tribution, though in practice the particular choice of Lb is
not too important—as we will see, the transition between
“short” and “long” displacements is not sharp. (We use
the curvature-change criterion except where noted.)

Fig. 4 also shows the transition away from power-law
tails in the limit α −→ 2. The bifurcation length di-
verges in this limit, so that for the Gaussian (α = 2)
case, any final step L is a “short step.” The nature of
this divergence may be analyzed using the asymptotic
density fα(x; t = 1) ∼ f2(x; 1) + δ|x|δ−3, valid for large
|x| and small δ := 2−α [50]. One can show that Lb (de-
fined by the curvature-sign-change criterion) diverges as
Lb ∼ [−4σ2T log(πδ2/2)]1/2. Numerically, Lb seems to
diverge similarly according to the other criteria as well.
Thus, even very close to the Gaussian limit α = 2, Lb

remains relatively small (cf. Fig. 3, third panel).

C. Conditioned sampling

As noted above, when sampling the intermediate state
of a Lévy bridge for L > Lb, a jump of order L likely per-
sists. Upon further recursive subsampling of the bridge’s
intermediate states, this behavior locks in: Lb is ef-
fectively smaller when sampling sub-bridges on progres-
sively smaller time intervals, so that the substep length L
tends to exceed Lb by an ever increasing margin, making
it progressively less likely to be split into smaller jumps.
Fig. 5 illustrates this: for L = 1.5Lb there is typically
a single long step that persists to high temporal resolu-
tion. By contrast, for L = 0.5Lb, the overall displace-
ment has decomposed into many small steps, with an
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FIG. 4. (Color online.) Variation of boundaries between
“small” and “large” steps with α. Curves indicate bifurca-
tion lengths Lb for which the center of the midstep density
has vanishing curvature (red/solid), the half-step distribution
develops side peaks (blue/dashed), and side peaks are equal
in height to the center peak (green/dot-dashed). Inset: mag-
nified view for α > αc.

appearance resembling Brownian motion. The interme-
diate case L = Lb exhibits both behaviors.

This behavior under conditioned subsampling shows
that the bifurcation length Lb yields an innate notion of
large steps of an α-stable process. Specifically, an ob-
served final displacement |x(T )| � Lb most likely cor-
responds to a single, similarly large jump discontinuity,
even if the detailed evolution up to the final time T
is not known. Meanwhile, a smaller final displacement
|x(T )| <∼ Lb is more likely to be a composite event com-
prising multiple smaller jumps. This latter conclusion
can be understood from the tails of the conditioned den-
sity (1), which scale as |x|−2(1+α), which are relatively
short compared to the |x|−(1+α) tails of the step density
fα(x; t). This is a powerful qualitative inference based
only on the endpoints of the process; it is useful in prob-
lems of interpolation of a stochastic process between ob-
servations (e.g., animal movement [28] and kriging [51]),
if the underlying process is heavy-tailed. Additionally,
this provides a means for inferring whether a rare, signif-
icant event occurred between observations. Such criteria
are important for the analysis of statistical extremes [2]
and for specific problems like detecting market crashes
[52].

A salient feature of stable Lévy processes is scale-
invariance. So how is it possible to have an intrinsic
scale Lb? Scale invariance is best seen in the Lévy–
Khintchine representation [3–5], where symmetric sta-
ble processes have pure power-law jump-rate densities
sin(πα/2)Γ(1 + α)σα/(π|∆x|1+α). In some sense, then,
any scale based solely on the step distribution (width at
half maximum, etc.) is inherently nonsensical. However,
conditioning introduces a time scale T , which induces a
length scale—one that can only be understood through
the variable structure of the conditioned density (1). Im-
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FIG. 5. (Color online.) Typical sample paths of Lévy bridges
for α = 1.9, illustrating the qualitative transition with L.
Each path was generated through 10 recursive subsamplings
from the midstep distribution (1).

portantly, this scale differs from the well known length
scale σT 1/α [43, 44]. This distinction defines an intu-
itive notion of “long” displacements that captures how,
visually and intuitively, the large-scale structure of stable
Lévy processes seem similar to Gaussian processes punc-
tuated by discrete jump discontinuities (Fig. 1). Math-
ematically, this similarity is not obvious: Stable Lévy
processes with α < 2 have a dense set of discontinuities,
whereas Gaussian process are continuous (almost surely).

IV. APPLICATIONS

A. Stretched Lévy bridges

In the Gaussian case, one important representation of
the Brownian bridge is [53]

W (t) = B(t) +
t

T

[
W (T )−B(T )

]
, (2)

where W (t) is a Wiener process (unconditioned Lévy pro-
cess with α = 2, σ = 1/

√
2), and B(t) is a Brownian

bridge [Wiener process conditioned to have a fixed ar-
rival B(T )]. Intuitively, in the “standard bridge” case
B(T ) = 0, the second term is the ballistic trajectory
from 0 to W (T ), while B(t) comprises the random fluc-
tuations. This representation, when interpreted as an
expression for B(t) in terms of W (t) and the ballistic mo-
tion, provides a simple way to simulate Brownian bridges
using any Wiener-process algorithm. Naively, it seems
like this representation should be valid for α < 2 sta-
ble processes: Dividing the evolution into time steps ∆t,
the increments of the stable process and bridge are of
order ∆t1/α, while the ballistic correction is of order ∆t.
The ballistic component is thus of order ∆t1−1/α relative
to the Lévy-process steps, and thus should be negligi-
ble as ∆t −→ 0 provided α > 1. In the Gaussian case
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FIG. 6. (Color online.) Simulated probability for Lévy
bridges generated via Eq. (2) to cross a boundary at d =

σT 1/α, as the rejection threshold Lthresh varies.

this heuristic argument is correct, and the representa-
tion (2) is valid—any ballistic “stretch” does not affect
the Gaussian statistics in the continuum limit. It fails,
however, for α < 2: if x(T ) corresponds to a sufficiently
large final displacement, then the stretch is excessive,
and the resulting “bridges” produce erroneous results in
simulations. (Ref. [40] noted this inequivalence between
stretched and conditioned bridges [54].)

Since we have a large-step criterion, it is possible to
deal with excessive stretches. The fix is to define a thresh-
old Lthresh, and an unconditioned Lévy sample path is
only stretched as in Eq. (2) if its final point L = x(T )
is within Lthresh of the bridge’s arrival point. Other-
wise, it is rejected and other paths attempted until a
bridge is successfully generated. The α-dependent bifur-
cation length Lb from Fig. 4 marks a scale Lthresh below
which the stretching algorithm should yield an accurate
set of Lévy bridges. A test of this algorithm, computing
the probability Pcross for Lévy bridges (with L = 0) to
cross a boundary at d = σT 1/α before time T , illustrates
this transition (Fig. 6) [55]. In particular, the simulated
Pcross rapidly becomes accurate when Lthresh decreases
below Lb (the bridge construction is exact in the limit
Lthresh −→ 0). As a practical bridge-generation method,
this is much more efficient than using σ∆t1/α (the small-
est natural length scale) for Lthresh.

A particularly interesting feature in Fig. 6 is that
Pcross = 0.9% is so small for the case α = 0.5. (By
contrast, Pcross = 31.5% in the unconditioned case.)
The surprise here is that the smallest-α case has the
strongest tendency towards large jumps—intuitively, the
best “mobility”—and yet has the smallest boundary-
crossing probability. However, conditioning on L = 0
also conditions away the tendency to have extreme jumps
(and thus to easily cross the boundary), precisely because
an extreme jump is suppressed by the requirement of a
compensating (and correspondingly rare) jump to return
to the final target state.
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FIG. 7. (Color online.) Simulated conditioned first passage
time distributions for α = 1.99999 and d = L/2 are shown
for L = 0.1Lb (blue/squares) and L = 2Lb (red/triangles).
Exact densities for α = 2 [25] for the same L values are shown
for comparison in each case (blue/solid and red/dashed, re-
spectively).

B. Conditioned first passage

First-passage times, defined here as the first time a pro-
cess x(t) exceeds a boundary d, are of broad importance
[56]. They are especially interesting for Lévy processes
due to the universal Sparre Andersen scaling [21, 22, 57],
where the tail of the first-passage-time distribution is
α-independent. However, as we have seen, conditioned
Lévy bridges have a particularly sensitive transition as
α −→ 2, a pattern that continues for first-passage times.

An intuitive picture of the conditioned first-passage
time follows from the qualitative appearance of the sam-
ple paths for L = 1.5Lb in Fig. 5. A dominant jump
is consistently present among the paths, but not at any
particular time. This can be regarded as an outcome
of recursively sampling the midpoint density (1). For
L � Lb, a large step likely persists under sampling it-
erations, but due to the symmetry of the midstep distri-
bution, the large step is equally likely to be associated
with any time subinterval. Since the first-passage time is
likely due to the dominant jump, the first-passage time
should be uniformly distributed. Fig. 7 confirms this in-
tuition with simulations of the first passage density [58].
For L = 2Lb the first passage density is indeed uniform.
A small change from α = 1.99999 to the Gaussian case
yields a remarkably different distribution: approximately
Gaussian, centered at t ≈ T/2. The Gaussian result fol-
lows intuitively from Eq. (2), since the most likely bridges
in this regime are concentrated around the ballistic path
to the endpoint.

For a smaller overall displacement (L = 0.1Lb), the
first-passage-time densities in the α = 1.99999 and Gaus-
sian cases match closely. This is consistent with the ob-
servation that for L� Lb, the conditioned Lévy bridges
are qualitatively similar to Brownian bridges. Neverthe-
less, the rare but important extreme jumps generate re-
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FIG. 8. (Color online.) (a) Simulated first-escape-time dis-
tributions from (−d, d) for verious Lévy processes starting at
x = 0, showing long-time behavior that matches Gaussian
(α = 2) behavior, but diverging short-time behavior. (b)
Simulated first-passage distributions [i.e., first escape from
(−∞, d)] show similar behavior. The bifurcation time Tb is
marked by a diamond symbol in each case. The width-scaling
parameter σ is chosen for each α to obtain matching asymp-
totic behavior, as discussed in the main text.

markably non-Gaussian behavior, even close to the Gaus-
sian limit.

C. Unconditioned first escape

The major theme of this paper has been the condi-
tioned evolution of stochastic processes. However, the
reasoning we have used thus far is useful in studying un-
conditioned evolution as well. As a common example,
consider the first-escape time of a stable Lévy process
starting at x = 0 from the interval (−d, d), τd := inf{t :
|x(t)| ≥ d}. The simulated probability densities for the
escape time for various values of α are shown in Fig. 8(a).
The striking feature of this set of distributions is the uni-
versal, α-independent asymptotic behavior at long times.
Each of the probability distributions splits away from the
Gaussian (α = 2) distribution at a point that is different
for each value of α.

To understand the behavior here, first note that the
portion of the escape-time distribution to the left of any
particular time τ acts as a conditioned density, because it
refers only to the subset of trajectories that has escaped
by time τ . This implicit conditioned behavior allows us
to apply our results for conditioned processes to this sim-
ple escape-time problem. The bifurcation length Lb is of
particular utility here. Recall that a long jump must have
occurred in an escape by time τ if d > Lb = L̃bστ

1/α,
where L̃b is the value of the bifurcation length Lb given
by setting σ = T = 1. Rearranging this expression,
we can define the bifurcation time scale Tb such that
an escape by time τ must have involved a long jump if
τ < Tb := (d/σ)α/L̃αb . This bifurcation time is marked
as a diamond on each distribution in Fig. 8(a), and it
evidently marks the time scale where the escape-time
distribution for each stable Lévy case splits away from
the Gaussian limit. For large escape times τd � Tb, an
extreme jump is unlikely, and any Lévy process behaves
basically as a Gaussian random walk. On the other hand,
for small escape times τd � Tb, a single large jump is the
most likely scenario. In this case the reasoning of Sec-
tion IV B applies, and the dominant jump is equally likely
to occur at any time below a fixed τ � Tb. In the escape-
time distributions, this behavior appears as an asymptot-
ically constant behavior of the distribution as τd −→ 0
(where in the Gaussian case, the probability density van-
ishes here). This constant value of the density at small
escape times decreases with increasing α, as expected be-
cause the probability of an extreme jump also decreases
(owing to the less-fat tails). The universality of the long-
time asymptotic tail here is thus another example of the
intuition we mentioned above that heavy-tailed processes
resemble Gaussian processes between occurrences of rare,
extreme events.

Figure 8(b) shows the analogous behavior for (uncon-
ditioned) first-passage densities τd := inf{t : x(t) ≥ d},
corresponding to escape from the interval (−∞, d). The
division between Gaussian-like and extreme-event behav-
ior is also apparent here—the main difference is the form
of the asymptotic tail, which has the characteristic Sparre
Andersen scaling of ∼τ −3/2d .

At this point some brief comments clarifying the sim-
ulated distributions in Fig. 8 are in order. The dis-
tributions were computed by numerical integration of
the fractional diffusion equation [59]. It is most sen-
sible to compare distributions with the same long-time
asymptotic behavior, accomplished by an appropriate
choice for the α-dependent width-scale parameter σα.
For the first-escape problem, the asymptotic tail is of
the form e−σ

α
α λ

(α)
1 t/dα [60], where λ

(α)
1 is the smallest

eigenvalue of the fractional Laplace operator (−∇2)α/2

on the bounded domain [−1, 1] (e.g., λ
(2)
1 = π2/4 in the

Gaussian limit). The asymptotics thus match across α
via the choice σ αα /σ

2
2 = π2/4d2−αλ

(α)
1 , using the Gaus-

sian scale parameter σ2 as a reference. The asymp-
totic tail in the first-passage problem has the form
(d/σ)α/2/α

√
πΓ(α/2)τ3/2 [24]. These asymptotics match



7

for the choice σ αα /σ
2
2 = 1/d2−αΓ2(1 + α/2).

The bifurcation time (and thus length) mark a bound-
ary between Gaussian and extreme-event behavior in a
conceptually simple setting of the escape problem, which
is directly amenable to experimental observation. For
example, we have already mentioned that laser-cooled
atoms are an important prototype system for study-
ing Lévy-type dynamics [13–20] (including the big-jump
principle [43]). A setup appropriate for the study of es-
cape times is that of a single laser-cooled atom monitored
by a fluorescence-detection system [14, 61]. An aperture
for the fluorescence photodetector defines the region from
which the atom is to escape; the time that it takes to ob-
serve a sharp drop in the atomic fluorescence after the re-
lease of the atom (from its initially prepared position) is a
measure of the escape time. A more detailed discussion of
the Lévy behavior of laser-cooled atoms as well as typical
parameters for an experimental realization are included
in the Supplemental Material [62]. Of course, beyond
laser-cooled atoms, this first-escape behavior should be
observable in essentially any stochastic physical system
that is accurately modeled by stable Lévy processes.

V. SUMMARY

We have discussed the conditioned evolution of α-
stable Lévy processes as a prototype for extreme events.

The knowledge of a particular final state turns out to
retrodict whether an extreme event occurred along the
way. This conclusion follows from an analysis of the
conditioned densities, which change form as the final
displacement passes a threshold, the bifurcation length.
The analysis here has applications to the construction
of Lévy bridges, the qualitative understanding of con-
ditioned first-passage dynamics, and the understanding
of unconditioned first-escape problems. We have also
pointed out how the manifestation of the bifurcation
length in the first-escape problem can be studied experi-
mentally with laser-cooled atoms.
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