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Physical systems that are dissipating, mixing, and developing turbulence also irreversibly trans-
port statistical density. However, predicting the evolution of density and entropy from atomic and
molecular scale dynamics is challenging for non-steady, open, and driven nonequilibrium processes.
Here, we establish a theory to address this challenge for classical dynamical systems that is analogous
to the density matrix formulation of quantum mechanics. We show that a classical density matrix
is similar to the phase-space metric and evolves in time according to generalizations of Liouville’s
theorem and Liouville’s equation for non-Hamiltonian systems. The traditional Liouvillian forms are
recovered in the absence of dissipation or driving, by imposing trace preservation or by considering
Hamiltonian dynamics. Local measures of dynamical instability and chaos are embedded in classical
commutators and anti-commutators and directly related to Poisson brackets when the dynamics are
Hamiltonian. Because the classical density matrix is built from the Lyapunov vectors that underlie
classical chaos, it offers an alternative computationally-tractable basis for the statistical mechanics
of nonequilibrium processes that applies to systems that are driven, transient, dissipative, regular,
and chaotic.

I. INTRODUCTION

Whether classical or quantum mechanical, the trans-
port of statistical density is our primary means of mak-
ing statistical predictions of macroscopic behavior from
microscopic dynamics [1]. Classically, Jacobi’s form of
Liouville’s equation of motion for the phase space den-
sity of mechanical systems is the foundation of statistical
mechanics [2]. Through extensive efforts, it has many
forms and approximations, including the Boltzmann
equation, the Vlasov approximation, the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy, that underlie ap-
plications across physics and chemistry [1]. These vari-
ous mathematical forms lead to macroscopic predictions
with varying fidelity and numerical tractability. In quan-
tum mechanics, the Liouville-von Neumann equation de-
scribes the evolution of the density operator [3]; it is the
fundamental equation of quantum statistical mechanics
and a main ingredient in quantum computing, tomogra-
phy, and decoherence [4]. To translate between the classi-
cal and quantum mechanical Liouville equations, one can
use Dirac’s rule [5] of replacing Poisson brackets by com-
mutators. Here, we establish a density matrix formalism
for classical systems that supplants Dirac’s heuristic with
a more direct correspondence between these physical the-
ories.

There are other classical theories that add weight to
the question of whether formulations of quantum me-
chanics might have classical counterparts that could ad-
vance statistical physics [6]. Operator-theoretic methods,
such as Frobenius-Perron and its dual Koopman formal-
ism [7], give a formal analogy to quantum mechanics by
lifting the description of classical systems to infinite di-
mensions [8]. They preserve global nonlinear features and
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guarantee exact linearization of the dynamics, providing
useful connections between classical dynamical systems
and statistical physics [9, 10]. However, they can be dif-
ficult to apply to systems under active external control
and to find observables representing the nonlinear system
in the lifted linear space [11]. Symmetries can make the
calculation of the Koopman operator approximation and
its spectral properties more efficient [12], but, in prac-
tice [13, 14], the number of variables must be truncated
to finite-dimensions (e.g., through extended [15, 16] or
kernel [17] dynamic mode decomposition [18]).

While Liouville’s equation is the formal foundation of
nonequilibrium statistical physics, many theories avoid,
approximate, or subject it to model specific solutions [1].
Here, we construct a classical density matrix formula-
tion of dynamical systems on the local stability of non-
linear dynamics [20] – Lyapunov exponents and vec-
tors [21]. The infinitesimal perturbations, Lyapunov vec-
tors, defining the density matrix have been used to ana-
lyze rare trajectories [22], jamming [23], nonequilibrium
self-assembly [24], equilibrium and nonequilibrium flu-
ids [25–27], and critical phenomena [28]. From these
finite-dimensional vectors, we derive a classical analogue
of the von Neumann equation for the density matrix dy-
namics. We show this classical density matrix is simi-
lar to the (dual) metric tensor and that its determinant
evolves according to a generalized Liouville equation and
satisfies a generalized Liouville theorem. And, imposing
a norm-preserving dynamics with Lyapunov exponents
not only normalizes the density matrix, it reinstates the
form of the usual Liouville equation for generic, non-
Hamiltonian dynamical systems.

To start, we define an unnormalized density matrix
from the linearization of the classical dynamics, Sec. II.
The properties of this density matrix lead to a general-
ization of Liouville’s theorem and equation, Sec. II A. For
Hamiltonian dynamics, Sec. II C, we show the reduction
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FIG. 1. Snapshots of the strange attractor and an initially random, unit perturbation transported along a chaotic solution of
the Lorenz-Fetter model. Parameters are those originally used by Lorenz [19]: µ = 10, β = 8/3, ρ = 28.

to the usual Liouville theorem and equation and estab-
lish a connection to Poisson brackets. The dynamics of
a normalized density matrix, Sec. III, transform the gen-
eralized Liouville’s theorem and equation to the usual
form, Sec. III A. In Sec. III B, we discuss a basis repre-
sentation of the density matrix, a common consideration
in quantum mechanics, with another form of Liouville’s
theorem.

II. DYNAMICS OF THE CLASSICAL
UNNORMALIZED DENSITY MATRIX

Consider a classical dynamical system with state-space
variables {xi}. At any moment in time, these variables
together mark a point x(t) := [x1(t), x2(t), . . . , xn(t)]> in
an n-dimensional state space M that evolves according
to: ẋ = F [x(t)]. Perturbations to the system will also
evolve under the flow of the dynamics. Because of their
analytical and computational tractability, infinitesimal
perturbations |δx(t)〉 := [δx1(t), δx2(t), . . . , δxn(t)]> ∈
TM and their linearized dynamics are a well established
means of analyzing the stability of nonlinear dynamical
systems [21]. These perturbations to the initial condition
stretch, contract, and rotate over time,

|δẋ(t)〉 = A[x(t)] |δx(t)〉 , (1)

as they evolve with the phase point under the local
stability matrix A := A[x(t)] = ∇F with elements
(A)ij = ∂ẋi(t)/∂xj(t). Figure 1 shows a unit pertur-
bation vector as it is transported across the Lorenz at-
tractor.

A common approach is to consider an infinitesimal k-
dimensional phase space volume surrounding the phase
point x(t) that transforms its shape over time. We take
the volume to be spanned by a finite set {|δψi〉} of
0 < k ≤ n linearly independent tangent vectors [21],
|δψi〉 ∈ TM with i = 1, 2, . . . , k, that also obey the lin-
earized dynamics. Examples include Gram-Schmidt and
covariant Lyapunov vectors [29, 30]. For the present dis-
cussion, we assume the elements of tangent vectors (rep-
resented by a ket/column or a bra/row) are real. If the
dynamics are Hamiltonian, then according to Liouville’s
theorem, the volume spanned by n of these tangent vec-
tors is conserved.

Compared to quantum mechanics, Eq. 1 is analogous
to Schrödinger’s equation [5]. The difference is that in-
stead of infinite-dimensional, complex Hilbert space vec-
tors, here we are considering classical, finite-dimensional,
and real tangent-space vectors. Continuing this anal-
ogy, we can realize that an alternative representation of
quantum states is the density operator [4, 31, 32]. The
quantum density operator is used in quantum technology
and statistical mechanics and particularly important for
many-body and open quantum systems [33]. Because of
the widespread use of this formulation in quantum me-
chanics and the need for a statistical-mechanical theory
for open, driven classical systems, we break from tradi-
tional classical dynamical systems by defining the classi-
cal density matrix:

ξ(t) :=

k∑
i=1

|δψi(t)〉〈δψi(t)| . (2)

Expressed using tangent vectors |δψi〉, the density ma-
trix is the outer product of tangent vectors (or what
Gibbs called the dyadic product [34]). This unnormal-
ized matrix represents an alternative state of a classi-
cal dynamical system at a phase space point. To our
knowledge, this classical density matrix has not been
defined previously. For classical many-body systems in
position-momentum phase space, x = (q,p), it is a me-
chanical function of perturbations to positions and mo-
menta δψi = (δqi, δpi). For example, choosing the
orthogonal tangent vectors |δψ1〉 =

√
δqδp(1, 1)> and

|δψ2〉 =
√
δqδp(1,−1)>, the density matrix of any Hamil-

tonian system with one degree of freedom (e.g., the har-
monic oscillator) is ξ = δqδp12×2, where 1n×n is the
n× n identity matrix.

The dynamics of the classical density matrix involve a
classical commutator and anti-commutator. Partitioning
the stability matrix A = A+ + A− into its symmetric
and anti-symmetric parts, A± = 1

2 (A ± A>), the time
evolution of ξ,

dξ

dt
= {A+, ξ}+ [A−, ξ], (3)

is a purely classical analogue of the Liouville-von Neu-
mann equation in quantum dynamics. Its solution,

ξ(t) = M(t, t0)ξ(t0)M>(t, t0), (4)
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is in terms of the propagator, (M)ij = ∂xi(t)/∂xj(t0)

when ξ is built from the tangent vectors {
∣∣δxi〉} evolved

by M , App. A. While it is generally non-symmetric, the
stability matrixA plays the role of the quantum mechan-
ical Hamiltonian in the classical commutator [X,Y ] =
Y X−XY and anti-commutator {X,Y } = Y X+XY .

What stands out about the evolution of the density
matrix is that its dynamics are entirely computable from
standard methods in dynamical systems theory (viz.,
Lyapunov vectors) [21]. Figure 1 shows the evolution of a
normalized Lyapunov vector on the Lorenz attractor that
follows Eq. 3. This classical density gives a geometric
representation of deterministic, mechanical systems that
leads to a generalized form of Liouville’s theorem and
equation governing the dynamics of compressible phase
space volumes. While the dynamics of the harmonic os-
cillator are conservative, the connection between the den-
sity matrix and phase space volume is clear: the density
matrix ξ = δqδp12×2 has a trace, 2δqδp, and determi-
nant, (δqδp)2, that are directly related to the phase space
volume, dV = δqδp.

A. Generalization of Liouville’s theorem

From the equation of motion for the classical density
matrix, we can show the determinant of ξ is directly
related to both Liouville’s equation and theorem. Li-
ouville’s theorem and equation are the foundation for
nonequilibrium statistical mechanics [1, 9, 10] and the
point at which statistical mechanics departs from classi-
cal Hamiltonian dynamics. However, the density matrix
here leads to generalized forms of Liouville’s theorem and
equation that hold for non-Hamiltonian systems, systems
that may be open, closed, passive, or driven.

To establish this connection between the density ma-
trix and a generalized version Liouville’s theorem, con-
sider a complete set of linearly independent tangent vec-
tors {δψi}. The set spans the entire n-dimensional phase
space volume, dV, and with an associated unnormalized
density matrix ξ (i.e., k = n in Eq. 2). Regardless of
the state space variables, the (square of the) phase space
volume is determined by the determinant |ξ|, which has
the equation of motion (App. B):

1

2

d

dt
ln |ξ(t)| = ∇ · ẋ = TrA+ = Λ. (5)

Both this equation of motion and its solution,

|ξ(t)| = |ξ(t0)| e2
∫ t
t0

Λ(t′) dt′
, (6)

depend on the divergence of the phase space velocity ẋ
or the phase space volume contraction/expansion rate
Λ = TrA+ = TrA. The determinant |ξ| of the den-
sity matrix, which is a potentially mechanical function,
has an equation of motion that is similar to the equa-
tion of motion for the statistical density [35]. In both
of these equations, the phase space contraction rate Λ

is the sum of the Lyapunov exponents [9], which can be
related to physical quantities. For example, the phase
space contraction rate is related to the entropy flow rate
in fluid transport [9]. It is also related to the thermody-
namic dissipation for systems in nonequilibrium steady
states, provided the dynamics are subject to a determin-
istic thermostat [36].

Now, we can identify the absolute value of the den-
sity matrix determinant as the volume of an element of
state space, |ξ|1/2 = dV. Because the density matrix
is well defined for physical systems that are open, both
at the microscopic and macroscopic levels, their phase
space volume element need not remain conserved with
time and will generally evolve in time according to Eq. 6.
Traditionally, the geometric interpretation of Liouville’s
theorem is that the velocity field ẋ has zero divergence:
∇ · ẋ = Tr(H) = 0. As a consequence, the “phase
fluid” flow is incompressible, phase space volumes are
conserved dV(t) = dV(t0), and Λ = 0. That is, from the
determinant, we can see Liouville’s theorem and equa-
tion from the stability matrix H for a dynamics with
Hamiltonian H. However, in dissipative systems we must
account for this “compressibility” of the state-space vol-
ume, dV(t) 6= dV(t0). This observation suggests that
Eq. 6 might lead to a generalization of Liouville’s theo-
rem for non-Hamiltonian systems.

The volume element dV(t) spanned by a set of ba-
sis vectors has a coordinate transformation: dV(t) =
|M(t, t0)| dV(t0). Combining this fact with the deter-
minant of Eq. 4, we obtain a generalization of Liouville’s
theorem in terms of the classical density matrix:

|ξ(t)|− 1
2 dV(t) = |ξ(t0)|− 1

2 dV(t0). (7)

Any dynamics conserves the measure, |ξ|− 1
2 dV or

e
−

∫ t
t0

Λ(t′) dt′
dV. For dissipative systems with Λ < 0,

volumes contract at a rate TrA. In the Lorenz-Fetter
model, for example, A is constant, so |ξ| decays linearly
on a semi-log scale with a slope proportional to 2 TrA
as shown in Fig. 2. Dynamical systems that are open,
exchanging matter or energy with their environment, or
driven by external fields, will have a density matrix that
varies in time and a determinant that satisfies this version
of Liouville’s equation. When the dynamics are Hamilto-
nian, we recover the conventional form of Liouville’s the-
orem for phase space volumes [2] because Λ = 0. That
is, for Hamiltonian dynamics, the determinant of the un-
normalized density matrix, |ξ|, is a constant of motion.

With the determinant of the density matrix giving Li-
ouville’s theorem, we can consider exactly how this ma-
trix is related to the geometry of phase space. The con-
nection comes from Riemannian geometry. Equation 7
is the transformation of a metric determinant on a Rie-
mannian manifold of an arbitrary curvature and endowed
with a covariant metric tensor gξ. So, we would expect
the density matrix to be related to this metric tensor.
As we show in Appendix B, the determinant |ξ| is equal
to the metric determinant, and the inverse of the unnor-
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malized density matrix, ξ−1, is similar to the (covariant)
metric tensor, gξ.

Metrics have been considered previously in nonlin-
ear dynamics and the statistical mechanics of non-
Hamiltonian systems [37–42]. However, these previous
approaches do not involve the classical density matrix
we define here. Instead, they require finding the met-
ric factor (the square root of the metric determinant) by
solving a generalized Liouville’s equation [42], which can
be challenging. Again, this metric factor is used to define
a volume form, which is invariant under the compressible
flow. Here, because the inverse of the determinant of the
classical density matrix |ξ|−1 is equal to the metric factor
gξ (with ξ−1 similar to gξ), this density matrix approach
avoids solving Liouville’s equation to obtain a metric fac-
tor compatible with the flow. Instead, one can compute
the matrix ξ itself to determine the factor over time from
numerical simulations of Lyapunov vectors.

B. Generalization of Liouville’s equation

Several results follow from our identification of the re-
lationship between the density matrix and the metric ten-
sor. Most immediate is that Eq. 7 becomes the trans-
formation of the metric determinant:

√
gξ(t)dV(t) =√

gξ(t0)dV(t0) with gξ = |ξ−1|. This is a general form of
Liouville’s theorem, which is general in the sense that it
is valid for non-Hamiltonian systems, relating the met-
ric determinant [38, 42] to a geometric property of phase
space.

What traditionally follows from Liouville’s theorem is
Liouville’s equation, a formally exact equation of motion
for the probability density in phase space [1]. This equa-
tion derives from another statement of Liouville’s theo-
rem: the density of representative points in the phase
space is conserved along the trajectories of Hamiltonian
systems, dtρ(x) = 0 [2]. By contrast, we have defined a
classical density matrix – a function of mechanical vari-
ables – in terms of Lyapunov vectors that describes the
time evolution of phase space volume, not the statistical
density [35]. Nevertheless, the classical density matrix
gives a generalization of Liouville’s equation as we show
in Appendix B.

With the similarity of the unnormalized density matrix
and the metric tensor, the flow compressibility accounts
for the metric’s compatibility with the dynamics [42],
−dt ln

√
gξ = (n/2)dt ln Tr g−1

ξ = ∇ · ẋ. By identifying
the density matrix as similar to the dual metric tensor,
g−1
ξ , we can also find this compatibility condition as the

equation of motion for the metric determinant, Eq. 5, and
TrA+. Therefore, |ξ|− 1

2 obeys the generalized Liouville’s
equation:

∂

∂t
|ξ|− 1

2 + ∇ · (|ξ|− 1
2 ẋ) = 0, (8)

for the evolution of the classical density matrix |ξ|, de-
fined in terms of the perturbations of state space vari-

ables.
While this Liouville equation applies to non-

Hamiltonian systems, the equation of motion reduces to
a simpler form if the dynamics are Hamiltonian. For
Hamiltonian dynamics, the metric determinant |ξ|−1 is
time-independent and the divergence of the flow vanishes,
dV(t) = dV(t0) from Eq. 7. We also find,

∂

∂t
|ξ|− 1

2 + ẋ ·∇|ξ|− 1
2 = 0, (9)

an equation that is similar to the well-known form of the
Liouville equation, with statistical density replaced with
the determinant of ξ.

The metric tensor, gξ, and the density matrix, ξ−1,
are related by a similarity transformation, so their deter-
minants are equal. The determinant |ξ| is a mechanical
function because the matrix ξ is determined by linearly
independent tangent vectors forming a complete basis set
at a given phase space point. It is the phase space vol-
ume squared |ξ| = (δqδp)2 for two-dimensional Hamil-
tonian systems described by ξ = δqδp12×2, where 1n×n
is the n × n identity matrix. The basis tangent vectors
define a locally conserved phase space volume at each
of the phase space point. We discuss an important set
of basis vectors for Hamiltonian systems in Sec. III B.
As the density matrix ξ can be constructed locally using
the tangent vectors, it makes the metric tensor numeri-
cally computable (up to a similarity transformation) and
avoids having to solve the generalized version of the Li-
ouville equation [42]; preserving time-reversibility of the
Liouville equation can be a challenge in numerical solu-
tions [43].

C. Poisson brackets

While we have focused on the determinant of the un-
normalized density matrix, its trace also appears in the
compatibility condition, Appendix Eq. B18. Analyzing
the trace, we also find connections to classical dynam-
ics, well-known quantities in dynamical systems. Be-
cause of their use in quantum-mechanical expectation
values, one might expect traces to also quantify useful
observables in this classical setting. Here, the dynamics

of ξ =
∑k
i=1 |δψi〉〈δψi| are not trace preserving, but if ξ is

built from a perturbation to a phase point, its trace yields
the magnitude of the perturbation. So, the trace over ξ
does give us a new perspective on a well-known quantity
with physical implications, Lyapunov exponents.

The rate of change of Tr ξ,

1

2

d

dt
Tr ξ =

1

2
Tr{A+, ξ} = Tr(ξA+) = 〈A+〉ξ, (10)

is set by 〈A+〉ξi , a quantity related to the instantaneous
Lyapunov exponents [21], which are a measure of local
(in)stability. We show in App. A that Tr(ξA+) = 〈A+〉ξ.
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FIG. 2. For the Lorenz-Fetter model, the trace of the un-
normalized density matrix, ξi(t) (see Eq. 2 for k = 1), as
a function of time for 100 tangent vectors. Each vector is
a local perturbation with elements sampled from a uniform
distribution. The inset shows the evolution of |ξi(t)|. For
each tangent vector, we express ξi in terms of its complete
set of linearly independent basis vectors. The determinant
in each case decays at rate given by instantaneous Lyapunov
exponent 〈A+〉. An example of a normalized tangent vector
evolving on the Lorenz attractor in Fig. 1 is shown in blue.
The trace and determinant of the normalized density matrix
% (inset) are time-invariant (dashed).

Defining 〈A+〉 = 〈A+〉ξ/Tr ξ, the solution to this equa-
tion of motion is:

Tr ξ(t) = Tr ξ(t0)e
2
∫ t
t0
〈A+(t′)〉 dt′

. (11)

(In the next section, we identify the quantity 〈A+〉 as
the instantaneous Lyapunov exponent.)

To numerically verify this result, and others, we sim-
ulated the dynamics of Hamiltonian and dissipative dy-
namical systems. As a prototypical dissipative system,
we chose the Lorenz-Fetter model. Figure 2 shows the
time evolution of the trace for a chaotic orbit for 100
random perturbation states drawn from a uniform dis-
tribution. The rapid increase in Tr ξi (on the semi-log
scale) is indicative of the chaotic nature of the chosen
orbit.

For Hamiltonian systems, the equation of motion for
the trace can be expressed as a Poisson bracket. In clas-
sical statistical mechanics, a dynamical variable, f(q,p),

can be expressed as ḟ = {f,H}P , in terms of the Poisson
bracket, {.}P . Combined with our result above, this fact
gives a correspondence,

Tr ξ̇ = 2〈H+〉ξ = {Tr ξ, H}P , (12)

between the Poisson bracket and an average 〈H+〉ξ of the
symmetric part of the stability matrix H+. For exam-
ple, for an arbitrary perturbation (δq, δp)>), in the phase
space of the linear harmonic oscillator, Tr ξ = δq2 + δp2

(where ξ here is from Eq. 2 with k = 1) and Tr ξ̇ =
{Tr ξ, H}P = 2δqδp(1 − ω2) where ω is the oscillation

frequency. As another example, Figure 3(a) shows Tr ξ
for the classical Hénon-Heiles system on a regular and
chaotic orbit (with ξ built from a single perturbation
vector.

III. DYNAMICS OF THE CLASSICAL
NORMALIZED DENSITY MATRIX

So far, we have shown that the density matrix is sim-
ilar to the phase space metric, thus defining the under-
lying geometry, with its determinant being the phase
space volume element. However, the key results dif-
fer in some respects from their analogues in quantum
mechanics. For example, the dynamics of ξ are not
norm-preserving, despite the norm-preserving dynamics
of Hilbert state vectors being a basic postulate of many
formulations of quantum mechanics. To sharpen the cor-
respondence with quantum mechanics, we can derive a
norm-preserving dynamics for the classical density ma-
trix. These dynamics for the normalized density matrix
(and its properties) have implications for classical statis-
tical physics. In particular, this normalization permits
the definition of “averages” that define observables, such
as instantaneous Lyapunov exponents.

In order to derive the dynamics of general, classical
systems, we consider a unit tangent vector to the state-
space variables |δu〉 = |δx〉 /‖δx‖, where ‖.‖ is the `2-
norm. The vector has the equation of motion,

d

dt
|δu〉 = (A+ +A−) |δu〉 − r |δu〉 , (13)

contains a source/sink term with the instantaneous rate:
r := r(t) = 〈δu|A+ |δu〉 = dt ln ‖δx(t)‖. This rate is
the instantaneous Lyapunov exponent (or local stretching
rate) for a linearized dynamics, which is related to the
finite-time Lyapunov exponent,

λ(t) := λ(t, t0) = |t− t0|−1

∫ t

t0

r(t) dt. (14)

The maximum instantaneous Lyapunov exponent is also
referred to as reactivity – the maximum amplification
rate over all perturbations, immediately following a per-
turbation [44]. Even in asymptotically stable systems
with this instability can exhibit transient behavior [45]
in response to external stimuli [46]. In the long time
limit, the time average of this expansion rate is the Lya-
punov exponent, λ = limt→∞ λi(t), which is independent
of initial conditions [47].

As before, we represent the state of the dynamical sys-
tem ẋ = F as a density matrix. But now, we express
it in terms of a unit tangent-space basis {|δφi}〉. Nor-
malizing each |δφi〉 = ci |δψi〉, we can define the pure
states with the expected properties: %2

i = %i, Tr%i = 1,
Tr%2

i = 1, symmetric, %i � 0, i.e., %i is positive semi-
definite. Proving these properties requires the dynamics
of %i be norm-preserving. We refer to this normalized
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FIG. 3. (a) The trace of the unnormalized density matrices for a regular (blue) and a chaotic orbit (red) for the Hénon-Heiles
system. The trace of the normalized density matrices is time invariant (gray). The inset shows the equipotential surface (and
lines) for the potential V = 1
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Schematic illustration of the neighborhood of a point P along a trajectory Γ(t) through the phase spaceM with the associated
tangent space TM and conjugate vectors, ∇H and ẋ. (c) Pair of instantaneous Lyapunov exponents (ILE) for the regular
with E = 0.0833 (blue) and a chaotic orbit with E = 0.1667 (red).

density matrix % as a “perturbation state”:

%(t) =
ξ(t)

Tr ξ(t)
= C−1

k∑
i=1

c2i |δψi〉〈δψi| , (15)

which is directly related to the unnormalized ξ with

Tr ξ =
∑k
i=1 c

2
i = C so that Tr% = 1. The tangent-space

average 〈δφ|%|δφ〉 over the unit basis is analogous to the
quantum-mechanical probability of finding the system at
|δφ〉 given that its state is %; for example, if all tangent
space directions contribute equally 〈δφ|%|δφ〉 = k−1.

With these normalized states, we can define tangent
space averages that are physical observables. For in-
stance, the entropy production for thermostatted sys-
tems [36] is related to the phase space contraction rate,
which derives directly from the density matrix. Con-
sider a maximally-mixed state %M for k = n and n phase
space dimensions. If the state is maximally mixed [4]
with ci = 1 ∀i, then Tr ξ = k. The phase space volume
contraction rate can be expressed as a tangent-space av-
erage of A+ over %:

Λ = 〈A+〉%M = n−1 Tr
(
A+%

M
)

= n−1
n∑
i=1

Tr(A+%i),

where each of the instantaneous Lyapunov exponents is
also a tangent space average of A+ over pure basis states
%i: ri = 〈A〉%i

= Tr(A+%i).
The normalized state (pure or maximally mixed)

evolves in time according to:

d%

dt
= {A+,%}+ [A−,%]− 2r%, (16)

another classical analogue of the von Neumann equation
in quantum mechanics. From this equation, we see that
the average ofA+ at each instant of time, i.e., the instan-
taneous Lyapunov exponent, is crucial to norm preserva-
tion. It offsets the stretching and contraction of |δu〉 due
to A along a given trajectory. Solving this equation of

motion, we find the density matrix % at time t0 and at a
later time t are similar:

%(t) = M̃(t, t0)%(t0)M̃−1(t, t0), (17)

when % is composed of vectors {
∣∣δui〉} evolving in time

under M̃ . Regardless of the underlying dynamics, we can
define the norm-preserving evolution matrix M̃ := MΓ.
It is generally non-orthogonal with |M̃ | = 1, making it
a unimodular matrix that generates volume-preserving
transformations, App. A. The matrix Γ has the inverse
expansion factors ‖δxi(t0)‖/‖δxi(t)‖ = e−λi(t)(t−t0) on
the diagonal.

A. Generalized Liouville’s theorem/equation

Imposing a norm-preserving dynamics not only nor-
malizes the density matrix, it also reinstates the origi-
nal form of Liouville’s equation for non-Hamiltonian dy-
namics. To see this result, we again take the basis to
span the phase space k → n, i.e., a complete basis. As
must be the case for a norm-preserving dynamics, the
magnitude of perturbations do not evolve with time and
Tr%(t) = Tr%(t0) = 1. The preservation of the trace
Tr% follows from Eq. 16, which shows Tr %̇ = 0 because
Tr{A+,%} = 2r. However, both the trace and the deter-
minant

|%(t)| = |%(t0)|, (18)

are similarity-invariant constants of motion, Figs. 2
and 3. Defining the metric tensor g% such that its de-
terminant g% = |%−1|, the conservation of the determi-
nant is another form of the Liouville’s equation for non-
Hamiltonian systems,

∂

∂t
|%|− 1

2 + ẋ ·∇|%|− 1
2 = 0. (19)

in terms of %. The compatibility condition of the metric
is ∂t
√
g% + ẋ ·∇√g% = 0. For Hamiltonian dynamics,
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this condition has the same form as that of gξ, App. B,
and the well-known Liouville equation for statistical den-
sity. However, this generalization using the normalized
matrix % (and the compatibility condition for g%) is valid
regardless of whether the dynamics are Hamiltonian or
not and has a form that is similar to the usual Liouville’s
equation.

Imposing a norm-preserving dynamics and normalizing
the density matrix also reinstates the form of the tra-
ditional Liouville theorem for non-Hamiltonian dynam-
ics. With these norm-preserving dynamics, the gener-
alized Liouville theorem in Eq. 7 becomes: |Γ|dV(t) =

|M ||Γ|dV(t0) = |M̃ |dV(t0) = dV(t0) and we can recog-
nize |Γ|2 = |ξ(t0)|/|ξ(t)|. Geometrically, the generalized
Liouville theorem here is: scaled phase space volumes are
conserved under the norm-preserving evolution of a per-
turbation state with a basis that spans the n-dimensional
phase space. This generalization of Liouville’s theorem
is not limited to Hamiltonian dynamics, however. In the
phase space of non-Hamiltonian systems, any part of the
initial volume lost (or gained) in course of the dynamics is
continually and entirely compensated for by the stretch-
ing/contracting of the volume. As a result, the scaled
volume |Γ|dV is conserved for the n-dimensional phase
space of any dynamical system.

B. Basis representation

In quantum statistical mechanics, the choice of basis
states provides an explicit matrix representation of the
quantum state. Here, there are also natural sets of vec-
tors one might choose for the classical state in the tan-
gent space: % and ξ. In dynamical systems theory, it
is common to analyze Lyapunov vectors, such as Gram-
Schmidt vectors [48, 49]. More recently, however, there
has been an interest in covariant Lyapunov vectors [29].
Based on early work [50], Lyapunov vectors with small,
but finite, exponents are hydrodynamic modes that char-
acterize macroscopic transport [51, 52]. Any of these sets
of vectors can be used to construct classical density ma-
trices.

There are other choices for basis vectors that are nat-
ural to the nonlinear dynamics and give another connec-
tion to Liouville’s theorem. For example, Hamiltonian
systems have special tangent space directions associated
with conserved quantities. On a constant energy mani-
fold, for example, there are two conjugate tangent direc-
tions: the phase velocity ẋ and the gradient of the Hamil-
tonian ∇H, Fig. 3(b). They are related as ẋ = Ω∇H
through the Poisson matrix Ω, orthogonal to each other,
∇H ·Ω∇H = 0, and have equal magnitude ‖ẋ‖ = ‖∇H‖
through Hamilton’s equations. The vector ∇H is also
orthogonal to the constant energy manifold and used to
define the invariant measure [9]. In general, the vector
sets defining the density matrices here need not span the
whole phase space. So, forming density matrices from
each conjugate vector, we can find the pure states, %ẋ

and %Ω∇H . These conjugate pure states in the tangent
space for a two-dimensional Hamiltonian system are:

‖ẋ‖2%ẋ =

(
q̇2 ṗq̇

ṗq̇ ṗ2

)
,

‖∇H‖2%∇H =

(
ṗ2 −ṗq̇
−ṗq̇ q̇2

)
.

(20)

These states are formed from the outer product of
the unit tangent vectors, |δφẋ〉 = ‖ẋ‖−1(q̇, ṗ)> and
|δφ∇H〉 = ‖∇H‖−1(−ṗ, q̇)>, where ‖ẋ‖2 = ‖∇H‖2 =
ṗ2 + q̇2. Both density matrices have unit trace and are
related by %ẋ = Ω%∇HΩ>.

These particular density matrices also have a (lower di-
mensional) parallel with Liouville’s theorem. Liouville’s
theorem can be thought of as an equivalence of the di-
vergence of the phase flow, the trace of the Jacobian,
and the intrinsic rate: dt ln δV = ∇ · ẋ = nTr[%H(x)],
for % = n−1

∑n
i=1 |δφi〉〈δφi|. There is a similar equiva-

lence for the instantaneous Lyapunov exponents of ẋ and
∇H. For a two-dimensional Hamiltonian system, these
take the form:

d ln ‖ẋ‖
dt

=
q̇ · ṗ
‖ẋ‖2∇ ·

(
ṗ
q̇

)
= Tr(%ẋH+),

d ln ‖∇H‖
dt

=
−q̇ · ṗ
‖∇H‖2∇ ·

(
ṗ
q̇

)
= Tr(%∇HH+), (21)

denoting the phase point x = (q, p). Unlike, the intrinsic
rate of the volume element δV = δqδp that appears in
Liouville’s theorem, these instantaneous Lyapunov expo-
nents are not zero – they are related to the divergence
in a common direction (ṗ, q̇)> that is a reflection about
ṗ = q̇. Instead, they are conjugate, so they sum to zero.
To illustrate, we show the instantaneous Lyapunov ex-
ponents in the tangent space directions computed from
Eq. 21 for the Hénon-Heiles systems in Fig. 3(c). A van-
ishing sum of instantaneous Lyapunov exponents corre-
sponds to conservation of phase space volume.

IV. CONCLUSIONS

Liouville’s equation and theorem are the foundation of
statistical mechanics established by Gibbs, Maxwell, and
Boltzmann. Boltzmann, for example, approximated Li-
ouville’s equation to derive his H-theorem for irreversible
processes, making an assumption of “molecular chaos”.
Here, we have established a density matrix formulation
of dynamical systems that explicitly and quantitatively
accounts for measures of local instability and chaos, Lya-
punov exponents, and the phase space contraction rate
associated with dissipation. The classical density ma-
trix defines a phase space geometry of the deterministic
dynamics and gives a means of computing statistical me-
chanical observables such as energy dissipation. Through
this connection, we could derive generalizations Liou-
ville’s theorem/equation for any differentiable dynam-
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ical system. Many dynamical systems are not Hamil-
tonian, including those that are dissipative, non-steady,
and driven, for which the Liouville’s equation/theorem
here still apply. And, when the dynamics are Hamilto-
nian, these generalizations reduce to the traditional forms
of the Liouville theorem and Liouville’s equation. We
have shown they derive from the properties of classical
density matrices, which themselves evolve under an equa-
tion of motion akin to the von Neumann equation at the
foundation of quantum statistical mechanics. From these
results, the generalized Liouville equation becomes nu-
merically computable and, thus, a new basis for analyz-
ing classical speed limits on observables [53], the spread
of perturbations, and the transport of statistical density
in dynamical systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 2124510
and 1856250. This publication was also made possible,
in part, through the support of a grant from the John
Templeton Foundation. We acknowledge the use of the
supercomputing facilities managed by the Research Com-
puting Group at the University of Massachusetts Boston
as well as the University of Massachusetts Green High-
Performance Computing Cluster.

Appendix A: Equation of motion for Lyapunov
vectors

Consider the time evolution equation of a generic, in-
finitesimal perturbation |δx〉 ∈ TM,

d

dt
|δx(t)〉 = A(x) |δx(t)〉 , (A1)

governed by the stability matrix of the system, A. Using
the time-ordering operator T+, perturbations propagate
as:

|δx(t)〉 = M(t, t0) |δx(t0)〉
= T+e

∫ t
t0
A(t′) dt′ |δx(t0)〉 . (A2)

The evolution operator or Jacobian matrix [M(t, t0)]ij =

∂xi(t)/∂xj(t0) has the equation of motion:

dM

dt
= AM or A =

dM

dt
M−1. (A3)

The determinant obeys Jacobi’s formula:

d

dt
|M | = |M |Tr

(
dM

dt
M−1

)
= |M |TrA. (A4)

Each |δx〉 ∈ TM has a corresponding 〈δx| ∈ TM. To
find the dynamics of the dual vector 〈δẋ(t)|, we partition

the stability matrixA = A++A− into its symmetric and
anti-symmetric parts, A± = 1

2 (A ± A>). Dual vectors
then evolve according to:

d

dt
〈δx(t)| = 〈δx(t)| (A+ −A−). (A5)

Together, the equations for the motion of tangent vectors
and their dual define the non-unitary dynamics of |δx〉
in the tangent space, 〈δx(t)|δx(t)〉 6= 〈δx(t0)|δx(t0)〉.

The time evolution of a unit Lyapunov vector |δu〉 in
the phase space of a dynamics system,

d

dt
|δu〉 = A+ |δu〉+A− |δu〉 − r |δu〉 , (A6)

has an additional source/sink term with the instanta-
neous Lyapunov exponent r = 〈A+〉 = 〈δu|A+ |δu〉.
The solution is:

|δu〉 = (MΓ) |δu(t0)〉 =: M̃(t, t0) |δu(t0)〉 . (A7)

For any dynamics through the state space, the norm-
preserving evolution operator M̃ := MΓ is not necessar-
ily orthogonal but |M̃ | = 1. The matrix Γ has the inverse
expansion factors ‖δxi(t0)‖/‖δxi(t)‖ = e−λi(t)(t−t0) on
the diagonal. The equation of motion for 〈δu|,

d

dt
〈δu| = 〈δu|A+ − 〈δu|A− − 〈A+〉 〈δu| , (A8)

has the solution:

〈δu| = 〈δu(t0)| (MΓ)
>

=: 〈δu(t0)|M̃>(t, t0). (A9)

The equation of motion for density matrices follow
from these results for tangent vectors. In the main text,
we consider basis sets that span the n-dimensional phase
space, defining the unnormalized,

ξ =

k∑
i=1

|δψi〉〈δψi| =
k∑
i=1

c2i |δφi〉〈δφi| , (A10)

evolving as

dξ

dt
=

k∑
i=1

( d
dt
|δψi〉

)
〈δψi|+ |δψi〉

( d
dt
〈δψi|

)
=

k∑
i=1

A+ |δψi(t)〉〈δψi(t)|+
k∑
i=1

A− |δψi(t)〉〈δψi(t)|

+

k∑
i=1

|δψi(t)〉〈δψi(t)|A+ −
k∑
i=1

|δψi(t)〉〈δψi(t)|A−

= A+ξ +A−ξ + ξA+ − ξA−
= {A+, ξ}+ [A−, ξ],

where we used Eq. A5 and its corresponding equation for
|δψi〉.



9

Normalizing ξ, we obtain the matrix:

%(t) = C−1
k∑
i=1

c2i%i = C−1
k∑
i=1

c2i |δφi〉〈δφi| . (A11)

Here, C = Tr ξ =
∑k
i=1 c

2
i . Each pure state %i evolves as:

d%i
dt

=
d

dt
(|δφi〉〈δφi|)

= |δφi〉
(
d

dt
〈δφi|

)
+

(
d

dt
|δφi〉

)
〈δφi|

= %iA+ − %iA− +A+%i +A−%i − 2r%i

= {A+,%i}+ [A−,%i]− 2ri%i. (A12)

Appendix B: Generalized Liouville theorem and
equation

For the unnormalized density matrix ξ,

ln |ξ| = Tr ln ξ, (B1)

follows from the identity ln |C| = Tr lnC between the
trace and the determinant |.|. Assuming ξ is invertible,
taking the time derivative,

d

dt
ln |ξ| = Tr

d

dt
ln ξ = Tr ξ−1 dξ

dt
, (B2)

and using Eq. 3, we find the generalized Liouville’s equa-
tion in the main text:

d

dt
ln |ξ| = Tr ξ−1({A+, ξ}+ [A−, ξ]) = 2 TrA+. (B3)

To see that this result is a generalization of Liouville’s
equation requires recognizing the phase space volume el-
ement is dV = dx1 ∧ · · · ∧ dxn. The determinant of
the Jacobian M governs its coordinate transformation
under the action of the dynamical equations: dV(t) =
|M(t, t0)|dV(t0). Equation 7 follows from the determi-
nant of Eq. 4: |ξ(t)| = |M (t, t0) |2|ξ (t0) |.

Treating the phase space as a general Riemannian
manifold endowed with a (contravariant) metric tensor
g−1
ξ , we identify this metric tensor as similar to the

unnormalized density matrix ξ. To see this relation-
ship, consider two arbitrary ordered bases |δψi(t0)〉 and
|δψi(t)〉 stacked in matrix columns,

Ψ′ := Ψ(t0) =
[
|δψ1(t0)〉 , · · · , |δψn(t0)〉

]
(B4)

Ψ(t) =
[
|δψ1(t)〉 , · · · , |δψn(t)〉

]
, (B5)

and related by Ψ′ = MΨ. In these bases, we can rep-
resent the transformation of the unnormalized density
matrix:

ξ(t) = Ψ′Ψ′> = MΨΨ>M> = Mξ(t0)M>. (B6)

However, the linear transformation Ψ → Ψ′ is also ob-
tained by a change-of-basis matrix P as Ψ′ = ΨP . The
Jacobian M and P are related by a similarity transfor-
mation

P = Ψ−1MΨ. (B7)

One can then view P and M as propagators expressed in
different bases that represent the linear transformation
of Ψ → Ψ′ forward in time. The Jacobian matrix M
comes with a natural co-ordinate basis, {∂/∂xi}. By
constructing another, more convenient basis, through the
density matrix the dynamics are governed by P . That P
is similar toM , implies P →M when the density matrix
is expressed in the coordinate basis. The contravariant
metric tensor g−1

ξ transform as:

g−1
ξ (t) = Ψ′>Ψ′ = P>Ψ>ΨP = P>g−1

ξ (t0)P , (B8)

and the covariant metric tensor gξ(t) transforms as:

gξ(t) = P−1gξ(t0)P−>. (B9)

It follows from these relationships that ξ and g−1
ξ are

similar:

Ψ′−1 ξ(t)Ψ′ = Ψ′−1 Ψ′Ψ′>Ψ′ = g−1
ξ (t). (B10)

If Ψ′ = MΨ = ΨP with P = Ψ−1MΨ then

gξ(t)
−1 = Ψ′−1 ξ(t)Ψ′ = P−1g−1

ξ (t0)P . (B11)

The linear independence of the basis vectors in Ψ guar-
antees it is invertible.

For a general Riemannian manifold, the volume n-form
determines the invariant volume element dṼ in an ar-
bitrary coordinate system: dṼ =

√
gξdV, where gξ is

the determinant of the covariant metric tensor gξ. From
Eq. B10, gξ is similar to ξ−1.

Furthermore, Eq. 5 provides the compatibility condi-
tion of the metric tensor with the flow:

d

dt
ln |ξ| = 2∇ · ẋ
d

dt
|ξ| = 2|ξ|∇ · ẋ

1

2
|ξ|− 3

2
d

dt
|ξ| = |ξ|− 1

2∇ · ẋ
d

dt
|ξ|− 1

2 = −|ξ|− 1
2∇ · ẋ. (B12)

We can express this relation in terms of the metric de-
terminant [38]:

d

dt

√
gξ = −√gξ∇ · ẋ

∂
√
gξ

∂t
+ ẋ ·∇√gξ = −√gξ∇ · ẋ

∂

∂t

√
gξ + ∇ · (√gξẋ) = 0.
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Replacing gξ by |ξ|−1, we obtain the generalized Liouville
equation:

∂

∂t
(|ξ|− 1

2 ) + ∇ · (|ξ|− 1
2 ẋ) = 0. (B13)

For Hamiltonian dynamics, the metric is time-
independent because of the vanishing flow divergence,

∂

∂t
(|ξ|− 1

2 ) + ẋ ·∇|ξ|− 1
2 = 0. (B14)

By introducing a norm-preserving dynamics and a nor-
malized density matrix, the form of the generalized Li-
ouville equation is identical to the traditional Liouville
equation. Defining the metric determinant g% = |%|−1,
the conservation of the normalized density matrix %,

d

dt
ln |%| = 0,

is equivalent to the generalized Liouville equation:

d

dt
(|%|− 1

2 ) =
d

dt

√
g% = 0

∂

∂t
(|%|− 1

2 ) + ẋ ·∇|%|− 1
2 = 0 (B15)

∂

∂t
(
√
g%) + ẋ ·∇√g% = 0. (B16)

The Liouville equations for ξ and % are related. Taking
the determinant of Eq. 15, we find

|%| = |ξ|
(Tr ξ)n

g% = gξ (Tr ξ)n

√
g% =

√
gξ (Tr ξ)

n
2

ln
√
g% = ln

√
gξ +

n

2
ln(Tr ξ). (B17)

Recalling that g% is time-independent, the ratio |ξ|/Tr ξn

is a constant of motion for any dynamical system.

It is also possible to express the compatibility condition
using the trace of g−1

ξ ,

− d

dt
ln
√
gξ =

n

2

d

dt
ln(Tr ḡξ) = ∇ · ẋ. (B18)

For the normalized density matrix % of the form %(t) =
n−1

∑n
i=1 %i(t), we have averages similar to those in

quantum mechanics. For example, the average

Tr(A+%) = n−1
n∑
i=1

Tr(A+%i)

= n−1
n∑
i=1

ri = n−1 TrA+, (B19)

where ri is the instantaneous Lyapunov exponent for the
ith basis state. This average is related to the divergence
of the flow: ∇ · ẋ = nTr(A+%).
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