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Reservoir computing is a machine learning paradigm that uses a high-dimensional dynamical system, or
reservoir, to approximate and predict time series data. The scale, speed and power usage of reservoir computers
could be enhanced by constructing reservoirs out of electronic circuits, and several experimental studies have
demonstrated promise in this direction. However, designing quality reservoirs requires a precise understanding
of how such circuits process and store information. We analyze the feasibility and optimal design of electronic
reservoirs that include both linear elements (resistors, inductors, and capacitors) and nonlinear memory elements
called memristors. We provide analytic results regarding the feasibility of these reservoirs, and give a systematic
characterization of their computational properties by examining the types of input-output relationships that they
can approximate. This allows us to design reservoirs with optimal properties. By introducing measures of the
total linear and nonlinear computational capacities of the reservoir, we are able to design electronic circuits
whose total computational capacity scales extensively with the system size. Our electronic reservoirs can match
or exceed the performance of conventional “echo state network” reservoirs in a form that may be directly
implemented in hardware.
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I. INTRODUCTION

Reservoir computing (RC) [16, 17, 20] is a model for per-
forming computations on time series data, which combines
a high-dimensional driven dynamical system, called a reser-
voir, with a simple learning algorithm. Reservoir computing
has proven to be a powerful tool in a wide variety of signal
processing tasks, including forecasting [16], pattern genera-
tion and classification [4], adaptive filtering and prediction of
chaotic systems [18]. Recently, extensions to spatio-temporal
chaotic systems [26] have proven to be surprisingly effective.

Central to the success of reservoir computation is the use
of large dynamical systems to generate nonlinear transforma-
tions and store memories of the driving signal. This has gen-
erated interest in developing nanoscale electronic reservoirs
with large numbers of elements [28], incorporating both lin-
ear components (such as resistors, inductors, and capacitors)
and nonlinear components such asmemristors. Memristors, or
“resistors with memory”, are nanoscale devices whose resis-
tance depends on the past history of the current. The currents
flowing through these devices cause a rearrangement of ions,
leading to a persistent (but also reversible) change in resistance.
Memristors offer the possibility of harnessing both nonlinear
behavior and memory in electronic circuits. For this reason,
specialized circuits composed of large numbers of memristors
promise a new generation of computational hardware operat-
ing orders of magnitude faster, and at far lower power, than
traditional digital circuitry [1, 6, 10, 27, 29, 32].

Recently, several experimental works examiningmemristor-
based electronic reservoirs have shown remarkable promise
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[3, 9, 12, 15, 19, 23, 25]. However, there is still no fundamen-
tal understanding of when electronic circuits can be success-
fully employed as reservoirs, what type of functions they can
compute, and how to design electronic reservoirs with specific
computational properties. In this paper we address this gap
by providing a systematic and analytical study of the computa-
tional capacity of electronic reservoirs composed of traditional
linear elements and memristors.

In order to be feasible as a reservoir, a driven dynamical
system must satisfy certain properties which guarantee that its
state encodes an informative function of the driving signal;
we establish feasibility for models of linear/LRC (inductor-
resistor-capacitor) and memristor reservoirs. We also charac-
terize the input-output relationships natural to electronic reser-
voirs, in the process showing how memristors may be viewed
as a source of nonlinear computations. We then demonstrate
how to combine linear and nonlinear elements to achieve a
specific computational task (that of approximating a 2nd order
filter). Lastly, the capacity of the reservoir to perform useful
computations should increase as the size (i.e., dimensionality)
of the reservoir is increased. In particular, the main motiva-
tion for electronic reservoirs is the potential to achieve very
large reservoir sizes, but increases in size are useless if they
do not lead to improved computational capacities of the reser-
voir. Optimally, the number of linearly independent inputs
that the reservoir can reconstruct should scale linearly with the
reservoir size — i.e., to borrow a term from statistical physics,
their reconstruction capabilities should be extensive in reser-
voir size. For both LRC and memristor reservoirs, we consider
measures of linear and nonlinear computational capacity, and
show that they can be made to scale extensively. The approach
we use to analyze the computational capacities of memristor
and LRC reservoirs may be generalized to other reservoirs and
computational tasks in analogy to the methods available to
tune echo state networks (ESNs) by trading between memory
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pacities of memristor and LRC reservoirs may be generalized
to other reservoirs and computational tasks. In this sense we
attempt to present a general approach to the understanding of
physical reservoirs in analogy to the methods available to tune
ESNs by trading between memory storage and nonlinearity.

In the next section we make these notions more precise.
We provide an introduction to reservoir computing, electronic
reservoirs and memristors, as well as definitions of the mea-
sures of computational capacity we will utilize. We then
turn to the feasibility, tunability and scalability of LRC and
memristor-based reservoirs. Finally, we compare our results
to more conventional ESN reservoirs [16], showing that elec-
tronic reservoirs are capable of matching or exceeding the
performance of a standard ESN reservoir implementations.

II. BACKGROUND

A. Reservoir Computing

In what follows, we present a brief review of reservoir com-
puting in continuous time. (Readers familiar with RC and
measures of capacity may skip to the section labelled Circuit
Elements and Structure.)

The reservoir is a multivariate driven dynamical system. At
time t, the state of the dynamical system, which we indicate
as ~x(t), is driven by an input ~u(t) and obeys the di�erential
equation

~̇x(t) = F (~x(t), ~u(t)). (1)

As a result of these dynamics, the state of the reservoir encodes
information about ~u as transformations of its previous history.
As an instructive example, a linear reservoir is governed by
the equation

~̇x(t) = A~x(t) + ~u(t). (2)

which has the long time limit solution (assuming that A is
negative definite):

x(t) =

Z 1

0
d⌧eA⌧~u(t� ⌧) (3)

showing that the state is a linear function of the past history
of ~u. We will consider reservoirs driven by a scalar input
signal u(t) as ~u(t) = ~vu(t), where ~v is a constant vector that
defines how the input signal u(t) enters into each element of
the reservoir.

In order for a dynamical system to be considered feasible
as a reservoir, its state must approach a function of the input
trajectory. At a high level, we can express this requirement in
terms of two conditions:

• Fading Memory: If the system were to be started from
two di�erent initial conditions ~x0, 6= ~x 0

0 and driven
with the same input trajectory u, the system’s trajec-
tories should eventually converge to the same state,
~x(t), ~x0(t) ! ~x[u](t) as t ! 1. The statement above
implies that the system has a finite temporal memory.

• State Separation: Di�erent input sequences should drive
the system into di�erent trajectories, i.e., if the same ini-
tial condition were to be driven with two di�erent input
trajectories u 6= u0, the resulting reservoir trajectories
must be su�ciently di�erent.

The first condition requires that the state of the reservoir
becomes a function of the input trajectory, while the second
requires that this function carries information about the input
trajectory.

Reservoirs that satisfy the fading memory property have a
representation as a Wiener/Volterra series [5],

xi[u](t) =

Z 1

0
d⌧1 hi1(⌧1)u(t� ⌧1)

+

Z 1

0
d⌧1d⌧2 hi2(⌧1, ⌧2)u(t� ⌧1)u(t� ⌧2) + · · ·

(4)

which decomposes xi into linear and progressively higher
order nonlinear components governed by kernel functions
hin(⌧1, . . . ⌧n). This allows us to regard the reservoir as im-
plementing a filter of the input trajectory. Reservoir computers
can be thought of as approximating filters in much the same
way that neural networks may be thought of as approximating
functions [21, 22]. This will be a useful characterization of
both the reservoir and its possible outputs.

In addition to the input trajectory u, we are also provided
with an output trajectory z that is also a function of u of
the form in eqn. (4), denoted as z[u]. The goal of reservoir
computing is to learn to approximate the input-output mapping
u 7! z[u] with an estimate ẑ[u], which is a linear combination
of the reservoir’s variables, ẑ[u] = ~wT~x[u]. This is displayed
schematically in Figure 1, with variable names referring to
the relevant quantities in electronic circuits that will form the
reservoir. As is often done, to the reservoir trajectories ~x we
append a constant signal, ~x 0(t) := [~x(t),~1(t)] to compensate
for constant shifts in the output z[u].

In the following, all quantities depend on the particular in-
put signal u used to drive the reservoir and generate z[u](t).
This dependence on u can be cumbersome to denote and so
we have suppressed it in favor of indicating the dependence on
the time interval by the subscript ⇤T . Arguments based on er-
godicity can be used to justify dropping this dependence in the
long-time limit [11] and we use finite size scaling analysis to
achieve this in our calculations (see the supplemental material
for details).

The interesting feature of RC is that only the output layer,
given by the coe�cients ~w, is trained. Training is performed
in the following manner: First, the reservoir is “initialized” by
driving with the input signal on an interval [�T 0, 0], until the
fading memory property ensures that its state is independent
of the initial condition at t = �T 0. Then, the reservoir is
driven for an additional interval [0, T ]. The coe�cients ~w are
learned via linear regression, by minimizing the mean squared
error (MSE) between a reconstruction ẑ(t) = ~wT~x 0(t) and
the output trajectory z(t) over the time interval [0, T ],

MSET [z, ẑ] =
1

T

Z T

0
dt (z(t)� ẑ(t))2. (5)
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of the reservoir’s variables, ẑ[u] = ~wT~x[u]. This is displayed
schematically in Figure 1, with variable names referring to
the relevant quantities in electronic circuits that will form the
reservoir. As is often done, to the reservoir trajectories ~x we
append a constant signal, ~x 0(t) := [~x(t),~1(t)] to compensate
for constant shifts in the output z[u].

In the following, all quantities depend on the particular in-
put signal u used to drive the reservoir and generate z[u](t).
This dependence on u can be cumbersome to denote and so
we have suppressed it in favor of indicating the dependence on
the time interval by the subscript ⇤T . Arguments based on er-
godicity can be used to justify dropping this dependence in the
long-time limit [11] and we use finite size scaling analysis to
achieve this in our calculations (see the supplemental material
for details).

The interesting feature of RC is that only the output layer,
given by the coe�cients ~w, is trained. Training is performed
in the following manner: First, the reservoir is “initialized” by
driving with the input signal on an interval [�T 0, 0], until the
fading memory property ensures that its state is independent
of the initial condition at t = �T 0. Then, the reservoir is
driven for an additional interval [0, T ]. The coe�cients ~w are
learned via linear regression, by minimizing the mean squared
error (MSE) between a reconstruction ẑ(t) = ~wT~x 0(t) and
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Figure 1. Basics of reservoir computing. A time-dependent input
~u(t) is used to drive a reservoir, which is a (linear or nonlinear)
dynamical system with internal state ~x(t). The predicted output
is computed as a weighted linear combination of the internal state,
ẑ(t) = ~wT~x(t). The weights ~w are adjusted to minimize the time-
averaged mean squared error (MSE) between this predicted output
and the target output ~z(t).

storage and nonlinearity.
In the next section we make these notions more precise.

We provide an introduction to reservoir computing, electronic
reservoirs and memristors, as well as definitions of the mea-
sures of computational capacity we will utilize. We then
turn to the feasibility, tunability and scalability of LRC and
memristor-based reservoirs. Finally, we compare our results
to more conventional ESN reservoirs [16], showing that elec-
tronic reservoirs are capable of matching or exceeding the
performance of a standard ESN reservoir implementations.

BACKGROUND

Reservoir Computing

In what follows, we present a brief review of reservoir com-
puting in continuous time. A schematic illustration is provided
in fig. 1. Readers familiar with RC and measures of capacity
may skip to the section labelled Circuit Elements and Struc-
ture.

A reservoir is a multivariate driven dynamical system. At
time t, the state of the dynamical system, which we indicate
as ~x(t), is driven by an input ~u(t) and obeys the differential
equation

~̇x(t) = F (~x(t), ~u(t)). (1)

As a result of these dynamics, the state of the reservoir encodes
information about ~u as transformations of its previous history.
As an instructive example, a linear reservoir is governed by
the equation

~̇x(t) = A~x(t) + ~u(t). (2)

which has the long time limit solution

~x(t) =

∫ ∞
0

dτeAτ~u(t− τ) (3)

showing that the state is a linear function of the past history
of ~u. We will consider reservoirs driven by a scalar input
signal u(t) as ~u(t) = ~vu(t), where ~v is a vector of weights

that defines how the input signal u(t) enters into each element
of the reservoir.

In order for a dynamical system to be considered feasible as
a reservoir, its state must approach a nontrivial function of the
input trajectory in the long time limit. At a high level, we can
state this requirement in terms of two conditions:

• Fading Memory: If the system were to be started from
two different initial conditions ~x0, 6= ~x ′0 and driven
with the same input trajectory u, the system’s trajec-
tories should eventually converge to the same state,
~x(t), ~x′(t) → ~x[u](t) as t → ∞. The statement above
implies that the system has a finite temporal memory.

• State Separation: Different input sequences should drive
the system into different trajectories, i.e., if the same ini-
tial condition were to be driven with two different input
trajectories u 6= u′, the resulting reservoir trajectories
must be sufficiently different.

The first condition requires that the state of the reservoir
becomes a function of the input trajectory, while the second
requires that the this function carries information about the
input trajectory.

Reservoirs that satisfy the fading memory property have a
representation as a Wiener/Volterra series [5],

xi[u](t) =

∫ ∞
0

dτ1 hi1(τ1)u(t− τ1)+∫ ∞
0

dτ1dτ2 hi2(τ1, τ2)u(t− τ1)u(t− τ2) + · · ·

(4)

which decomposes each degree of freedom xi into a series
of linear and nonlinear components governed by kernel func-
tions hin(τ1, . . . τn). This allows us to regard the reservoir as
implementing a filter of the input trajectory. Reservoir com-
puters can be thought of as approximating filters, in much
the same that feed-forward neural networks may be thought
of as approximating functions [21, 22]. This will be a useful
characterization of both the reservoir and its possible outputs.

In addition to the input trajectory u(t), we are also provided
with a target output trajectory z(t). The goal of reservoir
computing is to learn to approximate the input-output mapping
u 7→ z with an estimate ẑ(t), which is a linear combination
of the reservoir’s variables, ẑ(t) = ~wT~x(t). Here we will
always assume that the z(t) is a scalar. We will also assume
that the target output is a function of u of the form in eqn. (4),
denoted as z[u]. See fig. 1 for details. Finally, as is often done,
to the reservoir trajectories ~x we append a constant signal,
~x ′(t) := [~x(t),~1(t)] to compensate for constant shifts in the
output z[u].

In the following, all quantities depend on the particular input
signal u = {u(t) : 0 ≤ t ≤ T} used to drive the reservoir and
generate ~x[u](t), ẑ[u](t), and z[u](t). This dependence on u
can be cumbersome to denote and so we have suppressed it in
favor of indicating the dependence on the time interval by the
subscript �T .

The interesting feature of RC is that only the output layer,
given by the coefficients ~w, is trained. Training is performed
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in the following manner: First, the reservoir is “initialized”
by driving with the input signal on an interval [−T ′, 0], until
the fading memory property ensures that its state is indepen-
dent of the initial condition at t = −T ′. Then, reservoir
is driven for an additional interval [0, T ]. The coefficients
~w are learned via linear regression, by minimizing the time-
averaged mean squared error (MSE) between a reconstruction
ẑ(t) = ~wT~x ′(t) and the target output trajectory z(t) over the
time interval [0, T ],

MSET [z, ẑ] =
1

T

∫ T

0

dt (z(t)− ẑ(t))2. (5)

This optimization problem ~̂w = argmin~w MSET [z, ~wT~x ′]
has a closed form solution (note the use of the ‘hat’ to de-
note the optimum). Defining the time average, 〈f〉T =
1
T

∫ T
0
dt f(t), the solution is ~̂w = 〈~x ′T~x ′〉−1

T 〈~x ′z〉T which
we show in the supplemental material. Regularization via
ridge regression is also commonly employed in practice, which
modifies the objective to MSET [z, ~wT~x ′] + k||~w||2 [20].

In the space of functions on [0, T ] the optimal approxima-
tion ẑ(t) = ~̂wT~x ′(t) can be understood as the projection of
z(t) onto the span of the reservoir trajectories ~x ′(t). This
is a consequence of the least squares objective [11]. As the
estimate ẑ(t) is a projection of z(t), we can evaluate the nor-
malized mean-squared error of the reservoir reconstruction of
z as

nMSET [z, ẑ] =
MSET [z, ẑ]

〈z2〉T
. (6)

It is normalized to 0 ≤ nMSET [z] ≤ 1 when calculated on the
training interval t ∈ [0, T ]. The nMSE is often a more useful
measure than the MSE, since it gives the relative error of the
approximation to the variation in z(t).
From now on we will only consider the optimal approxi-

mation generated by the reservoir. We introduce the notation

nMSET [z] ≡ min
~w

nMSET [z, ~wT~x ]. (7)

nMSET [z] can be read as the normalized mean-squared er-
ror for the reservoir’s approximation of z on the time interval
[0, T ]. Some authors [11] prefer to use a reversed scale, defin-
ing the capacity of the reservoir to approximate z as

CT [z] = 1− nMSET [z], (8)

where 〈f〉T = 1
T

∫ T
0
dt f(t). The capacity is bounded 0 ≤

CT [z] ≤ 1 with 1 corresponding to a perfect reconstruction.
As mentioned above, the nMSE and capacity CT can be

given a geometric interpretation on the space of functions
on [0, T ]. For a function z(t) normalized as 〈z2〉T = 1, the
capacityCT [z] is the squared length of the projection of z onto
the span of the reservoir trajectories ~x ′. The nMSE[z] is the
squared length of the component of z(t) perpendicular to the
span of the reservoir trajectories and soCT [z]+nMSE[z] = 1
can be seen as an expression of the Pythagorean Theorem.

Total Memory and Extensivity

In order to assess a reservoir, we require a more complete
picture of its properties, that goes beyond its ability to ap-
proximate a single function. A main result of Dambre et
al. [11] is that the capacities of a reservoir to approximate
orthogonal functions give independent information about the
reservoir (orthogonality is defined as limT→∞〈zz′〉T → 0,
see supplemental material for further details).
One consequence of this result is that, in the long-time

limit, capacities will converge to time-independent values that
characterize the reservoir,

lim
T→∞

CT [z] = C[z]. (9)

While we cannot achieve this limit in practice, we can esti-
mate it using techniques from finite size scaling. (The capac-
ities we report throughout this paper are obtained from these
techniques, with detailed results of the analysis shown in the
supplemental material.)
Another consequence of the result by Dambre is that, rather

than evaluating the reservoir’s capacity to approximate only a
single function z, we can evaluate its capacity over a family
of orthogonal functions {zi}. The resulting capacities al-
low us to characterize the reservoir’s ability to approximate
arbitrary functions of the form

∑
i aizi. We relate the ca-

pacities of the reservoir on a family of functions, CT [zi], to
a linear combination of these functions, CT [

∑
i aizi], in a

precise way: Consider a set of n orthonormal functions on
t ∈ [0, T ], 〈zizj〉T = δij , and normalized linear combination
z =

∑n
i=1 aizi, 〈z2〉T = 1. Then, if CT [zi] ≥ 1 − ε for

all i = 1 . . . n then CT [z] ≥ 1 − nε. This is proved in the
supplemental material, where we also construct the function
z∗ that has maximal error. Our construction show that when
errors are uncorrelated, or when the maximal error function
lies withing the basis, the capacity on the linear combination
satisfies the tighter bound CT [z∗] ≥ 1− ε.
A natural family of functions for evaluating capacities are

products of the delayed input z(t) = u(t − τ1) . . . u(t − τn),
that is the terms in the Wiener/Volterra series in eqn. (4). The
first two such functions are shown schematically in fig. 2. The
first function, z(t) = u(t − τ1) leads to the linear memory
function,

m(τ) = C[u(t− τ)], (10)

Input u(t)
Linear  

memory output  

z(t) = u(t − τ1)

Nonlinear 
memory output

τ2

τ1
z(t) = u(t − τ1)u(u − τ2)

Figure 2. The first two terms of the Wiener/Volterra series, eqn. (4),
are linear and quadratic functions of the input. When taken as the
target output z, these functions are used to define the linear and
nonlinear memory of the reservoirs, as in eqns. 10 and 11.
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which reflects the ability of the reservoir to reconstruct time-
delayed version of the input at different lags [14, 17, 31].
We generalize this concept to nonlinear, nth-order memory
functions,

mn(τ1, τ2, . . . , τn) = C[u(t− τ1)u(t− τ2) . . . u(t− τn)],
(11)

which reflect the reservoir’s ability to approximate the product
of the input at various delays in the past. Achieving high
nonlinear memory requires the reservoir to memorize past
inputs as well as to be able to perform nonlinear operations on
these inputs.

If the input function u is drawn from a family of ran-
dom functions with mean zero 〈u〉T = 0 and decaying auto-
correlation 〈u(t)u(t − τ)〉T → 0 as τ → ∞, then u and
and its time delayed products will approach orthogonality as
their delays differ. We generate input functions from smoothed
Gaussian noise with correlations that decay exponentially with
a unit timescale (see supplemental material). The family of
functions {u(t − τ1), u(t − τ1)u(t − τ2), u(t − τ1)u(t −
τ2)u(t− τ3) . . . } is approximately orthogonal for time delays
satisfying |τi−τj | > 1. Thememory functionsmn thus tell us
independent information about the computational capacities of
our reservoir over timescales greater than 1.

Finally, we summarize a reservoir’s computational proper-
ties via the following quantity:

τε =

∫ ∞
0

dτ Θ(m(τ) > 1− ε), (12)

where Θ is the Heaviside step function. We refer to τε as the
total linear memory of the reservoir. This quantity captures the
time delay up to which the history of the input is reconstructed
with an error less than ε. This definition can be generalized to
quantify the total nth-order nonlinear memory as

τ (n)
ε =

∫ ∞
0

· · ·
∫ ∞

0

dτ1 · · · dτn Θ(mn(τ1, . . . , τn) > 1− ε).
(13)

Previous studies have demonstrated linear reservoirs with ex-
tensive total memory, i.e. τε ∝ N for a reservoir with N
elements [14, 31]. In this work we present an electronic im-
plementation of the linear reservoirs discussed in those papers.
We then generalize this approach by designing an electronic
reservoir which displays extensive scaling in its total quadratic-
memory, τ (2)

ε ∝ N .

Circuit Elements and Structure

We consider electronic circuits composed of traditional lin-
ear elements including inductors (L), capacitors (C), and resis-
tors (R), active elements (voltage or current sources), as well
as passive memory elements known as memristors (Mem) (see
below). In all cases, the electronic reservoir will accept a vec-
tor input through a set of voltage sources ~s. We can convert
the scalar input u(t) to a time dependent voltage vector ~s(t)
through a set of constant input weights ~s(t) = ~vu(t). We will

Figure 3. A class of reservoirs we consider are composed of inde-
pendent sub-circuits. Each circuit has identical structure, but with
parameters that vary to achieve independent trajectories when driven
with the same input. In all sub-circuits the input is a voltage generator
driven with s(t) and shown in green. The output circuit variables are
shown in red. The three sub-circuit types are: LRC circuits with out-
put variables q(t), the charge on the capacitor and q̇(t), the current
through the inductor, single memristors with output variable η(t), the
memristive state variable, and paired memristors biased in opposite
directions with output variables η+(t) and η−(t). As the resistance
is a linear function of η, the two are equivalent as output variables.

consider several circuit structures as shown in figs. 3 and 4, in-
cluding independent sub-circuit reservoirs composed of LRC,
single and paired memristor circuits and memristive networks
on a lattice.
The linear reservoirswe considerwill be composed of sets of

LRC sub-circuits as shown in fig. 3 in which each LRC circuit,
indexed by n has component values ln, rn, cn and is driven
by a voltage generator sn = u(t) (taking ~v = ~1). Each circuit
possesses two degrees of freedom qn(t), q̇n(t) corresponding
to the charge across and current entering the capacitor, which
obey the following equations of motion:[

q̇n(t)
q̈n(t)

]
=

[
0 1

− 1
lncn

− rnln

] [
qn(t)
q̇n(t)

]
+

[
0

sn(t)
ln

.

]
(14)

The output trajectories of an LRC sub-circuit are the trajecto-
ries of the internal degrees of freedom, ~x = [~q(t), ~̇q(t)] (the
vector notation covers the indexing over n). The dimension
of an LRC reservoir of N sub-circuits is thus 2N . In the sup-
plemental information we prove that a network of LRC motifs
is equivalent to a collection of separate sub-circuits. There is
thus no benefit to considering a network of these motifs and
our treatment here is fully general.
In addition to linear elements, we consider reservoirs of non-

linear electronic components called memristors. Memristors
are passive 2-terminal devices characterized by the response
relationship,

V (t) = R(η)I(t), (15)
η̇(t) = f(η(t), I(t)), (16)

where V (t) is the voltage drop across the memristor, I(t)
is current, η(t) is the internal state of the memristor, and
R(η(t)) is the state-dependent resistance. It can be seen that
the resistance can depend on the past history of the current.
Importantly, memristors are inherently nonlinear elements. As
in the case of linear networks, the input to the circuits is through
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Figure 4. The edges of the memristor networks we consider consist of
voltage driven memristors which are arranged in a triangular lattice.
The output variables are the memristive states in the networks ~η(t) =
[η1(t), η2(t), . . . ]. The magnitude of the driving signal in each edge
se(t) varies on the interval [S,−S] in equally spaced increments.

a set of voltage generators ~s(t) = ~vu(t) where ~v is a constant
vector of weights with units of voltage.

The internal states of a memristor circuit closely mimic the
behavior of a neural network. We constrain ourselves to the
linear current model similar to the one proposed in [27], along
with a decay term [8],

R(η) = Roff(1− η) +Ronη, (17)

R(η) = Roff(1− χη)
(
χ :=

Roff −Ron

Roff

)
, (18)

η̇(t) = −αη(t) +
Roff

β
I(t). (19)

Here the constant α = 1/t∗ is an inverse time scale while
β is an activation current per unit of time, which moderates
the strength of the input signal. This model is the simplest
approximation of a current-controlled memristor, as we show
in the supplementary material. The internal state η is limited
to the interval [0, 1] by hard barriers, so the resistance R(η)
varies between two limiting values [Ron, Roff ]. We use η as
the output variable of memristors, but as the resistance R is a
linear function of η, the two are equivalent as components of
a linear regression.

The term −αη(t) in eqn. (19) causes the memristor state
η to decay to 0 in the absence of a current. This is called
volatility in the context of memristors and is an important
effect in many memory materials and their applications (see
the review [30]). Here it plays a central role in providing
the fading memory property for memristor circuits. However,
not all memristors are volatile and commercial memristors are
generally designed to be nonvolatile for memory applications.
While nonvolatile memristors can still show fading memory
(see [2, 24]), nonvolatile fadingmemory is muchmore difficult
to treat analytically and so we limit our study to the case of
volatile memristors. This is not as great a limitation as it might
seem, in the sense that any nonvolatile memristor can be turned
into a volatile memristor by the addition of a voltage or current
source that gives a small negative current in the absence of an
applied voltage.

When considering networks of elements as in fig. 4 it is
convenient to introduce the cycle space projectorΩA [8], which
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Figure 5. The top panel displays the memory function for an LRC
reservoir of 18 sub-circuits (36 trajectories) with ∆ω = γ = 4

18
.

The memory function m(τ) displays the capacity of the reservoir
to reconstruct the delayed input u(t − τ). The reservoir retains an
accurate memory of the input before falling sharply. In the bottom
panel we display the ε = 0.1 total linear memory of LRC networks
of various sizes. This corresponds to the signal delay at which the
memory function falls below 0.9, displayed in the top panel as a
vertical line. As discussed in the main text, the total linear memory
scales extensively with the system size.

projects a vector that a assigns a real number to each edge of
a graph onto current configurations that satisfy Kirchhoff’s
current law. The projector ΩA can be simply computed from
the circuit graph G, in which nodes of the graph represent
electrical junctures and edges contain electrical elements. For
a circuit inwhich the edges contain a voltage generator in series
with a memristor with values ~u(t), as in fig. 4, the equation of
motion is given by [8]

~̇η(t) = −α~η(t) +
1

β
(I − χΩAH(t))−1ΩA~u(t) (20)

where we have used the convention H(t) = diag ~η(t). Inter-
actions between memristors thus occur through the inverse of
I − χΩAH(t) and are mediated both by χ and the Kirchhoff
laws imposed by ΩA. A memristor circuit generates reservoir
trajectories ~x = ~η(t).



6

RESULTS

Linear Electronic Reservoirs

In this section we illustrate the ideas of memory and scaling
introduced above in the familiar realm of linear circuits. We
show that electronic reservoirs with extensive total memory
can be constructed from LRC circuits and that these circuits
can be understood as calculating a time-windowed version of
the Fourier transform, akin to a spectrogram. Moreover, in
the supplemental material, we prove the following result:

Feasibility of LRC circuits. Reservoirs of LRC circuit motifs
satisfy the fading memory and state separation properties.

This justifies our use of these systems as reservoirs and the
application of the memory measures defined above.

From the solution in eqn. (3), we observe that linear reser-
voirs generate linear functions of the input signal, and that
their properties will depend on the eigenvalues of A. We thus
examine the scaling of the total linear memory τε using spec-
tral techniques. In [14, 31], it was noted that an extensive total
memory was obtained for reservoirs with eigenvalues lying on
a vertical line in the negative half plane, i.e., eigenvalues of
the form λn,± = −γ± in∆ω for n ∈ {0 . . . N}. As shown in
the supplemental material, the solution to eqn. (14) depends
on linear combinations of the integrals

∫∞
0
dτ eλn,±τu(t− τ).

For the values of λn,± above, this can be interpreted as calcu-
lating a local Fourier transform of the input. The frequencies
Im(λn,±) = ±n∆ω are evenly spaced with largest frequency
N∆ω and smallest frequency ∆ω. The exponential window,
e−γτ applies a cutoff in time on the interval 0 ≤ τ ≤ 1/γ.
This means that in order to not experience interference with
previous time windows, we should set the lowest frequency,
∆ω to be on the same order as γ. Further details on this cor-
respondence are given in the supplemental material (section
VIII. Solution of LRC Circuits).

The LRC sub-circuit in fig. 3 and governed by eqn. (14) has
eigenvalues λ± = − r

2l ± i
√

1
lc −

r2

4l2 = −γ± iω and a corre-
sponding pair of trajectories qn(t), q̇n(t) corresponding to the
charge and current entering the capacitor (see supplemental
material). As a consequence any eigenvalue spectrum in the
negative half-plane and symmetric in the upper and lower half
planes can be achieved by a collection of LRC circuits with a
particular choice of the component values ln, rn, cn. Given a
γ and ∆ω, we choose ln = 1, rn = 2γ for all n and

cn =
1

n2∆ω2 + γ2
, (21)

in which case the resulting LRC circuits have eigenvalues
λn,± = −γ ± in∆ω.
Reconstructing the input at a given time lag, z(t) =

u(t− τ1), is equivalent to constructing an approximate repre-
sentation of the delta function as the linear term of eqn. (4),
h1(τ) = δ(τ1 − τ). After fitting, the learned weights wqn ,
wq̇n and wc may be used to construct the kernel h1(τ) of the
reservoir. An example of this is given in the supplemental

material, which makes it clear that the training procedure is in
fact constructing a delta function approximation.
To construct an LRC network of N circuits, we identify a

maximum frequencyωmax associatedwith our input signal and
define ∆ω = ωmax/N as the lowest frequency and resolution.
This lowest frequency defines a timescale t′ ∼ 1/∆ω over
which a signal could be represented by the Fourier series. We
then choose γ = ∆ω to suppress the signal for times longer
than t′. For the smoothed Gaussian noise input signal used
here (see supplemental material), we take ωmax = 4.
We expect that if ωmax is chosen to be sufficiently large so

as to accurately represent the signal, the system’s total linear
memory τε will scale as N . This is confirmed in fig. 5, where
we show the memory function m(τ) = C[u(t − τ)] and the
total linear memory τε for ε = 0.1 across a range of reservoir
sizes. As expected, reservoirs of this type show an extensive
total linear memory. Note that the precise value of ε is not
particularly important since the memory function for these
networks maintains a value near 1 before falling sharply. This
implies that an LRC network will be able to approximate any
function z(t) =

∫ T∗
0

dτ h1(τ)u(t − τ) for any kernel h1, so
long as the network is large enough that its total linear memory
obeys τε > T ∗.

MEMRISTOR RESERVOIRS

We now turn to establishing analogous results for memristor
reservoirs. To begin, in the supplemental material we prove
the following result:

Feasibility of Memristor Networks. Reservoirs of networked
memristors satisfy local fading memory and state separation
properties for sufficiently weak input signal.

Specifically, the proof requires that the driving signal sat-
isfy ||~u(t)||2 ≤ (1−χ)2αβ

χ . This result was a surprise given
the passive nature of the memristor model but simulations
have demonstrated the importance of weak driving to the fad-
ing memory property. The dependence on χ illustrates the
constraints put on the driving signal by the nonlinearity of the
memristors. The condition above illustrates a tradeoff between
nonlinearity and volatility, governed by the decay constant α
in maintaining the fading memory property. We also note that
nonvolatile memristors have demonstrated a form of fading
memory [2, 24], though it is not clear what is at the root of
this effect. Certainly, saturation effects at the boundary of the
devices can also lead to fading memory for a strong signal
and this will be in the opposite regime to the bound above.
It is certainly possible that different memristors show fading
memory over a wider range of driving signals and for varying
reasons, but our investigations have made it clear that the lin-
ear model will only satisfy the local fading memory property
when weakly driven. In the supplemental material we also
show that, so long at the dissipative term is bounded below by
a linear function of ~η, a very similar bound will hold.
Further work has shown that when strongly driven, mem-
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ristor networks can enter a transiently chaotic state in which
trajectories will diverge in time [7], in apparent violation of the
local fading memory property. However, after this transiently
chaotic phase of the dynamics, the system will approach a
steady state under constant driving. Presently it is not clear
whether systems that display transient chaos can form useful
reservoirs when the driving signal is time-varying, as chaotic
dynamics may recur repeatedly. Our simulations have indi-
cated that maintaining the fading memory property is impor-
tant, so all memristor networks we employ are in the weakly
driven regime.

The trajectory of a single memristor governed by eqn. (19)
has the Volterra series expansion

η(t) =
1

β

∫ ∞
0

dτ1e
−ατ1u(t− τ1)+

χ

β2

∫ ∞
0

dτ1

∫ ∞
τ1

dτ2 e
−ατ2u(t− τ1)u(t− τ2) +O(χ2),

(22)

(see supplemental material), where we have neglected bound-
ary effects and where higher order kernels of the input are
suppressed by higher powers of χ. We immediately note that
the kernel functions are exponentially decaying at a rate α.
This is consistent with the fading memory property, as any
perturbation in u will have an exponentially decreasing ef-
fect on η as time goes on. The expansion makes it clear that
memristor trajectories depend on higher powers of the driving
signal u(t). In this sense, memristors may be considered as a
source of nonlinearity in electronic reservoirs.

As a generalization of the linear approximation task, we
consider the approximation of an arbitrary 2nd order filter
which depends on the input signal for a time T ∗ into the past.
Specifically, we wish to approximate a function of the input
with the form,

z(t) =

∫ T∗

0

dτ1 F1(τ1)u(t− τ1)+∫ T∗

0

dτ1

∫ T∗

0

dτ2 F2(τ1, τ2)u(t− τ1)u(t− τ2). (23)

Approximating this function with memristors requires isolat-
ing terms related to the second order contribution to the tra-
jectory in eqn. (22). To do this, we note that a reservoir of two
memristors η+(t) and η−(t), each driven by u(t) and −u(t)
respectively, allows us to construct their sum (away from the
boundaries and up to terms of order O(χ2)) as

η+(t) + η−(t) ≈
2χ

β2

∫ ∞
0

dτ1

∫ ∞
τ1

dτ2 e
−ατ2u(t− τ1)u(t− τ2),

which cancels all odd terms in u(t) in eqn. (22). Including
memristors in pairs thus allows the training procedure to isolate
these quadratic components and learn their weights so as to
approximate eqn. (23).

The e−ατ dependence of terms in theWiener/Volterra series
only allows a dependence on u on timescales of order 1

α .

A lower value of α will integrate a longer window of the
previous history into the current state, but will also obscure
the value of the input signal at any single time. In reservoir
computing, the parameters of the circuit are randomized to
generate linearly independent trajectories, which allows the
training to isolate different components of the input signal. In
memristor networks, this may be accomplished by varying α
and β (the timescales of decay/excitation for memristors), by
varying the amplitude of the driving, or by introducing disorder
into the structure of the circuit ΩA. We employ what we view
as the most practical option, which is varying the amplitude of
the driving signal. In networks, memristors are driven with a
proximal voltage generator that varies in amplitude from +S
to−S in equally spaced increments, where S is a constant that
may be tuned.
In fig. 6 we show the quadratic memory function

m2(τ1, τ2) = C[u(t− τ1)u(t− τ2)] for reservoirs composed
of LRC, single memristors, paired memristors and memris-
tor networks as shown in figs. 3 and 4. As expected, while
the LRC reservoir produces excellent linear reconstructions,
it shows very poor ability to reconstruct quadratic functions.
Amongmemristorswhile singlememristors showclear nonlin-
earity, paired memrisitors are markedly better and memristor
networks show only a limited advantage over separate paired
memristor sub-circuits.
While memristor reservoirs give us the ability to calculate

quadratic functions of the input with high accuracy for short
times, the total quadratic memory τ (2)

ε does not scale exten-
sively as the size of the reservoir is increased. This can be seen
from the fact that the memristor network reservoir, which is 28
times bigger than the “paired memristors” reservoir, has a sim-
ilar total quadratic memory. In the next section we consider
hybrid reservoirs of memristor and LRC components, which
do demonstrate extensive scaling.

Hybrid Deep Reservoirs

The properties of LRC and memristor reservoirs may be
combined to achieve improved scaling of the nonlinear mem-
ory. The reservoir structure we will examine uses the trajec-
tories of a “surface layer” reservoir ~xs(t) where voltage gen-
erators are driven by the input, ~ss = ~vu(t), to drive another
“deep layer” reservoir ~xd [13]. The deep layer voltage gener-
ators are driven by the surface layer trajectories as ~sd = C~xs
whereC is a matrix of coupling coefficients whose structure is
discussed below. As LRC and memristor components are kept
in separate layers, these deep reservoirs inherit the feasibility
properties of their sub-components. The training procedure
uses all trajectories ~x = [~xs, ~xd] in the regression.
As seen in fig. 6, the ability of memristors to calculate

quadratic functions of the input occurs only over very short
delays. On the other hand, LRC networks show excellent
linear memory approximations but cannot reconstruct nonlin-
ear functions. This would suggest that using a surface layer
memristor network to generate nonlinear transformations of
the input, and then using these to drive a deep layer LRC
reservoir that would remember them, would give both good
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Figure 6. The quadratic memory functionm2(τ1, τ2) for a single LRC sub-circuit (left), a single memristor sub-circuit (middle left), apaired
memristors sub-circuit (middle right) and a triangular lattice of memristors (right) as shown in figs. 3 and 4. This measures the reservoirs
ability to approximate the function z(t) = u(t− τ1)u(t− τ2). The colors of the surfaces are purely for visualization and values should be read
from the z-axes which all extend from 0 to 1. We define τ∗ := argmaxτm2(τ, τ), the optimal delay for an equal-time reconstruction; the insets
show the corresponding reconstruction ẑ (orange) and target output z(t) = [u(t − τ∗)]2 (blue) as a function of the input signal u(t − τ∗).
As expected, the LRC circuit is only capable of generating linear approximations of the output. A single memristor reservoir is unable to
isolate its quadratic component and misses negative parts of the reconstruction due to boundary effects (middle left inset). The addition of
another memristor with opposite bias, significantly increases the ability to reconstruct z. The memristor network shows an enhanced ability
to reconstruct z and clear nonlinearity (right inset). The nonlinear memory function value ofm2(τ∗, τ∗) for each network was 0.390 (LRC),
0.558 (single memristor), 0.960 (paired memristors), and 0.995 (memristor network).

quadratic reconstructions and long memory of these recon-
structions. In fig. 8, the top panel shows the result of using
a pair of memristors configured as in the section above, to
drive an LRC reservoir. Each of the two memristor trajec-
tories in ~xs = [η+(t), η−(t)] is used as a source signal for
a small LRC reservoir of 10 circuits, which we index by n±
with n = 1 . . . 10. Each LRC circuit produces 2 trajectories
qn±, q̇n± giving a total of 2 + 2× 10× 2 = 42 output trajec-
tories. The LRC trajectories are calculated by eqn. (14) with
sn± = η±. The index n determines the parameters of the LRC
elements given γ = 0.4 and ∆ω = 0.4 and eqn. (21).

The resulting reservoir trajectories are used to evaluate the
quadratic memory function in the top panel of fig. 8 with the

Figure 7. We consider two deep reservoir structures in which the
layers are independent sub-circuit reservoirs of LRC or memristor
sub-circuits. Connections and layers are shown schematically to
make the figures legible. Inputs to the reservoirs are shown in green,
internal connections between layers are shown in grey and outputs are
shown in red. In the memristor to LRC reservoirs (left), the surface
layer is a paired memristor circuit. Each of the output trajectories
η±(t) is used to drive a deep layer reservoir of 10 LRC sub-circuits.
In the LRC to memristor reservoirs (right) each pair of surface layer
LRC circuits drives 12 paired memristor circuits (not all shown here)
such that all sums and differences of the 4 LRC trajectories drive a
separate paired memristor circuit.

results showing a substantial increase in the reservoir’s com-
putational capacity for ‘equal-time’ quadratic reconstructions
(defined via m2(τ, τ)). As the deep LRC reservoir is used
to recall the equal-time products computed by the memris-
tor reservoir, we expect that measures of their total quadratic
memory τ (2)

ε will also scale extensively. However increas-
ing the reservoir size will not improve the reconstruction of
unequal-time products where τ1 6= τ2.

Wenext consider using a surface layer LRC reservoir to drive
a deep layer memristor reservoir. As guiding intuition, if we
consider the LRC reservoir as computing the Fourier transform
of the signal, the deep memristor layer will calculate products
of this transform, akin to a 2-dimensional Fourier transform in
τ1 and τ2. We predict that the resulting network will display
an improved unequal-time quadratic memory function. To test
this, we implemented the same 10 circuit LRC reservoir as
described above driven with the same input signal u. The re-
sulting 20 trajectories, qn, q̇n, n = 1 . . . 10 are used to drive
a set of memristor pairs such that the sum and difference of
every pair of the 20 LRC trajectories are used to drive an in-
dependent pair of memristors. This means that for a particular
pair ηm+, ηm−, the driving signal may be qn ± qn′ , qn ± q̇n′
or q̇n ± q̇n′ such that all pairs n, n′ and q, q̇ are used. The
resulting 2× 20× 19 + 20 = 780 trajectories are used to train
the reservoir. In the lower panel of fig. 8, we calculate the
quadratic memory function for this architecture. We observe a
substantial improvement in the reservoir’s ability to construct
unequal-time products of the input signal. Although this re-
quires a significant increase in the size of the reservoir, such
an increase is expected. The number of unequal-time products
with τ1, τ2 < T ∗ scales quadratically in the maximum delay
T ∗ and so the reservoir size must scale similarly.

In fig. 9 we show the scaling of the total quadratic memory
τ

(2)
0.1 with the size of the reservoir. The total quadratic memory
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Figure 8. The quadratic memory function m2(τ1, τ2) for the hy-
brid memristor and LRC reservoirs shown in fig. 7. The top panel
shows the result of using a driven pair of memristors to drive an
LRC reservoir. The LRC reservoir stores memory of the nonlinear
computation in the memristor network, leading to large equal-time
quadratic capacities. In the lower panel, the result of using an LRC
reservoir to drive a set of memristor pairs is shown. The memris-
tor pairs compute products of the trajectories generated in the LRC
network, approximately implementing a 2-dimensional Fourier trans-
form. This extends the quadratic memory function to longer delays
compared with the paired memristor reservoir in fig. 6. The LRC
circuits were arranged with γ = 0.4, ∆ω = 0.4 corresponding to a
cutoff frequency of 4Hz

indeed scales extensively with the size of the reservoir indicat-
ing that arbitrary unequal-time products may be reconstructed
by a sufficiently large reservoir. Estimating these quantities
accurately turns out to be quite subtle, as estimated values will
display strong bias when calculated on a finite interval. In the
supplemental material we show how finite size scaling can be
used to obtain reliable estimates. We emphasize that it is the
total nonlinear memory τ (2)

ε that can scale extensively with the
system size; increasing the maximum delay T ∗ under which
we can reconstruct products of the input will require that the
reservoir size scale as T ∗2.

Another natural architecture to consider would use mem-
ristor reservoirs as both surface and deep layers, as has been
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Figure 9. The scaling of the total quadraticmemorywith reservoir size
in the hybrid LRC to Memristor reservoir. LRC reservoirs ranging
from 10 to 18 sub-circuits were used to drive a memristor reservoir as
described in the main text, resulting in reservoirs ranging from 946 to
2556 internal degrees of freedom. The total quadratic memory τ (2)0.1

(and errorbars) were estimated from a finite size scaling analysis as
detailed in the supplemental material.

considered in works based on the simulation of these devices.
Given the discussion above, we expect the primary benefit of
this architecture would be to enhance higher order nonlinear
capacities, which is precisely what we observe in simulation.
However, as this is outside the scope of the computational task
we set out to achieve, we do not include results from such
networks here.

Comparison with Echo State Networks

To show that these design considerations lead to improved
performance, we construct a fitting task in which we must ap-
proximate a known function of the input signal. We construct
the following target output:

z(t) =

∫ 10

0

dτ K1(τ1)u(t− τ1)+∫ 10

0

dτ1

∫ 10

0

dτ2K2(τ1, τ2)u(t− τ1)u(t− τ2) (24)

where the kernelsK1 andK2 are defined as

K1(τ1) = e−0.5τ1 cos(2τ1) (25)

K2(τ1, τ2) = −e−0.3(τ1+τ2) cos
(
2(τ1 − τ2)

)
. (26)

Accurate approximation of this output requires a mixture of
memory and nonlinearity.
In addition to the hybrid reservoir discussed above, we also

apply an implementation of continuous time Echo State Net-
works (ESNs)[16, 20] for comparison. An ESN is a dynamical
reservoir in which the internal states evolve according to

~̇x = −α~x(t) + tanh(M~x(t) + ~vu(t)), (27)

where α is a decay term, tanh(·) applies to every neuron,M is
a matrix that in order to satisfy the fading property must have
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Table I. Comparison of reservoir performance on the quadratic filter-
ing task described in the main text.

Reservoir dim(~x) nMSE Gen. nMSE

Pure Memristor Network 800 0.1 2.
ESN 780 0.02 0.03
LRC→Memristor 780 0.01 0.01

maximum eigenvalue less than one, and~v scales themagnitude
of the input u(t) which drives each neuron.

We compare the results of a suitably tuned ESN to a pure
memristor network as in fig. 4, and a hybrid surface LRC
to deep memristor reservoir. The memristor network is a
17 × 17 triangular lattice with 800 edges each containing a
memristor (α = 3, β = 1, χ = 0.8) and voltage generator.
The elements of ~v were uniformly distributed on the interval
[−1,−0.1] ∪ [0.1, 1]. The LRC→Memristor reservoir was
configured identically to that presented in the previous section
and included a total of 780 trajectories. Finally the ESN
consisting of 780 elements was run and tuned following the
recommendations in [20]. As far as possible, each reservoir
was configured to produce the same number of trajectories
(the lattice structure of the naive memristor network imposes
some constraints). Further details on the implementation of
each reservoir can be found in the supplemental material. The
LRC→Memristor reservoir was configured identically to that
presented in the previous section and included a total of 780
trajectories. Finally the ESN consisting of 780 elements was
run and tuned following the recommendations in [20].

Each reservoir was first initialized on the interval [0, 100]
corresponding to approximately 100 autocorrelation times of
the input driving signal. They were then trained on the in-
terval [100, 4000] and the nMSE[100,4000] is reported in table
I. Lastly, a generalization error is reported by calculating the
nMSE[z] on the interval [4000, 5000] with the weights that
were trained on [100, 4000]. The generalization error is no
longer normalized to [0, 1] as the weights are calculated on a
different interval. However it is the most important measure
of the reservoir’s ability to approximate the function u 7→ z,
rather than to simply fit this function on a single training inter-
val.

The results of the training are shown in table I. The hybrid
LRC→Memristor reservoir demonstrates a 10-fold improve-
ment over the pure memristor network and performs on par
with the ESN implementation in training as well as a 2-fold
improvement in generalization error. We attribute this to the
specialized structure of the LRC to memristor reservoir, which
gives it an advantage at reliably calculating quadratic func-
tions of the input. We conclude that suitably crafted analog
reservoirs are thus capable of matching and even surpassing
the performance of standard reservoirs. The generalization
error of the pure memristor network exceeded 1, and shows
that the MSE on this interval was twice the variation in z.
This indicates no ability to generalize the fit from the training
interval and highlights the importance of reporting general-
ization error, rather than training error, in work on electronic
reservoirs.

DISCUSSION

Despite wide interest in utilizing electronic circuits with
memory for hardware reservoirs, an understanding of how
these systems process and store information has been lacking.
For echo state networks, the balance between memory and
nonlinearity is controlled primarily by the spectral radius of
the couplingmatrix. However, no similar conditions have been
explored for electronic networks.
In this work we have shown that linear electronic reser-

voirs of LRC circuits can be constructed with optimal memory
properties, having an eigenvalue spectrum known to corre-
spond to an extensive memory (e.g. that scales proportionally
to the number of components). This may be interpreted as
performing a Fourier transform of the driving signal in hard-
ware, where the eigenvalue spectrum required can be designed
appropriately for a given problem.
In memristor reservoirs, we have shown that while the sys-

tem contains contributions from terms of very high order, these
are moderated in strength by powers of χ. It is essential that
the reservoir be able to isolate desired terms to make use of
them in the training process. We have shown that using paired
memristors of opposite polarity gives a substantial increase in
the reservoir’s ability to isolate their quadratic kernels.
Combining LRC and memristor networks into deep reser-

voirs allows the utilization of the memory capabilities of LRC
reservoirs and the nonlinear capacities of memristor reservoirs
in order to achieve specific computational goals. Utilizing an
LRC network as a deep layer allows nonlinear computations
performed in the surface memristor network to be stored for
long times. Similarly, using an LRC reservoir as the surface
layer to drive a deep layer memristor network will calculate
products of Fourier modes and give enhanced unequal-time
quadratic capacities. Most importantly, this leads to a total
quadratic memory which scales extensively in the system size,
such that arbitrary products of the input can be constructed by
a sufficiently large reservoir.
This analysis can have substantial impacts on performance,

as we show in our comparison to ESN reservoirs. The hybrid
reservoirs we present give a 10-fold improvement over the
naive memristor network implementation, and perform on par
with the ESN implementation. Properly constructed electronic
reservoirs should thus be capable of matching the performance
of standard reservoirs but also allow the use of larger reservoirs
and faster computation times.
Our approach to the analysis of the computational capacities

of memristor and LRC reservoirs can be generalized to higher
order kernels of the network and to other nonlinear elements.
In this sense we present a general approach to the understand-
ing of physical reservoirs, in analogy to the methods available
to tune ESNs by trading between memory storage and nonlin-
earity [20].
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