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Traditionally, acoustic streaming is assumed to be a steady-state, relatively slow fluid response to passing

acoustic waves. This assumption, the so-called slow streaming assumption, was made over a century ago

by Lord Rayleigh. It produces a tractable asymptotic perturbation analysis from the nonlinear governing

equations, separating the acoustic field from the acoustic streaming that it generates. Unfortunately, this

assumption is often invalid in the modern microacoustofluidics context, where the fluid flow and acoustic

particle velocities are comparable. Despite this issue, the assumption is still widely used today, as there is no

suitable alternative.

We describe a novel mathematical method to supplant the classic approach and properly treat the spa-

tiotemporal scale disparities present between the acoustics and remaining fluid dynamics. The method is

applied in this work to well-known problems of semi-infinite extent defined by the Navier-Stokes equations,

and preserves unsteady fluid behavior driven by the acoustic wave. The separation of the governing equa-

tions between the fast (acoustic) and slow (hydrodynamic) spatiotemporal scales are shown to naturally

arise from the intrinsic properties of the fluid under forcing, not by arbitrary assumption beforehand. So-

lution of the unsteady streaming field equations provides physical insight into observed temporal evolution

of bulk streaming flows that, to date, have not been modeled. A Burgers equation is derived from the new

method to represent unsteady flow. By then assuming steady flow, a Riccati equation is found to represent

it. Solving these equations produces direct, concise insight into the nonlinearity of the acoustic streaming

phenomenon alongside an absolute, universal upper bound of 50% for the energy efficiency in transducing

acoustic energy input to the acoustic streaming energy output. Rigorous validation with respect to experi-

mental and theoretical results from the classic literature is presented to connect this work to past efforts by

many authors.

I. INTRODUCTION

The simple act of passing an acoustic wave through a

fluid produces a useful flow known as acoustic streaming

[1]. Counterintuitive fluid behaviors often appear from

acoustic streaming, behaviors that turn out to have prac-

tical applications, including biosensing [2, 3], medical di-

agnostics [4, 5], nozzle-free printing [6], smart materials [7],

gene editing [8], energy storage [9, 10], drug delivery [11, 12],

noise insulation [13], and a great many others [1, 14–17].

Taken together, this broad range of utility and the phenom-

ena responsible for it indicate the importance of deriving

consistent theoretical representations for explaining acous-

tic streaming. Unfortunately, its analysis is not straightfor-

ward.

The analysis of acoustic streaming is difficult for sev-

eral reasons. First, the fundamental conversion mecha-

nism from an acoustic wave to acoustic streaming is rep-

resented by the nonlinear term in the Navier-Stokes equa-

tion, the streamwise acceleration or Reynolds stress. Elim-

ination of this term is often the first step of many other

solution approaches, but the term must be retained here.

Second, other typical assumptions including steady, invis-

cid, or incompressible flow cannot generally be applied to

acoustic streaming, even in the modern context where mi-

cro to nano-scale fluid phenomena are usually considered.
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Finally, there is a large discrepancy in the spatiotemporal

scales between the acoustic field and the fluid dynamics.

The acoustic field occurs at fast and small scales, yet drives

fluid dynamics at much slower and larger scales. This pre-

cludes direct numerical solution of the governing Navier-

Stokes equations, since discretization sufficient to model

the acoustics is computationally prohibitive.

In the past, formal asymptotic expansions have been al-

most exclusively used with a relevant small parameter, usu-

ally the acoustic Mach number, to decompose the mathe-

matical representation of the flow field. A tractable set of

equations can be produced from the nonlinear partial dif-

ferential equations (PDEs) that define the mass, momen-

tum, and sometimes energy conservation. In this approach,

the dependent variables—pressure, density, velocity, and

sometimes temperature—are expanded in a Taylor series in

terms of the small parameter. The zeroth-order terms rep-

resent the fluid dynamics not associated with the acoustics

or the acoustically-driven phenomena, the first-order terms

represent the acoustic field, and the second-order terms

represent the nonlinear portion of the acoustics that gives

rise to acoustic streaming. Higher order terms are ignored.

The acoustic streaming flows are assumed to be unchanging

in time, the steady result of time averaging the second-order

terms in the series expansion. The flows are also assumed

to be much slower than the particle velocities in the first or-

der acoustic field [18], the “slow streaming” approximation.

To be clear, slow in this context is the observation that the

acoustic streaming is slow relative to the particle velocity of

the passing acoustic wave responsible for the streaming. It
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is possible to have rapid acoustic streaming and yet it still

be slow relative to the particle velocity of the parent acoustic

wave. This method of decomposing the flow field was first

explored by Rayleigh during his study of ordered cells of re-

circulating flow that develop in Kundt’s tubes [19]. Over the

years, many authors have used this approach in their anal-

yses to produce solutions and describe acoustic streaming;

Eckart [20], Nyborg [21], and Westervelt [22] are especially

well known.

By design, modern micro to nano-scale flows driven by

acoustic fields often possess large acoustic intensities and

sub-millimeter acoustic wavelengths [12, 23]. In these sys-

tems, the overarching assumption of slow streaming may

not be appropriate [24–26]. Moreover, formal asymp-

totic expansions based on the slow streaming assump-

tion become erroneous in these systems [23, 27]. This

has been known for a long time, with Lighthill [18] no-

tably addressing the matter in 1978. He noted that “. . . the

question of whether a term can be neglected or not de-

pends. . . exclusively on its numerical magnitude and not

on its mathematical order,” referring to the slow stream-

ing approximation as “RNW streaming” (after Rayleigh, Ny-

borg, and Westervelt). He continued, stating “. . . use of the

[slow streaming] RNW equations will prove to be appropri-

ate for acoustic sources of low power. . . ” and that “a milli-

watt source would generate an RNW streaming flow much

too large for the basic assumption of [slow streaming] RNW

streaming theory to be satisfied” for a propagating acous-

tic field at 1 MHz. He did provide a semi-empirical deriva-

tion for acoustic streaming that overcomes the problem, but

a systematic approach has not yet been provided to model

and predict acoustic streaming phenomena while avoiding

some or all of the assumptions associated with the slow

streaming approach since frequencies higher than 1MHz

are used. The point is that for many acoustic streaming phe-

nomena, the assumptions routinely used in slow streaming

are inappropriate.

There are other issues with the slow streaming repre-

sentation. First, it is difficult to justify a priori separation

of fluid flows based upon the phenomena responsible for

them. For example, pressure-driven flow would be repre-

sented at zeroth order, while the acoustics is at first order,

and the flow phenomena responsible for acoustic stream-

ing is at second order. There is no particular reason to be-

lieve this partitioning of the flow would properly model the

fluid dynamics in a general way. Second, acoustic stream-

ing is not a steady phenomenon. Instead, it is transient, de-

veloping over a finite time interval [24, 28, 29]. And yet the

transience of acoustic streaming is discarded when apply-

ing time average constraints [30, 31].

Despite these issues, the classical approach remains pop-

ular today due to a lack of suitable alternatives [31–33].

For example, Vanneste and Bühler [31] studied a standard

three-phase contact configuration and the physical pro-

gression from leaky surface acoustic waves to steady interior

streaming. In their approach, they define the Eulerian mean

field as the second-order component in a formal asymptotic

expansion using the acoustic Mach number as the small pa-

rameter. The intrinsic assumption of convergence in that

expansion must later be relaxed to permit inclusion of inte-

rior streaming amplitudes that scale with a potentially un-

bounded characteristic length. This can be readily observed

by comparing eqs. (2.4), (2.7), and (4.15) in the referenced

study. The length scale in question characterizes the inte-

rior flow. In practice, this length can be quite large, much

larger than the system under study.

Other approaches to the analysis of acoustic streaming

have been proposed. Zarembo [34] defined the concept

of fast acoustic streaming to address concerns with how

large amplitude acoustic waves could lead to a situation

where “The method of successive approximations [used in

the slow streaming model]. . . is inapplicable. . . ”. He chose

to define partitions in the parameters not based upon the

phenomena responsible, but instead in two parts: a time-

averaged steady-state part and the remaining, transient

part. However, Zarembo concluded his investigation with-

out providing a method to solve the equations his approach

produced.

Instead of using the acoustic Mach number as the small

parameter in the expansion, Riley [30] used the inverse

of a large Strouhal number. The quantity depends upon

the time scale disparity between the driving acoustics and

the resulting acoustic streaming flow. As this disparity in-

creases, the representation by Riley’s successive approxi-

mation expansion more accurately represents the system.

The separation of time has likewise been considered in the

differential operators present in the mass and momentum

conservation equations. Rudenko and Soluyan [35] pre-

sented a qualitative approach to time separation in these

operators, while Chini et al. [28] quantified this separation

to produce useful results for acoustic streaming. These the-

oretical inquiries have been complimented recently by ex-

periments that empirically consider these time scale dispar-

ities [36, 37].

A similar approach is employed by Huang et al. [9] in

the differential remapping of their arbitrary Lagrangian-

Eulerian analysis of a slow streaming system with com-

mensurate acoustic and hydrodynamic characteristic spa-

tial scales. Their work borrows from an earlier study by

Xie and Vanneste [38] that illustrates a procedure for mak-

ing explicit the order of separation between time scales in

a slow streaming configuration. In their study, Huang et al.

[9] remark on the importance of providing a similar level of

scrutiny to spatial scale disparities when they exist, though

a detailed treatment of this case is left as a topic for further

work. In each of the studies that explicitly considers the dis-

tinct change rates between the acoustics and hydrodynam-

ics, averaging over the acoustic period has no effect on the

streaming transience.

Indeed, many investigations have focused solely upon

the temporal disparity present between two phenomena. In

discrete systems where ordinary differential equations are

sufficient, there is ample literature to describe the some-

times counter-intuitive effects of the temporal discrepancy

[28, 35, 38–40].

An alternative to all these methods is direct numerical
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simulation of the entire phenomena without simplification

or approximation. Unfortunately, the presence of enor-

mous disparities—typically between five and nine orders of

magnitude [12, 25]—between the spatiotemporal scales of

the acoustic forcing and those associated with the stream-

ing flow it generates make such an approach prohibitive.

For example, the estimated computation time is several

years to resolve a single period of fundamental motion

while respecting the Nyquist criterion and using cutting-

edge computational technologies [41]. While supercomput-

ing resources are more readily available than ever, and some

analysis shortcuts can be taken, for example in approximat-

ing the boundary layer and presuming any free fluid sur-

faces remain stationary [42], the need to produce many so-

lutions to understand and exploit the acoustic streaming

phenomena remains an unmet challenge.

Likewise, in the laboratory setting, fully resolving the

most elusive flow structures at the smallest, fastest scales

(i.e., MHz to GHz and nanometer to picometer) remains dif-

ficult with currently available techniques and equipment.

For the limited number of microacoustofluidic flows that

can be empirically characterized, one may only do so by

operating the most advanced (and most costly) instrumen-

tation, and often only after extending the novelty of some

existing experimental methodology in a nontrivial way [12,

43].

The purpose of this work is to provide a method that

treats both the spatial disparities and the temporal dis-

parities present between the acoustics and the resulting

hydrodynamics. This method should also prove benefi-

cial for problems in other disciplines, for example, the

study of lasers and laser optics [44, 45], transport in porous

media [46], hydrogeologic modeling [47], electrochem-

istry [48], structural mechanics [49], climate dynamics [50],

and rheology [51, 52]. The work proceeds as follows. In

the next section, we describe the underlying notation and

follow that with the necessary partitioning of the fluid dy-

namics into the slow, large scale (or “streaming”) result and

the fast, small scale acoustic excitation. This requires a set

of physical constraints alongside the sets of equations to

produce a tractable model, and is a substantial effort be-

yond traditional time-only partitioning methods [53, 54]. In

section III, the partitioning and constraints are applied to

an acoustic streaming jet—the classical quartz wind prob-

lem [20]. A nonlinear PDE is obtained which is then solved

to produce an analytical expression for transient acoustic

streaming along the axis. Simplification of this expression

for the steady flow reveals a new fundamental limit govern-

ing the efficiency of energy conversion from the acoustic

field to the resulting acoustic streaming flow. The results

include a comprehensive comparison of our analysis with

past results from experiments published in the literature.

We conclude with a brief summarizing discussion.

II. THEORY

We use a compact form of Leibniz’ notation for conve-

nience, flexibility, and clarity. To aid readability and brevity,

the component (index) notation will be dropped for vector

inputs, for example in the Euclidean spatial displacement

xi = (x1, x2, x3) that is written simply as x. To illustrate, we

consider the vector-valued function hi (x, t) of the spatial

input x and the scalar temporal input t , where the vector

output is given in index notation. We write the substantial

derivative of this function as

Dt h j (x, t) = dt h j (x, t)+ui (x, t)dx,i h j (x, t). (1)

Likewise, wherever implicitly or contextually understood,

we will also drop arguments to functions. Moreover, the

Einstein summation convention is used throughout. For ex-

ample, in the dot product of the velocity ui (x, t) with the

gradient of the function hi (x, t) in the last term of the previ-

ous equation.

Since we will be working with two spatiotemporal scales,

we must carefully define our differential expressions to con-

sistently work within and across each scale. The symbol

d represents a derivative that is intradimensionally com-

plete, but interdimensionally partial. The partial operator

∂ is reserved for derivatives that are intradimensionally par-

tial. For example, we later demonstrate the expansion of the

time derivative as

dt = ∂t +∂tτ∂τ, (2)

producing the derivative across two distinct time scales: t

and τ.

We now assume the flow is superposed of, or “par-

titioned” into temporally slow (streaming, (s)) and fast

(acoustic, (a)) components:

ũi (x̃, t̃) = ũ(s)
i

(x̃, t̃)+ ũ(a)
i

(x̃, t̃ ), (3)

where we have again used index notation and where we de-

note all dimensional field variables, operators, and inde-

pendent parameters with a tilde.

In fact, we consider a system where the magnitude of the

velocity of an acoustic streaming-driven flow is on the order

of the acoustically-driven particle velocity magnitude. The

surface acoustic wave (SAW)-driven jet streaming described

by Dentry et al. [25, 55] is an extension of Lighthill’s well-

known turbulent jet model [18] for use in microacoustoflu-

idic systems. In Dentry’s study and in Lighthill’s study be-

fore it, the maximum streaming jet velocity, Us , may gen-

erally be of the same order of magnitude as the acoustic

source’s particle velocity, Ua .

If we define the characteristic jet streaming length as xs

and the corresponding streaming time scale as ts = xs /Us ,

then we are free to write

ũi =
xs

ts
u(s)

i
+ξp ωu(a)

i
, (4)
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where the particle displacement is ξp , and the acoustic time

scale, 1/ω, is given in terms of the angular acoustic fre-

quency ω = 2π f . The absence of a tilde indicates nondi-

mensional field variables, operators, and independent pa-

rameters. Thus, u(s)
i

and u(a)
i

are both O[1] quantities, and

xs , ts , ξp , and ω define the relative velocity magnitudes. An

important aspect of eqn. (4) is the appearance of a spatial

scale separation in addition to a separation in time scales.

The nondimensionalized velocity may then be written as

ui (x,ξ, t ,τ) = u(s)
i

(x, t)+qp S u(a)
i

(x,ξ, t ,τ), (5)

with qp = ξp /xs ≪ 1 and S =ω ts ≫ 1, and where the nondi-

mensional time variables t and τ, and the nondimensional

space variables xi and ξi , are detailed further on. For now

it is sufficient to note that t and x refer to large streaming

scales, while τ and ξ refer to small acoustic scales. Thus,

the assumption made in eqn. (5) is that the nondimensional

streaming velocity changes only over large space scales and

over long times relative to the small acoustic space and time

scales. This assumption will later be shown to be valid with

a comparison to experimental results, and is consistent with

the acoustic streaming jets described by Dentry et al. [25, 55]

and Lighthill [18].

Since, by our earlier definition, the streaming and particle

velocity magnitudes are of the same order, eqn. (4) tells us

that

xs

ξp
∼ω ts , (6)

so that qp S ∼ 1. Compare this result with the outcome of

assuming slow streaming, where Us ≪Ua , for which qp S ≫
1.

Here, the simple and fundamental result qp S ∼ 1 may be

interpreted as an axiom of fast streaming upon which the re-

mainder of the scales are developed. It implies the balance

in eqn. (6) must follow under fast streaming conditions.

1. Temporal derivative partitioning

Because a single temporal scale is insufficient to repre-

sent the acoustic streaming, we define a temporal deriva-

tive dt with dimensional form d̃t that is complete on each

time scale (fast and slow) yet is a partial derivative, splitting

a time derivative between the two scales:

d̃t ũi = d̃t ũ(s)
i

+ d̃t ũ(a)
i

. (7)

The operator d̃t is intradimensionally complete yet interdi-

mensionally partial. Because the fast (·)(a) and slow (·)(s)

flow components change at drastically different rates, we

define two different non-dimensional time scales in terms

of the physical (“real”) time t̃ :

t =
1

ts
t̃ , and (8a)

τ=ω t̃ . (8b)

Notice that t̃ = t ts = τω−1, such that any small change in

the slow time scale produces a large change in the fast time

scale. If we define τ= St , dτ
d t

= dtτ= S in the limit.

Differentiating a function χ(t ,τ) that is a function of the

fast and slow times τ and t with respect to time in the non-

dimensional space requires the total differential d̃t ,

d̃tχ= ∂̃t t ∂tχ+ ∂̃tτ∂τχ

=
1

ts
∂tχ+ω∂τχ.

(9)

Likewise, the nondimensional total derivative of χ(t ,τ) is

dtχ= S−1∂tχ+∂τχ, (10)

or

dtχ= ∂tχ+S ∂τχ, (11)

depending on whether one divides eqn. (9) by ω or multi-

plies it by ts , respectively.

2. Spatial derivative partitioning

The effects of partitioning fast and slow phenomena ex-

tend to spatial derivatives. This is dealt with in a manner

similar to the temporal case, writing the dimensional gradi-

ent operator as d̃x,i (·). Using the partition of the flow veloc-

ity ũ j defined in eqn. (3) for example, the spatial gradient of

the flow velocity d̃x,i ũ j (x̃, t̃ ) is

d̃x,i ũ j (x̃, t̃) = d̃x,i ũ(s)
j

(x̃, t̃)+ d̃x,i ũ(a)
j

(x̃, t̃). (12)

The acoustic (fast) component varies over a characteristic

distance given by the wavelength λ = (2π)(k)−1, where k is

the acoustic wavenumber. The slow component varies over

some other length scale; in an acoustically driven jet, for ex-

ample, this scale is the jet length xs ≪ λ. The observation

that xs ≪ λ is typical of bulk acoustic streaming. It may

be possible to have different length scales for the fast and

slow components such that the partitioning will have to be

defined with a dependence upon the direction under con-

sideration, resulting in a Hadamard product for the spatial

derivative definition. In this first demonstration of this the-

ory, we avoid the complexity by assuming one and only one

spatial partition in the gradient. This is appropriate for the

axial jet streaming example we provide later on, and proba-

bly would suit more general use if the ratios of the spatial

scales of the acoustics to the resulting hydrodynamics do

not significantly vary with respect to direction.

We define the two non-dimensional scales as

xi =
1

xs
x̃i and ξi = k x̃i . (13)

This helps us produce the non-dimensional gradient oper-

ator dx,i from eqn. (12):

dx,i = qλ∂x,i +∂ξ,i , (14)

where qλ = (k xs )−1 ≪ 1 characterizes the disparity in the

fast (a) and slow (s) spatial scales for the axial model.
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3. Velocity partition

We next consider a dimensional function of the dimen-

sional space and time variables, r̃i (x̃, t̃), and seek to parti-

tion it. Here we use, as an example, r̃i (x̃, t̃) to mean the po-

sition of a fluid parcel in space and time and write

r̃i (x̃, t̃) = r̃ (s)
i

(x̃, t̃)+ r̃ (a)
i

(x̃, t̃),

= xs r (s)
i

(x, t)+ξp r (a)
i

(x,ξ, t ,τ).
(15)

The nondimensional position of the same parcel may be

written then as

ri = r (s)
i

+qp r (a)
i

. (16)

We next use this to determine the fluid velocity through a

time derivative of ri (x, t), by applying eqns. (11) to (16):

ui = dt ri = ∂t r (s)
i

+qp S ∂τ r (a)
i

+S ∂τr (s)
i

+qp ∂t r (a)
i

,

≈ ∂t r (s)
i

+qp S ∂τ r (a)
i

+qp ∂t r (a)
i

,
(17)

since ∂τr (s)
i

≈ 0 (i.e., streaming motions are essentially con-

stant with respect to acoustic time scales). Now we may

write u(s)
i

= ∂t r (s)
i

and u(a)
i

= ∂τ r (a)
i

, leaving us with a third

term in the expression

ui ≈ u(s)
i

+qp S u(a)
i

+qp∂t r (a)
i

. (18)

The first two terms on the right-hand side are O [1] and the

last term on the right-hand side is O
[
S−1

]
.

4. Physical constraints in the nondimensional space

A complication in using the partitioning is the need to

produce constraints on the partial differential equations

that conserve mass and momenta at both the slow and fast

scales. Because the variables in the system like the flow ve-

locity, ui , now split into two scales, u(s)
i

+qp Su(a)
i

, we seek a

connection between these scales that, when enforced, pro-

duces a consistent set of solutions across the two scales.

We employ the intermediate nondimensional time τ∞
such that ω−1 ≪ τ∞ ≪ ts . We assume the separation in

scales is sufficient to define τ∞ as the long time limit of the

acoustic field while still leaving the slow time scale ts small

enough that the transient hydrodynamics that arise from

the acoustic streaming may still be preserved.

Begin by defining the temporal average of the acoustic

(fast) phenomena as

〈 ·〉τ =
ω

2π

∫2π/ω

0
lim

t̃→
( τ∞

ω

)−( ·)d t̃ =
1

2π

∫2π

0
lim
τ→τ−∞

( ·)dτ, (19)

and the analogous acoustic spatial average as

〈 ·〉ξ =
(

1

2π

)3
ξ+πÑ

ξ−π

( ·)dξ′i , j ,k . (20)

The integral in eqn. (20) is taken over a small cube of edge

length λ. It represents a unity-weighted convolution that re-

tains its dependence upon the slow (large) length scale x.

Since ui ≈ u(s)
i

+ qp Su(a)
i

, applying the temporal average

in eqn. (19) produces 〈ui 〉τ ≈
〈

u(s)
i

〉
τ
+ qp S

〈
u(a)

i

〉
τ

. Now
〈

u(a)
i

〉
τ
= 0 as the acoustic flow velocity will average to zero

over an acoustic period τ. So 〈ui 〉τ ≈
〈

u(s)
i

〉
τ

. Similarly, we

assume the acoustic wave amplitude changes slowly over a

given wavelength λ, such that
〈

u(a)
i

〉
ξ
= 0. This gives

〈ui 〉ξ ≈
〈

u(s)
i

〉
ξ
+qp S

〈
u(a)

i

〉
ξ
=

〈
u(s)

i

〉
ξ

(21)

for the spatial average of ui , equivalent to assuming the

acoustic wave is periodic over the length scale λ. This con-

dition might be violated if the damping is extreme, such

that the acoustic wave amplitude significantly varies over

a single wavelength. However, such a situation is rare in

acoustofluidics.

Moreover, consider the effect of the temporal and spatial

derivatives for the acoustic (fast) phenomena. The fast tem-

poral derivative of ui is

∂τ ui ≈ ∂τ u(s)
i

+qp S ∂τ u(a)
i

. (22)

Notice that u(s)
i

= u(s)
i

(x, t) so ∂τ u(s)
i

= 0. This gives ∂τ ui ≈
qp S ∂τ u(a)

i
. Likewise,

∂ξ,i u j ≈ ∂ξ,i u(s)
j

+qp S ∂ξ,i u(a)
j

(23)

and, again, u(s)
j

= u(s)
j

(x, t) alone, so ∂ξ,i u(s)
j

= 0, giving

∂ξ,i u j ≈ qp S ∂ξ,i u(a)
j

.

For example, consider acoustic jet streaming [25]. We can

model an attenuating acoustic plane wave propagating into

the fluid medium aligned with the jet axis x̃i as

ũ(a)(x̃, t̃) =Ua exp[ι (κ x̃i −ω t̃)], (24)

where ι =
p
−1 and the complex wavenumber is κ = k + ια,

given in terms of the attenuation coefficient α = δ−1
a , with

δa being the attenuation length. In using complex exponen-

tials, it is assumed throughout that only the real value is re-

tained. The magnitude of the effect of the asymmetries will

depend on the extent of the attenuation over a given spatial

period [see supplementary materials, Fig. 1], so that the ra-

tio of interest is κi = (kδa )−1. As κi → 0, the wave is negligi-

bly attenuated over a single spatial period, so that the spatial

average is zero, matching the assumption made to produce

eqn. (21). We write the nondimensionalized spatial average

taken in the direction of propagation as

max
x̃i≥π/k

|〈u(a)
i

〉ξ,i | = max
x̃i≥π/k

∣∣∣
k

2π

∫x̃i+π/k

x̃i −π/k

ũ(a)

Ua
d x̃i

∣∣∣,

= 1
πψ0(ξ0,max)sinh

πκi

κr
≈ θ, (25)
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where ψ0(ξ0,max) ≈ 1, and κi ≈ θ ≡ µlω/2ρ0 c2 when κi ≪ 1

(equivalently, when κr ≈ 1). The nondimensional undis-

turbed density of the fluid is ρ0. Because they will be needed

later for the conservation equations, we also consider aver-

ages of up to second-order gradient fields:

max
x̃i≥π/k

|〈∂ξ,i u(a)
i

〉ξ,i | = 1
πψ1(ξ1,max)sinh

πκi

κr
≈ θ, (26a)

max
x̃i≥π/k

|〈∂2
ξ,i u(a)

i
〉ξ,i | = 1

πψ2(ξ2,max)sinh
πκi

κr
≈ θ, (26b)

which have been normalized by Ua k and Ua k2, respec-

tively. When κi & 1, we must use the full expressions

ψ0(ξ) =
∣∣∣e−κi ξ(κr sinκr ξ−κi cosκr ξ)

κ2
i
+κ2

r

∣∣∣, (27a)

ψ1(ξ) = |e−κi ξ cosκr ξ|, (27b)

ψ2(ξ) = |e−κi ξ(κi cosκr ξ+κr sinκr ξ)|, (27c)

with ξ0,max = 3π/2κr , ξ1,max = π/κr , and ξ2,max = π +
arccos(

2κi κr

κ2
i
+κ2

r
).

We can now place bounds on the validity of spatial av-

eraging by using these results. For κi . 0.15, the normal-

ized spatial averages in eqns. (25–26b) are less than about

0.1. Since eqn. (24) is a function only of the x̃i coordinate,

averaging across the remaining dimensions leaves this re-

sult unchanged. Then 〈ui 〉ξ ≈
〈

u(s)
i

〉
ξ

is valid, and as long

as λ. δa , 〈∂ξ,i u(a)
i

〉ξ ≈ 0 and 〈∂2
ξ,i

u(a)
i

〉ξ ≈ 0. The condition

λ. δa is satisfied by an acoustofluidic system operating at

less than roughly 25GHz (for water), as shown in Fig. 1.

Virtually all acoustofluidics phenomena to date occur at

< 2GHz, well within the conditional range of our analysis.

From an order of magnitude perspective, the valid range of

the analysis exhausts the valid domain of continuum me-

chanics. We identify the valid range of continuum mechan-

ics for acoustofluidics with an upper bound at 40GHz. This

corresponds to Kn ∼ 0.01, where we define the Knudsen

number, Kn = ℓ/δa , in terms of the mean free path ℓ. We

have used the attenuation length as a characteristic scale

rather than using wavelength, since this is the shorter of the

two. The frequency limit defined in terms of the attenuation

length is f ∼ 40GHz, whereas the limit defined in terms of

the wavelength is f ∼ 60GHz.

III. AXIAL BULK STREAMING

We now apply the partitioning approach to a specific sys-

tem: acoustic streaming generated by the passage of an

acoustic wave into a fluid bulk from a small source. For il-

lustrative purposes, we apply our method to derive a sim-

ple model governing streaming along a jet streaming axis.

As we show further on, this is effectively equivalent to the

equation governing axial streaming (see [35]) when the full

dimensions of the problem are considered. The dimen-

sional, isentropic, compressible, and unsteady conserva-

θ

κi

κr

max 〈u(a)〉ξ

max 〈 ∂ξu(a)〉ξ

max 〈 ∂2
ξu(a)〉ξ

〈 ∂ξℒ〉τ,ξ

〈∂nξ (a)〉ξ 1

Kn ℓ δa 0.01

ℓ λ 0.0 1

10
6

10
7

10
8

10
9

10
10

10
11

10
12

0.01

0.1

1.

151500 0.15 0.0015

frequency [Hz]

n
�
n
�
��
�
n
�
��
n
�
�
v
�
��
�

wavelength [μm]

FIG. 1. Important frequency-dependent nondimensional values

for water (some of which are defined further on). The λ. δa limit

corresponds to an upper bound on frequency of roughly 25GHz

(vertical, dashed, light green). Trends below this limit continue

to lower frequencies unabated. Averages of the acoustic wave re-

main approximately valid throughout the applicable domain of

continuum mechanics. The upper bound of roughly 40GHz for

this domain is determined by the Knudsen number Kn ∼ 0.01 (ver-

tical, dashed, green), defined as the ratio of the mean free path

(ℓ ≈ 270pm) of the individual water molecules to the acoustic

wave attenuation length. When Kn & 0.01, a phonon-based re-

casting of the representative equations may prove useful.

tion of mass and momentum equations along the x-axis di-

rection are

d̃t ũx + d̃x (ρ̃ ũx ) = 0, (28a)

ρ̃D̃t ũx =−d̃x P̃ +µl d̃2
x ũx + F̃x , (28b)

with the equation of state P̃ = P̃ (ρ̃) and longitudinal viscos-

ity µl = µs(4/3+µV/µs) written in terms of the shear viscos-

ity, µs, and the volume viscosity, µV. Expanding the equa-

tion of state about its nominal hydrostatic condition leads

to the well-known expression

P̃ ′

A
= s +

B

2A
s2 +O

[
s3

]
, (29)

where P̃ ′ = P̃ −P0 and the condensation, s = ρ̃′/ρ̃0, is given

in terms of the density variation ρ̃′ = ρ̃− ρ̃0 where ρ̃0 is the

dimensional undisturbed fluid density. The term B/A is

Beyer’s parameter characterizing the nonlinear compress-

ibility of the fluid [56]. For acoustic streaming through wa-

ter, the first two terms on the right-hand side of eqn. (29) are

at most order O
[
10−4

]
and O

[
10−8

]
, respectively.

We continue by following Riley [30], differentiating

eqn. (28b) with respect to time, substituting eqn. (28a) and
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the linear expansion of eqn. (29) into the result, arriving at

ρ̃ d̃t D̃t ũx − d̃x (ρ̃ ũx )D̃t ũx

= c2d̃2
x (ρ̃ ũx )+µl d̃2

x d̃t ũx + d̃t F̃x , (30)

after eliminating the pressure from the expression as dis-

cussed above. Here c is the speed of sound in the medium.

The fluid velocity ũx and its derivatives are present, and

conveniently the derivations of the partitioning of these ex-

pressions have been provided in the previous section. How-

ever, the density, ρ̃, is also present. We next consider how to

partition it.

A. Density partition

We require a physically and theoretically consistent par-

tition of the density,

ρ̃(x,ξ, t ,τ)−ρ0 = ρ̃(s)(x, t)+ ρ̃(a)(x,ξ, t ,τ), (31)

where ρ0 is the unperturbed fluid density, and ρ̃(a) and ρ̃(s)

represent density fluctuations associated with the acoustic

wave and streaming-driven flow, respectively. Rather than

assume in advance the nature of the partition between the

acoustically and hydrodynamically-driven density fluctua-

tions, as is done in most models of acoustic streaming [34],

we recall a fundamental result from linear acoustics [56, 57],

Ma ≈ max |s|, (32)

valid for acoustic Mach numbers Ma = Uac−1 ≪ 1, where

Ua is the on-source (i.e., maximum) particle velocity of the

acoustic wave. We define the magnitude of the streaming

flow velocity as Us so that we may write Ms = Usc−1 in an

analogous fashion. This motivates us to define the acoustic

and streaming components to the condensation as Ma ρ
(a)

and Ms ρ
(s), respectively, so that these terms are expected to

be O[1]. Then from ρ̃−ρ0 = ρ̃(s) + ρ̃(a), it is natural to define

the density partition

ρ̃−ρ0 = Ma ρ0 ρ
(a) +Ms ρ0ρ

(s). (33)

The nondimensionalized density partition is then obtained

by dividing eqn. (33) by ρ0 to produce the O[1] expression

ρ−1 = Ma ρ
(a) + Ms ρ

(s). Since Ma/Ms = qp S ∼ 1, the two

Mach numbers are of the same order—a restatement of the

order of magnitude equivalence of the particle and stream-

ing velocities. From this result and eqn. (33), it can be seen

that the appropriate partitioning of the density fluctuation

produces an acoustic density change and a hydrodynamic

density change that are also of the same order: ρ̃(s) ∼ ρ̃(a).

B. Nondimensionalization

We next nondimensionalize the unpartitioned conserva-

tion equations. Non-dimensionalization of eqn. (30) pro-

duces

qλρdt Dt ux −dx (ρux )Dt ux

= q2
λd2

x (ρux )+2 qp q2
λθd2

x dt ux +q2
p q2

λdt Fx , (34)

where we have set F̃x = ρ0 Ua k Fx . We also have defined

ρ = qp +
εqp

qλ
ρ(s) +

q2
p

qλ
ρ(a) (35)

with advance knowledge that this auxiliary definition will

simplify the upcoming partition of eqn. (34). It is also help-

ful to combine eqns. (28) and then nondimensionalize the

result to produce

ρDt ux =−q2
λdxρ

′+2 q2
λ qp θd2

x ux +q2
p qλFx , (36)

where ρ′ = ρ−qp . We use both forms of the governing equa-

tion, eqns. (34) and (36), in the section that follows.

C. Partitioning

The traditonal small parameter expansion used in slow

streaming models [31, 58] is an infinite series expansion

truncated beyond the second order. By contrast, substi-

tuting the partitioning expressions ux (x,ξ, t ,τ) = u(s)
x (x, t)+

u(a)
x (x,ξ, t ,τ) and ρ (x,ξ, t ,τ) = ρ(s)(x, t)+ρ(a)(x,ξ, t ,τ) into

eqn. (34) produces a finite equation without truncation.

However, the complete equation produced from the parti-

tioning for axial acoustic jet streaming has 266 terms. The

process of partitioning that produces this equation and the

complete results are provided in the Supplementary Infor-

mation in a Mathematica notebook for ease of use by the

reader. We regroup the terms of the equation based upon

their relative scales such that

O
[
S−1

]
=O

[
qp

]
≪O

[
qλ

]
≪ 1, (37)

where S−1 and qp are sufficiently small in comparison to

qλ that, when taking successive approximations, we expand

first in combinations of S−1 and qp , and subsequently in qλ.

The result is
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q2
p q3

λ

(
−2θ

∂3ua,x

∂ξ2 ∂τ
−
∂2ua,x

∂ξ2
+
∂2ua,x

∂τ2
−
∂Fx

∂τ

)
+q2

p q4
λ

(
−4θ

∂3ua,x

∂x∂ξ∂τ
−2

∂2ua,x

∂x∂ξ

)
+q2

p q5
λ

(
−2θ

∂3ua,x

∂x2 ∂τ
−
∂2ua,x

∂x2

)
+εqp q3

λ

(
−2θ

∂3us,x

∂ξ2∂τ
−
∂2us,x

∂ξ2
+
∂2us,x

∂τ2

)
+

εqp q4
λ

(
−4θ

∂3us,x
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−2

∂2us,x

∂x∂ξ

)
+εqp q5

λ

(
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)
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(
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∂ξ2
−ua,x

∂2ρa
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−2

∂ua,x

∂x

∂ρa
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∂2ua,x

∂x∂t
+ua,x

(
−ρs

)(∂ua,x

∂x

)2

−ρa us,x

(
∂ua,x

∂x

)2

−u2
a,x

∂ua,x

∂x

∂ρs

∂x
−2ua,xρa

∂ua,x

∂x

∂us,x

∂x
−2ua,x us,x

∂ua,x

∂x

∂ρa

∂x
−u2

a,x

∂ρa

∂x

∂us,x

∂x
−ua,x

∂ua,x

∂t

∂ρa

∂x

)
+

ε2q3
p

(
us,x

(
−ρs

)(∂ua,x

∂ξ

)2

−u2
s,x

∂ua,x

∂ξ

∂ρa

∂ξ
−2ua,xρs

∂ua,x

∂ξ

∂us,x

∂ξ
−2ρa us,x

∂ua,x

∂ξ

∂us,x

∂ξ
−2ua,x us,x

∂ua,x

∂ξ

∂ρs

∂ξ
−u2

a,x

∂us,x

∂ξ

∂ρs

∂ξ
−ua,xρa

(
∂us,x

∂ξ

)2

−2ua,x us,x
∂ρa

∂ξ

∂us,x

∂ξ

)
+

ε2q3
p qλ

(
ua,xρa

∂2us,x

∂ξ∂t
+ua,xρs

∂2ua,x

∂ξ∂t
+ρa us,x

∂2ua,x

∂ξ∂t
+u2

a,x

∂us,x

∂x

(
−
∂ρs

∂ξ

)
−u2

a,x

∂us,x

∂ξ

∂ρs

∂x
−ua,x

∂ua,x

∂t

∂ρs

∂ξ
−ua,x

∂ρa

∂ξ

∂us,x

∂t
−

2ua,xρa
∂us,x

∂x

∂us,x

∂ξ
−2ua,xρs

∂ua,x

∂ξ

∂us,x

∂x
−2ua,xρs

∂ua,x

∂x

∂us,x

∂ξ
−2ua,x us,x

∂ua,x

∂x

∂ρs

∂ξ
−2ua,x us,x

∂ua,x

∂ξ

∂ρs

∂x
−2ua,x us,x

∂ρa

∂ξ

∂us,x

∂x
−

2ua,x us,x
∂ρa

∂x

∂us,x

∂ξ
−u2

s,x

∂ua,x

∂x

∂ρa

∂ξ
−u2

s,x

∂ua,x

∂ξ

∂ρa

∂x
−us,x

∂ua,x

∂t

∂ρa

∂ξ
−2ρa us,x

∂ua,x

∂ξ

∂us,x

∂x
−2ρa us,x

∂ua,x

∂x

∂us,x

∂ξ
−2us,xρs

∂ua,x

∂x

∂ua,x

∂ξ

)
+

ε2q3
p q2

λ

(
ua,xρa

∂2us,x

∂x∂t
+ua,xρs

∂2ua,x

∂x∂t
+ρa us,x

∂2ua,x

∂x∂t
−us,xρs

(
∂ua,x

∂x

)2

−u2
s,x

∂ua,x

∂x

∂ρa

∂x
−2ua,xρs

∂ua,x

∂x

∂us,x

∂x
−

2ρa us,x
∂ua,x

∂x

∂us,x

∂x
−2ua,x us,x

∂ua,x

∂x

∂ρs

∂x
−u2

a,x

∂us,x

∂x

∂ρs

∂x
−ua,x

∂ua,x

∂t

∂ρs

∂x
−ua,x

∂ρa

∂x

∂us,x

∂t
−ua,xρa

(
∂us,x

∂x

)2

−us,x
∂ua,x

∂t

∂ρa

∂x
−2ua,x us,x

∂ρa

∂x

∂us,x

∂x
+ρa

∂2ua,x

∂t 2

)
+

ε3q2
p

(
ua,x

(
−ρs

)(∂us,x

∂ξ

)2

−ρa us,x

(
∂us,x

∂ξ

)2

−u2
s,x

∂ρa

∂ξ

∂us,x

∂ξ
−2us,xρs

∂ua,x

∂ξ

∂us,x

∂ξ
−2ua,x us,x

∂us,x

∂ξ

∂ρs

∂ξ
−u2

s,x

∂ua,x

∂ξ

∂ρs

∂ξ

)
+

ε3q2
p qλ

(
ρa us,x

∂2us,x

∂ξ∂t
+us,xρs

∂2ua,x

∂ξ∂t
+ua,xρs

∂2us,x

∂ξ∂t
+u2

s,x

∂ua,x

∂x

(
−
∂ρs

∂ξ

)
−u2

s,x

∂ua,x

∂ξ

∂ρs

∂x
−u2

s,x

∂ρa

∂ξ

∂us,x

∂x
−u2

s,x

∂ρa

∂x

∂us,x

∂ξ
−us,x

∂ua,x

∂t

∂ρs

∂ξ
−

us,x
∂ρa

∂ξ

∂us,x

∂t
−2ρa us,x

∂us,x

∂x

∂us,x

∂ξ
−2us,xρs

∂ua,x

∂ξ

∂us,x

∂x
−2us,xρs

∂ua,x

∂x

∂us,x

∂ξ
−2ua,x us,x

∂us,x

∂x

∂ρs

∂ξ
−2ua,x us,x

∂us,x

∂ξ

∂ρs

∂x
−ua,x

∂us,x

∂t

∂ρs

∂ξ
−2ua,xρs

∂us,x

∂x

∂us,x

∂ξ

)
+

ε3q2
p q2

λ

(
ua,xρs

∂2us,x

∂x∂t
+ρaus,x

∂2us,x

∂x∂t
+us,xρs

∂2ua,x

∂x∂t
+ρa

∂2us,x

∂t 2
+ρs

∂2ua,x

∂t 2
+ua,x

(
−ρs

)(∂us,x

∂x

)2

−ρa us,x

(
∂us,x

∂x

)2

−u2
s,x

∂ρa

∂x

∂us,x

∂x
−

2us,xρs
∂ua,x

∂x

∂us,x

∂x
−2ua,x us,x

∂us,x

∂x

∂ρs

∂x
−u2

s,x

∂ua,x

∂x

∂ρs

∂x
−ua,x

∂us,x

∂t

∂ρs

∂x
−us,x

∂ua,x

∂t

∂ρs

∂x
−us,x

∂ρa

∂x

∂us,x

∂t

)
+

ε4qp

(
us,x

(
−ρs

)(∂us,x

∂ξ

)2

−u2
s,x

∂us,x

∂ξ

∂ρs

∂ξ

)
+ε4qp qλ

(
us,xρs

∂2us,x

∂ξ∂t
+u2

s,x

∂us,x

∂x

(
−
∂ρs

∂ξ

)
−u2

s,x

∂us,x

∂ξ

∂ρs

∂x
−us,x

∂us,x

∂t

∂ρs

∂ξ
−2us,xρs

∂us,x

∂x

∂us,x

∂ξ

)
+

ε4qp q2
λ

(
us,xρs

∂2us,x

∂x∂t
+ρs

∂2us,x

∂t 2
+us,x

(
−ρs

)(∂us,x

∂x

)2

−u2
s,x

∂us,x

∂x

∂ρs

∂x
−us,x

∂us,x

∂t

∂ρs

∂x

)
= 0. (38)
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After normalizing by the leading order magnitude, q2
p q3

λ
,

eqn. (38) is written

A u(a)
x = ∂τFx +O

[
qλ

]
, (39)

where the linear field operator A = ∂2
τ − ∂2

ξ
− 2θ∂τ∂

2
ξ

de-

scribes the acoustics. By discarding terms less than O(1) and

setting the force Fx equal to zero, we arrive at

A u(a)
x = 0. (40)

This leading order equation is a pervasive result [30, 33,

35, 57] describing damped propagation of a linear acoustic

wave in a dissipative medium. We follow Riley [30] in re-

taining the 2θ∂τ∂
2
ξ

term, because even if the term is made

small by a small value of θ, the term is responsible for at-

tenuation, which is required to simultaneously satisfy both

boundary conditions.

The stationary solution to the damped wave equation

A u(a)
x = 0, representing an acoustic wave generated from

the vibrating origin of a semiinfinite domain, is

lim
τ→τ−∞

u(a)
x ≈ exp[ι(κξ−τ)], (41)

where κ=κr + ικi with

κr =

√p
1+4θ2 +1

2(1+4θ2)
, (42a)

κi =

√p
1+4θ2 −1

2(1+4θ2)
, (42b)

and where κi ≈ θ ≪ 1 and κr ≈ 1 in water for frequen-

cies relevant to this analysis (see these quantities plotted in

Fig. 1). This is a substantially different result than that ob-

tained by Riley [30]. In Riley’s study, there may be a mis-

take, as the solution given in eqn. (9) does not satisfy the

first-order damped equation obtained from eqn. (8).

1. Transient Burgers streaming

We now return to eqn. (36) to deduce the equation for the

streaming that arises from the acoustic wave generated in

the semiinfinite domain presented in eqns. (41) and (42).

Substituting the partitioning equations (5) and (35) for ux

and ρ and expanding as in the previous section leads to an-

other finite (47-term) expression given by

qp q2
λ

(
∂ua,x

∂τ
+
∂ρa

∂ξ
−Fx

)
+qp q3

λ

(
∂ρa

∂x
−2θ

∂2ua,x

∂ξ2

)
−4θqp q4

λ

∂2ua,x

∂x∂ξ
−2θqp q5

λ

∂2ua,x

∂x2
+εq2

λ

(
∂us,x

∂τ
+
∂ρs

∂ξ

)
+εq3

λ

(
∂ρs

∂x
−2θ

∂2us,x

∂ξ2

)
−4εθq4

λ

∂2us,x

∂x∂ξ
−2εθq5

λ

∂2us,x

∂x2
+

q2
p qλ

(
ρa

∂ua,x

∂τ
+ua,x

∂ua,x

∂ξ

)
+q2

p q2
λua,x

∂ua,x

∂x
+εqp qλ

(
ρa

∂us,x

∂τ
+ρs

∂ua,x

∂τ
+ua,x

∂us,x

∂ξ
+us,x

∂ua,x

∂ξ

)
+εqp q2

λ

(
ua,x

∂us,x

∂x
+us,x

∂ua,x

∂x
+
∂ua,x

∂t

)
+

ε2qλ

(
ρs

∂us,x

∂τ
+us,x

∂us,x

∂ξ

)
+ε2q2

λ

(
∂us,x

∂t
+us,x

∂us,x

∂x

)
+q3

p ua,xρa
∂ua,x

∂ξ
+q3

p qλua,xρa
∂ua,x

∂x
+εq2

p

(
ua,xρa

∂us,x

∂ξ
+ua,xρs

∂ua,x

∂ξ
+ρa us,x

∂ua,x

∂ξ

)
+

εq2
p qλ

(
ua,xρa

∂us,x

∂x
+ρa us,x

∂ua,x

∂x
+ua,xρs

∂ua,x

∂x
+ρa

∂ua,x

∂t

)
+ε2qp

(
ua,xρs

∂us,x

∂ξ
+ρa us,x

∂us,x

∂ξ
+us,xρs

∂ua,x

∂ξ

)
+

ε2qp qλ

(
ρa

∂us,x

∂t
+ρa us,x

∂us,x

∂x
+ρs

∂ua,x

∂t
+ua,xρs

∂us,x

∂x
+us,xρs

∂ua,x

∂x

)
+ε3us,xρs

∂us,x

∂ξ
+ε3qλ

(
ρs

∂us,x

∂t
+us,xρs

∂us,x

∂x

)
= 0.

(43)

By again setting the applied force Fx = 0 and then apply-

ing the differential and integral constraints described back

in subsection II 4, the expression is reduced to seventeen

terms. The remaining seventeen terms are

εq3
λ

∂ρs

∂x
−2εθq5

λ

∂2us,x

∂x2
+q2

p qλ

(
ρa

∂ua,x

∂τ
+ua,x

∂ua,x

∂ξ

)
+εqp qλ

(
ρs

∂ua,x

∂τ
+us,x

∂ua,x

∂ξ

)
+q2

p q2
λua,x

∂ua,x

∂x
+ε2q2

λ

(
∂us,x

∂t
+us,x

∂us,x

∂x

)
+q3

p ua,xρa
∂ua,x

∂ξ
+

q3
p qλua,xρa

∂ua,x

∂x
+εq2

p

(
ρs ua,x

∂ua,x

∂ξ
+us,xρa

∂ua,x

∂ξ

)
+εq2

p qλ

(
∂us,x

∂x
ua,xρa +us,xρa

∂ua,x

∂x
+ρs ua,x

∂ua,x

∂x
+ρa

∂ua,x

∂t

)
+ε3qλ

(
ρs

∂us,x

∂t
+us,xρs

∂us,x

∂x

)
= 0.

(44)

Of these remaining seventeen terms, we discard those

terms of third or higher order in combinations of qp and

S−1, leaving seven terms to consider:

εq3
λ

∂ρs

∂x
− 2εθq5

λ

∂2us,x

∂x2
+ q2

p qλ

(
ρa

∂ua,x

∂τ
+ua,x

∂ua,x

∂ξ

)
+ q2

p q2
λua,x

∂ua,x

∂x
+ ε2q2

λ

(
∂us,x

∂t
+us,x

∂us,x

∂x

)
= 0. (45)

The leading order ε terms are

S−1 q3
λ∂x ρ

(s) at O
[
q3
λ

]
(46)

and

2S−1q5
λθ∂

2
x u(s)

x at O
[
q5
λ

]
. (47)
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Solving eqn. (46) at leading order implies solving

∂x ρ
(s) ≈ 0, (48)

so that, after applying a homogeneous source condition

(where a “homogeneous” boundary condition means that

it is zero), we have ρ(s)(x, t) ≈ 0 for all {x, t }. In other

words, elimination of this term from eqn. (43) implies that

the changes in the density to the streaming flow are negli-

gible, that the streaming flow itself is incompressible. Tra-

ditionally, this is assumed prior to derivation without rigor-

ous justification. By contrast, here the result arises naturally

from a term in eqn. (43), eqn. (46) being solved at O[εq3
λ

]:

S−1 q3
λ
∂x ρ

(s) = 0.

Moving now to those terms present at first order in qλ and

second order in combinations of S−1 and qp , we have

〈u(a)
x ∂ξu(a)

x 〉ξ,τ+〈ρ(a) ∂τu(a)
x 〉ξ,τ = 0. (49)

This is an interesting departure from past analyses [18, 33],

where one defines

〈∂ξL 〉ξ,τ = 〈∂ξT 〉ξ,τ−〈∂ξU 〉ξ,τ, (50)

in terms of the acoustic Lagrangian L = T − U , where

∂ξT = u(a)
x ∂ξu(a)

x and ∂ξU = −ρ(a) ∂τu(a)
x are the gradient

of the kinetic and potential acoustic energies, respectively.

The acoustic density can be written in terms of the acoustic

velocity by solving the leading order equation in an expan-

sion of the continuity equation [see supplemental informa-

tion]:

ρ(a) =−
∫t

0
∂ξu(a) dτ, (51)

so that ∂ξU = ∂τu(a)
x

∫t
0 ∂ξu(a) dτ. Then with eqn. (41) in

eqn. (50),

max
ξ≥π/κr

|〈∂ξL 〉ξ,τ| =
κr

2π
e

−2πκi
κr sinh

(
2πκi

κr

)
≈κi , (52)

where the approximate equivalence to κi holds when κr ≈ 1

and κi ≪ 1. In eqn. (52), the maximum is properly taken

for ξ ≥ π/κr since we use a centered spatial average. From

Fig. 1, it is evident that this approximation holds if the oper-

ating frequency for the acoustics is less than 25GHz. It also

shows that the magnitude of the Lagrangian gradient aver-

age |〈∂ξL 〉ξ,τ| is equivalent to the amount of acoustic wave

attenuation over a single wave period, κi . This is also clear

from Fig. 1.

Moreover, the exact expression in eqn. (52) that comes

from substitution and simplification of eqn. (50) also satis-

fies eqn. (49) to good approximation all the way up to the

40GHz limit for which the continuity assumption begins to

break down. This can be seen in Fig. 1.

Finally, we consider those terms at second order in qλ and

second order in combinations of S−1 and qp , leading to

Dt u = µ∂2
x u+η−1

m fR(x), (53)

which is a forced, viscous Burgers equation. We have

dropped the streaming (s) superscript indicating streaming

flow at slow and relatively large scales, and we have dropped

the x coordinate subscript that identifies the flow axis. We

have also used the nondimensional viscosity µ = qλ/Res,

itself written in terms of the streaming Reynolds number,

Res = ρ0 xs Us/µl. In eqn. (53), we have defined

ηm = (qp S)−2 (54)

as an absolute maximum streaming efficiency. It is defined

in terms of the energy converted from the acoustic wave to

the resulting streaming flow along the acoustic wave a dis-

tance x from the source such that η(x) = (u(x)/Ua)2. The

value ηm = maxx η(x) serves as the maximum streaming

efficiency possible over the entire axial acoustic streaming

field. The placement of ηm in eqn. (53) as a coefficient on

the Reynolds stress fR = −〈u(a)∂x u(a)〉ξ,τ underscores the

role the Reynolds stress plays in transducing the acoustic

field to the acoustic streaming flow.

2. Steady Riccati streaming

If the acoustic streaming is steady, Dt u reduces to 1
2
∂x u2.

Then integrating eqn. (53) over x after substituting this ex-

pression produces

µ(∂x u−∂x u|x=0)− 1
2

u2 = η−1
m

∫x

0
〈u(a)∂x u(a)〉ξ,τ d x. (55)

Since we have a homogeneous condition at the origin, x = 0,

u2|x=0 = 0. This equation has the form of a Riccati [59] equa-

tion. It also suggests that the streaming Reynolds number

does not solely determine the character of the streaming

flow; the nonlinearity is also important. In fact, as qλ → 0,

the nonlinearity plays a dominant role over viscosity in the

axial acoustic streaming flow profile. If the acoustic wave is

of the type given in eqn. (41), then the steady equation sim-

plifies to

∂x u+cs u2 = c f (exp(−2αx)−1)+∂x u|x=0, (56)

where cs = −(2µ)−1 and c f = −cs /2ηm. A solution method

exists for eqn. (56) that involves transforming it into a

second-order linear equation [60, p. 23]. The result is

uvisc =
∂x φ

cs φ
, (57a)

φ= Iβ(h)+cφI−β(h), (57b)

cφ =−
Iβ+1(h0)+ Iβ−1(h0)

I−(β+1)(h0)+ I−(β−1)(h0)
, (57c)

h = h0 exp(−αx), (57d)

where I ( ·) denotes the modified Bessel function of the

first kind,β= h0

√
(∂x ux |x=0 −c f )/c f , and h0 =

√
(cs c f )/α2.

Here ∂x u|x=0 is unique and corresponds to the value that

causes the solution to satisfy the far boundary condition.
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An exact determination of this value is not possible due to

its placement within the Bessel function terms, so an itera-

tive bisection method is necessary.

The steady, inviscid solution is obtained by inspection of

eqn. (56): uinvisc =
√

1
2ηm

(1−exp(−2αx)). Its dimensional

form is

ũinvisc =Ua

√
1
2

(1−exp(−2α x̃), (58)

where α = κi k is the “true” absorption coefficient. Mit-

ome et al. [61] obtained a similar result in their treatment of

the Rudenko and Soluyan expression. We demonstrate the

broader implications of eqn. (58) in the following section.

3. Inviscid near-source approximation

Expanding in a Taylor series, we write eqn. (58) as

ũinvisc =Ua

(
1
2

∞∑

n=1

(2α x̃)n

n!

)1/2

. (59)

If we choose a point x̃ = x̃ns sufficiently close to the source,

such that x̃ns ≪ 1/2α, then we may approximate eqn. (58)

as

ũns =Ua

√
α x̃ns, (60)

describing the fluid velocity within the vicinity of the acous-

tic source responsible for the streaming flow.

This result is similar to an expression produced in Moud-

jed et al. [29], where an empirical assumption was used to

balance the nonlinear inertial terms with the acoustic forc-

ing to produce the expression via a scaling argument. It is

also a departure from classic theory. [21] applied the slow

streaming assumption to the axial Eckart streaming system

and found that the fluid velocity ũ ∝ α near the acoustic

source, not ũ ∝
p
α as we and Moudjed et al. [29] found

separately. In Sec. IV, we examine past experimental results

and confirm that the streaming flow dependence upon the

acoustic attenuation α is indeed ũ ∝
p
α.

4. A limit on the streaming conversion efficiency

The maximum possible value the acoustic streaming ve-

locity may achieve will be less than the maximum predicted

flow velocity from the inviscid solution. By finding the max-

imum possible value of eqn. (58) over all x, one obtains the

maximum

max
∀σ

ũ < max
∀σ

ũinvisc =Ua/
p

2, (61)

Moreover, by dividing eqn. (61) by Ua , squaring both sides,

and using eqn. (54), we find

max
∀σ

( |ũ(s)|
Ua

)2

= max
∀σ

ηm =
1

2
, (62)

so that the maximum efficiency possible is 50%.

These limits are entirely independent of constitutive pa-

rameters (i.e., parameters in a constitutive equation that de-

scribe the specific material such as viscosity, density, and

so on). Put another way, these are not only the maximum

possible values for a given configuration, they are the max-

imum values for all possible configurations. That stated,

the results are limited to the axial acoustic streaming con-

figuration. It omits any consideration of multi-dimensional

effects; including advection of momentum flux off-axis;

acoustic beam divergence, diffraction, refraction, or focus-

ing. It also omits and consideration of thermal effects, with

the isothermal assumption. Despite these limitations, we

show later that the limits do appear to apply to a broad

class of acoustic streaming results. All of the constraints to

this simple pair of results described above—with the excep-

tion of acoustic focusing—should produce maxima that are

less than the inviscid, isothermal, and axial values provided

in eqns. (61) and (62). This means that the maximum effi-

ciency possible for any acoustic streaming, barring acoustic

focusing, is 50%. As before, there is an analogy to ordinary

differential equation solutions as described in the Supple-

mentary Information.

IV. RESULTS

When solving the Burgers partial differential eqn. (53),

we utilize the suite of components provided by the FEniCS

Project [62–69]. When evaluating the viscous steady Ric-

cati solution eqn. (57) in the most acutely ill-conditioned

cases—where both computational efficiency and arbitrary

precision operation are necessary—we have employed the

Advanpix Multiprecision Computing MATLAB Toolbox [70].

A. The maximum conversion efficiency of acoustic streaming

We now assess the maximum achievable streaming re-

sult reported in eqn. (61) in a comparison to experimental

data reported in the literature. The selected studies report

the result of bulk acoustic streaming flows that are approx-

imately laterally unbounded and driven by plane acoustic

transducers. Studies were also excluded if they failed to

provide enough information to estimate both the acoustic

source’s particle velocity and the maximum streaming ve-

locity. Eight separate studies [24–26, 29, 71–74] were cho-

sen. They include fifteen different operating frequencies,

from audible at 500Hz to nearly 1GHz. A plot of the max-

imum streaming velocity output versus maximum acoustic

particle velocity as the input is provided in Fig. 2 for these

eight studies. An inset is provided to focus upon the more

detailed results at 0–10 cm/s acoustic particle velocity. The

data from these studies support the validity of the stream-

ing law, with the exception of one data point for one study.

One set of data in Zhang et al. [26] violates the law, though it

does so in the mean value; the error bars from that study en-

compass the limit. Although boundary layer streaming has
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FIG. 2. Bulk streaming flows bounded by the maximum stream-

ing law, eqn. (61). The survey includes eighteen data sets span-

ning eight separate studies. Data marker types are essentially

log scale in frequency: (ä) f < 1MHz, (#) f ∈ [1,10)MHz, (△)

f ∈ [10,100)MHz, and (♦) f ∈ [100,1000)MHz. The data are taken

from [1] Zhang et al. [71], [2] Zhang et al. [26], [3] Makarov et al.

[72], [4] Moudjed et al. [29], [5] Frenkel et al. [73], [6] Mitome [74],

[7] Kamakura et al. [24], and [8] Dentry et al. [25].

been excluded, it should be noted that data from such sys-

tems are expected to uniformly satisfy the law since they are

characterized by the slow streaming condition.

We next specifically consider bulk acoustic streaming

generated by the vibration of sharp-tipped structures with

a radii of curvature (RoC) of ≤ 5µm at 2.5kHz in Fig. 3. In

these systems, a sharp-tipped solid structure is oscillated

within a fluid domain to generate acoustic streaming within

the fluid. These results are taken from recent, rigorously un-

dertaken and documented studies of Zhang et al. [26, 71].

Fig. 3(a) employs results from Zhang et al. [71] to demon-

strate the effect of varying viscosity with all else (includ-

ing RoC) held constant. The results indicate that decreas-

ing viscosity in these systems tends to increase the maxi-

mum streaming velocity, bringing the data into closer agree-

ment with eqn. (61), and helping to validate the approxima-

tions used in the derivation of the result and in claiming

that the inviscid streaming flow would represent the upper

bound of all streaming flows. In Fig. 3(b), we have plotted

results from the earlier work of Zhang et al. [26] that char-

acterize the effect of tip size, where they define the tip size

as 2RoC. The data show that as the tip size is decreased,

the profile approaches the streaming law, both in terms of

magnitude and in terms of trend. This suggests congruence

of the one-dimensional axial model with a physical “one-

dimensional tip” system. The single data point that weakly

FIG. 3. Data representing studies done on bulk acoustic stream-

ing generated by vibration of a sharp tip structure at 2.5kHz taken

from [1] Zhang et al. [71] and [2] Zhang et al. [26]. These are special

cases of the broader survey shown in Fig. 2. In subplot (a), the in-

verse relationship between viscosity and maximum streaming ve-

locity aligns with the inviscid assumption used in the derivation

of the streaming law. In subplot (b), tip size is twice the radius of

tip curvature. As tip size is decreased, the magnitude and trend

of the data approach the streaming law. This suggests that the

one-dimensional axial model is congruent with an upper bound

defined by a “one-dimensional tip.”

violates the streaming law is the same that was previously

noted in Fig. 2.

B. Shared physics of bulk streaming systems

Eckart [20] streaming is the net bulk flow generated by an

acoustic source within a bounded fluid medium when the

far boundary is a perfect acoustic absorber (Fig. 4(a)). Equa-

tion (53) provides a new model for the transient layering be-

havior that is empirically observed in such systems [24, 75].

The viscous flow solution in eqns. (57) defines a “shark fin”

(i.e., rounded sawtooth) spatial profile that is characteristic

of steady axial Eckart flow. In the limit of the inviscid ap-
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FIG. 4. Simplified diagram depicting bulk acoustic streaming

types. (a) Eckart streaming and (b) Stuart-Lighthill “jet” stream-

ing. In either scenario, the near-source behavior is that of a McIn-

tyre sink [18]. In (a), the continuation of the acoustic wave beyond

the boundary is representative of the fact that one can replace the

perfect absorber with an acoustically transparent membrane (e.g.

polyester (Mylar®) membrane [76]) to achieve a similar effect, as

illustrated in Nyborg [21].

proximation, the Eckart system “loses” the distal boundary

condition and the result can be interpreted as the bulk flow

solution. We will show how this inviscid solution is related

to Stuart-Lighthill [18] “jet” streaming (Fig. 4(b)). All of the

noted features from these streaming phenomena are shown

in Fig. 5.

Lighthill’s seminal acoustic streaming study [18] is one

of the most well-known and oft-cited works on the topic.

It addresses, among other subjects, the description of bulk

turbulent jet streaming within an unbounded medium

(Fig. 4(b)). The jet streaming is generated from high-

frequency (≥ 1MHz) acoustic forcing that Lighthill treated

as a point source in light of the relatively large associated

attenuation coefficient. In the modern applied acoustoflu-

idics setting, flow dynamics adjacent the acoustic source

and well within the attenuation length scales are impor-

tant, and so the source must be more carefully treated. The

point-source treatment invokes a singularity as x → 0+ that

has no observable physical analog. Experiments by Den-

try et al. [25] reveal the presence of zero fluid velocity at the

source with algebraic growth of the velocity near the source

that is mediated in the far field with a long-tailed decay, pro-

ducing a well-defined maximum.

In a recent study, Dentry et al. [25] attempted to rectify the

weaknesses of the point-source approximation by modify-

ing Lighthill’s model to account for both a finite source area

and for laminar streaming. Laminarity is evident in Den-

try’s study by direct observation. While the study provides

useful insights toward achieving its broader objectives, it is

limited by a number of errors that stem from two impor-

tant oversights: (i) an incorrectly stated equation that was

later discussed (though not completely addressed) in a pub-

lished erratum [55], and (ii) the determination of stream-

FIG. 5. Fast axial Eckart streaming with µ−1 = 7720 and ηm =
0.3. The acoustic forcing is provided by a linear, non-diffracting

wave with the attenuation coefficient α = 0.172. In the inset,

steady streaming for (solid) as system with the noted parameters

is compared with (dashed) a system where domain length has

been shortened (with parameters otherwise equivalent between

the two systems). The domain length of the former is such that

qλ = (k xs )−1 =O
[
10−5

]
, whereas the domain length of the latter is

shorter, such that qλ = (k xs )−1 = O
[
10−4

]
. The change from one

condition to the other alters the importance of each term on the

left hand side of eqn. (55). In the main plot, the profile shape in the

vicinity of the source agrees with the near-source approximation

(dotted) for the longer domain. This is due to the greater degree of

nonlinear profile development within the longer domain.

ing flow with particle image velocimetry (PIV) by utilizing

a ≈ 5µm diameter particles with very high frequency (small

wavelength) acoustic sources. Errors associated with item

(i) culminate in a correction factor of ≈ 2.65 (corresponding

to the erratum in Ref. [55]) multiplying the reported acous-

tic power (with respect to particle velocity or displacement,

the correction is quadratic rather than linear). Additionally,

the errors affect the model’s accuracy and raise questions as

to whether the data is correctly represented in the study. Er-

ror source (ii) is important because, for a & λ, effects of the

acoustic radiation force on the particle become significant

and the particle does not reliably follow the streaming field.

This invalidates the data reported in [25] for f ≥ 240MHz,

which equates to a third of the experimental data in that

work. In other words, when f ≥ 240MHz one has λ& 5µm,

since frequency is related to wavelength as f = c/λ, where

c = 1500m/s is the speed of sound in water.

As a basis for comparison to our analysis, we use the gen-

eral form of the Lighthill and Dentry models for bulk jet

streaming into an unbounded medium:

ũd (r̃ , x̃) =

√
2P

πρ c S(x̃)2

√
1−exp(−2α x̃)exp

[
−

(
r̃

S(x̃)

)2]
,

(63)

where r̃ denotes the radial coordinate. For simplicity we

have assumed an ideal (i.e., uniform acoustic intensity) cir-

cular thickness-mode transducer. The length S is obtained

as the numerical solution to a stiff ordinary differential

equation. It accounts for the spatial rate of lateral losses by
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normalizing a transverse Gaussian decay. The length S also

enforces far field axial velocity decay via multiplicative at-

tenuation.

If we “eliminate” the lateral dimensionality by consider-

ing only the jet axis (r̃ = 0) and fixing S = 2
p

A/π, then

the jet-streaming model of eqn. (63) simplifies to become

identical to the inviscid Riccati solution of eqn. (58). In

fact, Lighthill’s semi-empirical derivation initially produces

a one-dimensional model of exactly this form. He subse-

quently extends the model to include lateral dimensional-

ity by assuming a Gaussian decay of the streaming velocity

away from the jet axis.

The fundamental difference in our approach is that we

have derived eqn. (58) directly from the Navier-Stokes equa-

tions. Its form originates in the nonlinear terms of eqn. (53),

and these are regarded as dominant in our partitioning

analysis as a direct consequence of the large-amplitude

streaming assumption.

We avoid the computational demand of Lighthill’s ap-

proach by directly obtaining a highly-simplified algebraic

closed-form model for the axial streaming profile from the

steady-state Riccati physics. We achieve this by first deriv-

ing a scaling relation between the power and the axial loca-

tion of the streaming maximum (with Buckingham’s Π the-

orem [77]). This is used in conjunction with an attenuation

prefactor and boundary conditions to account for advec-

tion of momentum away from the jet axis. The details are

included in the Supplementary Information. The analysis

is carried out with the valid PIV regime data ( f ≤ 122MHz)

from Dentry et al. [25]. Where necessary, the data and mod-

els from that study are corrected according to the associated

erratum [55]. The result of these efforts is the inviscid model

of eqn. (58) modified by an attenuation prefactor:

ũ j = B(x̃) ũinvisc, (64)

where

B(x̃) =
1−exp(2αxs )+αxs

1−exp(2αxs )+α(xs − x̃)
, (65)

and

xs =
34P 0.1

ρ0.1
0 α0.5 f 0.3

, (66)

is the Buckingham-Π estimate of the axial distance to max-

imum streaming velocity. The accuracy of eqn. (66) is illus-

trated in Supplementary Information Fig. 2. The boundary

conditions are chosen so that ũ j attains its maximum at xs

and the near-source, inertia-dominant regime is asymptot-

ically equivalent to eqn. (60). In other words, the model is

defined by steady Riccati physics.

The leading portion of the axial jet profile (from source

to maximum) is examined in Fig. 6. This portion of the

flow is a mechanistic analog for steady Eckart streaming

through eqn. (58). The models and data are shown for fixed

frequency at three different source velocities. The near-

source jet velocity, ũ j ,ns = B(x) ũns, is also shown. Aside

from the obvious improvement in amplitude correspon-

dence, eqn. (64) enforces a downstream shift in the maxi-

mum streaming velocity distance estimate. Since the data

are monotonic with an apparent nonzero slope, the shift

represents an increase in accuracy. Within the vicinity of the

source, the profile curvature is evidently better explained by

the closed-form model. This region is strongly correlated to

the near-source approximation, which itself is from the in-

viscid Riccati solution. At smaller amplitudes, the range of

validity of the near-source approximation extends roughly

to xs .

The streaming maxima for the experimental data and

our models are plotted together as a continuous function

of maximum particle velocity in Fig. 7. The results of our

closed-form model are obtained at significantly less com-

putational cost, since the other models involve the numeri-

cal integration of stiff, nonlinear ordinary differential equa-

tions. The systematically low-valued data in Fig. 7(d) are

an inaccurate accounting of the streaming flow due to the

effects of direct acoustic radiation forcing on the 5µm PIV

particles.

C. Transient development of bulk acoustic streaming

The transient flow development of the Stuart-Lighthill jet

[18] can be approximated by using our closed form model in

conjunction with the inviscid Burgers equation—eqn. (53)

with µ set to zero. We consider the leading portion of the jet

profile (i.e., from the source to the axial coordinate of the ve-

locity maximum). The transient component of the stream-

ing field is extracted with the nondimensional transient en-

ergy density:

〈Eδu〉x (t) =
1

2

∫1

0
δu(x, t)2 d x, (67)

where the nondimensional background density is unity,

dV = d x, and δu(x, t) = u(x, t)−u(x, t −d t) is the tran-

sience of the Burgers streaming field. The transient flow

behaviors are brought to light in Fig. 8. The most striking

features are found where the steadiness, formally defined

as the nondimensional transient energy density, 〈Eδu〉x <
10−9, is nonmonotonically changing with respect to time.

These changes are especially seen as the acoustic frequency

is increased beyond 100 MHz. In Fig. 8(a), two trend re-

versals are observed, a minor reversal at ∼ 100MHz and a

major reversal at ∼ 256MHz. At these frequency values,

the time to achieve steady acoustic streaming is at a mini-

mum nondimensional time. Above and below these values,

it takes longer to achieve steady acoustic streaming. Above

256 MHz in particular, time to steadiness appears to be an

increasing function of frequency, despite a fixed on-source

particle velocity and decreasing vibrational amplitude.

A corresponding trend reversal is observed in the fre-

quency isolines of the inset surface plot. The isolines cor-

respond to the profiles plotted in Fig. 8(b) and reveal three

regimes. At frequencies below the minor reversal, tran-

sient energy is more evenly distributed and exhibits smooth
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FIG. 6. Stuart-Lighthill jet streaming axial profiles at three different acoustic forcing magnitudes. Data and reference (laminar) models

are taken from Dentry et al. [25] with corrections applied according to the associated erratum [55]. The attenuation prefactor used with

ũ j is derived to satisfy two boundary conditions. Near the source, the profile agrees asymptotically with eqn. (60). Away from the source,

the profile maximum is enforced to occur at xs , where xs is estimated from the Buckingham Π scaling relation of eqn. (66). Thus, the

curvature, the maximum amplitude, and the location of the maximum are systematically enforced from eqn. (58). A high-level perspective

of the efficacy of this approach is provided in Fig. 7.

rolloff into steadiness. As the frequency is increased to

within the minor reversal, the transient decay is linear in

log-log space (i.e., follows a power law, see 64MHz and

128MHz). This culminates in the formation of an energy

peak near the terminal profile edge for frequencies ap-

proaching the major reversal. With peak formation, de-

cay to steadiness evolves from “smooth and slow” toward

“sharp and instantaneous.” Above ∼ 256MHz, the energy

peak shifts away from the steady edge, leading to the devel-

opment of a local maximum.

D. The effect of frequency on steady bulk acoustic streaming

We finally consider the effect of the frequency on the

steady streaming profile in Fig. 9. This is achieved by using

the closed-form model while maintaining a constant acous-

tic intensity (and power) from the source. With the assump-

tion of uniform intensity over the emitting surface, we have

Ua = 2π f ξp =
√

I
z0

=
√

P /A
z0

for a device of fixed area A and

with z0 = ρ0 c as the acoustic impedance of the fluid. The

profiles in the plot demonstrate that the theoretical maxi-

mum is achieved over a shorter distance as frequency is in-

creased and power is held constant, as one would proba-

bly expect. Over a majority of the domain, the streaming

velocity is approximately linearly incremented in response

to a logarithmically incremented frequency grid. Since

the streaming speed limit in eqn. (61) is non-constitutive,

the observed relationship implies that, for inviscid systems

where the approximation eqn. (58) is valid, the only means

for attaining the theoretical maximum streaming velocity

within a finite domain is by increasing the acoustic fre-

quency. Though the maximum streaming velocity is directly

proportional to the vibrational amplitude, the exponential

factor representing the Reynolds stresses attains its maxi-

mum value as the square root of a Gaussian function of in-

creasing frequency (α∝ ω2), and this exponential factor is

independent of vibrational amplitude.

V. CONCLUDING REMARKS

Over the last several decades, advancements in

acoustofluidics have brought within practical reach

many useful applications across disciplines. The rapid

progress of these innovations has outpaced theory and

left behind many unresolved questions. This shortage of

understanding arises due to the intractable governing non-

linear equations of motion. Classical efforts at addressing

these difficulties were introduced by Lord Rayleigh in his

early investigations of acoustic streaming at the end of the

19th century.

Rayleigh’s methods provided the template for the devel-

opment of similar techniques over the years to the mod-

ern era by notable acousticians and fluid mechanists. The

common feature in all these approaches is the assumption

that the acoustic streaming flow is much smaller in mag-

nitude than the driving acoustics. In the more than forty
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FIG. 7. Maximum velocity profiles for steady Stuart-Lighthill jet streaming at differing acoustic forcing frequencies. Overall, eqn. (64)—

with attenuation properties enforced to satisfy eqns. (60) and eqn. (66)—better accounts for the observed behaviors. Its algebraic form

ensures computational efficiency. The streaming law is evidently violated by the Lighthill and Dentry models, while eqn. (64) adheres to

the law by construction. The systematically low-valued data from Dentry et al. [25] in subplot (d) is likely spurious as a result of significant

acoustic radiation forcing. This is due to the relatively small acoustic wavelength—λ . 6µm for f & 240MHz—compared to the PIV

particle size, 5µm, used in that study.

years since Lighthill showed that this assumption cannot be

generalized to all acoustofluidic settings, little progress has

been made toward a more general, systematic approach.

This study has detailed a much needed alternative to

the traditional perturbative technique. Our systematic ap-

proach has flexibility and generality as its foundation. The

method adopts the unconventional strategy of differentiat-

ing across the vast spatiotemporal scale disparities encoun-

tered in high-frequency acoustofluidics, including not only

a separation in temporal scales but also spatial scales be-

tween the acoustics and resulting hydrodynamics. The key

result of this method is a field-decoupled, finite-term ex-

pansion of the governing equations, with terms stratified by

order of importance as determined by the scale disparities.

This approach allows for identification and segmentation of

specific flow structures, as designated by the user when as-

signing characteristic scales.

We have investigated the usefulness of the method by ap-

plying it to derive a simple governing equation for large-

amplitude bulk jet streaming. Definition of the scales in

this case is based on an axiomatic assumption of commen-

surately ordered acoustic particle velocities and streaming

flow velocities. We have shown that for valid inclusion of the

spatial acoustic averaging constraint, the wavelength of the

acoustic forcing should be less than the attenuation length.

It was also revealed that this condition is approximately sat-

isfied by our approach to the analysis across the entire do-

main of continuum mechanics. The nonlinear equations of

motion approximating fast axial streaming were recovered,

and it was shown that the transient system is written as a

viscous Burgers equation forced by the Reynolds stresses

of the acoustic wave. Solutions describing the transient

onset of acoustic streaming were explicitly derived for the

first time. The Burgers description reduces, at steady state,

to a Riccati equation. We have thoroughly characterized

the Burgers-Riccati system as it relates to Eckart streaming,

Stuart-Lighthill streaming, and other recently studied forms

of bulk acoustic streaming. In the case of a bounded do-

main, it was revealed that the extent of streaming nonlin-

earity depends on the ratio of the wavelength to the domain
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FIG. 8. Transient energy density for the leading portion of the Stuart-Lighthill jet profie. The transient dynamics are extracted from the

net streaming flow with definition Eq. (67). In subplot (a), time to steadiness is a non-monotonic function of frequency exhibiting trend

reversals at ∼ 100MHz and ∼ 256MHz. Frequency isolines in the surface inset correspond to solid profiles in plot (b), where three regimes

are observed. At low frequencies, evenly distributed transient energy rolls off quickly into steadiness. At moderate frequencies, power-law

transient decay gives way to energy peak development at the terminal end and instantaneous decay to steadiness. At high frequencies,

the peak shifts away from the terminal edge and defines a local maximum.

FIG. 9. Steady streaming velocity profiles for a logarithmic fre-

quency space defined over a fixed acoustic intensity (and power).

Only the highest frequency attains the theoretical maximum

streaming velocity in the finite domain. Though the maximum

streaming velocity is itself directly proportional to the maximum

vibration amplitude, the evolution of the jet velocity over the dis-

tance from the acoustic source depends on the Reynolds stress, as

shown in eqn. (58). The Reynolds stress term attains its maximum

as the square root of a Gaussian function of increasing frequency,

since α∝ω2.

length in addition to viscosity, and that this is also a factor in

determining the maximum streaming velocity. Using an in-

viscid approximation, we derived simple expressions for the

near-source inertial streaming behavior and the maximum

attainable streaming velocity. For the latter result, it was

shown that on a “short” bounded domain, the only means of

asymptotically achieving the theoretical maximum stream-

ing velocity is by increasing the frequency of the acoustic

forcing. From the theoretical maximum streaming law, we

recovered a universal upper bound on the energetic conver-

sion efficiency of 50%, independent of constitutive param-

eters. These findings were rigorously validated by compar-

ison to theoretical and experimental findings from a broad

survey of the literature.
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