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The mobility of a colloidal particle in a slit pore is modified by the particle’s hydrodynamic cou-
pling to the bounding surfaces and therefore depends on the particle’s position within the pore and
its direction of motion. We report holographic particle tracking measurements of colloidal particles’
diffusion and sedimentation between parallel horizontal walls that yield the mobility for motions per-
pendicular to the walls, including its dependence on height within the channel. These measurements
complement previous studies that probed colloidal mobility parallel to confining surfaces. When in-
terpreted with effective-medium theory, holographic characterization measurements yield estimates
for the sedimenting spheres’ densities that can be compared with kinematic values to draw insights
into the spheres’ compositions. This comparison suggests, for example, that the silica spheres used
in this study are slightly porous, but that their pores are too small for water to penetrate.

I. INTRODUCTION

Colloidal particles are coupled to each other and to the
walls of their containers by hydrodynamic interactions.
Hydrodynamic coupling modifies how colloidal particles
respond to external forces and collectively contributes
to their dispersions’ rheological properties. Developing
analytical expressions for colloidal particles’ mobility is
impractical for all but the simplest systems. Here, we
revisit one such archetypal system comprised of a single
colloidal sphere confined to the gap between two rigid
horizontal planar walls.

Previous experimental studies have used dynamic light
scattering [1], multiple light scattering [2], and conven-
tional video microscopy [3–5] to measure the mobility of
colloidal spheres confined by parallel walls. Light scat-
tering techniques, however, average over the height of
the channel and so do not probe how the particle’s mo-
bility varies with its position in the channel. The lim-
ited depth of focus of conventional microscopy similarly
has prevented particle-tracking studies from assessing the
full position dependence of the mobility [4, 5]. Dynamic
stereo microscopy has been used to track a micrometer-
scale colloidal spheres sedimenting onto a single horizon-
tal surface [6]. The particles’ radii in such imaging mea-
surements are estimated indirectly by analyzing thermal
fluctuations or are treated as adjustable parameters. The
resulting lack of precision in particle size limits how much
information can be extracted about the particles’ cou-
pling to the surrounding fluid and bounding surfaces.

The present study rounds out the experimental lit-
erature on this canonical system by measuring how a
sphere’s mobility perpendicular to the parallel walls of
a rectangular channel depends on its height within the
channel. These measurements use holographic video mi-
croscopy to track individual spheres’ three-dimensional
motions with nanometer-scale precision as they freely
sediment from the top wall of the channel to the bot-
tom. Spheres are reproducibly positioned at the top wall
using holographic optical traps.

We interpret the results of these measurements with

an implicit formulation of the sphere’s trajectory in the
linear superposition approximation. The result is param-
eterized by the sphere’s radius relative to the channel
depth and by the sphere’s buoyant mass density. Holo-
graphic tracking has the advantage over other techniques
of directly measuring the sphere’s radius with nanome-
ter precision. The wall separation consequently can be
inferred from the measured trajectory. Holographic mi-
croscopy therefore provides a kinematic estimate for the
sedimenting sphere’s density.

Holographic characterization also yields the sphere’s
refractive index with part-per-thousand precision.
Effective-medium theory then provides an independent
estimate of the sphere’s density. Comparisons between
kinematic and holographic density estimates offer use-
ful insights into the sphere’s composition while also serv-
ing to validate the effective-sphere interpretation of holo-
graphic characterization data [7, 8].

II. LORENZ MIE MICROSCOPY

Figure 1(a) schematically represents the measurement
system. A beam of collimated laser light with vacuum
wavelength λ and frequency ω illuminates a colloidal par-
ticle dispersed in a fluid medium of refractive index nm.
The electric field of this beam may be modeled as a plane
wave polarized along x̂ and propagating along the verti-
cal ẑ axis,

E0(r) = u0 e
ikze−iωt x̂. (1)

Here, u0 is the beam’s amplitude and k = 2πnm/λ is
the wavenumber of light in the medium. Our implemen-
tation uses a fiber-coupled diode laser (Coherent Cube)
operating at λ = 447 nm. The 10 mW beam is colli-
mated at 3 mm diameter, which more than fills the in-
put pupil of an objective lens (Nikon Plan Apo, 100×,
numerical aperture 1.4, oil immersion). In combination
with a 200 mm tube lens, this objective relays images
to a grayscale camera (FLIR Flea3 USB 3.0) with a
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FIG. 1. Schematic representation of the holographic sedimen-
tation measurement. (a) A colloidal sphere with radius ap is
confined to a channel of width H. The sphere is illuminated
with a collimated laser beam as it moves through the channel
in three dimensions. (b) Light scattered off of the sphere inter-
feres with the rest of the illumination to produce a hologram.
This hologram may be interpreted with Lorenz-Mie theory
to yield simultaneous measurements of ap, the sphere’s axial
position, zp, and the sphere’s refractive index, np. (c) The
sphere’s hydrodynamic mobility µ depends on its axial posi-
tion zp according to Eq. (7) due to hydrodynamic coupling to
the walls.

1280 pixel× 1024 pixel sensor, yielding a system magnifi-
cation of 48 nm/pixel.

A colloidal particle located at rp relative to the center
of the microscope’s focal plane scatters a small propor-
tion of the illumination to position r in the focal plane
of the microscope,

Es(r) = E0(rp) fs(k(r− r0)). (2)

The scattered wave’s relative amplitude, phase and polar-
ization are described by the Lorenz-Mie scattering func-
tion, fs(kr), which generally depends on the particle’s
size, shape, orientation and composition. For simplic-
ity, we model the particle as an isotropic homogeneous
sphere, so that fs(kr) depends only on the particle’s ra-
dius, ap, and its refractive index, np [9–11].

The microscope magnifies the interference pattern
formed by the superposition of incident and scattered
waves, and the camera records its intensity. Each snap-
shot in the camera’s video stream constitutes a hologram
of the particles in the observation volume. The image in
Fig. 1(b) shows a typical hologram of a colloidal silica
sphere recorded at λ = 447 nm with a system magnifica-
tion of 48 nm/pixel.

The distinguishing feature of Lorenz-Mie microscopy
is how it extracts information from recorded holograms.
Rather than using diffraction integrals to reconstruct the
volumetric light field responsible for the recorded holo-
gram, Lorenz-Mie microscopy instead treats the analysis
as an inverse problem, modeling the hologram as [12]

I(r) = u20
∣∣x̂+ e−ikzpfs(k(r− rp))

∣∣2 + I0, (3)

where I0 is the calibrated dark count of the camera. Fit-
ting Eq. (3) to a measured hologram yields the particle’s
three-dimensional position, rp = (xp, yp, zp), as well as
its radius, ap, and its refractive index, np, at the imaging
wavelength. Lorenz-Mie measurements on micrometer-
scale spheres typically yield tracking and characterization
results with exceptionally good precision [7]. The uncer-
tainties in the in-plane coordinates are σxp = σyp = 2 nm
over a field of view extending to 100 µm. The vertical
coordinate is less well resolved, with an uncertainty of
σzp = 5 nm over a range of 100 µm. The uncertainty in
the radius is typically σap = 2 nm and the uncertainty in
the refractive index is σnp = 0.001.

III. HOLOGRAPHIC OPTICAL TRAPPING

We position colloidal spheres reproducibly within the
channel with optical tweezers and then release them to
track their motions. Our traps are created with the holo-
graphic optical trapping technique [13] using the micro-
scope’s objective lens to focus computer-generated phase-
only holograms into the sample. The trapping system is
powered by a fiber laser operating at a vacuum wave-
length of 1064 nm (IPG Photonics YLR-10-LP) and uses
a liquid-crystal spatial light modulator (Holoeye Pluto)
to imprint holograms on the light’s wavefronts. The mod-
ified beam is relayed into the objective lens with a di-
electric multilayer dichroic mirror (Semrock), which per-
mits simultaneous holographic trapping and holographic
imaging.

Figure 2 presents the results from a typical holographic
analysis of a silica sphere’s sedimentation. This sphere is
drawn from a commercial sample with a nominal radius
of ap = 0.75 µm (Duke Standards, catalog number 8150)
and is dispersed in water. The sample is confined to the
gap between a glass microscope slide and a glass #1.5
coverslip whose edges are bonded to the slide with opti-
cal adhesive (Norland NOA68). The separation between
the inner glass surfaces is set to roughly H ≈ 20 µm by
capillary forces before the cell is sealed.

Figure 2(a) shows the sphere’s axial position as a func-
tion of time, measured at 24 frames/s. Fluctuations in
zp(t) reflect the sphere’s Brownian motion; measurement
errors are too small to see at the scale of the plot.
The discrete points in Fig. 2(b) reflect values for the
sphere’s radius and refractive index obtained at each
time step and are colored by the density of observa-
tions, P (ap, np). The mean value for the refractive in-
dex, np = 1.433± 0.009, is consistent with expectations
for slightly porous silica [14]. We use the trajectory-
averaged radius, ap = (0.814± 0.007) µm, to interpret
the results. For example, the plateaus in zp(t) at the be-
ginning and end of the trajectory correspond to the par-
ticle being pressed against the upper wall of the channel
by the optical tweezer and sitting against the lower wall
due to gravity, respectively. Given the measured particle
radius, we therefore can estimate the positions of the up-
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per and lower walls of the channel, which are indicated
by the horizontal dashed lines in Fig. 2(a).

IV. CONFINED SEDIMENTATION

A small dense sphere sediments through a viscous fluid
under the influence of gravity at a rate,

dzp
dt

= −µ(zp) ∆mp g (4a)

that depends on its position-dependent mobility, µ(zp),
the acceleration due to gravity, g, and the sphere’s buoy-
ant mass,

∆mp =
4

3
πa3p (ρp − ρm), (4b)

where ρp and ρm are the mass densities of the particle
and the medium, respectively. Equation (4a) neglects
inertial effects under the assumption that the motion
is overdamped, which is reasonable for micrometer-scale
colloidal spheres in water.

The mobility of a sphere moving through an un-
bounded fluid with viscosity η is given by the Stokes
formula,

µ0 =
1

6πηap
. (5)

Confining the sphere within a channel reduces its mo-
bility through hydrodynamic coupling to the walls. The
mobility depends both on the sphere’s height, zp, within
the channel and also on the direction of motion. The
mobility for a sphere moving toward a rigid horizontal
surface is well approximated by Faxén’s result [15]

µ(h)

µ0
= 1− 9

8

ap
h

+
1

2

a3p
h3

+O

{
a4p
h4

}
, (6)

where h = zp − z0 is the sphere’s height above a wall
located at z0 along ẑ.

Coupling to a pair of parallel walls is far more com-
plicated because of the need to satisfy no-flow bound-
ary conditions on both rigid surfaces [16]. Provided the
sphere does not fill too large a proportion of the channel’s
wall-to-wall separation, H, the mobility can be approx-
imated with Oseen’s linear superposition approximation
[4, 8, 15],

µ(zp)

µ0
≈ 1− 9

8

ap
zp − z0

− 9

8

ap
H − zp + z0

. (7)

This functional form is plotted in Fig. 1(c). Equation (7)
has been found to agree quantitatively with numerical
solutions to the Navier-Stokes equation for ap/H � 0.1
[17].

Using Eq. (7) for the confined sphere’s mobility,
Eq. (4a) can be recast into dimensionless form,

dζ

dτ
=
α2 − ζ2

1− ζ2
, (8)

by defining the dimensionless position,

ζ = 2
zp − z0
H

− 1, (9)

the dimensionless time,

τ = µ0 ∆mp g
2

H
(t− t0), (10)

relative to the time, t0, that the particle reaches the mid-
plane of the chamber, and a geometric parameter,

α =

√
1− 9

2

ap
H
. (11)

The particle begins its trajectory at ζ = 1− 2ap/H and
descends to height ζ(τ) by time

τ(ζ) =

(
α− 1

α

)
arctanh

(
ζ

α

)
− ζ, (12)

which is obtained by integrating Eq. (8). The arrival time
diverges when α ≤ 0 or ap ≥ 0.22H, which sets the do-
main of validity for Eq. (12). The former limit requires
that the sphere be more dense than the medium. The
latter is consistent with the linear superposition approx-
imation for the mobility. For ap/H = 0.15, corrections
to µ(zp) of order (ap/H)3 contribute a 10 % correction to
τ(ζ).

The smooth (red) curve superimposed on the trajec-
tory data in Fig. 2(a) is a three-parameter fit to Eq. (12)
for the positions of the two walls of the chamber and
the sphere’s buoyant mass. The sphere’s density is ob-
tained from the buoyant mass using the holographically
measured radius. Taking the density of water to be
ρm = 997 kg m−3, the hydrodynamic estimate for the
density of the sphere is ρH = (2.05± 0.03)× 103 kg m−3.
This value is slightly smaller than the density of amor-
phous silica, ρ0 = 2.2× 103 kg m−3 [14, 18], which sug-
gests that the sphere is slightly porous.

A. Effective Medium Theory

The refractive index of a porous particle reflects prop-
erties of both the particle’s base material and also the
material filling its pores. Given a base material with
refractive index n0, and assuming the pores are small,
evenly dispersed throughout the particle, and filled with
a material of refractive index n1, the porous particle’s
effective refractive index, np, is related by Maxwell Gar-
nett effective-medium theory [19] to n0 and n1 by [20, 21]

L

(
np
nm

)
= φL

(
n0
nm

)
+ (1− φ)L

(
n1
nm

)
, (13a)
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FIG. 2. Simultaneous holographic measurements of (zp, ap, np) for a 1.5 µm diameter silica sphere as it sediments between
two walls. (a) The particle’s trajectory zp(t) (black) is fitted to Eq. (12) to obtain the red curve and hydrodynamic estimates
for the positions of each wall, z0 = 6.1 µm, H = 16.9 µm, as well as the buoyant mass of the particle, ∆mp, which may
be interpreted to determine its hydrodynamic density, ρH = (2.05 ± 0.03) × 103 kg/m3, using holographic estimates of its
radius. (b) Measurements of ap and np at each time step yield trajectory-averaged values of ap = (0.814 ± 0.007) µm and
np = 1.433 ± 0.009. Applying effective-medium theory to these values yields an independent estimate for the particle’s density,
ρp = (2.06 ± 0.04) × 103 kg/m3, assuming the particle’s pores to be empty.

FIG. 3. Trajectories for three sizes of silica spheres sedimenting in three different channels. (a) Ten trajectories from each
particle type: ap/H = 0.03 (green), ap/H = 0.06 (blue), and ap/H = 0.12 (red). Trajectories from each particle type are
shifted along t for readability. (b) Data collapse in the linear superposition approximation. The master curve from Eq. (15) is
plotted as a dashed (white) curve superimposed on the data.

where φ is the volume fraction of base material in the
particle and where

L(m) =
m2 − 1

m2 + 2
(13b)

is the Lorentz-Lorenz function.
Equation (13) can be used to estimate the particle’s

volume fraction, φ, from the holographically measured
value of np together with a priori knowledge of n0 and
n1. This approach has been validated through studies
on nanoporous colloidal spheres [7, 20, 21], fractal pro-

tein aggregates [22], fractal nanoparticle agglomerates
[23, 24], and dimers of spheres [25]. For the present study,
n0 = 1.465 is the refractive index of amorphous silica at
λ = 447 nm [26] and n1 = nm = 1.340 if the pores are
filled with water [27]. Alternatively, if the pores are too
small or inaccessible to imbibe water [14] then n1 = 1.

Given the volume fraction of the particle, its mass den-
sity follows from

ρp = ρ0φ+ ρ1(1− φ), (14)

where ρ1 is the mass density of the material in the
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pores. For a silica sphere dispersed in water, ρ0 =
2.2× 103 kg m−3 [14, 18] and ρ1 = ρm = 997 kg m−3 if
water permeates its pores. Alternatively, ρ1 = 0 if the
pores are empty.

Applying this result to the holographic characteriza-
tion data in Fig. 2(b) yields an optical estimate for the
sphere’s mass density of ρp = (1.90± 0.09)× 103 kg m−3

if the pores are saturated with water. This value in-
creases to ρp = (2.06± 0.04)× 103 kg m−3 if we assume
instead that the pores are empty. The hydrodynamic
estimate agrees with this value only if the pores are as-
sumed to be empty. This is consistent with independent
measurements performed with spin-echo small angle neu-
tron scattering [28] and with helium and Gay-Lussac py-
cnometry [14], both of which suggest that the pores in
Stöber-condensed silica spheres are too small or inacces-
sible for water to penetrate.

V. RESULTS

Figure 3(a) presents results from holographic sedimen-
tation measurements on three different sizes of silica
spheres in channels of different heights. The smallest
spheres (green) have a nominal radius of ap = 0.84 µm
(Duke Standards, catalog number 8150) and are dis-
persed at a volume fraction of 10−7 particles/mL in a
channel of height H = 25 µm, so that ap/H = 0.03, which
falls within the valid range for the linear superposition
approximation. The intermediate-sized spheres (blue)
at ap = 1.19 µm (Bangs Laboratories, catalog number
SS05000) are confined in a channel with H = 19 µm,
yielding ap/H = 0.06. The largest spheres (red) at ap =
1.54 µm (Bangs Laboratories, catalog number SS05001)
are confined in the narrowest channel, H = 13 µm.
These particles fill a large enough fraction of the channel,
ap/H = 0.12, for deviations from the linear superposition
approximation to become apparent. Each of the three
data sets includes two independent experiments on each
of five different spheres. The largest trajectory fluctua-
tions are seen in the smallest spheres and can be ascribed
to Brownian motion. Each data set is fit to Eq. (12)
for ∆mp, z0 and H, using the holographically measured
value of ap to compute the geometric factor, α, using
Eq. (11).

To the extent that the approximations underlying
Eq. (7) are valid, trajectories of sedimenting spheres
should fall on a master curve obtained by rearranging
Eq. (12):

ζ

α
= tanh

(
α

α2 − 1
(ζ + τ)

)
. (15)

Figure 3(b) shows that all three data sets from Fig. 3(a)
collapse onto the master curve when recast in this form.
Brownian fluctuations cause sizable random deviations
for the smallest particles (green). The trajectories of the
most strongly confined particles (red) deviate systemat-
ically from the master curve near contact with the walls

at ζ = ±α because of higher-order corrections to the
spheres’ hydrodynamic coupling to the walls.

Fitting to the hydrodynamic model yields an estimate,
ρH , for the density of each sphere. Values of ρH are
compared in Fig. 4 with optical estimates, ρp, obtained
with Eqs. (13) and (14) assuming either that water is im-
bibed into the spheres’ pores or not. The two estimates
based on empty and filled pores represent the upper and
lower bounds, respectively, of the mass density that can
be inferred for these particles based on holographic char-
acterization alone. Errors in the optical estimates are
propagated from uncertainty in the refractive index of
the spheres, while errors in the hydrodynamic estimates
are dominated by uncertainty in the radii, which also
are measured holographically. The dashed line in Fig. 4
represents agreement between hydrodynamic and optical
estimates for the mass density. For this selection of sil-
ica spheres dispersed in water, the hydrodynamic density
agrees most closely with the limiting case in which the
pores are empty. This conclusion is consistent with in-
dependent measurements on similar systems performed
with orthogonal measurement techniques [14, 28]. This
agreement serves to validate (1) the precision and ac-
curacy of single particle characterization by holographic
microscopy, (2) the reliability of the effective-medium in-
terpretation of holographic characterization data and (3)
the proposal that holographic characterization can be
used to infer particles’ mass densities without requiring
dynamical measurements.

Success of the all-optical density measurement also val-
idates the analytic result introduced in Eq. (12) for the
trajectory of a sphere sedimenting in a horizontal slit
pore. Specifically, the model yields reliable values for a
particle’s buoyant mass, and therefore its density, despite
corrections to the mobility due to hydrodynamic coupling
to the walls of the channel. As anticipated, the model
accounts for this coupling for ap/H < 0.1. The largest
and most strongly confined spheres in our study fall out-
side that limit and therefore yield less satisfactory agree-
ment between hydrodynamic and optical estimates for
the density. We propose therefore that holographic parti-
cle characterization is a viable platform for single-particle
densitometry and single-particle pycnometry, and that it
complements conventional techniques because it can be
applied to dissimilar particles in heterogeneous samples.

VI. DISCUSSION

Single-particle tracking by holographic microscopy
provides the precision, range and time resolution needed
to study colloidal sedimentation in confined geome-
tries such as slit pores. Reproducible measurements
on selected particles are made possible by combining
holographic microscopy with holographic optical trap-
ping for noninvasive micromanipulation. We have used
these capabilities to measure the mobility of individual
micrometer-scale colloidal spheres in the direction per-
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FIG. 4. Comparison of the estimates for hydrodynamic den-
sity, ρH , and optical density, ρp, for a representative particle
from each of the three particle types. Limiting values of ρp
are plotted for empty pores (circles: n1 = 1, ρ1 = 0) and filled
pores (triangles: n1 = nm, ρ1 = ρm). The dashed (black) line
represents the identity ρp = ρH .

pendicular to plane parallel walls in a rectangular chan-
nel. These measurements complement previous experi-
mental studies, which did not have access to individual
particles’ axial coordinates across the entire channel [3–
5].

We interpret measurements of single-particle sedimen-
tation with a model that incorporates hydrodynamic cou-
pling to the walls through Faxén’s lowest-order single-
wall modification to the mobility together with Os-
een’s linear superposition approximation. This simpli-

fied model admits an analytic expression for a confined
particle’s trajectory that compares well with measure-
ments, even for spheres that fill a substantial fraction
of the channel. Fitting to the model yields an estimate
for the particle’s buoyant mass despite the influence of
confinement.

In addition to three-dimensional tracking, holographic
microscopy also measures the size and refractive index
of each particle in the field of view. Precise holographic
measurements of a particle’s size can be used to esti-
mate its mass density from its sedimentation velocity.
When interpreted with effective-medium theory, a par-
ticle’s holographically-measured refractive index can be
used to obtain an independent estimate for its mass den-
sity.

Comparing hydrodynamic measurements with optical
estimates offers insights into the composition of the sed-
imenting particle. In the case of aqueous dispersions of
silica spheres, this comparison suggests that the spheres
are slightly porous but that the pores do not imbibe wa-
ter, perhaps because they are too small or are not simply
connected. This can be contrasted with the behavior
of nanoporous silica spheres and branched fractal aggre-
gates, whose pores are permeated with the surrounding
fluid medium [21].
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ticles as basis for redox modifications: Particle shape,
size, polydispersity, and porosity,” J. Colloid Interface
Sci. 368, 208–219 (2012).

[15] J. Happel and H. Brenner, Low Reynolds Number Hydro-
dynamics (Kluwer, Dordrecht, 1991).

[16] Nadav Liron and S. Mochon, “Stokes flow for a stokeslet
between two parallel flat plates,” J. Eng. Math. 10, 287–
303 (1976).

[17] Henry Power and B. Febres de Power, “Second-kind inte-
gral equation formulation for the slow motion of a particle
of arbitrary shape near a plane wall in a viscous fluid,”
SIAM J. Appl. Math. 53, 60–70 (1993).

[18] Oleg Vsevolodovich Mazurin, Marina Vladimirovna
Streltsina, and Tatiana P Shvaiko-Shvaikovskaya, Silica
Glass and Binary Silicate Glasses (Elsevier, 2012).

[19] Vadim Markel, “Introduction to the Maxwell Garnett ap-
proximation: tutorial,” J. Opt. Soc. Am. A 33, 1244–
1256 (2016).

[20] Fook Chiong Cheong, Ke Xiao, David J. Pine, and
David G. Grier, “Holographic characterization of indi-
vidual colloidal spheres’ porosities,” Soft Matter 7, 6816–
6819 (2011).

[21] Mary Ann Odete, Fook Chiong Cheong, Annemarie Win-
ters, Jesse J. Elliott, Laura A. Philips, and David G.

Grier, “The role of the medium in the effective-sphere
interpretation of holographic particle characterization
data,” Soft Matter 16, 891–898 (2020).

[22] Chen Wang, Xiao Zhong, David B. Ruffner, Alexandra
Stutt, Laura A. Philips, Michael D. Ward, and David G.
Grier, “Holographic characterization of protein aggre-
gates,” J. Pharm. Sci. 105, 1074–1085 (2016).

[23] Chen Wang, Fook Chiong Cheong, David B. Ruffner,
Xiao Zhong, Michael D. Ward, and David G. Grier,
“Holographic characterization of colloidal fractal aggre-
gates,” Soft Matter 12, 8774–8780 (2016).

[24] Jerome Fung and Samantha Hoang, “Computational
assessment of an effective-sphere model for character-
izing colloidal fractal aggregates with holographic mi-
croscopy,” J. Quant. Spectrosc. Radiat. Transf. 236,
106591 (2019).

[25] Lauren E. Altman, Rushna Quddus, Fook Chiong
Cheong, and David G. Grier, “Holographic char-
acterization and tracking of colloidal dimers in the
effective-sphere approximation,” Soft Matter 17, 2695–
2703 (2021).

[26] Ian H. Malitson, “Interspecimen comparison of the re-
fractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–
1209 (1965).

[27] Masahiko Daimon and Akira Masumura, “Measurement
of the refractive index of distilled water from the near-
infrared region to the ultraviolet region,” Appl. Opt. 46,
3811–3820 (2007).

[28] S. R. Parnell, A. L. Washington, A. J. Parnell, A. Walsh,
R. M. Dalgliesh, F. Li, W. A. Hamilton, S. Prevost,
J. P. A. Fairclough, and R. Pynn, “Porosity of silica
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