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We consider an approach for community detection in time-varying networks. At its core, this
approach maintains a small sketch graph to capture the essential community structure found in each
snapshot of the full network. We demonstrate how the sketch can be used to explicitly identify six
key community events which typically occur during network evolution: growth, shrinkage, merging,
splitting, birth and death. Based on these detection techniques, we formulate a community detection
algorithm which can process a network concurrently exhibiting all processes. One advantage afforded
by the sketch-based algorithm is the efficient handling of large networks. Whereas detecting events
in the full graph may be computationally expensive, the small size of the sketch allows changes to
be quickly assessed. A second advantage occurs in networks containing clusters of disproportionate
size. The sketch is constructed such that there is equal representation of each cluster, thus reducing
the possibility that the small clusters are lost in the estimate. We present a new standardized
benchmark based on the stochastic block model which models the addition and deletion of nodes,
as well as the birth and death of communities. When coupled with existing benchmarks, this new
benchmark provides a comprehensive suite of tests encompassing all six community events. We
provide analysis and a set of numerical results demonstrating the advantages of our approach both
in run time and in the handling of small clusters.

I. INTRODUCTION

The detection of community structure in networks has
garnered a great deal of attention, leading to a vast ar-
ray of algorithms. Much of the focus has been on static
networks, where the goal is to identify groups of nodes
within which connections are dense and between which
connections are relatively sparse. However, it is often the
case that networks evolve with time. For example, edges
in social media networks appear and disappear to reflect
ever-changing friendships, and gene expression networks
continuously evolve in response to external stimuli [1, 2].
In this dynamic setting, new sequential algorithms are
needed to track the community structure underlying each
temporal snapshot of the network. Here, we propose a
sketch-based approach.

Sketching involves the construction of a small synop-
sis of a full dataset [3]. Notably, this technique has
been used in static community detection [4, 5], where
a sketch sub-graph is generated by sampling nodes from
the full network. The sketch is clustered using an exist-
ing community detection algorithm, and the community
membership of the nodes in the full network are inferred
based on the estimated communities in the sketch. Here,
we propose the use of an evolving sketch to detect and
handle the six canonical community events observed in
dynamic networks [6]: growth, shrinkage, merging, split-
ting, birth and death. This dynamic approach addresses
two pervasive issues in community detection.

One important concern in community detection is the
ability to process large graphs. Many static methods be-
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come infeasibly slow when processing a large network,
thus motivating a search for efficient algorithms [7]. The
extra time dimension inherent to the dynamic setting
only makes this search for efficiency more pressing. How-
ever, time-evolving networks also offer a distinct advan-
tage not found in the static domain. Specifically, evolving
networks often possess temporal smoothness in which the
community structure changes gradually [8]. In this case,
previous snapshots offer prior information which can aid
in the clustering of subsequent snapshots. We present a
method which relies on a small sketch to convey infor-
mation regarding previous snapshots. By using a small
sketch, the algorithm can detect the main community
events without requiring the full graph to be examined,
thus reducing the required computational complexity. If
the sketch size and number of clusters are fixed, the com-
plexity of our algorithm scales linearly in network size.

Another typical issue found in community detection is
the detection of small clusters [9]. If a community shrinks
too small, it may become lost, i.e., the community may
be absorbed into a larger community in the estimated
partition. We show that once a community is captured
in the sketch, it can be tracked even if the community
becomes very small.

We use dynamic benchmarks as a means for evaluat-
ing the proposed algorithm with respect to the canonical
network events. The first four events are included in the
benchmarks of [10], which are based on the well-known
Stochastic Block Model (SBM) [11]. Here, we propose
a new dynamic SBM benchmark which captures the last
two events of birth and death. An important feature of
this proposed benchmark is that the size of the network
varies with time, a characteristic not found in the exist-
ing benchmarks. In addition to modeling the birth event,
this benchmark incrementally adds new nodes to the net-
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work which join existing communities, a feature also not
seen in [10].

This paper is organized as follows. In Sec. II, we
summarize existing community detection algorithms for
evolving networks. Sec. III describes the network model,
and Sec. IV summarizes SBM benchmarks which cap-
ture key evolutionary processes. In Sec. V, we describe
the sketch-based approach, and formulate techniques by
which sketches can detect events and track evolution-
ary processes. Sec. VI presents the proposed algorithm
based on these tracking techniques. We analyze the algo-
rithm in Sec. VII, present numerical results in Sec. VIII,
and conclude in Sec. IX. Appendix A describes the static
clustering used as a part of the main algorithm, and Ap-
pendix B provides details on the main algorithm itself.
Appendix C derives the results found in the analysis of
Sec. VII. Appendix D provides additional details regard-
ing the algorithms we compare against in the numerical
results.

II. RELATED WORK: COMMUNITY
DETECTION IN EVOLVING NETWORKS

A number of algorithms have been proposed for com-
munity detection in evolving networks (see [8, 12] for
comprehensive surveys). One straightforward approach
entails the independent clustering of each snapshot us-
ing a static clustering algorithm. The communities in
the current snapshot are matched to the previous com-
munities such that there is continuity in the community
identities. This category of algorithm contains a number
of variants beginning with the classic work of [13].

More recently, many algorithms take a more sophis-
ticated “dependent” approach, in which previous snap-
shots are accounted for in the clustering of the current
snapshot. These algorithms have the potential to outper-
form independent community detection algorithms, since
they incorporate previous knowledge directly in the clus-
tering step.

One approach commonly seen in this category is the
representation of each snapshot using a compact graph.
In [14], a small weighted graph is constructed after clus-
tering a given snapshot, with each community repre-
sented by a single “supernode”. The weights of the edges
between supernodes indicate the cumulative number of
edges between the corresponding communities. These su-
pernodes are then incorporated into the next snapshot’s
graph, thus carrying forward information from the pre-
vious estimates. A similar idea can be seen in dynamic
methods built around the static Louvain algorithm [15],
for example as seen in [16]. The extension of the Lou-
vain algorithm to time-varying networks follows naturally
from its reliance on supernodes. Our approach also uses
a small representative graph, however using an altogether
different idea of sketching, as described in Sec. V.

The model used in this paper is based on the SBM [11].
Several recent algorithms have been developed based on

dynamic SBM-based models. The dynamic models of
[17, 18] specify that nodes move between a fixed set of
communities according to a stationary transition proba-
bility matrix. In addition to allowing the movement of
nodes between communities, the models of [19, 20] also
allow the edge probabilities of the communities to vary.
Nonetheless, these works focus on the case where indi-
vidual nodes only change community membership, i.e.,
the communities undergo the grow and shrink processes.
Although [21] is able to track communities which are also
merging and splitting, it still does not allow varying num-
bers of nodes across the snapshots. The algorithm of [22]
allows nodes to join or leave the graph, but requires that
all snapshots be known when invoking the algorithm. We
emphasize that our proposed algorithm is online in na-
ture, i.e., it performs community detection iteratively on
one snapshot at a time, while carrying forward the clus-
tering results from previous snapshots.

III. TEMPORAL NETWORK MODEL

At time t, the network snapshot is represented by
graph G(t)=(V (t), E(t)), where V (t) is the set of nodes
in existence at time t, and E(t) is the set of edges between

these nodes. Let Ĉ(t) =
{
Ĉu(t) | u ∈ {1, . . . , q̂(t)}

}
be

the partition at time t, with Ĉu(t) denoting the set of
nodes in community u, and q̂(t) the number of commu-
nities.

In each snapshot, an edge exists between nodes within
a community with probability pin. Nodes in community
u are connected to nodes in a different community u′

with probability pu,u′(t). An evolutionary process may
vary the intercommunity edge density pu,u′(t) so long as
the resulting graph adheres to the SBM. We discuss one
such process in Sec. IV B. A pair of communities u, u′ are
considered to be merged if

pin − pu,u′(t) <

√√√√ 2 (pin + pu,u′(t))∣∣∣Ĉu(t)
∣∣∣+
∣∣∣Ĉu′(t)

∣∣∣ . (1)

When communities are of equal size, this condition cor-
responds to the asymptotic weak detectability limit (see
[10] for a discussion of this bound in the context of merg-
ing and splitting communities). For simplicity, here, we
average the community sizes when they are of unequal
size.

The following events may occur at time t.

• Node movement between communities A set
of nodes Vu→u′(t) belonging to community u may
move to community u′. The edges connected to
these nodes are regenerated according to the SBM
based on the new community memberships.

• New nodes and community birth A set of
nodes V +(t) may join the graph. A subset
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Vbirth(t) ⊆ V +(t) of these nodes join new commu-
nities. The remaining nodes V +(t) \ Vbirth(t) join
existing communities. The edges of nodes in V +(t)
are generated according to the SBM.

• Removed nodes and community death A set
of nodes V −(t) may be removed from the graph.
Death occurs when all nodes in a particular com-
munity are removed.

• Merge and split of communities The merge
event occurs for communities u, u′ when pu,u′(t) in-
creases such that (1) becomes true. Likewise, the
split event occurs when pu,u′(t) decreases such that
(1) becomes false.

Note that many of the model variables are functions of
time t. Where there is no ambiguity, we omit this time
parameter to simplify the exposition.

IV. EVOLUTIONARY PROCESSES:
BENCHMARKS

For the purpose of illustrating and analyzing the pro-
posed algorithm, we consider here specific examples of
evolutionary processes. These are realized by four bench-
mark networks, i.e., parameterized sequences of snap-
shots with known community partitions for validating
and comparing community detection algorithms. The
grow-shrink and merge-split benchmarks are defined in
[10], whereas we present the birth-death process here for
the first time.

Each benchmark consists of an evolving network con-
taining 2n total nodes. The underlying process is driven
by a periodic triangular waveform

x(t) =

{
2t∗, 0 ≤ t∗ < 1/2,

2− 2t∗, 1/2 ≤ t∗ < 1,
(2)

where

t∗ ≡ (t/τ + φ) mod 1, (3)

τ is the period of the waveform, and φ controls the phase
of the waveform. We will assume that φ= 0 unless oth-
erwise specified.

A. Grow-shrink benchmark

The grow-shrink benchmark moves nodes between a
pair of communities, thus growing and shrinking the com-
munities. At each time step the first community contains

nA = n− nf [2x(t+ τ/4)− 1], (4)

nodes, whereas the second community contains nB =
2n−nA nodes. Nodes lost from the first community
are transferred to the second community, and vice-versa.

The parameter f ∈ [0, 1] controls the variation in com-
munity sizes. For t ∈ {0, τ/2, τ} the sizes of the commu-
nities are equal. At time t = τ/4, a fraction f of nodes in
community u will have moved to community u′, whereas
at time t=3τ/4 the opposite holds.

B. Merge-split benchmark

The merge-split benchmark has two communities, each
of size n, with intracommunity edge density pin. Initially,
the intercommunity edge density is pu,u′(0) = pout. New
edges are gradually added between the two communities
until they are completely merged at time t = τ/2 with
pu,u′(τ/2) = pin. Then, the process reverses and the new
edges are removed until the communities are completely
split again at time t=τ .

The intercommunity edges are placed in the following
way. The number of intercommunity edges mum in the
unmerged state are drawn according to a binomial dis-
tribution with parameters n2 and pout. The number of
edges mm in the merged state is similarly drawn, except
using probability pin. The number of edges at time t is
then determined by

m∗(t) = [1− x(t)]mum + x(t)mm, (5)

where the edges are placed uniformly at random. In this
way, the edge density between the two communities is
pu,u′(t) = m∗(t)/n2. The communities are considered
merged at the detectability limit (1).

C. Birth-death benchmark

We now propose a new benchmark which realizes the
birth and death of communities, as well as the addition
and removal of nodes from the network. A schematic dia-
gram of the birth-death benchmark is shown in Fig. 1(a).
The benchmark contains two communities which pass
into and out of existence. The size of the first community
is

nA =

{
0, x(t+ τ/4) ≥ 1− γ/2,
n [1− x(t+ τ/4)] , otherwise,

(6)

where nA = 0 designates a non-existent community, and
parameter γ ∈ [0, 1] controls the minimum size of the
community. The community starts at time t = 0 with
n/2 nodes. Nodes are removed from the network, until
the community shrinks to size γn/2 at time t = τ(1 −
γ)/4. At this point, the community dies and all of its
remaining nodes are deleted from the network. At time
t = τ(1 + γ)/4, a new set of γn/2 nodes is added to the
network and used to re-create the community. New nodes
are gradually created and added to the community until
it reaches size n. At this point, nodes are again removed
from the community until it contains n/2 nodes, and the
process repeats.
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FIG. 1. (a) Schematic representation of the birth-death
benchmark, showing the two communities labeled A and B.
(b) Schematic representation of the mixed benchmark, which
stacks the grow-shrink, merge-split, and birth-death bench-
marks.

The second community is of size

nB =

{
0, x(t+ τ/4) < γ/2

nx(t+ τ/4), otherwise.
(7)

This community undergoes essentially the same process
as the first community except with a phase shift of τ/2.

D. Mixed benchmark

To model concurrent processes capturing all of the
events, we present a mixed benchmark which is created
by “stacking” the grow-shrink, merge-split, and birth-
death benchmarks. A schematic of this mixed benchmark
is shown in Fig. 1(b). The benchmark has a maximum of
6n nodes. The first 4n nodes contain the grow-shrink and
merge-split benchmarks as previously described, whereas
the last 2n nodes participate in the birth-death process
(the actual number of nodes varies with time due to ad-
dition and deletion of nodes in the birth-death bench-
mark). We show an example of this mixed benchmark in
Fig. 2(a).
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FIG. 2. (a) Planted partitions for full graphs of the mixed
benchmark network. Each vertical slice indicates the planted
partition at time t. The model parameters are n= 200, q̂ =
6, f = 0.9, γ = 0.2 (b) Sketches produced with n′ = 40. Each
vertical slice indicates the planted partitions in sketch S(t).
White regions indicate that the corresponding node does not
exist at time t.

V. SKETCH-BASED TRACKING OF
EVOLUTIONARY PROCESSES

Our algorithm relies on a small representative sketch
of the full network. The sketch captures important in-
formation which can be used to detect network events
and track the processes by which the network evolves.
Meanwhile, the smaller size of the sketch allows these
checks to be performed quickly without requiring a
complete assessment of the entire network. The es-
timates of the communities in snapshot t are C(t) ={
Cu(t) | u ∈ {1, . . . , q(t)}

}
, where q(t) is the estimated

number of communities at time t. We first describe the
sketch, and then describe how this sketch can be used to
detect specific events.

The sketch consists of a set of nodes sampled from the
full network. At each time step, this set is updated such
that it contains an equal number of nodes n′ from each
community. The set of nodes in the sketch at time t is
denoted S(t), and the subset of these nodes from commu-
nity u is denoted C ′u(t) = S(t) ∩ Cu(t). We refer to this
as sketch community u. An example sketch time series is
shown in Fig. 2(b), where nodes have been sampled from
the mixed benchmark shown in Fig. 2(a).

For this example, we build the sketches using knowl-
edge of the planted community partitions. The proposed
algorithm has no such knowledge, and therefore must
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build the sketches based on estimates of the true com-
munities. We will present an actual sketch produced by
the proposed algorithm in Sec. VIII D.

A. Inferring community membership of nodes

We show in this section how the sketch may be used
to infer community membership of any node i∈ V (t) in
network snapshot G(t). To this end, we calculate

si,v(t) =

∣∣{ (i, j) ∈ E(t) | j ∈ C ′v(t−1)
}∣∣

|C ′v(t−1)|
(8)

to evaluate the connectivity of node i to each sketch com-
munity v. Let u be the true community assignment of
node i. Since

E [si,v(t)] =

{
pin, v = u,

pout, v 6= u,
(9)

it follows that si,v(t) provides a point estimate of the
probability that there is an edge between node i and any
node j ∈ C ′v(t−1). Node i can then be assigned to the
community u′ with which connectivity is greatest, i.e.,
where

u′ = arg max
1≤v≤q(t)

si,v(t). (10)

The proposed algorithm uses (10) to assign communities
to new nodes joining the network, as well as to identify
nodes which have changed community membership.

We finish this section by noting that the variance in
si,v(t) is

Var (si,v(t)) =

{
pin(1−pin)
|C′

v(t−1)| , v = u,
pout(1−pout)
|C′

v(t−1)| , v 6= u.
(11)

The variance grows as the sketch communities shrink,
thus motivating the use of equal-sized communities in
the sketch.

B. Detecting the split event

Suppose that community u is undergoing a split into
two separate communities u and u′. To detect the
emerging clusters we can use the spectrum of the non-
backtracking matrix as described in [23]. Let Gu be
the sub-graph of G(t) induced by the latest estimate
Cu(t−1), and A be the adjacency matrix of Gu. Given
diagonal matrix D containing the degrees of nodes in A,
and identity matrix 1, define

B′ =

(
0 D−1
−1 A

)
. (12)

Suppose the emerging communities are each of size n,
and define λ1, λ2 as the largest and second largest eigen-
values of B′, respectively. If

n (pin − pu,u′(t))
2
> pin + pu,u′(t), (13)

then in the limit as n→∞ with npin and npu,u′(t) con-
stant, λ1→ n (pin + pu,u′(t)) and λ2→ n (pin − pu,u′(t))
such that [23]

λ2 >
√
λ1. (14)

Although condition (14) is only valid in the limit of
infinite sized graphs, it can still serve as a reliable split
indicator for a given sequence of network realizations.
We show an example of this in Fig. 3. The planted
partitions are shown in Fig. 3(a), and the dashed blue
line in Fig. 3(b) shows the corresponding gap λ2−

√
λ1

for each time step. The value of this gap increases as
the process moves in either direction away from the fully
merged state at t=50, and towards the fully split states
at t ∈ {0, τ}. Decision threshold (14) is shown as a hor-
izontal dotted line. As can be seen, the split is detected
fairly close to the full graph detectability limit.

Rather than calculating the eigenvalues for the full net-
work (at great computational cost), we propose to in-
stead detect the split using the sketch. We apply the
same procedure as described above, but instead substi-
tute Cu(t−1) with C ′u(t−1). The estimate based on the
sketch is shown in Fig. 3(b) as a solid orange line. Note
that the time of detection in the sketch diverges from that
in the full graph as the community sizes in the sketch de-
crease. We analyze this dependence on sketch size in
Sec. VII.

C. Detecting the merge event

Suppose that communities u, u′ are merging. To detect
the merge event, we exploit the fact that the two commu-
nities are already known at time t−1. This means that
we can estimate pin and pu,u′(t) and use these estimates
to directly check condition (1) to detect a merge event.
The sketch allows us to quickly calculate point estimates
of the edge probabilities using the expressions

p̂in =
2
∑q(t)
v=1

∣∣{ (i, j) ∈ E(t) | j ∈ C ′v(t−1)
}∣∣∑q(t)

v=1 |C ′v(t−1)| (|C ′v(t−1)| − 1)
,

(15)

p̂u,u′(t) =

∣∣{ (i, j)∈E(t) | i∈C ′u(t−1), j ∈ C ′u′(t−1)
}∣∣

|C ′u(t−1)| |C ′u′(t−1)|
.

(16)

Figure 3(c) shows the actual (dashed blue line) and es-
timated (solid orange line) values of pin for the example
in Fig. 3(a). The actual (dashed purple line) and esti-
mated (solid green line) values of pu,u′(t) are also shown
in the sample plot. In both cases, the estimates track the
actual values well.
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FIG. 3. (a) Planted partitions of the merge-split bench-
mark. For reference, the detectability limits that formally de-
fine the split in the benchmark is shown as a vertical dashed
and dotted lines. Network parameters are q̂=2, n=200, pin =
0.5, pout = 0.05. (b) Actual and estimated values of λ2−

√
λ1

at each time step. When the gap is greater than the decision
threshold (horizontal dashed red line), the community is con-
sidered split. The sketch is constructed using n′ = 50 nodes
sampled uniformly at random from each of the two commu-
nities at each time step. (c) Actual and estimated values of
pin, p̂u,u′ at each time step.

D. Detecting the birth event

Consider a node i ∈ V +(t), which is joining the net-
work. If the node joins an existing community u, then
E [si,u(t)] = pin, and we can detect this occurrence by
checking if si,u(t) ≥ p̂in − 3σ̂, where p̂in is the estimate

from (15), and σ̂ =
√
p̂in(1− p̂in)/n′ is an estimate of

the standard deviation of si,u(t). On the other hand, if
i ∈ Vbirth(t), then the expectation E [si,v(t)] will equal
pout for any existing community v. This suggests that
we can identify the set of nodes that are joining newborn
communities using the expression

V̂birth(t)=
{
i ∈ V +(t) | si,v(t) < p̂in − 3σ̂,

∀v ∈ {1, . . . , q(t)}} . (17)

VI. PROPOSED ALGORITHM

We first discuss preliminaries. The proposed algorithm
invokes a function Static-Cluster(G), which performs
clustering of a static graph G to produce community es-
timates C = {C1, . . . , Cq̂}. We implement this function
using spectral techniques based on the non-backtracking
matrix [23], along with enhancements to provide more
robust estimation of the number of communities (details
of the function are given in Appendix A). The computa-
tional cost of this function is dominated by the eigende-
composition, which is cubic in the size of graph G. We
now summarize the main steps of the proposed algorithm.
We provide an assessment of the computational complex-
ity for each step, and comment on the overall complexity
at the end. A detailed algorithm listing is provided in
Appendix B.

Main-Algorithm
Input: Initial sketch size N ′. Sketch community size n′.
Graph snapshots G(t), t = 0, 1, . . .

(1) Cluster initial snapshot. Build sketch G′ by
sampling N ′ nodes from G(0) uniformly at random.
Invoke Static-Cluster(G′) to obtain community
estimates C′ for the sketch. Use (10) to infer the
community memberships C(0) of all nodes in G(0)
based on community estimates C′.
Complexity: By executing Static-Cluster solely
on the sketch, we reduce the running time of this ex-
pensive step to only O

(
N ′3+N ′ |V (0)|

)
. The first

term corresponds to clustering of the sketch, and
the second term corresponds to inference on the
full graph.

(2) For each snapshot G(t), t = 1, 2, . . . do
(3) Update sketch. Update the sketch to include

n′ nodes sampled uniformly at random from
each community.

(4) Birth detection. Identify newborn commu-

nities by calculating V̂birth as in (17). Since
there may be more than one community born
at the same time, we cluster the graph induced
by V̂birth using Static-Cluster. To keep run-
ning time low, we use the same sketch-based
approach as in Step 1.

Complexity: The clustering of the nodes
in V̂birth incurs the dominant cost. We
use a sketch consisting of n′ nodes from
V̂birth, and so the clustering will take time
O
(
q(t)3n′3+q(t)n′ |V (t)|

)
(5) Infer community membership of new and

moved nodes. Use the estimator (10) to in-
fer community membership of each node i ∈
V (t) \ V̂birth. Note that this set includes exist-
ing nodes, which may have changed community
membership, as well as new nodes V +(t) which
are joining existing communities.

Complexity: Calculation of the similarity met-
ric si,u(t) for a single community u and single
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node i takes time O (n′). Therefore, this step is
O (q(t)n′ |V (t)|) in total.

(6) Split detection. For each community u, build
graph G′(t) induced by C ′u(t). From this in-
duced graph, build B′ as defined in (12). Cal-
culate the eigenvalues λ1, λ2 of B′. If λ2>

√
λ1,

then a split event is declared. In this case, in-
voke Static-Cluster(G′) to identify the emerg-
ing communities in the sketch, and then use (10)
to identify nodes in the full graph belonging to
these emerging communities.

Complexity: In the worst case, for each sketch
community we must perform an eigendecompo-
sition, estimate the partitions, and infer com-
munity membership in the full graph. Thus,
this step is O

(
q(t)n′(n′2 + |V (t)|)

)
in total.

(7) Merge detection. For each pair of communi-
ties u, u′, consider the communities merged if

p̂in − p̂u,u′ < d

√
2 (p̂in + p̂u,u′)

|Cu|+ |Cu′ |
, (18)

where we use estimates of the intracommunity
edge density p̂in, and the intercommunity edge
density p̂u,u′ . Condition (18) is similar to (1),
except with an additional scaling parameter d
in the right hand side. If d=1 then a shrinking
density gap p̂in − p̂u,u′ causes erratic behavior
during node inference, resulting in nodes incor-
rectly being moved between the pair of merging
communities. This in turn corrupts the esti-
mates p̂in, p̂u,u′ . We set d = 2 to trigger the
merge earlier and avoid this issue.

Complexity: Constructing the estimates takes
O
(
n′2
)

time, whereas checking the merge con-

dition for all pairs takes O
(
q(t)2

)
time.

(8) Build estimate C(t) using results of
Steps 4-7.

Output: Partitions C(t), t = 0, 1, . . .

Suppose that q and N are the maximum number of
communities and nodes, respectively, in any given snap-
shot. We furthermore assume that N ′ is at most qn′.
Then, the computational complexity for estimating a sin-
gle partition C(t) at time t≥0 is O

(
qn′(q2n′2+N)

)
. For

the first iteration, this is the time required for executing
step 1, whereas for each subsequent iteration, this is the
total time required to execute steps 3-8. Contrast this

with clustering the full snapshot graph, which is O
(
N

3
)

for each iteration. If q�N and we use a small sketch,
this results in an order-wise improvement in complexity.

VII. ANALYSIS

In this section, we provide performance guarantees for
the proposed algorithm, as well as guidelines for setting

sketch size. To simplify analysis we take the sketch to be
balanced at all time steps, i.e., |C ′u(t)|=n′ for each com-
munity u and time t. Furthermore, we suppose that the
sketch at the previous time step has been correctly clus-

tered, i.e., C(t−1) = Ĉ(t−1). Unless otherwise specified,
it is assumed that pu,u′(t) = pout for any two communi-
ties u and u′. The average degree of such a snapshot
with q̂ communities is c = n′(pin + q̂ pout). The following
approximation is made to provide clearer results.

Assumption 1. Each of si,u(t), p̂in, and p̂u,u′ is well
approximated by a normal random variable having the
same mean and variance.

This assumption follows from the fact that the listed
variables are driven by binomial random variables. The
underlying distributions of these random variables will
generally have enough symmetry to be well approximated
by normal distributions [24]. More details are provided
in Appendix C.

We now provide definitions used in this section. De-
note by Φ−1(·) the inverse cumulative distribution func-
tion of the standard normal distribution. Specifically,
given a standard normal random variable Z and prob-
ability α, we have P

(
Z ≤ Φ−1(α)

)
= α. Consider a

graph with N nodes and q̂ equal-sized communities Ĉ ={
Ĉv | v ∈ {1, . . . , q̂}

}
. The agreement with an estimated

community partition C =
{
Cv | v ∈ {1, . . . , q̂}

}
is de-

fined as [25]

A
(
Ĉ, C

)
=

1

N
max
π

q̂∑
v=1

∣∣∣Ĉv ∩ Cπ(v)

∣∣∣ , (19)

where π ranges over the permutations on q̂ elements (this
permutation is necessary since the community indices
may be ordered arbitrarily). Exact recovery is solved
by an algorithm if it produces community estimates such

that P
(
A
(
Ĉ, C

)
= 1
)
→ 1 as N → ∞. In this section,

we use 20 trials for each experiment. Detailed derivations
for the results in this section are deferred to Appendix C.

A. Estimating communities in the initial sketch

This section provides guidelines for choosing initial
sketch size. For simplicity, we consider the symmetric
case in which every community has n nodes. Suppose
that an initial sketch has been constructed by sampling

N ′ nodes from G(0). If a = pinN
′

ln(N ′) and b = poutN
′

ln(N ′) are

held constant, then exact recovery of the planted parti-
tion is efficiently solvable in the initial sketch provided
(
√
a−
√
b)2>q̂(0) [25]. Although this bound is only exact

in the limit, it can still be used to estimate values of N ′

for which agreement will remain high. Specifically, for
fixed N ′, pin, pout, this bound becomes

N ′

ln(N ′)
> q̂(0)(

√
pin −

√
pout)

−2. (20)
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FIG. 4. Plot of agreement for community estimates produced
by Static-Cluster(G′), where sketch graph G′ is produced
by randomly sampling N ′ nodes from the full graph. The
edge densities are determined from average degree c and ratio
x = pin/pout. Plots are shown for (a) varying c with x = 5
and (b) varying x with c = 200.

Either a small density gap pin−pout or a large number
of communities q̂(0) can make the initial estimate unre-
liable. These issues can be mitigated by increasing the
sketch size.

We demonstrate the efficacy of (20) in Fig. 4. We
produce a sketch from a graph with two communities of
size n=2500, and plot agreement between the estimated
and planted communities. The blue line indicates the
boundary of (20). Indeed, the agreement remains high
(exceeding 0.998) whenever this condition holds.

We note that if the initial snapshot is imbalanced, i.e.,
with communities of different size, the SPIN (SamPling
Inversely proportional to Node degree) sampling method
[5] may be used in place of uniform random sampling.
This method can improve the success rate by sampling
more uniformly across communities.

B. Birth detection

Suppose that one or more new communities are born
at time t, and take a node i ∈ Vbirth which belongs to

one of these communities. Let σp̂in =
√

2pin(1−pin)
q̂n′(n′−1) be the

standard deviation of estimator p̂in. Then, the proba-
bility that node i is correctly identified as belonging to
Vbirth is at least α if

n′ ≥

(
Φ−1(1−β)

√
pout(1− pout) + 3

√
p+(1− p−)

p− − pout

)2

(21)

where β = (1− α) / (2(q̂ − 1)) and

p± = pin ± Φ−1

(
1− β

2

)
σp̂in . (22a)

Note that the sufficient number of samples in (21) is inde-
pendent of community size in the full graph. This allows

0 200 400 600
c
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200

300

400

500

n'

P(su
ccess)

0.99

1

(b)(a)

10 20 30
x

FIG. 5. Empirical estimate of the probability of successfully
detecting a node joining a new community. The edge densities
are determined from average degree c and ratio x = pin/pout.
Plots are shown for (a) varying average degree c with x = 5
and (b) varying x with c = 200.

for the detection of new communities even when they are
of a very small size. This advantage is illustrated further
in the numerical results of Sec. VIII B.

Fig. 5 shows results in which a new community with
500 nodes joins a graph containing two existing commu-
nities of size n = 2500. The plots indicate the fraction
of nodes in Vbirth which are correctly identified as be-
longing to the newborn community. The red line shows
the boundary of condition (21) with α=0.99, and shows
excellent agreement with the numerical results.

As the density gap pin−pout shrinks, a larger sketch
will be required to reliably detect which nodes belong
to newborn communities. In fact, as n′ →∞, we have
σp̂in→ 0 such that p± → p̂in, and the right side of (21)
converges to(

Φ−1(1−β)
√
pout(1−pout) + 3

√
pin(1−pin)

pin−pout

)2

. (23)

In this regime, the denominator depends solely on the
square of the density gap.

C. Inferring community membership

We next consider the required sketch size to success-
fully infer community membership of individual nodes
using (10). Define m′u→u′ = |Vu→u′(t) ∩ S(t−1)|, i.e.,
the number of nodes in the sketch that are moving from
u to u′. The analysis here will use the following simplifi-
cation.

Assumption 2. In place of random variable m′u→u′ , we

use its expected value E [m′u→u′ ] = n′ |Vu→u′ | /Ĉu(t−1).

We denote the minimum community size in a given snap-

shot by nmin = min1≤v≤q̂(t)

∣∣∣Ĉv(t)∣∣∣.
Suppose that at most m nodes move between any two

pairs of communities, i.e., |Vv→w(t)| ≤ m for 1 ≤ v, w ≤
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FIG. 6. Plots show empirical estimate of success probability
of (10) over 105 trials. Sketch graph G′ is produced by ran-
domly sampling N ′ nodes from a network with the same pa-
rameters as in Fig. 4. Let m′1→2 = m′2→1 = m′, i.e., m′ nodes
move from one community to the other at each time step, and
pin = 5pout. (a) Varying average degree c with m′ = 0. (b)
Varying m′ with c = 300.

q̂(t). Then, (10) correctly identifies the community of a
given node i /∈ S(t) with probability ≥ α provided that

n′ ≥ x

Φ−1
(

1− 1−α
q̂(t)−1

)
µ

2

(24)

where

µ =(pin − pout)

(
1− m q̂

nmin

)
, (25)

x =pin(1− pin) + pout(1− pout) (26)

+m
pin(1− pin)− pout(1− pout)

nmin
. (27)

Variable µ serves as a lower bound on the expected value
of si,u(t)−si,v(t) for v 6= u, whereas x

n′ serves as an upper
bound on the standard deviation. Both a small density
gap pin−pout and a large number of moving nodes m
can make inference less reliable. In these situations, an
increased sketch size will be required to keep the proba-
bility of misclassification low.

Fig. 6 shows the inference success rate of (10) for a
network containing two communities of size n = 2500.
In Fig. 6(a), m = 0 (no nodes move between communi-
ties), whereas Fig. 6(b) varies m. The red lines indicate
the boundary of (24) with α = 0.99, and show excellent
agreement with the numerical results. As m → 0, this
boundary converges to[

Φ−1

(
α

r − 1

)]2(
pin(1− pin) + pout(1− pout)

(pin − pout)2

)
, (28)

which is independent of community size in the full graph.
This advantage will be illustrated further in the numeri-
cal results of Sec. VIII B. In this case, the primary driver
of performance becomes the density gap pin − pout.
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FIG. 7. Detected number of communities for a pair of
communities undergoing the merge-split process. Detection
is based on (a) split condition (14) and (b) merge condition
(18).

D. Split detection

Consider a network with a single community undergo-
ing a split into two equal-sized communities u and u′. An
important consideration is the smallest value of pu,u′ at
which the communities will be considered split accord-
ing to (14). Using a similar argument as for the initial
sketch, in practice we may use the exact recovery limit
to approximate this lower bound. Likewise, we can use
the asymptotic detectability threshold as an approximate
upper bound. Following this line of reasoning, it is likely
that the split will be detected for some pu,u′ bounded
according to

pin +
1

2n′
−
√

2pin

n′
+

1

4n′2

> pu,u′ >

(
√
pin −

√
ln(2n′)

n′

)2

. (29)

Increased sketch size will tend to allow earlier detection
of the split, i.e., for smaller values of pin − pu,u′ .

Fig. 7(a) shows a plot of the estimated number of com-
munities from (14) for a sketch with two communities
containing n′ nodes each (the detected number of com-
munities is 2 if the condition holds, and 1 otherwise).
Along the horizontal axis, we vary pu,u′ within [0, pin],
where pin =0.5. The blue and green lines show the lower
and upper bounds in (29), respectively. The split is in-
deed detected for a value of pu,u′ within these bounds.

E. Merge detection

Finally, suppose that two equal-sized communities u, u′

are merging into one community. We consider the value
of pu,u′ at which condition (18) detects a merge. This
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condition will hold with probability ≥ α if

pu,u′ ≥ pin+Φ−1

(
1− 1−α

2

)
σm+

d2

2n
− d
√

2pin

n
+
d2

n2
,

(30)

where we use the the standard deviation of p̂in ± p̂u,u′ ,

σm =

√
2pin(1− pin)

q̂(t)n′(n′ − 1)
+
pu,u′(1− pu,u′)

(n′)2
. (31)

However, it is also important to consider when (18) reli-
ably identifies the communities as being split. This oc-
curs with probability ≥ α if

pu,u′ ≤ pin−Φ−1

(
1− 1−α

2

)
σm+

d2

2n
− d
√

2pin

n
+
d2

n2
.

(32)

To illustrate the significance of bounds (30) and (32),
Fig. 7(b) shows the detected number of communities for
a pair of communities with n = 2500 nodes each (the
detected number of communities is 1 if (18) holds, and
2 otherwise). The red line indicates the boundary of
(30), and the yellow line indicates the boundary of (32),
for α = 0.9. When pu,u′ falls in the gap between these
bounds, the detection tends to be unreliable. However,
the size of this gap can be reduced by using larger sketch
sizes to drive down the standard deviation σm.

VIII. NUMERICAL RESULTS

We compare against four algorithms from the litera-
ture, each of which uses a different means for carrying for-
ward information from one snapshot to the next. First,
we use the classic Bayesian approach found in Yang et
al. [17]. Second, we run the algorithm of Dinh et al.
[14]. This algorithm uses a sketch-like concept by consol-
idating known communities into “supernodes” within a
weighted graph. These supernodes are then incorporated
into the next snapshot. Third, we use ESPRA (Evolu-
tionary clustering based on Structural Perturbation and
Resource Allocation similarity), which is based on struc-
tural perturbation theory [26]. This algorithm defines an
objective function which explicitly balances two similar-
ities: one which encourages temporal smoothness across
snapshots, and one that takes into account only the com-
munity structure in the latest snapshot. Lastly, we in-
dependently cluster each snapshot as described in such
works as [13, 27]. This algorithm, referred to here as
(Independent), estimates the communities in the current
snapshot using Static-Cluster, and then matches the
estimates in adjacent snapshots using the Jaccard sim-
ilarity coefficient [28]. Although Static-Cluster per-
forms optimally in certain regimes, the main weakness of
(Independent) is that it completely ignores information

from the previous snapshot when clustering the current
snapshot.

Further details regarding these algorithms are provided
in Appendix D. Unless otherwise specified, all plots show
an average over 20 independent runs. We set the initial
sketch size to N ′ = q̂(0)n′.

A. Performance with small clusters

We first consider the performance of the proposed al-
gorithm in the presence of small communities. We use
normalized agreement to compare the planted communi-

ties Ĉ =
{
Ĉv | v ∈ {1, . . . , q̂}

}
and estimated communi-

ties C =
{
Cv | v ∈ {1, . . . , q̂}

}
. Sets Ĉ and C are padded

with empty communities such that |Ĉ|= |C|. Then, nor-
malized agreement is defined as [25]

Ã =
1

q̂
max
π

q̂∑
v=1

|Ĉv|>0

∣∣∣Ĉv ∩ Cπ(v)

∣∣∣∣∣∣Ĉv∣∣∣ , (33)

where π ranges over the permutations on q̂ elements. The
normalized agreement for the snapshot at time t is de-
noted Ã(t). Unlike the agreement metric defined earlier
in (19), normalized agreement proves useful for quanti-
fying performance in the presence of small clusters, since
each community constitutes a fraction 1

q̂(t) of the normal-

ized agreement, regardless of community size.
For summarizing the overall deviation in the actual

and estimate communities for a snapshot sequence, we
use the average-squared error

EÃ =
1

T

T∑
t=1

[
1− Ã(t)

]2
, (34)

where T is the total number of snapshots.

1. Grow-shrink benchmark

We use two concurrent instances of the grow-shrink
benchmark with phase φ = 0 for the first instance, and
φ= τ/2 for the second instance. Figure 8 shows planted
partitions for an example with f=0.95. The community
detection results are shown for all algorithms in Fig. 9(a),
where the value of EÃ is plotted as a function of f . The
proposed algorithm has EÃ < 0.02 for all values of f ,
whereas the other algorithms exhibit significantly larger
values of EÃ especially for larger f .

To gain further insight into the behavior of the algo-
rithms, we plot a heat map of Ã(t) for each algorithm in
Fig. 9(b)-(f), with f varied along the vertical axis and
time t along the horizontal. Increasing values of f result
in smaller communities at times t = τ/4 and t = 3τ/4
when the graph is most imbalanced. It is exactly around
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FIG. 8. Planted partitions for a double-stacked version of
the grow-shrink benchmark, with n=250, f=0.95, q̂=4, pin =
0.4, pout =0.1.

these times that the algorithms tend to perform worst.
(Independent) often loses track of the small clusters at
t=τ/4 and t=3τ/4, resulting in a merge of communities
and a sharp drop in agreement. The algorithm is not
capable of detecting splits, and so does not recover.

2. Birth-death benchmark

We now present analogous examples for the birth-
death benchmark. One means for producing small clus-
ters is by using small values of γ, such that each commu-
nity is small immediately after birth and before death.
An example is shown in Fig. 10(a), with γ = 0.1. We
execute the algorithms and show the estimated number
of communities for each snapshot in Fig. 10(b). The al-
gorithm of [14] tends to absorb small communities into
the larger communities, as exhibited by the drop in es-
timated number of communities after birth and before
death. Meanwhile, the proposed algorithm provides a
near-perfect estimate. We expand on this example by
plotting EÃ as a function of γ in Fig. 10(c). The pro-
posed algorithm has EÃ < 0.003 for all values of γ. We
omit (Independent), Yang et al. [17], and ESPRA as they
cannot handle graphs of changing size, nor new commu-
nities.

B. Scalability

To demonstrate the scalability of the proposed algo-
rithm, let us consider the minimum community size over
all snapshots

nmin = min
1≤t≤T

min
1≤v≤q̂(t)

∣∣∣Ĉv(t)∣∣∣ . (35)

We run the grow-shrink benchmark using the same pa-
rameters as in Sec. VIII A 1, except with f=1− n

nmin
such

that the minimum cluster sizes are fixed at nmin = 200.
Table I shows the value of EÃ as a function of n, averaged
over five trials. There is a small increase in EÃ as n in-
creases, due to a corresponding increase in the number of
moving nodes (as described in Sec. VII C). Nonetheless,

TABLE I. Scalability of proposed algorithm.

Benchmark n EÃ

Runtime
(normalized)

Grow-Shrink
(nmin = 200)

250 3.0×10−7 1
1000 7.2×10−7 1.2
2000 4.6×10−6 2.2
3000 5.5×10−5 3.7

Birth-Death
(nmin = 20)

250 1.6×10−5 1
1000 2.4×10−5 1.2
2000 2.6×10−7 1.6
3000 2.6×10−7 1.7

EÃ remains below 5.5×10−5 despite a dramatic increase
in imbalance of the full graph, and despite the fact that
the sketch size remains fixed.

Likewise, we run the birth-death benchmark with the
parameters of Sec. VIII A 2, but with γ = 2nmin/n such
that nmin = 20 regardless of graph size. The smallest
community size is attained immediately before death and
after birth. The results are shown in Table I. Unlike
the results for the grow-shrink benchmark, there is no
increase in EÃ. This is consistent with the analysis in
Sec. VII B, which showed no dependence on community
size in the full graph.

For both benchmarks, Table I shows only a sub-linear
increase in runtime as community size n increases, owing
to the fixed sketch size. To expand on this result, we
run all of the algorithms on the grow-shrink benchmark,
and show the results as a function of n in Fig. 11. As
expected, the proposed algorithm finishes very fast, in
under two seconds for all cases. On the other hand, al-
gorithms [17], ESPRA, and (Independent) all cluster the
full graph, and therefore scale super-linearly with net-
work size. Although [14] clusters a graph of reduced size
at each time step, nodes having changed edges are left
as singleton nodes. In this example, the large number
of edge changes forces a correspondingly large number
of nodes to remain singletons, thus requiring the static
clustering step to operate on large networks.

C. Merge-split detection

We next execute the algorithms on the merge-split
benchmark, with two concurrent instances as shown in
Fig. 12(a). The plot in Fig. 12(b) shows the estimated
number of communities as a function of time for the pro-
posed algorithm, as well as for [14] and ESPRA. We
omit (Independent) and [17] as they cannot handle the
merge and split processes. Although the benchmark
groundtruth undergoes an instantaneous transition be-
tween merged and split states, the network itself gradu-
ally interpolates between these states. This discrepancy
in timescales, along with the fact that the benchmark
sets the transition at the theoretical detectability limit,
means we cannot expect the estimated partitions to ex-
actly match the planted partitions. Indeed, all three al-
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FIG. 9. Results for varying f in the grow-shrink example in Fig. 8. For the proposed algorithm we set n′= 50. Plot of EÃ

is shown in (a). Panels (b) through (f) show ensemble averages of Ã(t) as a function of time along the horizontal axis, and f
along the vertical axis for each algorithm.

gorithms overestimate the span of time during which the
communities are merged.

The estimates of the proposed algorithm are shown in
Fig. 12(c), where we can see that nodes start being mis-
classified at t=13. This is expected due to the shrinking
gap between pin and the intercommunity edge densities,
as described in Sec. VI. Nonetheless, the proposed algo-
rithm detects the merge much closer to the benchmark’s
merge time than the other two algorithms. We note that
using larger values of d in condition (18) will result in an
earlier detection of the merge. In this way, d can act as
a tuning parameter to adjust the sensitivity of the merge
detection.

For studying the performance of the algorithms’ split
detection, we show the exact recovery limit for the sketch
as a vertical white dashed line in Fig. 12(a). The pro-
posed algorithm detects the split close to this limit, al-
though we point out that the detection could be shifted
earlier by increasing the sketch size. Despite clustering
the full network, for which estimation should be easier,
ESPRA does not exceed the performance of the proposed
algorithm, and [14] fares even worst.

D. Mixed benchmark

So far, our results have considered individual bench-
marks in isolation. We now run the proposed algo-
rithm on the mixed benchmark from Fig. 2(a), which has
concurrent birth-death, grow-shrink and merge-split pro-
cesses. The partition estimates are shown in Fig. 13(a).

Most of the mismatch occurs in the merge-split commu-
nities, which is consistent with our earlier results.

The sketches produced by the proposed algorithm are
shown in Fig. 13(b). The sketch nodes are sorted ver-
tically according to their planted communities, with the
color indicating the estimated community of the corre-
sponding node. The only deviation from the ideal sketch
in Fig. 2(b) lies inside the merge-split communities, due
to the errors present in the estimates of the full graph.

The estimated partitions for [14] are presented in
Fig. 13(c). As with the earlier results, [14] encounters
difficulties in correctly identifying the small clusters in
the grow-shrink and birth-death communities.

IX. CONCLUSION

This paper concerned a sketch-based approach for com-
munity detection in time-evolving networks. We pre-
sented an SBM-based model along with possible evolu-
tionary processes which may occur within this model. We
then proposed sketch-based techniques for tracking these
processes, as well as an algorithm incorporating these
techniques to produce community estimates for concur-
rent processes. We provided an analysis to guide the
choice of sketch size, and generated numerical results
comparing the proposed algorithm to full-scale commu-
nity detection algorithms.

We conclude by briefly noting possible extensions.
First, an arbitrary community detection algorithm may
be used in place of Static-Cluster, provided that it can
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FIG. 10. (a) Planted partitions for a double-stacked version
of the birth-death benchmark, with γ = 0.1. For the first
instance, we use phase shift φ = 0, whereas for the second
instance we use φ = τ/2. Both instances have parameters
q̂ = 4, pin = 0.5, pout = 0.05. We set n′ = 50, which leads to
a maximum sketch size of 200 nodes. (b) Ensemble average
of number of communities estimated by algorithm plot as a
function of time. (c) Squared error of normalized agreement
EÃ is shown for varying γ.

estimate the number of communities. Second, a straight-
forward extension to the network model and algorithm
would allow the intracommunity edge density pin to vary
for each community. Third, our approach is extendable
to other graph models as well, for example the Degree
Corrected SBM (DCSBM) [29]. This can be accom-
plished by substituting a suitable sampling technique
for constructing DCSBM sketches (e.g., the sampling
method of [30]), a similarity definition between nodes in
the full network and the sketch communities, and an ap-
propriate technique for determining when clusters split
or merge.
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FIG. 11. Timing results for the grow-shrink benchmark
with q̂ = 2, pin = 0.5, pout = 0.05, f = 0.5. For the proposed
algorithm we set n′ = 100, leading to a total sketch size of
200 nodes. Due to the large runtimes in the four algorithms
we compare against, only ten iterations of the algorithms are
performed, and time is averaged over five trials. Note that
logarithmic scales are used for both axes. All algorithms had
perfect community estimates for all network sizes, except for
ESPRA which still had less than 1% misclassified nodes per
snapshot.

ing Center provided computational resources that con-
tributed to results reported herein.

Appendix A: Static clustering

We use the following algorithm to perform static clus-
tering of graph G with N nodes.

Static-Cluster(G)
(1) Construct B′ from G using (12).
(2) Calculate eigenvalues λ1, λ2, . . . , λN and corre-

sponding eigenvectors of B′.
(3) Calculate q as the maximum value of i such that

λi >
√
λ1.

(4) For i = 1 . . . q do
(5) Build matrix M from the i normalized eigen-

vectors of B′ corresponding to eigenvalues
λ1, . . . , λi. Apply k-means clustering to
M to obtain community estimates Ci ={
Cv | v ∈ {1, . . . , i}

}
We repeat 100 iterations

with three random initializations and take the
best result.

(6) Calculate modularity Qi of G with partition Ci.
Modularity is defined as in [31, Section IV].

(7) j ← arg max1≤i≤q Qi
(8) Return estimate Cj .

Steps 1-3 estimate the number of communities q, and
are as described in [23]. We find that adding Steps 4-7
provides a more reliable estimate of the number of com-
munities. These steps repeat k-means clustering, varying
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FIG. 12. (a) Planted partitions for a double-stacked version
of the merge-split benchmark. The parameters of the model
are q̂=4, n=250, pin =0.5, pout =0.05. We set n′=50 for the
proposed algorithm. This results in a sketch size of 100 in the
merged state, and 200 in the split state. The exact recovery
limit for the sketch, based on (20), is shown as a dashed white
vertical line. (b) The estimated number of communities at
each time step for the proposed algorithms, as well for [14]
and ESPRA. (c) The estimated partitions for the proposed
algorithm.

the number of clusters up to q, and then return the par-
tition giving the highest modularity.

Fig. 14 compares the proposed function
Static-Cluster (solid lines), against the standard
approach (dashed lines). The standard approach only
uses k-means to identify q communities, rather than
executing Steps 4-7. The plot shows the fraction of
runs in which the estimated number of communities is
correct, out of 20 runs. As can be seen, the proposed
algorithm identifies the correct number of communities
for much smaller values of average degree c.

The additional steps do not increase the complexity of
the algorithm. In particular, the time for Steps 4-7 is
O(Nq̂3), where q̂ is the actual number of communities.
We assume that q̂ � n′, such that the eigendecomposi-
tion is still the dominant cost, making the computational
complexity of the algorithm O(N3).
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FIG. 13. Results for mixed benchmark with pin =0.5, pout =
0.05. Estimated partitions produced by the proposed algo-
rithm are shown for (a) the full network and (b) the sketches
produced by the proposed algorithm. The estimated parti-
tions produced by [14] are shown in (c).

Appendix B: Main algorithm: details

Two helper functions are needed. The first,
Sample(G,N ′), returns a set of N ′ nodes sampled uni-
formly at random from G. The second infers community
membership of nodes in the full graph G based on the
sketch community estimates C′, as described in Sec. V A.
This function is defined as follows.

Infer (G, C′)
(1) Cv ← ∅ for v ∈ {1, . . . , q}
(2) for each node i ∈ V do

(3) w ← arg maxv∈{1,...,q}

∣∣∣{ (i,j)∈E|j∈C′
v

}∣∣∣
|C′

v|
(4) Cw ← Cw ∪ {i}
(5) end for
(6) return partition C =

{
Cv | v = 1, . . . , q

}
We use the following definition: given a graph G =
(V,E) and node set V ′ ⊂ V , the subgraph of G in-
duced by V ′ is denoted G[V ′]. The complete definition
of Main-Algorithm follows.
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(1) G← G(0)
(2) S ′ ← Sample(G,N ′)
(3) C(0)← Infer (G,Static-Cluster(G[S ′]))
(4) Build sketch set S(0) by sampling n′ nodes uni-

formly at random from each community C ∈ C(0).
If n′> |C|, then include all nodes from C.

(5) r ← |C(0)|.
(6) for t = 1, 2, . . . do
(7) G← G(t)
(8) {C1, . . . , Cr}

← Infer
(
G
[
V (t) \ V̂birth

]
, C′(t−1)

)
(9) if V̂birth 6= ∅ then

(10) G← G
[
V̂birth

]
(11) S ← Sample(G,n′)
(12) {Cr+1, . . . , Cr+q}

← Infer
(
G,Static-Cluster(G

[
S
]
)
)

(13) r ← r + q
(14) end if
(15) for u ∈ {1, . . . , r}, where |Cu| > a do
(16) C ′ ← Cu ∩ S(t−1)
(17) G′ ← G[C ′]
(18) Let A be the adjacency matrix of G′. Calcu-

late the eigenvalues λ1, λ2 of B′ [defined in
(12)].

(19) Calculate q as the maximum value of i such
that λi >

√
λ1.

(20) if q > 1 then
(21) Gu ← G[Cu]
(22) C′u ← Static-Cluster(Gu[C ′u(t−1)])
(23) {Cu, Cr+1, . . . , Cr+q}

← Infer (Gu, C′u)
(24) r ← r + q
(25) end if
(26) end for
(27) for community pairs u, u′ ∈ {1, . . . , r} do
(28) if (18) holds then

(29) Cu ← Cu ∪ Cu′

(30) Cu′ ← ∅
(31) end if
(32) end for
(33) C(t)←

{
Cv | v = 1, . . . , r

}
(34) V − ← V (t−1) \ V (t)
(35) S(t)← S(t−1) \ V −
(36) Re-proportion sketch S(t) such that it contains

min{n′, |C|} nodes from each community C ∈
C(t).

(37) end for

Steps 1-3 cluster the first graph snapshot. This esti-
mate is used to construct a balanced sketch in step 4. The
remainder of the algorithm processes subsequent snap-
shots. Step 8 re-evaluates the community membership of
existing nodes, as well as new nodes joining existing com-
munities. Steps 9-14 partition the set of newborn commu-
nities. Meanwhile, Steps 15-26 handle splits within each
community. Only communities with size greater than a
are checked, as the spectral estimates become unreliable
for small communities. We set a=20. Steps 27-32 handle
merges among pairs of communities. Finally, steps 34-36
generate the new sketch.

Appendix C: Derivations for analysis in Sec. VII

In this section, we denote a binomial random variable
having n trials with probability of success p by Bin(n, p).
All of the binomial random variables found in this section
indicate the number of edges between nodes and/or com-
munities. Unless otherwise indicated, we assume that the
number of edges is sufficient such that np ≥ 10, and that
the network is sparse enough such that n(1 − p) ≥ 10.
This justifies the use of Assumption 1 [24]. We denote a
normal random variable with mean µ and variance σ2 by
N (µ, σ2).

1. Initial sketch

We comment here on the validity of the exact recov-
ery analysis. The SBM model used for analyzing exact
recovery in [25] does not have fixed community sizes, but
rather defines a probability distribution over communi-
ties. The membership of each node is then sampled from
this distribution. In fact, the initial sketch G′(0) adheres
to this model, since the probability that a given node in

the sketch belongs to community u is Ĉu

N ′ .

2. Inferring community membership

Let m′(u→·) =
∑
v 6=um

′
u→w be the total number of

sketch nodes moving out of community u, and m′(·→u) =
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u 6=um

′
v→u be the total number of sketch nodes moving

into community u. Then,

si,v(t) =
Svout + Svin

n′
(C1)

where

Svin ∼

{
Bin(n′ −m′(u→·), pin), v = u

Bin(m′v→u, pin), v 6= u
(C2a)

Svout ∼

{
Bin(m′(u→·), pout), v = u

Bin(n′ −m′v→u, pout), v 6= u
(C2b)

Since the random variables in (C2) are mutually indepen-
dent, it follows from Assumption 1 that si,u(t)−si,w(t) ∼
N (µ∆s, σ

2
∆s) for any v 6= u, where

µ∆s =
(pin − pout)(n

′ −m′(u→·) −m
′
v→u)

n′
,

σ2
∆s =

pin(1− pin) + pout(1− pout)

n′

−
[pin(1− pin)− pout(1− pout)] (m′(u→·) −m

′
v→u)

n′2
.

(C3)

We note that if there are few moving nodes or few edges
between communities, then Svin and Svout may not be well-
approximated by a normal random variable. Nonetheless,
in these cases the expected values of Svin and Svout are
small enough that they do not contribute significantly to
the bound regardless.

Let f ∼ N (µ, xn′ ). If (24) holds, then µ ≥
Φ−1

(
1− 1−α

q̂(t)−1

)√
x
n′ and hence P(f < 0)≤ 1−α

q̂(t)−1 . Fur-

thermore, from Assumption 2, we have µ∆s ≥ µ and
σ2

∆s ≤ x
n′ , and thus P(si,u(t) < si,w(t)) ≤ P(f < 0).

Then, by applying the union bound, the probability of
successfully inferring the community membership of node
i is

P

 q̂⋂
w=1
w 6=u

si,u(t) > si,w(t)

 = 1− P

 q̂⋃
v=1
v 6=u

si,u(t) < si,w(t)


≥ 1−

q̂∑
v=1
v 6=u

P (si,u(t) < si,w(t))

= α. (C4)

3. Split detection

Following a similar line of reasoning as in Sec. VII A,
exact recovery is efficiently solvable if

2n′

ln(2n′)
> 2(
√
pin −

√
pu,u′)−2 . (C5)

On the other hand, from (13), the split is asymptotically
detectable in the spectrum of B′ if

n′ (pin − pu,u′)
2
> pin + pu,u′ , (C6)

which is equivalent to

p2
u,u′ − pu,u′

(
2pin +

1

n′

)
+ pin

(
pin −

pin

n′

)
≥ 0. (C7)

The bounds in (29) follow directly by solving (C5) and
(C7) in terms of pu,u′ .

4. Merge detection

Define m̂ = q̂(t)n′(n′−1)/2 as the maximum possible
number of intracommunity edges at time t. Then,

p̂in =
P̂in

m̂
, (C8a)

p̂u,u′ =
P̂u,u′

(n′)2
(C8b)

where P̂in ∼ Bin(m̂, pin), and P̂u,u′ ∼ Bin((n′)2, pu,u′(t)).

Since P̂in and P̂u,u′ are independent, it follows from As-
sumption 1 that p̂in − p̂u,u′ ∼ N

(
µ−, σ2

m

)
and p̂in +

p̂u,u′ ∼ N
(
µ+, σ2

m

)
, where µ± = pin ± pu,u′ .

Let β′ = 1− 1−u
2 . If condition (30) holds, then

p2
u,u′ − pu,u′

(
2pin + 2Φ−1(β′)σm +

d2

n

)
+
(
pin + Φ−1(β′)σm

)2 − d2 pin − Φ−1(β′)σm
n

< 0,

(C9)

which in turn implies that

µ− + Φ−1(β′)σm < d

√
µ+ − Φ−1(β′)σm

n
. (C10)

Then, from (C10) and the union bound, the probability
that (18) will indicate a split state is

P

(
p̂in − p̂u,u′ < d

√
p̂in + p̂u,u′

n

)
≥ P

(
p̂in − p̂u,u′ < µ− + Φ−1(β′)σm⋂
d

√
p̂in + p̂u,u′

n
> d

√
µ− − Φ−1(β′)σm

n

)
≥ 1− P

(
p̂in − p̂u,u′ < µ− + Φ−1(β′)σm

)
− P

(
p̂in + p̂u,u′ > µ+ − Φ−1(β′)σm

)
= α (C11)

We can derive (32) using a similar argument.
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5. Detecting the birth event

From (C1) and (C8a) and under Assumption 1 with
no moving nodes,

si,v(t) ∼ N
(
pout,

pout(1− pout)

n′

)
, 1 ≤ v ≤ q̂(t) (C12)

p̂in ∼ N
(
pin,

pin(1− pin)

m̂

)
(C13)

Then P (p− ≤ p̂in ≤ p+) = 1− β, and therefore

P

(
p̂in − 3

√
p̂in(1− p̂in)

n′
< p− − 3

√
p+(1− p−)

n′

)
≤ 1− P

(
p− ≤ p̂in ≤ p+

)
= β. (C14)

Furthermore, for any community v,

P

(
si,v(t) ≥ pout + Φ−1(1− β)

√
pout(1− pout)

n′

)
= β.

(C15)

Condition (21) is equivalent to

pout + Φ−1(1− β)

√
pout(1− pout)

n′

≤ p− − 3

√
p+(1− p−)

n′
. (C16)

Then, the probability that the condition inside (17) will
fail for a particular v is

P (si,v(t) ≥ p̂in − 3σ̂)

= P

(
si,v(t) ≥ p̂in − 3

√
p̂in(1− p̂in)

n′

)

≤ P

(
si,v(t) ≥ pout + Φ−1(1− β)

√
pout(1− pout)

n′⋃
p̂in − 3

√
p̂in(1− p̂in)

n′
< p− − 3

√
p+(1− p−)

n′

)

≤ P

(
si,v(t) ≥ pout + Φ−1(1− β)

√
pout(1− pout)

n′

)

+ P

(
p̂in − 3

√
p̂in(1− p̂in)

n′
< p− − 3

√
p+(1− p−)

n′

)

= 2β. (C17)

Consequently, the probability that the condition will
hold for all communities is

P

 q̂⋂
v=1
v 6=u

si,v(t) + 3σ̂ < p̂in


= 1− P

 q̂⋃
v=1
v 6=u

si,v(t) + 3σ̂ ≥ p̂in


≥ 1−

q̂∑
v=1
v 6=u

P (si,v(t) + 3σ̂ ≥ p̂in)

= 1− 2 (q̂(t)− 1)β = α. (C18)

Appendix D: Numerical results: details of
algorithms used in comparison

For [17], we use the same tuning strategy as in the
experimental results section of [17]. Specifically, we use
the same temperature and iteration sequences, with α =
0.8, β = 0.5, γ = 1, µkk = 10. We run five instances of the
algorithm with (1) αkk = 1, βkl = 1, (2) αkk = 5, βkl = 1,
(3) αkk = 10, βkl = 1, (4) αkk = 102, βkl = 10, (5)
αkk = 104, βkl = 10, and then take the community as-
signments among the five trials yielding the highest av-
erage modularity (modularity is defined as in [17]). For
[14], we use the CNM algorithm [7] for the static cluster-
ing step, as in [14]. When running the ESPRA algorithm,
we use the same parameters as used in the experimental
results of [26]: α = 0.8, β = 0.5. The algorithm (In-
dependent) applies Static-Cluster to each snapshot to
obtain community estimates

{
C1, . . . , Cq

}
. To provide

continuity in the community assignments of the nodes,
community u in each snapshot at time t > 0 is matched
to the community at time t−1 having the largest overlap
according to the Jaccard coefficient. Specifically, for each
community u, we set the new estimate as Cu(t) = Cu′

where u′ = arg max1≤v≤q
|Cu∩Cv(t−1)|
|Cu∪Cv(t−1)| .
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