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Recent studies have explored finite-time dissipation-minimizing protocols for stochastic thermo-
dynamic systems driven arbitrarily far from equilibrium, when granted full external control to drive
the system. However, in both simulation and experimental contexts, systems often may only be
controlled with a limited set of degrees of freedom. Here, going beyond slow- and fast-driving ap-
proximations employed in previous studies, we obtain exact finite-time optimal protocols for this
unexplored limited-control setting. By working with deterministic Fokker-Planck probability den-
sity time evolution, we can frame the work-minimizing protocol problem in the standard form of
an optimal control theory problem. We demonstrate that finding the exact optimal protocol is
equivalent to solving a system of Hamiltonian partial differential equations, which in many cases
admit efficiently calculatable numerical solutions. Within this framework, we reproduce analytical
results for the optimal control of harmonic potentials, and numerically devise novel optimal proto-
cols for two anharmonic examples: varying the stiffness of a quartic potential, and linearly biasing a
double-well potential. We confirm that these optimal protocols outperform other protocols produced
through previous methods, in some cases by a substantial amount. We find that for the linearly
biased double-well problem, the mean position under the optimal protocol travels at a near-constant
velocity. Surprisingly, for a certain timescale and barrier height regime, the optimal protocol is also
non-monotonic in time.

I. INTRODUCTION

There has been much recent progress in the study
of non-equilibrium stochastic thermodynamics [1–3]. In
particular, optimal finite-time protocols have been de-
rived for a variety of systems, with applications to finite-
time free-energy difference estimation [4–6] engineering
optimal bit erasure [7, 8], and the design of optimal
nanoscale heat engines [9–11].

For finite-time dissipation-minimizing protocols, there
are two related optimization problems that are typically
studied: designing protocols that transition between two
specified distributions within finite time that minimize
entropy production [12–15], and designing protocols that
minimize the amount work needed to shift between two
different potential energy landscapes within finite time
[4, 16]. For the first problem, methods have been devised
to fully control probability density evolution arbitrarily
far from equilibrium [17–19], establishing deep ties with
optimal transport theory [12, 13, 20] and culminating
in the derivation of an absolute geometric lower bound
for finite-time entropy production in terms of the L2-
Wasserstein distance [13–15, 21]. Crucially, however, full
control over the potential energy is needed to satisfy ar-
bitrarily specified initial and terminal conditions for this
problem.

Here, we consider the second problem for the case in
which there is only limited, finite-dimensional control of
the potential. Only for the simplest case of a Brown-
ian particle in a harmonic potential has the fully non-
equilibrium optimal protocol been analytically solved and

studied [4, 12, 22, 23]. For arbitrary potentials, lim-
ited control optimal protocol approximations for the slow
near-equilibrium tf � 1 [16, 24–29] and the fast tf � 1
[30] regimes have been derived, but these approximations
generally are optimal only within the specified limits.
Very recently, gradient methods have been devised to cal-
culate fully non-equilibrium optimal protocols through
sampling many stochastic trajectories [31–33].

In this work, we show that optimal control theory is
a principled and powerful framework to derive exact op-
timal protocols for limited-control potentials arbitrarily
far from equilibrium. Optimal control theory (OCT),
having roots in Lagrange’s calculus of variations, is a
well-studied field of applied mathematics that deals with
finding controls of a dynamical system that optimize a
specified objective function, with numerous applications
to science and engineering [34, 35], including experimen-
tal physics [36]. By working directly with the probabil-
ity density undergoing deterministic Fokker-Planck dy-
namics (as opposed to individual stochastic trajectories),
and rewriting the objective function using the first law
of thermodynamics, we show that the problem of find-
ing optimal protocols can be recast in the standard OCT
problem form. We may then apply Pontryagin’s maxi-
mum principle, one of OCT’s foundational theorems, to
yield Hamiltonian partial differential equations whose so-
lutions directly give optimal protocols. We note that the
optimal control of fields and stochastic systems has been
previously studied within applied mathematics and en-
gineering literature [37–46], but to our knowledge it has
never been used to derive exact optimal work-minimizing
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protocols in stochastic thermodynamics.
An outline of this paper is as follows. First, we use

OCT to derive Hamiltonian partial differential equations
whose solutions give optimal protocols for the cases of
Markov jump processes over discrete states and Langevin
dynamics over continuous configuration space. We then
solve these equations analytically for harmonic potential
control to reproduce known optimal protocols. Finally,
we describe and use a computationally efficient algorithm
to numerically calculate optimal protocols for two an-
harmonic examples: controlling the stiffness of a quartic
trap, and linearly biasing a quartic double-well poten-
tial. We demonstrate the superiority in performance of
these optimal protocols compared to the protocols de-
rived through approximation methods. We discover that
for the linearly biased double-well problem, the mean po-
sition travels with near-constant velocity under the opti-
mal protocol, and that certain optimal protocols have a
remarkably counter-intuitive property — the control pa-
rameter is non-monotonic in time within a certain time
and barrier height parameter regime. Finally, we dis-
cuss our findings and the implications of our work for the
study of non-equilibrium stochastic thermodynamics.

II. DISCRETE STATE DERIVATION

We start by considering a continuous-time Markov
jump process with d discrete states. The experimenter
has control over the protocol parameter λ(t) that de-
termines the potential energies of the states, encoded
by the vector Uλ = (U1(λ), U2(λ), ..., Ud(λ)))T . Here
λ is single parameter, but in general it can be multi-
dimensional. Although an individual jump process tra-
jectory is stochastic, the time-varying probability dis-
tribution over states, represented by the vector ρ(t) =
(ρ1, ρ2, ..., ρd)T with

∑
i ρ
i = 1, has deterministic dynam-

ics governed by a master equation

ρ̇ = Lλρ, (1)

where Lλ is a transition rate matrix for which we impose
the following form (similar to [47])

[Lλ]ij =

{
cije

β(Uj(λ)−Ui(λ))/2 i 6= j

−
∑
k 6=j ckje

β(Uj(λ)−Uk(λ))/2 i = j.
(2)

Here β = 1/kBT is the inverse temperature, kB is
the Boltzmann constant, and cij = cji is the symmet-
ric non-negative connectivity strength between distinct
states i 6= j. Transition rate matrices have the property∑
i [Lλ]ij = 0, ensuring conservation of total probabil-

ity. In particular, this matrix Lλ satisfies the detailed-
balance condition [Lλ]ijρ

j
eq,λ = [Lλ]jiρ

i
eq,λ for all i and

j, where ρieq,λ ∝ e−βUi(λ) is the unique Boltzmann equi-
librium distribution for Uλ.

For time-varying λ(t) and ρ(t), the ensemble-averaged
energy is E(t) = UT

λ ρ and has time derivative

Ė = λ̇

[
dUλ
dλ

]T
ρ+UT

λ ρ̇. (3)

As is customary in stochastic thermodynamics, the first
term in the sum is interpreted as the rate of work applied
to the system Ẇ , and the second term the rate of heat
in from the heat bath Q̇ [48].

We would like to solve the following optimization prob-
lem: if at t = 0 we start at the equilibrium distribution
ρeq,i for potential energy Uλi

, what is the optimal finite-
time protocol λ(t) that terminates at λf at final time
t = tf , and minimizes the work

W [λ(t)] =

∫ tf

0

λ̇

〈
∂U

∂λ

〉
dt =

∫ tf

0

λ̇

[
dUλ
dλ

]T
ρ dt ? (4)

We emphasize that this time integral includes any discon-
tinuous jumps of λ that may occur at the beginning and
end of the protocol, which has been shown to be a com-
mon feature for finite-time optimal protocols [4, 5, 49].
Note that in general, ρ(tf ) 6= ρeq,f the equilibrium dis-
tribution corresponding to λf .

The first law of thermodynamics ∆E[λ(t)] = W [λ(t)]+
Q[λ(t)] allows us to write

W [λ(t)] = (UT
f ρ(tf )−UT

i ρ(0))−
∫ tf

0

UT
λ ρ̇ dt

= (Uf −Ui)Tρeq,i +

∫ tf

0

(Uf −Uλ)TLλρ dt.

(5)

Here, Ui = Uλi
, and Uf = Uλf

. In the second line, we

use ρ(tf ) = ρ(0) +
∫ tf
0
ρ̇ dt, and invoke (1). The first

term in the sum is protocol independent, so minimizing
W [λ(t)] is akin to minimizing the second term

J [λ(t)] =

∫ tf

0

(Uf −Uλ)TLλρ dt, (6)

which is now in the form of the fixed-time, free-endpoint
Lagrange problem in optimal control theory [34]. Com-
pared to a typical Euler-Lagrange calculus of variations
problem in classical physics [50, 51], here both the ini-
tial state ρ(t = 0) = ρeq,i and the time interval [0, tf ]
are specified, but notably, the final state ρ(t = tf ) is
unconstrained.

The standard OCT solution derivation begins by ex-
panding the integrand of (6) with Lagrange multipliers
π(t) = (π1, π2, ..., πd)

T

L = (Uf −Uλ)TLλρ+ πT (ρ̇− Lλρ), (7)
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so that the desired dynamics (1) are ensured. A solu-

tion [ρ∗(t),π∗(t), λ∗(t)] that minimizes
∫ tf
0
Ldt gives the

optimal protocol λ∗(t) that minimizes J [λ(t)].

A Legendre transform H = πT ρ̇ − L produces the
control-theoretic Hamiltonian

H(ρ,π, λ) = (π +Uλ −Uf )TLλρ, (8)

where π may now be interpreted as the conjugate
momentum to ρ. Pontryagin’s maximum principle
gives necessary conditions for an optimal solution
[ρ∗(t),π∗(t), λ∗(t)]: it must satisfy the canonical equa-
tions ρ̇i = ∂H/∂πi and π̇i = −∂H/∂ρi for i = 1, 2, ..., d,
and constraint equation ∂H/∂λ = 0, with ∂2H/∂λ2 < 0
along the optimal protocol. Because Eq. (8) has no ex-
plicit time dependence, it remains constant throughout
an optimal protocol. Although this is in a sense analo-
gous to the conserved total energy in a classical system,
it does not apparently represent a physical energy of the
system [34].

From Pontryagin’s maximum principle, the canonical
equations for the Hamiltonian in Eq. (8) are

ρ̇ = Lλρ (9)

π̇ = −LTλ (π +Uλ −Uf ), (10)

while the constraint equation coupling the two canonical
equations is

([
dUλ
dλ

]T
Lλ + (π +Uλ −Uf )T

dLλ
dλ

)
ρ = 0. (11)

Because ρ(tf ) is unconstrained, the transversality condi-
tion fixes the terminal conjugate momentum π(tf ) = 0
[34, 52].

We have arrived at our first major contribution in this
manuscript. For a discrete state Markov jump process
satisfying detailed balance, Pontragin’s maximum prin-
ciple allows us to find the work-minimizing optimal pro-
tocol λ∗(t) by solving the canonical differential Eqs. (9)
and (10) coupled by Eq. (11), with the mixed boundary
conditions ρ(0) = ρi, π(tf ) = 0. Notably, no approxima-
tions have been used here, and thus the optimal protocols
produced within this framework are exact for any time-
scale. As will be shown below, efficient algorithms may
be written to numerically solve these ordinary differen-
tial equations. This will be useful for numerically solving
for optimal protocols of a continuous-state stochastic sys-
tem, as continuous-state Fokker-Planck dynamics may be
approximated by a discrete state Markov process with the
appropriate master equation [53, 54]. All that remains
in our derivation is to take the continuum limit for the
corresponding result for a continuous stochastic system
undergoing Langevin dynamics.

III. CONTINUOUS SPACE DERIVATION

For a continuous-state overdamped system in one di-
mension, individual trajectories undergo dynamics given
by the Langevin equation

ẋ = −βD∂U
∂x

+ η(t). (12)

Here D is the diffusion coefficient, U(x, λ) is the λ-
controlled potential, and η(t) is Gaussian white noise
with statistics 〈η(t)η(t′)〉 = 2Dδ(t− t′).

While each individual trajectory is stochastic, the time
evolution of the probability density ρ(x, t) of the ensem-
ble is deterministic, given by a Fokker-Planck equation

∂ρ

∂t
= D

[
∂2ρ

∂x2
+ β

∂

∂x

(
ρ
∂U

∂x

)]
=: L̂λρ, (13)

Here, L̂λ denotes the Fokker-Planck operator, which has

a corresponding adjoint operator L†λ, also known as the
backward Kolmogorov operator [54, 55], that acts on a
function ψ(x, t) as

L†λψ := D

[
∂2ψ

∂x2
− β ∂ψ

∂x

∂U

∂x

]
. (14)

Again, we want to find a protocol λ(t) that minimizes
the expected work

W [λ(t)] =

∫ tf

0

λ̇

〈
∂U

∂λ

〉
dt, (15)

beginning at λ(0) = λi and ρ(x, 0) ∝ e−βU(x,λi), and
ending at λ(tf ) = λf with ρ(x, tf ) unconstrained.

To take the continuum limit of the discrete case, we
treat the d states as 1-dimensional lattice sites with
spacing ∆x and reflecting boundaries at xb = ±(d −
1)∆x/2, and set the connectivity coefficients of Eq. (2)
to cij = D(∆x)−2 for all pairs of neighboring sites {i, j},
s.t. |i − j| = 1, and cij = 0 for all else. We de-

fine ρ(x, t) = (∆x)−1[ρ(t)]l(x), π(x, t) = [π(t)]l(x), and
U(x, λ) = [Uλ]l(x), where l(x) = bx/∆x+ d/2c, and take
the continuum limit |xb| → ∞ and ∆x→ 0. Our control-
theoretic Hamiltonian then becomes

H =

∫ ∞
−∞

(π + U − Uf ) L̂λ ρ dx (16)

with Uf = U(x, λf ), while the canonical Eqs. (9) and
(10) become

∂tρ = L̂λρ and ∂tπ = −L̂†λ(π + U − Uf ). (17)
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Finally, under the continuum limit, the constraint
Eq. (11) becomes

∫ ∞
−∞

[
∂U

∂λ

](
L̂λρ+ βD

∂

∂x

[
ρ
∂

∂x
(π + U − Uf )

])
dx = 0,

(18)

which may be interpreted as an orthogonality constraint
between ∂U/∂λ, and a Fokker-Planck operator with
modified potential energy π + 2U − Uf acting on ρ.

We have now derived an expression that allows us
to find the work-minimizing optimal protocol for a
continuous-state stochastic system undergoing Langevin
dynamics. Just as for the discrete case, solving Eqs. (17)
and (18) with initial and terminal conditions ρ(x, 0) =
ρeq,i(x) and π(x, tf ) = 0, gives us a principled way to
find the optimal protocol λ∗(t) that minimizes the work
(15). Importantly, these differential equations are much
more tractable than the generalized integro-differential
equation proposed in [4] for finding the optimal protocol.
In particular, these equations are solvable analytically for
the control of harmonic potentials, and may be efficiently
solved numerically for the control of general anharmonic
potentials.

For the rest of the paper we will consider affine-control
potentials of the form

U(x, λ) = U0(x) + λU1(x) + Uc(λ), (19)

where λ linearly modulates the strength of an auxiliary
potential U1(x) added to the base potential U0(x), mod-
ulo a λ-dependent constant offset Uc. This form is ap-
plicable to a wide class of experimental stochastic ther-
modynamics problems, including molecular pulling ex-
periments [3, 18, 24, 56, 57] which can be modeled with
potential U(x, λ) = Usys(x) +Uext(x, λ) where the exter-
nal potential of constant stiffness k is Uext(x, λ) = k(x−
λ)2/2. We see that by expanding the square, this poten-
tial is in the form (19) with U0(x) = Usys(x) + kx2/2,
U1(x) = −kx, and Uc(λ) = kλ2/2.

By plugging (19) into (18), we see that for this class
of affine-control potentials the constraint equation is in-
vertible, giving

λ[ρ, π] =
λf
2

+

∫∞
−∞[∂x

2U1 − β(∂xU1)(∂x(π + U0))] ρ dx

2
∫∞
−∞(∂xU1)2 ρ dx

.

(20)
Plugging Eqs. (19) and (20) into (16) yields

∂2H/∂λ2 = −2
∫

(∂xU1)2ρ dx < 0, which demonstrates
that the optimal protocol is a minimizing extremum for
the work (6). A proof for the existence of optimal proto-
col solutions for Fokker-Planck optimal control is given
in [38] under loose assumptions. While we currently can-
not prove the uniqueness of a solution of Eqs. (17) and
(20) with our mixed boundary conditions, every solution
we have found always outperforms all other protocols we
have considered.

We will now illustrate how Eqs. (17) and (20) can be
used to produce optimal protocols, through particular
analytical and numerical examples.

IV. ANALYTIC EXAMPLE

For the rest of the paper, we set D = β = 1 for no-
tational simplicity. We start by considering a harmonic
potential with λ controlling the stiffness of the poten-
tial U(x, λ) = λx2/2, where we identify U1 = x2/2 and
U0 = Uc = 0. It has been shown [4, 12] that when the
probability distribution ρ starts as a Gaussian centered
at zero, it remains a Gaussian centered at 0, with the dy-
namics of the inverse of the variance s(t) = 〈x2〉−1 given
by

ṡ = 2s(λ− s), (21)

which can be obtained by plugging a zero-mean Gaussian
ρ into Eq. (17).

By plugging a truncated polynomial ansantz for the
conjugate momentum, π(x, t) =

∑n
k=0 pk(t)xk/k ! for

a finite n, into Eq. (17) and taking into account our
terminal condition π(x, tf ) = 0, we see that the only
surviving terms are the constant and quadratic terms
π(x, t) = p0(t) + p2(t)x2/2, where the coefficients follow
dynamics given by

ṗ0 = −(p2 + λ− λf ) (22)

ṗ2 = 2λ(p2 + λ− λf ). (23)

From our constraint Eq. (20) we have

λ =
λf
2

+

∫∞
∞ (1− p2 x2) ρ dx

2
∫∞
∞ x2ρ dx

=
λf + s− p2

2
. (24)

With this, we eliminate λ(s, p2) from Eqs. (21) and (23),

and define φ = (s + p2 − λf )/2 to get φ̇ = −φ2 and
ṡ = −2φs. These equations are readily integrable from
t = 0 to get

φ(t) =
φi

1 + φit
and s(t) =

λi
(1 + φit)2

, (25)

where we use s(0) = λi and define the constant of in-
tegration φi = φ(0) yet to be determined. Equating
φ(tf ) = (s(tf ) + p2(tf )− λf )/2 allows us to solve

φi =
−(1 + λf tf ) +

√
1 + 2λitf + λiλf t2f

2tf + λf t2f
. (26)

Finally, noting that λ = s− φ, we obtain
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λ(t) =
λi − φi(1 + φit)

(1 + φit)2
. (27)

We readily identify Eqs. (26) and (27) as Eqs. (18)
and (19) of [4]. Thus, from our optimal control Eqs. (17)
and (18), we have analytically reproduced the optimal
finite-time work-minimizing trajectory for a harmonic
trap with variable stiffness. (In SM.I of [58] we pro-
vide an analytic derivation of the optimal protocol for
the variable trap center case U(x, λ) = (x− λ)2/2.)

V. NUMERICAL EXAMPLES

The harmonic potential problem is exceptional in that
we can solve for its optimal protocol analytically. For the
vast majority of time-varying potentials, the differential
Eqs. (17) with constraint (20) do not admit analytic so-
lutions, but can be solved numerically. In this section, we
briefly sketch our numerical scheme to solve Eqs. (17) and
(18), and we demonstrate our approach for two classes of
quartic potential problems that do not admit analytic
solutions: changing the stiffness of a quartic trap, and
applying a linear bias to a double-well potential.

We compare the form and performance of these opti-
mal protocols to three other protocols: naive, fast, and
slow. The naive protocol interpolates the starting and
ending parameters linearly in time λ(t) = λi+(t/tf )(λf−
λi), and generally is not optimal in any regime. The fast
protocol, also known as the short-time efficient proto-
col (STEP) as developed in [30], is optimal for small-tf
limit, and involves a step to an intermediate value λSTEP

for the duration of the protocol. The slow protocol first
derived in [16], also known as the near-equilibrium pro-
tocol, is optimal for large tf , and is obtained by consider-
ing the thermodynamic geometry of protocol parameter
space induced by the friction tensor ξ(λ), from the linear
response of excess work from changes in λ(t). With this
induced thermodynamic geometry, the slow protocol is a
geodesic of ξ given by λ̇(t) ∝ ξ(λ(t))−1/2, with λ(0) = λi
and λ(tf ) = λf . (We provide a more detailed review of
the slow and fast protocols, as well as how we produce
them for our numerical study in SM.II.A.3 and SM.II.A.4
of [58].)

Here we briefly describe our discretization and inte-
gration scheme. Our lattice-discretization of space and
time and approximated Fokker-Planck dynamics largely
follow [53]. Just as taking the continuous limit from a
discrete-state master equation yields Fokker-Planck dy-
namics, by discretizing our configuration space onto a
lattice, Fokker-Planck dynamics can be approximated
by a master equation over lattice states [54]. Here,
we approximate the configuration space by a grid of
d points with spacing ∆x and reflecting boundaries at
xb = ±(d− 1)∆x/2, akin to the time-dependent Fokker-
Planck discretization described in [53]. Our optimal con-
trol Eqs. (17) and (18) become the ordinary differential

Eqs. (9) and (10), coupled by (11). Time is discretized to
N time steps, with either constant or variable timesteps.

Because the transition rate matrix Lλ has non-positive
eigenvalues [55, 59], it is numerically unstable to inte-
grate π forward in time, as any amount of numerical
noise becomes exponentially amplified. Rather, we adopt
a Forward-Backward sweep method [35, 60], where ap-
proximate solutions for ρ(k)(t) and π(k)(t) are updated
iteratively through first obtaining ρ(k+1) by solving (9)
and (11) forwards in time starting with ρ(0) = ρi,eq,

keeping π(t) = π(k)(t) fixed; and then obtaining π(k+1)

by solving (10) and (11) backwards in time starting with
π(tf ) = 0, keeping ρ(t) = ρ(k+1)(t) fixed. These for-
ward and backward sweeps are iterated until numerical
convergence of ρ∗(t),π∗(t), which then is passed to (11)
to obtain the optimal protocol λ∗(t). (See SM.II of [58]
for exact details on our numerical scheme.)

To measure the performance of each protocol λ(t), we
consider the excess work Wex[λ(t)] = W [λ(t)] − ∆F ,
where ∆F = log(Zf ) − log(Zi) is the free energy dif-
ference between initial and final equilibrium states, with
Zλ =

∫
dx exp(−Uλ(x)) being the partition function. By

the Second Law of Thermodynamics, Wex > 0, and ap-
proaches 0 in the quasistatic tf →∞ limit. (We describe
how we numerically compute Wex for a given protocol in
SM.II.B of [58].)

Now we present our results for the variable-stiffness
quartic trap and linearly biased double-well examples.

A. Quartic trap with variable stiffness

First, we consider the quartic analog of the variable
stiffness harmonic oscillator, with the potential given as

Uλ(x) = λ
x4

4
. (28)

Figs. 1(a) and 1(b) illustrate the numerically obtained
optimal protocols for variable values of protocol time tf ,
for λi = 1, λf = 2; and λi = 1, λf = 5 respectively. We
see that the optimal protocols for the variable stiffness
quartic trap problem are qualitatively similar to the op-
timal protocols for the variable stiffness harmonic trap in
Section 4 (derived and illustrated in [4]). For both prob-
lems, optimal protocols are continuous and monotonic
with positive curvature for times t ∈ (0, tf ), and have
discontinuous jumps at t = 0 and t = tf . Also plotted
are the fast [30] and slow [16] protocols, which have been
derived to be optimal for the small- and large-tf limits,
respectively. We see that the numerically solved optimal
protocol asymptotes to these protocols in the respective
tf limits.

Figs. 1(c) and 1(d) illustrate the excess work Wex of
various protocols across different time-scales tf . We see
that the optimal protocol outperforms all three of the
naive, fast, and slow protocols. The performance of the
fast protocol converges to the optimal protocol perfor-
mance for short time-scales tf � 1. Likewise, the per-
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FIG. 1. Form and performance of numerically produced optimal protocols for quartic trap with variable stiffness Uλ(x) = λx4/4
with λi = 1, λf = 2 on the left column, and λi = 1, λf = 5. on the right column. (a, b) illustrate optimal protocols for the trap
stiffness, across various finite protocol duration values tf . We see that for short times tf � 1, the optimal protocol asymptotes
to the fast protocol as given in [30], whereas for long times tf � 1, the optimal protocol asymptotes to the slow protocol as
given in [16]. We observe discontinuous jumps at t = 0 and t = tf in our numerically calculated optimal protocols, which
is often the case for optimal protocols [4, 5, 49]. (c) and (d) compare the protocol performance Wex among the numerically
calculated optimal protocol, the fast protocol, the slow protocol, and the naive protocol. We see that the optimal protocol
outperforms all other protocols, with the fast and slow protocols asymptoting in performance to the optimal protocol in their
respective small- and large-tf limits. The form and performance of these optimal protocols are qualitatively similar to those
for the harmonic oscillator control case [4] (illustrated in Fig. SM.I of [58]).

formance of the slow protocol converges to the optimal
protocol performance for long time-scales tf � 1. This
is expected, and is consistent with how the optimal pro-
tocol asymptotes to the fast and slow protocols in the
respective time-scales.

B. Linearly biased double-well

Here we consider the double-well potential with wells
at x = ±1 with an external linear bias

Uλ(x) = E0
(x2 − 1)2

4
− λE0x. (29)

Here, E0 sets the energy scale of the ground and external
potentials, with a barrier height of E0/4 between the two
wells at λ = 0. This potential is commonly used in the
study of bit erasure [7, 8], but here we allow only limited
control in the form of a linear bias. We note that this
problem is qualitatively similar to the [24], where a har-
monic pulling potential with variable center is applied to
a potential with two local minima separated by a bar-
rier. We consider λi = −1 and λf = 1, while varying
E0 and tf . Setting the parameter value λ = −1 biases
the potential to the left well, which sufficiently raises the
right well above the barrier height and shifts the left well
minimum from xwell = −1 to −1.32472. Setting λ = 1
gives a symmetric bias to the right well.

Figs. 2(a) and 2(b) illustrate optimal protocols for
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FIG. 2. Numerically solved optimal protocols for the linearly biased double-well potential Uλ(x) = E0((x2 − 1)2/4 − λx),
λi = −1 and λf = 1; with E0 = 4 in the left column, E0 = 16 in the right. (a, b) illustrate the optimal protocols for the
linear bias value, across various finite protocol duration values tf . As with the quartic case in Fig. 1, here for short times
tf � 1 and long times tf � 1, the optimal protocol asymptotes to the fast and slow protocols respectively. Unlike the slow
and fast protocols, for intermediate values of tf the optimal protocols are not symmetric in (t, λ)→ (−t,−λ). For E0 = 16, we
observe surprising non-monotonic protocols for tf ∼ 0.2. (c, d) depict the protocol performance Wex between the numerically
calculated optimal protocol and other protocols. Like in the quartic case, we see that the optimal protocol outperforms all
other protocols, with the fast and slow protocols asymptoting in performance to the optimal protocol in their respective small-
and large-tf limits. For E0 = 16, the optimal protocol vastly outperforms the other protocols for tf ∼ 2.

E0 = 4 and E0 = 16, which correspond to inter-well
barrier heights of 1 kBT and 4 kBT respectively. Just as
before, the optimal protocol asymptotes to the fast and
slow protocols in the small- and large-tf limits. We note
here that the optimal protocols obtained for various val-
ues of E0 and tf have intriguing properties. First of all,
both the fast and slow protocols are symmetric under in-
version (λ(t), t) → (−λ(t), tf − t), which arises from the
symmetry Uλ(x) = U−λ(−x) with λf = −λi, and the
construction of these protocols. We see though that the
optimal protocol obtained by solving (17) and (18) do
not follow this this symmetry for intermediate values of
timescale tf . This discovery of barrier crossing optimal
protocols breaking symmetry was first made in [31]. At
first this symmetry-breaking may seem counter-intuitive,
but this can be understood by noting that λi and λf play

completely different roles in our optimal control problem:
λi specifies the initial condition ρ(x, 0), while λf specifies
Uf (x) in the cost function.

Furthermore, not only do we find non-symmetric pro-
tocols, we discover that for E0 = 16, the optimal protocol
λ(t) is non monotonic at certain intermediate timescales
tf ∼ 0.2. This result is surprising, given that the underly-
ing stochastic system (12) is overdamped — it has no mo-
mentum degrees of freedom that could incentivize over-
shoots. To our knowledge, no optimal or approximately-
optimal protocols for a single parameter λ have been re-
ported to exhibit this sort of non-monotonic behavior. In
this regime, the optimal protocol cannot be interpreted
as a geodesic for an underlying thermodynamic metric,
as the latter can only produce monotonic protocols.

To explain this overshoot, we consider the mean posi-
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FIG. 3. The evolution of the mean position 〈x〉(t) for the linearly biased double-well problem Uλ(x) = E0((x2 − 1)2/4 − λx),
across various protocol duration values tf . Here, λi = −1 and λf = 1, with (a) E0 = 4, and (b) E0 = 16. The first row
depicts the optimal protocol, the second the naive protocol, the third the fast protocol, and the fourth the slow protocol.
For the optimal protocol, 〈x〉(t) increases monotonically with near-constant velocity, which we argue is a generic property of
limited-control optimal controls. In comparison, the naive, fast, and slow protocols evolve the mean 〈x〉(t) with much more
variable velocity. The deviation from constant-velocity roughly corresponds to larger Wex values, as depicted in Figs. 2(c) and
2(d).

tion of the probability density under the optimal protocol
〈x〉 =

∫
ρ(x, t)x dx as a function time t. This is shown in

Figs. 3(a) and 3(b), where we see 〈x〉 increases at a nearly
constant rate under the optimal protocol. This may be
interpreted as the limited-control optimal protocol allow-
ing barrier-crossing to occur at an approximately con-
stant velocity. On the other hand, when full control over
the potential is allowed, the distribution mean 〈x〉 always
maintains a constant speed under the full-control optimal

protocol (see SM.III of [58] for a derivation drawn from
optimal transport theory). This suggests that insofar as
a limited-control optimal protocol should approximate
the full-control optimal protocol, it drives the mean of
the probability distribution to travel with near-constant
velocity, even if requiring an overshoot as is the case for
the E0 ∼ 16, tf ∼ 0.2 regime.

Figs. 2(c) and 2(d) illustrate the performance of these
protocols. Just as we found for the harmonic potential,
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the OCT protocol outperforms all three other consid-
ered protocols, with performance of fast and slow pro-
tocols approaching the optimal protocol performance in
their respective tf limits. We see that for barrier height
E0 = 16, the optimal protocol vastly outperforms all
other protocols at intermediate tf values. For instance,
at tf = 2 the optimal protocol gives Wex = 10.61,
which is significantly smaller than the naive protocol
Wex = 16.12 and slow protocol Wex = 26.77 values.
This shows the existence of truly far from equilibrium
regimes, for which protocols derived assuming either fast
or near-equilibrium approximations deviate significantly
from the true, fully non-equilibrium optimal protocol, in
both form and performance.

VI. DISCUSSION

It is typically the case in experimental and engineering
contexts that only a finite set of degrees of freedom of a
system is controllable. We have shown that the problem
of finding work-minimizing optimal protocols is naturally
framable as an optimal control theory (OCT) problem.
Using tools and techniques from OCT, we have devised
a method to derive optimal protocols in the case where
there is only limited control of the form of the system’s
potential. Our framework allows us to reproduce known
analytic results for the control of a harmonic oscillator,
as well as to efficiently calculate optimal protocols nu-
merically for a large class of limited-control potentials.

Previous work on dissipation-minimizing optimal pro-
tocols revealed thermodynamic geometry on protocol pa-
rameter space through the friction tensor [16, 59], and
on probability density space through the L2-Wasserstein
metric [13–15, 61]. We have found that the protocol op-
timization problem has a deep Hamiltonian structure,
typical of OCT problems [34]. It is interesting to pon-
der what insights may be gleaned from the study of op-
timal protocols for non-equilibrium processes when both
Riemmanian and symplectic structures are considered to-
gether.

It is straightforward to generalize our results configu-
ration and parameter spaces that are multi-dimensional,
which suggests a number of natural extensions. First, by
allowing time-varying control of temperature β−1 = kBT
and asserting time-periodicity for the protocol, we can
construct optimal finite-time heat engines arbitrarily far
from equilibrium, building off of [10, 61, 62]. Cyclical pro-
tocols may also be considered for when the state space
and/or configuration space are non-Euclidean manifolds
[17]; e.g., for the external control of rotory motor pro-
teins like FoF1 [27]. Recent surprising results demon-
strate that if detailed-balance breaking transition rates
were allowed in the control of Markov jump processes, fi-
nite-time transitions between different probability distri-

butions may be conducted with arbitrarily small entropy
production [63–66]; our framework is easily adaptable to
these kinds systems through the replacement of every in-
stance of potential energy difference with a forcing matrix
that need not be symmetric [Ui(λ)− Uj(λ)]→ Fij(λ) in
Eq. (2), and it would be interesting to observe whether
calculated work-minimizing protocols would contain sim-
ilar features. Finally, it would be intriguing to extend our
framework to the study of underdamped systems where
both position and velocity degrees of freedom (x, v) make
up the configuration space [6, 67], as because the kinetic
term of the underlying Klein-Kramers equation cannot
be controlled, control is intrinsically limited to just the
spatial degrees of freedom.

When the configuration space has many degrees of
freedom, the curse of dimensionality kicks in, where the
memory required to store the probability distribution is
exponential in the number of dimensions of the configura-
tion space [68]. In this case, it may be more computation-
ally tractable to sample individual stochastic trajectories
to compute the friction tensor [16, 26] or gradients of the
protocol [31] in order to calculate optimal protocols. It
will be of interest to study the effectiveness of config-
uration space dimensionality reduction techniques (e.g.,
density functional theory [69], Zwanzig-Mori projection
operators [54]) to make the calculation of optimal pro-
tocols through our framework computationally tractable
for high dimensional configuration spaces.

We have shown that optimal control theory is a natural
and powerful framework for the design and study of ther-
modynamically optimal protocols. In the spirit of [70], it
is our hope that through considering the optimal control
of non-equilibrium probability densities considered here
and elsewhere [37, 38, 40], we may better understand how
it is that biological systems, which operate far from equi-
librium, function efficiently across vastly different length-
and time-scales.
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