
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Precise determination of pair interactions from pair
statistics of many-body systems in and out of equilibrium

Salvatore Torquato and Haina Wang
Phys. Rev. E 106, 044122 — Published 14 October 2022

DOI: 10.1103/PhysRevE.106.044122

https://dx.doi.org/10.1103/PhysRevE.106.044122


Precise Determination of Pair Interactions from Pair Statistics of Many-Body
Systems In and Out of Equilibrium

Salvatore Torquato1, 2, ∗ and Haina Wang3

1Department of Chemistry, Department of Physics, Princeton Institute of Materials,
and Program in Applied and Computational Mathematics Princeton University, Princeton, New Jersey 08544, USA

2School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
3Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

(Dated: August 22, 2022)

The determination of the pair potential v(r) that accurately yields an equilibrium state at positive
temperature T with a prescribed pair correlation function g2(r) or corresponding structure factor
S(k) in d-dimensional Euclidean space Rd is an outstanding inverse statistical mechanics problem
with far-reaching implications. Recently, Zhang and Torquato conjectured that any realizable g2(r)
or S(k) corresponding to a translationally invariant nonequilibrium system can be attained by a
classical equilibrium ensemble involving only (up to) effective pair interactions. Testing this conjec-
ture for nonequilibrium systems as well as for nontrivial equilibrium states requires improved inverse
methodologies. We have devised a novel optimization algorithm to find effective pair potentials that
correspond to pair statistics of general translationally invariant disordered many-body equilibrium or
nonequilibrium systems at positive temperatures. This methodology utilizes a parameterized family
of pointwise basis functions for the potential function whose initial form is informed by small- and
large-distance behaviors dictated by statistical-mechanical theory. Subsequently, a nonlinear opti-
mization technique is utilized to minimize an objective function that incorporates both the target
pair correlation function g2(r) and structure factor S(k) so that the small- and large-distance corre-
lations are very accurately captured. To illustrate the versatility and power of our methodology, we
accurately determine the effective pair interactions of the following four diverse target systems: (1)
Lennard-Jones system in the vicinity of its critical point; (2) liquid under the Dzugutov potential;
(3) nonequilibrium random sequential addition packing; and (4) and a nonequilibrium hyperuni-
form “cloaked” uniformly randomized lattice (URL). We found that the optimized pair potentials
generate corresponding pair statistics that accurately match their corresponding targets with total
L2-norm errors that are an order of magnitude smaller than that of previous methods. The re-
sults of our investigation lend further support to the Zhang-Torquato conjecture. Furthermore, our
algorithm will enable one to probe systems with identical pair statistics but different higher-body
statistics, which would shed light on the well-known degeneracy problem of statistical mechanics.

I. INTRODUCTION

The relationship between the interactions in many-
body systems and their corresponding structural and
equilibrium/nonequilibrium properties continues to be a
subject of great fundamental and practical interest in
statistical physics, condensed-matter physics, chemistry,
mathematics and materials science [1–4]. Direct com-
puter simulation of matter at the molecular and col-
loidal level has generated a long and insightful tradi-
tion; see Refs. [5–15] and references therein. The fruitful
“forward” approach of statistical mechanics identifies a
known substance that possesses scientific and/or techno-
logical interest, creates a manageable approximation to
the interparticle interactions that operate in that sub-
stance, and exploits molecular dynamics or Monte Carlo
algorithms to predict nontrivial details concerning the
structure, thermodynamics and kinetic features of the
system. Inverse statistical-mechanical methods [3] allow
for a new mode of thinking about the structure and phys-
ical properties of condensed phases of matter and are
ideally suited for materials discovery by design. In the
inverse approach, one attempts to determine a potential
function (subject to constraints) that robustly and spon-
taneously lead to targeted many-particle configurations,

targeted correlation functions or a targeted set of physi-
cal properties over a wide range of conditions [3, 16–18].
The targeting of equilibrium crystal states has been par-
ticularly successful, including the capacity to design low-
coordinated crystals as (zero-temperature) ground states
[3, 19–24] as well as crystals at positive temperature T
[25, 26].

Finding the pair potential v(r) that accurately yields a
single-component equilibrium disordered state (e.g., sim-
ple liquids and polymers) at positive T with a prescribed
pair correlation function g2(r) or corresponding struc-
ture factor S(k) in d-dimensional Euclidean space Rd is
an outstanding inverse problem with far-reaching impli-
cations. For example, such techniques enable one to de-
vise atomic-based Hamiltonian models that are consis-
tent with the experimental determination of S(k), which
is directly obtainable from scattering-intensity data. In
addition, one can use the solutions of such inverse prob-
lems to design, at will, portions of the equilibrium phase
diagram of colloidal systems when hypothesized func-
tional forms for the pair statistics are realizable [27–30]
by effective pair interactions.

Moreover, Zhang and Torquato [30] recently intro-
duced a theoretical formalism that provides a means to
draw equilibrium classical particle configurations from
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canonical ensembles with one- and two-body interactions
that correspond to targeted functional forms for g2(r) or
S(k). This formalism enabled them to devise an efficient
algorithm to construct systematically canonical-ensemble
particle configurations with such targeted S(k) at all
wavenumbers, whenever realizable. However, their pro-
cedure does not provide the explicit forms of the under-
lying one- and two-body potentials. In the same study,
Zhang and Torquato [30] conjectured that any realizable
g2(r) or S(k) corresponding to a translationally invari-
ant nonequilibrium system can be attained by an equi-
librium ensemble involving only (up to) effective pair in-
teractions. Successful solutions to the aforementioned
inverse problem would enable one to test this remarkable
conjecture and its implications if proved to be true.

While significant progress has been made in ascertain-
ing pair interactions from pair statistics [17, 18, 31–35],
substantial computational challenges remain. Improved
methods must be formulated to ensure a highly precise
correspondence between the pair potential and the asso-
ciated pair statistics for both equilibrium and nonequilib-
rium states of matter. In the case of equilibrium ensem-
bles, Henderson’s theorem states that in a classical homo-
geneous many-body system, the pair potential v(r) that
gives rise to a given equilibrium pair correlation func-
tion g2(r) at fixed number density ρ and temperature
T > 0 is unique up to an additive constant [36]. While
this is a powerful uniqueness theorem, in practice, it has
been shown that very similar equilibrium pair statistics
may correspond to distinctly different pair potentials [37],
and hence highly precise pair information is required to
achieve an accurate pair potential function. Importantly,
testing the Zhang-Torquato conjecture for systems out
of equilibrium [30] requires computational precision that
is beyond currently available techniques. Furthermore,
no current methods treat situations in which a one-body
potential must also be incorporated to stabilize systems
with certain long-ranged pair potentials that are required
to achieve “incompressible” exotic hyperuniform states
[28, 38]. Indeed, Buck [16] has noted that in cases where
the interaction is long-ranged, previous approaches could
yield ambiguous solutions, i.e., different inversion ap-
proaches yield different potentials for the same scattering
data. Thus, hyperuniform targets demand a completely
new and improved inverse methodology.

All previous iterative predictor-corrector methods [31–
33, 35], which appear to be the most accurate inverse
procedures, begin with an initial discretized (binned) ap-
proximation of a trial pair potential, but without consid-
ering one-body interactions. The trial pair potential at
each binned distance is iteratively updated to attempt
to reduce the difference between the target and trial pair
statistics. A popular method, called the iterative Boltz-
mann inversion (IBI) [33], takes the initial trial potential
as the potential of mean force and then iteratively up-
dates the trial potential based on the difference between
the potentials of mean force for the target and trial pair
correlation functions. A similar fixed-point iteration ap-

proach proposed by Lyubartserv et al. [32] reaches com-
parable accuracy to that of IBI [33]. The best currently
available scheme is the iterative hypernetted chain inver-
sion (IHNCI) scheme, which was introduced by Levesque,
Weiss and Reatto [31] and refined in Ref. [35]. The IH-
NCI updates to attempt to match both the target g2(r)
and target S(k) by iterating the Ornstein-Zernike equa-
tion using the hypernetted chain approximation. By con-
struction, this procedure can only lead to an approxima-
tion to the desired pair potential. Moreover, because all
previous methods do not optimize a pair-statistic “dis-
tance” functional, they are unable to detect poor agree-
ment between the target and trial pair statistics that may
arise as the simulation evolves, leading to increasingly in-
accurate corresponding trial potentials.

To improve on previous methods and address the
aforementioned new challenges, we have devised a novel
optimization algorithm that is informed by statistical-
mechanical theory to find effective one- and two-body
potentials yielding positive-T equilibrium states that cor-
respond to pair statistics of general translationally invari-
ant (statistically homogeneous) disordered many-body
systems in and out of equilibrium with unprecedented
accuracy [39]. Our methodology departs from previous
techniques in several significant ways. First, we pose the
task as an optimization problem to minimize an objec-
tive function that incorporates both the target pair cor-
relation function g2,T (r) and structure factor ST (k) that
would correspond to one-body and two-body (pair) po-
tential. Second, unlike previous procedures, our method-
ology uses a parameterized family of pointwise basis func-
tions for the potential function v(r;a), where a repre-
sents a supervector of parameters (Sec. IV) whose initial
form is informed by the small- and large-distance behav-
iors of the targeted g2,T (r) and ST (k), as dictated by
statistical-mechanical theory. Pointwise potential func-
tions are superior to previously employed binned poten-
tials, since they do not suffer from the accumulation of
random errors during a simulation, resulting in more ac-
curate pair interactions. Binned potentials that contain
random noise can lead to unrealistic forces in molecular
dynamics and result in incorrect supercooled or quenched
structures. Third, a nonlinear optimization technique is
utilized to minimize the objective function so that the
very-small, intermediate-, and large-distance correlations
are very accurately captured. The reader is referred to
Sec. IV for algorithmic details of our inverse methodol-
ogy.

To illustrate the versatility and power of our method-
ology, we accurately determine the effective pair interac-
tions of the following four diverse target systems:

1. 2D Lennard-Jones system in the vicinity of its crit-
ical point;

2. 3D liquid under the Dzugutov potential [40];

3. 2D nonequilibrium random sequential addition
(RSA) packing near saturation [41, 42];
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4. 3D nonequilibrium hyperuniform “cloaked” uni-
formly randomized lattice (URL) [43].

Figure 1 shows snapshots of the target configurations.
These targets can be problematic for previous procedures
to achieve accurate pair potentials for various reasons, as
detailed in Sec. V.

To assess the accuracy of inverse methodologies to tar-
get pair statistics, we introduce and utilize the following
dimensionless L2-norm error:

E =
√
Dg2 +DS (1)

where

Dg2 = ρ

∫
Rd

[g2,T (r)− g2,F (r;a)]2dr, (2)

DS =
1

ρ(2π)d

∫
Rd

[ST (k)− SF (k;a)]2dk, (3)

where g2,F (r;a) and SF (k;a) represent the final pair
statistics at the end of the optimization, which depend
on the supervector a. It is noteworthy that our algo-
rithm generally provides errors in the final pair statis-
tics for all four targets that are an order of magnitude
smaller than previous methods, as we will subsequently
show. Importantly, it reaches the precision required to
recover the unique potential dictated by Henderson’s the-
orem [36]. Realizing the nonequilibrium pair statistics of
RSA and URL systems by corresponding equilibrium sys-
tems with effective pair interactions lend further support
to the Zhang-Torquato conjecture [30] and shed light on
the well-known degeneracy problem [44, 45]. Structural,
thermodynamic and dynamic properties of the equilib-
rium systems could also reveal nontrivial information on
the nonequilibrium states, such as the degree to which
the latter systems are out of equilibrium, as detailed in
Sec. VI.

We begin by providing basic definitions and back-
ground in Sec. II. In Sec. III, we describe the asymptotic
behavior of the pair potential from large-scale pair cor-
relations for nonhyperuniform and hyperuniform targets,
which are dictated by statistical-mechanical theory [38].
Here, we also derive a general expression for the small-|k|
behavior of S(k) for systems equilibrated under inverse
power-law pair potentials that applies in any space di-
mension; see Eq. (26). In Sec. IV, we provide a detailed
description of our inverse methodology that is generally
applicable to statistically homogeneous but anisotropic
disordered states. In Sec. V, we apply our methodology
on diverse target translationally invariant disordered sys-
tems, in and out of equilibrium. We provide concluding
remarks in Sec. VI.

II. BASIC DEFINITIONS AND BACKGROUND

A. Pair Statistics

We consider many-particle systems in d-dimensional
Euclidean space Rd that are completely statistically char-
acterized by the n-particle probability density functions
ρn(r1, ..., rn) for all n ≥ 1 [7]. Our primary interest in
this paper is in the one- and two-body statistics. In the
case of statistically homogeneous systems, ρ1(r1) = ρ
and ρ2(r1, r2) = ρ2g2(r), ρ is the number density in the
thermodynamic limit, g2(r) is the pair correlation func-
tion, and r = r2 − r1. If the system is also statistically
isotropic, then g2(r) is the radial function g2(r), where
r = |r|. The ensemble-averaged structure factor S(k) is
defined as

S(k) = 1 + ρh̃(k), (4)

where h(r) = g2(r) − 1 is the total correlation function,

and h̃(k) is the Fourier transform of h(r). The Fourier
transform of a function f(r) that depends on the vector
r in Rd is give by

f̃(k) =

∫
Rd

f(r) exp[−ik · r]dr, (5)

where k · r =
∑d
i=1 kiri is the conventional Euclidean

inner product of two real-valued vectors. When it is well-
defined, the corresponding inverse Fourier transform is
given by

f(r) =

Å
1

2π

ãd ∫
Rd

f̃(k) exp[ik · r]dk. (6)

If f is a radial function, i.e., f depends only on the mod-
ulus r = |r| of the vector r, its Fourier transform is given
by

f̃(k) = (2π)
d
2

∫ ∞
0

rd−1f(r)
J(d/2)−1(kr)

(kr)(d/2)−1
dr, (7)

where Jν(x) is the Bessel function of the first kind of

order ν. The inverse Fourier transform of f̃(k) is given
by

f(r) =

Å
1

2π

ã d
2
∫ ∞

0

kd−1f̃(k)
J(d/2)−1(kr)

(kr)(d/2)−1
dk. (8)

For a single periodic configuration containing number
N point particles at positions r1, r2, . . . , rN within a fun-
damental cell F of a lattice Λ, the scattering intensity
I(k) is defined as

I(k) =

∣∣∣∑N
i=1 e

−ik·ri
∣∣∣2

N
. (9)

For an ensemble of periodic configurations of N parti-
cles within the fundamental cell F , the ensemble average
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(a) (b)

(c) (d)

FIG. 1. Snapshots of the configurations corresponding to the four target systems considered in this study. (a) A representative
2D 1,000-particle configuration of the target Lennard-Jones system near its critical point. (b) A representative 3D 512-particle
configuration of the target liquid under the Dzugutov potential. (c) A portion of a representative 2D 10,000-particle RSA
configuration very near the saturation state. Only 1000 particles are displayed. (d) A portion of a representative 3D 2,744-
particle configuration of a cloaked URL system. Only 512 particles are displayed.

of the scattering intensity in the infinite-volume limit is
directly related to structure factor S(k) by

lim
N,VF→∞

〈I(k)〉 = (2π)dρδ(k) + S(k), (10)

where VF is the volume of the fundamental cell and δ
is the Dirac delta function [38]. In simulations of many-
body systems with finite N under periodic boundary con-
ditions, Eq. (9) is used to compute S(k) directly by av-
eraging over configurations.

B. Hyperuniformity and Nonhyperuniformity

A hyperuniform point configuration in d-dimensional
Euclidean space Rd is characterized by an anomalous
suppression of large-scale density fluctuations relative to
those in typical disordered systems, such as liquids and
structural glasses [28, 38]. More precisely, a hyperuni-
form point pattern is one in which the structure factor
S(k) = 1 + ρh̃(k) tends to zero as the wave number
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k = |k| tends to zero [28, 38] i.e.,

lim
|k|→0

S(k) = 0. (11)

This hyperuniformity condition implies the following
direct-space sum rule:

ρ

∫
Rd

h(r)dr = −1. (12)

An equivalent definition of hyperuniformity is based on
the local number variance σ2(r) = 〈N(R)2〉 − 〈N(R)〉2
associated with the number N(R) of points within a d-
dimensional spherical observation window of radius R,
where angular brackets denote an ensemble average. A
point pattern in Rd is hyperuniform if its variance grows
in the large-R limit slower than Rd [28].

Consider systems that are characterized by a structure
factor with a radial power-law form in the vicinity of the
origin, i.e.,

S(k) ∼ |k|α for |k| → 0. (13)

For hyperuniform systems, the exponent α is positive
(α > 0) and its value determines three different large-
R scaling behaviors of the number variance [28, 38, 46]:

σ2(R) ∼


Rd−1 α > 1 (class I)

Rd−1 lnR α = 1 (class II)

Rd−α 0 < α < 1 (class III).

(14)

By contrast, for any nonhyperuniform system, the local
variance has the following large-R scaling behaviors [47]:

σ2(R) ∼
®
Rd α = 0 (typical nonhyperuniform)

Rd−α α < 0 (antihyperuniform).

(15)
For a “typical nonhyperuniform system, S(0) is bounded.
In antihyperuniform systems [38], S(0) is unbounded,
i.e.,

lim
|k|→0

S(k) =∞, (16)

and hence are diametrically opposite to hyperuniform
systems. Antihyperuniform systems include fractals, sys-
tems at thermal critical points (e.g., liquid-vapor and
magnetic critical points) [48–52], as well as certain substi-
tution tilings [53]. A hyposurficial state is a special non-
hyperuniform system that lacks a “surface-area” term in
the growth of the number variance and have pair statis-
tics that obeys the following sum rule [28]:∫ ∞

0

rdh(r)dr = 0, (17)

which implies that they must generally contain both neg-
ative and positive correlations. In equilibrium systems,
hyposurficial states arise in the supercritical region of
the phase diagram. Hyposurficial states have been also
shown to arise in computer simulations of phase transi-
tions involving amorphous ices.[54]

C. Hyperuniform Equilibrium States

Torquato [38] utilized the well-known fluctuation-
compressibility relation for single-component equilibrium
systems [7]

ρkBTκT = S(0), (18)

to infer salient conclusions about equilibrium hyperuni-
form states at T = 0 (ground states) and at positive
temperatures. Specifically, any ground state (T = 0),
ordered or disordered, in which the isothermal compress-
ibility κT is bounded and positive must be hyperuniform.
This is true more generally if the product TκT tends to
a nonnegative constant in the limit T → 0. Moreover, in
order to have a hyperuniform system that is in equilib-
rium at any positive T , κT must be identically zero, i.e.,
the system must be thermodynamically incompressible,
at least classically. Such a situation requires an effective
pair potential that is unusually long-ranged, as will be
specifically shown in Sec. III.

III. ASYMPTOTIC BEHAVIOR OF THE PAIR
POTENTIAL FROM LARGE-SCALE PAIR

CORRELATIONS

In this section, we describe how to infer the large-
distance behavior of the pair potential from targeted
large-scale pair correlations for nonhyperuniform and hy-
peruniform states. We also derive a new expression (26)
for the small-|k| behavior of S(k) for systems equilibrated
under inverse power-law pair potentials in any space di-
mension.

For single-component equilibrium fluids, the asymp-
totic behavior of the direct correlation function c(r), de-
fined via the Ornstein-Zernike integral equation [7], for
large |r| determines the asymptotic behavior of the pair
potential v(r), provided that h2(r)� |βv(r)| [55]; specif-
ically, we have

c(r) ∼ −βv(r) (|r| → ∞), (19)

where β = 1/(kBT ) and kB is the Boltzmann constant.
While the condition h2(r) � |βv(r)| is violated at a
liquid-vapor critical point (since h(r) ∼ 1/|r|d−2+η in the
large-|r| limit, where η = 1/4 for d = 2 and η ≈ 0.036
for d = 3 [52]), it is not violated away from and near the
critical point. The latter conclusion follows from the well-
known Ornstein-Zernike analysis that in the vicinity of
the critical point, the structure factor takes the following
Lorentzian form in the infinite-wavelength limit [50, 56]:

S(k) =
S(0)

1 + ξ2|k|2 +O(k4)
|k| → 0, (20)

where ξ is the correlation length. It then immediately
follows that the total correlation function has the large-r
form

h(r) ∼ exp(−|r|/ξ)
|r|(d−1)/2

(|r| → ∞). (21)
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At the critical density ρ = ρc, ξ tends to infinity as the
temperature approaches the critical temperature Tc via
the scaling relation [50]

ξ ∝
Å
T − Tc
Tc

ã−ν
T → T+

c , (22)

where ν = 1 for d = 2 and ν ≈ 0.63 for d = 3 [52]. Thus,
in light of (21) and (22), we can conclude (19) applies in
the vicinity of a critical point for any bounded correlation
length ξ.

The large-|r| behavior of c(r) or v(r) via (19) can be ex-
tracted from the structure factor S(k) using the Fourier
representation of the Ornstein-Zernike integral equation
[57]:

c̃(k) =
h̃(k)

S(k)
(23)

and examining the small-wavenumber behavior of c̃(k),
which is the Fourier transform of c(r). If c̃(k) is analytic
at the origin, i.e., the Taylor series about |k| = 0 involves
only even powers of the wavenumber |k|, it immediately
follows that c(r) decays exponentially fast or faster [38]
and hence via (19), v(r) must decay exponentially fast or
faster, i.e., faster than any inverse power law. However, if
the pair potential v(r) for large r is asymptotically given
by the following power-law form:

v(r) ∼ E

|r|d+ζ
(|r| → ∞) (24)

where E is a constant with units of energy that may be
positive or negative, |r| is a dimensionless pair distance
and ζ > 0, then according to (19), we have

c(r) ∼ −βv(r) = − βE

|r|d+ζ
(|r| → ∞). (25)

Given a system in which the tail of the potential
has the power-law form (24), we can extract the long-
wavelength behavior of the structure factor following the
asymptotic analysis of the Ornstein-Zernike equation pre-
sented in Ref. [38]. The specific behavior of S(k) de-
pends on whether ζ is an odd integer, even integer or
fractional. When ζ is an odd integer, the structure fac-
tor in the long-wavelength limit consists of nonanalytic
and analytic contributions:

S(k) ∼ − E

kBT
C1(ζ, d)ρS(0)2|k|ζ + f(k) (|k| → 0),

(26)
where

C1(ζ, d) =
π1+d/2

2ζΓ(1 + ζ/2)Γ((d+ ζ)/2) sin(πζ/2)
(27)

and f(k) is an analytic function of |k| at the origin of the
form

f(k) = s0 + s2|k|2 + s4|k|4 + s6|k|6 + ... (28)

Whereas s0 = S(0), independent of the value of the posi-
tive exponent ζ, the coefficients s2m for m ≥ 1 depend on
ζ and a subset of them may be expressed as even-order
moments of the total correlation function h(r). When ζ
is an even integer, the asymptotic form (26) no longer
applies, but the asymptotic formula now includes a non-
analytic term proportional to ln(|k|)|k|ζ .

In the case of an equilibrium hyperuniform state whose
structure factor is characterized by the power law (13),
the Ornstein-Zernike equation (23) implies that c̃(k) con-
tains a singularity at the origin [38]:

c̃(k) ∼ −|k|−α |k| → 0. (29)

Fourier transformation of Eq. (29) shows that c(r) and
hence v(r) have the inverse power-law decay [38]

c(r) ∼ −βv(r) ∼ −|r|−(d−α) |r| → ∞. (30)

Thus, v(r) is long-ranged in the sense that its volume
integral is unbounded. Therefore, to stabilize a classi-
cal hyperuniform system at positive T , which is thermo-
dynamically incompressible due to Eq. (18), one must
treat it as a system of “like-charged” particles immersed
in a rigid “background” of equal and opposite “charge”,
i.e., the system must have overall charge neutrality [38].
Such a rigid background contribution corresponds to a
one-body potential, which is described in detail in Sec.
IV D.

IV. NEW INVERSE METHODOLOGY

For present purposes, we consider the canonical en-
semble associated with classical many-body systems of
N particles in a finite but large region Ω ⊂ Rd of volume
V in thermal equilibrium with a heat bath at absolute
temperature T . We assume that the particles are sub-
ject to a one-body and a two-body potential, φ1(r) and
φ2(r1, r2), respectively. Thus, the configurational poten-
tial energy of particles at rN = {r1, r2, . . . , rN} is given
by

Φ(rN ) =
N∑
i=1

φ1(ri) +
1

2

N∑
i=1

N∑
j 6=i

φ2(ri, rj). (31)

In order to have a system with a well-defined thermody-
namic behavior, we consider φ1 and φ2 that are stable,
i.e., there exist positive constants B1, B2 ≥ 0, such that
for all N and all rN ∈ RNd [58]

N∑
i=1

φ1(ri) ≥ −NB1 (32)

and

1

2

N∑
i=1

N∑
j 6=i

φ2(ri, rj) ≥ −NB2. (33)
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Ultimately, we are interested in the thermodynamic limit,
i.e., the number density ρ = N/V is a fixed constant in
the limits N → ∞ and V → ∞. Due to an extension of
Henderson’s theorem, the one- and two-body potentials
{φ1(r), φ2(ri, rj)} that give rise to a given set of equilib-
rium probability density functions {ρ1(r), ρ2(ri, rj)} at
fixed positive and finite temperature T are unique up to
additive constants [37, 59].

In what follows, we describe our new inverse method-
ology to find one- and two-body potentials φ1(r) and
φ2(r1, r2) at some positive and finite temperature T such
that the corresponding equilibrium one- and two-body
probability density functions accurately match the target
one- and two-body statistics. Our multi-stage procedure
consists of choosing the initial forms of pointwise basis
functions for the parameterized potentials, which is in-
formed by statistical-mechanical theory described in Sec.
III, and then we iteratively optimize the potential pa-
rameters until a convergence criterion is attained. If we
do not achieve sufficiently accurate solutions in the first
stage, then we choose a new set of basis functions by re-
fining the previous choice and iteratively proceed until

our convergence criterion is attained, as detailed below.

A. Objective function

Here, we describe the objective function that must
be minimized for the inverse procedure. We gener-
ally assume statistically anisotropic target pair statistics
that are vector-dependent, i.e., g2,T (r) and ST (k), and
hence the associated pair potential φ2(r) is directionally-
dependent (anisotropic) and one-body potential φ1 is uni-
form (constant). Since it has recently been established
[37] that methods that target only g2(r) or only S(k)
may generate effective potentials that are distinctly dif-
ferent from the unique pair potential dictated by Hen-
derson’s theorem, we consider an objective function that
involves a “distance” functional incorporating both func-
tions. Specifically, given the target pair statistics g2,T (r)
and ST (k), we optimize the following objective function
Ψ(a) over the “supervector” parameter a:

Ψ(a) = ρ

∫
Rd

wg2(r) (g2,T (r)− g2(r;a))
2
dr +

1

ρ(2π)d

∫
Rd

wS(k) (ST (k)− S(k;a))
2
dk, (34)

where g2(r;a) and S(k;a) correspond to an equilibrated
N -particle system under v(r;a) at temperature T , which
can be obtained from Monte-Carlo or molecular dynam-
ics simulations under periodic boundary conditions, and
wg2(r) and wS(k) are weight functions. Here a is a su-
pervector of parameters, described more precisely below.
The weight functions are chosen so that we accurately at-
tain the targeted small-r and small-k behaviors of g2,T (r)
and ST (k), respectively. In this work, we use Gaussians
for both wg2 and wS :

wg2(r) = exp

ñ
−
Å
r

σg2

ã2
ô
, (35)

wS(k) = A exp

ñ
−
Å
k

σS

ã2
ô
, (36)

where the constants σg2 and σS regulate the targeted
ranges of g2,T (r) and ST (k), respectively, the constant A
is added to ensure that both terms in Eq. (34) are of the
same order of magnitude, r ≡ |r| and k ≡ |k|.

B. Choosing basis functions for the parameterized
pair potential

In what follows, the formulation considers target
structures that are both statistically homogeneous and

isotropic. Therefore, the one-body potential φ1(r) is in-
dependent of r and φ2(ri, rj) is a radial potential func-
tion:

v(rij) = v(|ri − rj |) = φ2(ri, rj), (37)

where rij = |ri − rj |. The generalization of the method-
ology to directional or anisotropic pair potentials is de-
scribed in Sec. IV E. We begin by considering the choice
of basis functions for the pair potential v(r) for nonhype-
runiform targets, which means the one-body term in Eq.
(31) is irrelevant and so here we set φ1 = 0. Consider
a parameterized isotropic potential function v(r;a) that
we decompose into a sum of n smooth pointwise basis
functions, i.e.,

v(r;a) = ε
n∑
j=1

fj(r/D; aj), (38)

where fj(r/σ; aj) is the jth basis function, aj is a vector
of parameters (generally consisting of multiple parame-
ters), a = (a1, a2, . . . , an) is the “supervector” parame-
ter, ε sets the energy scale andD is a characteristic length
scale, which in the ensuing discussion is taken to be unity,
D = 1. The components of aj are of four types: dimen-
sionless energy scales εj , dimensionless distance scales σj ,
dimensionless phases θj , as well as dimensionless expo-
nents pj .

The basis functions are chosen so that they reasonably
span all potential functions that could correspond to a
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targeted g2,T (r) for all r or a targeted ST (k) for all k
under the constraint that the resulting potential function
v(r) satisfies the small-r and large-r behaviors dictated
by g2,T (r) and ST (k), as detailed below. For our specific
targets, fj(r; aj) are chosen from the possible following
general forms:

1. Hard core:

fj(r; aj) =

®
∞ r ≤ σj
0 r > σj .

(39)

2. Gamma-damped oscillatory form:

fj(r; aj) =
εj cos

Ä
r/σ

(1)
j + θj

ä
Γ
Ä
r/σ

(2)
j

ä . (40)

3. Exponential-damped oscillatory form:

fj(r; aj) = εj cos

(
r

σ
(1)
j

+ θj

)
exp

−(r − σ(2)
j

σ
(3)
j

)M .
(41)

4. Yukawa-damped oscillatory form [60]:

fj(r; aj) = εj cos

(
r

σ
(1)
j

+ θj

)
exp

−(r − σ(2)
j

σ
(3)
j

)M r−pj .
(42)

5. Power-law-damped oscillatory form:

fj(r; aj) = εj cos

(
r

σ
(1)
j

+ θj

)
r−pj , (43)

In this work, for simplicity and efficiency, the exponent
M in Eqs. (41) and (42) is restricted to be an integer
that remains fixed during the optimization process de-
scribed in Sec. IV C. Of course, other target structures
may require the incorporation of other basis functions.

In choosing the basis functions, we ensure that the
asymptotic decay rates of all fj(r; aj)’s are no slower
than that of the longest-ranged basis function deter-
mined via the large-r asymptotic analysis described in
Sec. III. In Eqs. (40)–(43), we include the oscillatory

factor cos
Ä
r/σ

(1)
j + θj

ä
only if the initial form for v(r),

which is informed by the Ornstein-Zernike equation (23)
for the targeted g2,T (r) and ST (k), clearly exhibits os-
cillatory behavior, e.g., if the initial function v(r) passes
through the horizontal axis at three or more values of r.

If not, we set σ
(1)
j = ∞ and θj = 0. We regard a set of

basis functions to be a good fit of v(r), if the root mean
square of the fit residuals is smaller than 0.01. If there is
more than one set of basis functions that satisfy this con-
dition, then we select the one with the lowest Bayesian
information criterion (BIC), which is a well-established

criterion for model selection that rewards goodness of fit
while penalizing an increased number of free parameters
[61]. Once the forms of the basis functions fj are cho-
sen, we then move to the procedure of optimizing the
parameter “supervector” a.

The exact large-r behavior of v(r;a) is enforced in (38)
to be the large-r behavior of the targeted cT (r) via rela-
tion (19), which is obtained from the targeted structure
factor ST (k) and the Ornstein-Zernike equation (23), as
described in Sec. III, provided that the target meets the
mild condition described there. This asymptotic form
for v(r;a) enables us to choose one or more of the ba-
sis functions fj(r; aj) to have the same asymptotic form.
For example, one can infer from c(r) whether the longest-
ranged basis function that obeys the exact large-r be-
havior is attractive or repulsive, and whether its asymp-
totic decay is power-law, exponential or superexponen-
tial. To determine the initial small-r behavior of v(r;a),
we could use highly accurate but complicated estimates
of the bridge diagrams to close the Ornstein-Zernike in-
tegral equation [7]. However, such exquisitely high accu-
racy is not required in the initial form because the entire
function v(r;a) is subsequently optimized. To estimate
the initial small- and intermediate-r behavior in (38), we
simply use the hypernetted-chain (HNC) approximation
[7], i.e.,

βvHNC(r) = hT (r)− cT (r)− ln[g2,T (r)]. (44)

More specifically, the initial small-r as well as
intermediate-r behaviors of the basis functions and their
corresponding initial potential parameters aj ’s are ob-
tained via a numerical fit on the binned HNC approxi-
mation.

C. Optimization algorithm

The second stage of our procedure involves optimiz-
ing the supervector parameter a in v(r;a), such that
the objective function Ψ(a) is minimized. For this pur-
pose, we utilize the BFGS algorithm [62], which is a ro-
bust nonlinear optimization technique that we have fruit-
fully employed for many of our previous inverse problems
[34, 63, 64]. Here we choose to equilibrate systems us-
ing Monte Carlo simulations but, of course, one may also
choose to do so via molecular dynamics. Our Our inverse
algorithm consists of the following detailed steps:

1. Set i = 0. The initial guess of the inverse Hessian
matrix B0 is taken to be the γI. Here, γ is a con-
stant which we set to be 0.1 for all systems in this
study, and I is the m by m identity matrix, where
m = |a|, i.e., the total number of scalar compo-
nents in a.

2. To compute the partial derivative of Ψ on the pa-
rameter a(k), which is the k-th scalar component
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FIG. 2. Flowchart of the optimization algorithm for our inverse procedure, assuming homogeneous target systems.

of a, we choose a finite difference δa > 0. Monte
Carlo simulations are performed under the poten-
tials v[r; (a(1), a(2), · · · , a(k) − δa/2, · · · , a(m))] and
v[r; (a(1), a(2), · · · , a(k) + δa/2, · · · , a(m))], respec-
tively, with periodic boundary conditions, to ob-
tain the corresponding pair statistics, namely, the
standard binned ensemble-averaged g2(r;a) and
S(k;a) [c.f. Eq. (9)] are computed. The objec-
tive functions obtained for these two simulations
are denoted Ψ−ik and Ψ+

ik, respectively. The partial

derivative is computed as (Ψ+
ik−Ψ−ik)/δa. The cal-

culations of the partial derivatives are parallelized
for computational efficiency. The gradient ∇Ψ(ai)
is then simply a column vector containing all the
partial derivatives. In practice, it is convenient to
use the same value of δa for all parameters. We find
that due to simulation errors in Ψ, choosing δaj to
be too small causes large uncertainties in ∇Ψ(ai).
A good choice of δaj is such that the uncertainty
of |∇Ψ(ai)| is less than 10%.

3. Update the parameters as ai+1 = ai−λ∗Bi∇Ψ(ai),

where λ∗ = λmin(1, 1/|Bi∇Ψ(ai)|) and λ > 0 is
a parameter that regulates the “step size” of the
updates.

4. Update the gradient ∇Ψ(ai+1) with the same pro-
cedure as Step 2.

5. Update the inverse Hessian Bi+1 using the
Sherman-Morrison formula:

Bi+1 = Bi +
(sTi yi + yTi Biyi)(sis

T
i )

(sTi yi)
2

− Biyis
T
i siy

T
i Bi

sTi yi
, (45)

where yi = ∇Ψ(ai+1) − ∇Ψ(ai) and si = ai+1 −
ai. In practice, due to the uncertainty in ∇Ψ(ai),
which causes underestimation of B, we reset the
inverse Hessian to γI if |si| < 0.05.

6. Monte Carlo simulations are performed under the
potential v(r;ai) with periodic boundary condi-
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tions to obtain the corresponding Ψ(ai). The opti-
mization iterations stop when Ψ(ai) is smaller than
some tolerance ε.

7. If Ψ(ai) > ε, we check whether a different set of
basis functions is needed. For example, additional
basis functions are required if the magnitude of the
gradient |∇Ψ(ai)| is smaller than some prescribed
small value ε′, because this implies that the BFGS
optimization has found a minimum for Ψ, but this
minimum does not satisfy the convergence crite-
rion. For simplicity, we choose the additional basis
functions {fn+1(r; an+1), ..., fp(r; ap)} by a numer-
ical fit of the difference between the potentials of
mean force for the target and trial pair statistics,
i.e.,

β

p∑
j=n+1

fj(r; aj) ≈ ln
g2(r;ai)

g2,T (r)
, (46)

where p > n. The forms of the additional basis
functions are again chosen from the general forms
(39)–(43), and the fitting procedure is exactly anal-
ogous to that described in Sec. IV B. On the other
hand, if the energy-scale parameters εj in some ba-
sis functions fall below a certain small value, which
we set to be 10−3, then one can remove this basis
function for efficiency. In both cases, we choose a
new set of basis functions and the corresponding
parameters according to Sec. IV B. If no modifica-
tion of the basis functions is needed, we set i = i+1,
and repeat steps 3–7.

We note that the parameters σg2 , σS , A, λ, δa, ε and ε′ are
fixed throughout the optimization process.

D. Inverse procedure for hyperuniform targets

Here, we describe the modification of the inverse proce-
dure presented in Sec. IV B–IV C to target homogeneous
systems that correspond to hyperuniform pair statistics
in which S(k) ∼ kα in the limit k → 0, where α > 0. For
such targets, one generally requires a long-ranged pair
potential with the inverse-power-law form v(r) ∼ 1/rd−α

for large r. Because the volume integral of v(r) diverges
in the thermodynamic limit, a neutralizing one-body po-
tential must be added to maintain stability [38]. There-
fore, we utilize the general total potential energy (31) but
take the one-body potential φ1(r) to be uniform with an
isotropic pair potential v(r). The total configurational
energy (31) for N particles in a large but finite region Ω
is thus given by

Φ(rN ;a) =
N∑
i=1

φ1(a) +
N∑
i<j

v(rij ;a), (47)

where v(r;a) is still a sum of basis functions (38) in
which the longest-ranged basis function is given by fj =

aj/r
d−α. We note that while the formalism proposed

by Zhang and Torquato [30] for the realizability of pair
statistics of hyperuniform targets implicitly includes a
one-body potential, it was not explicitly determined
there.

It is noteworthy that particles interacting under the
long-ranged pair potential v(r;a) for a hyperuniform tar-
get can be regarded as a generalized Coulombic interac-
tion of “like-charged” particles that are stabilized by a
uniform background of equal and opposite charge [38].
Thus, to maintain stability, the one-body potential in a
region Ω is taken to be

φ1(a) = −ρ
2

∫
Ω

v(x;a)dx, (48)

where dx is a volume element in Ω and x = |x|. Note
that φ1(a) is a function that depends on the region Ω.
This use of such a background one-body term as a means
to provide overall charge neutrality when the two-body
potential is long-ranged had been employed to study nu-
merically the one-component plasma [65, 66] as well as
the Dyson log gas [67]. One can combine the one- and
two-body potentials to rewrite Eq. (47) as

Φ(rN ;a) =
N∑
i<j

Å
v(rij ;a)− 1

V

∫
Ω

v(x;a)dx

ã
=

N∑
i<j

ve(rij ;a).

(49)

The summand, which we denote by ve(r;a), can be re-
garded as an effective pair potential which is v(r;a)
“screened” by the background.

In order to obtain accurate pair statistics for such long-
ranged v(r;a) in the thermodynamic limit, one must sim-
ulate the total configurational energy corresponding to an
infinitely large system in Rd that does not impose a cutoff
on v(r;a). For this purpose, we set Ω to be a hypercubic
simulation box of side length L under periodic bound-
ary conditions and consider its infinite periodic images.
To compute the total configurational potential energy for
this infinite system, we note that the effective interaction
between particle i and all images of particle j is given by

ve,PBC(rij ;a) =
∑
n

v(rij + nL;a)− 1

Ld

∫
Rd

v(rij ;a)dx

(50)
where n are sites of the hypercubic lattice Zd. In going
from (49) to (50), we have used the fact that V = Ld

and that the integration over the volume elements in all
images of the region Ω is equivalent to a volume inte-
gral over Rd. Note that due to the summation over lat-
tice sites in Eq. (50), ve,PBC(rij ;a) is vector-dependent
(anisotropic), even if ve(rij ;a) is isotropic.

Thus, to find one- and two-body potentials correspond-
ing to hyperuniform target pair statistics, the inverse pro-
cedure follows exactly the same steps as those described
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in Sec. IV B–IV C, except that in the optimization stage
(Sec. IV C), the Monte Carlo simulations in steps 2 and 6
are performed under ve,PBC(rij ,a), instead of v(r;a). In
practice, Eq. (50) can be converted to an absolutely con-
vergent integral and efficiently evaluated using the Ewald
summation technique [65, 68]. The specific formula for
the absolutely convergent integral depends on d and α
and the formula in the case d = 3, α = 2 will be given in
Sec. V D, where we apply our inverse procedure on the
3D cloaked URL.

E. Extension of the methodology to homogeneous
anisotropic systems

Our methodology naturally extends to cases where the
target system is anisotropic, e.g. nematic liquid crystals.
The anisotropy of the system is reflected in the direc-
tional dependence of the target pair statistics g2,T (r) and
ST (k). One could compute the anisotropic direct corre-
lation function cT (r) via the Ornstein-Zernike equation
(23) that specifies the large-|r| behavior of the v(r;a) via
βv(r) ∼ −c(r) along the relevant directions, which are a
set of discretized orientations of r that are not related by
symmetry operations. Note that oftentimes, c(r) has ori-
entational symmetries, which reduces the number of rel-
evant directions. Similarly, an initial guess of the small-
and intermediate-|r| behaviors of v(r;a) can be obtained
via a numeric fit of the HNC approximation (44).

We note that when choosing the basis functions, one
should ensure that all basis functions have the same sym-
metry as c(r). For example, one could choose the basis
functions to be a product of a radial function and an
angular function:

fj(r; aj) = Xj(r; aj,X)Θj(u; aj,Θ), (51)

where aj,X and aj,Θ are parameter vectors for the radial
function and the angular function, respectively, and aj =
{aj,X , aj,Θ}. The orientation vector u is the unit vector
in the direction of r. The radial function Xj(r;aj,X) is
selected from the general forms (39)–(43) and the an-
gular function Θj(u; aj,Θ) has the orientational symme-
try of c(r). For example, one can choose Θj(u; aj,Θ) to
be Chebyshev polynomials and spherical harmonics for
d = 2 and d = 3, respectively. The same multi-stage opti-
mization procedure described in Sec. IV C is then applied
to minimize Ψ(r;a), except that the Monte Carlo simu-
lations in steps 2 and 6 now involve anisotropic g2(r;a)
and S(k;a).

V. APPLICATIONS OF THE INVERSE
METHODOLOGY TO A DIVERSE SET OF

TARGET SYSTEMS

In this section, we present the results of the applica-
tion of our new inverse methodology for various target
systems in two and three dimensions, including a 3D

Dzugutov liquid [40], a 2D Lennard-Jones fluid in the
vicinity of the critical point, as well as pair statistics
corresponding to 2D nonequilibrium RSA packing pro-
cess [41, 69, 70] and a hyperuniform 3D nonequilibrium
cloaked URL [43]. For such diverse target pair statistics,
we show that our methodology yields lower values of the
L2-norm error E , defined by (1), than those derived from
currently available inverse procedures, including the IBI
and IHCNI.

To numerically determine target and trial pair statis-
tics, we performed Monte Carlo simulations to gener-
ate ensembles of configurations equilibrated under the
corresponding potentials. Our simulations used square
or cubic boxes under periodic boundary conditions with
N = 500 particles. We averaged simulated pair statistics
for 1000 configurations to obtain g2(r;a) and S(k;a). In
all cases, we chose the convergence criterion for Ψ to be
ε = 0.002. We include in Appendix the implementation
details of the methodology in each case, including the
specific procedure of choosing the basis functions, as well
as the values chosen for the parameters σg2 , σS , A, λ, δa
and ε′ in the optimization algorithm.

A. Lennard-Jones fluid in the vicinity of the
critical point

To apply our inverse methodology to systems in the
vicinity of the liquid-gas critical point, which is nonhype-
runiform, we generated a 2D systems equilibrated under
the standard Lennard-Jones 6-12 potential

vLJ(r) = 4ε

ï(σ
r

)12

−
(σ
r

)6
ò

(52)

and then extracted the corresponding targeted pair
statistics g2,T (r) and ST (k). The distance, density and
temperature are made dimensionless as r/σ, ρσ2 and
kBT/ε. Henceforth, we take ε = 1, σ = 1 and kB = 1.
We call vLJ(r) the target-generating potential, which we
know is unique according to Henderson’s theorem [36].
Importantly, vLJ(r) was only used to generate the tar-
get pair statistics. When applying the inverse algorithm,
we treat the target pair statistics simply as given, with-
out regard to the target-generating potential, and hence
do not assume the functional form of the potential. On
the contrary, the initial guess of the basis functions of
any potential is obtained via statistical-mechanical the-
ory, and these are subject to re-selection during the opti-
mization procedure; see Appendix for details. The den-
sity and temperature chosen for the target system are
ρ = ρc = 0.37 and T = 1.1Tc = 0.55 [71, 72]. A snapshot
of the target system is shown in Fig. 1(a). This state
point was chosen so that the critical scaling of the total
correlation function (21) could be observed. We com-
puted the correlation length to be ξ = 4.83 and fitted
the Lorentzian form (20) for the structure factor ST (k)
in the range 0 < k < 0.5 to find ST (0) = 12.2, which
is clearly nonhyperuniform. We further remark that the
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FIG. 3. (a) A snapshot of a 2D configuration 1,000-particle system that is equilibrated under the optimized potential [Eq. (53)]
for the target LJ fluid in the vicinity of its critical point. (b) The target-generating potential vLJ(r) and the optimized pair
potential vF (r; a). (c) Targeted and optimized pair correlation functions. (d) Targeted and optimized structure factors.

effect of critical slowing down [52] is significant for sim-
ulations at this state point, requiring a relaxation time
is two orders of magnitude larger than that for a typical
dense Lennard-Jones liquid.

To apply our methodology described in Sec. IV, we
first accurately obtained the small-k behavior for c̃T (k)
and ST (k) via the Ornstein-Zernike equation (23) as de-
scribed in Sec. III, and then performed inverse Fourier
transform (8) to determine the large-r behavior of cT (r),
which we found to be an inverse power-law −cT (r)/β ∼
v(r) ∼ −Erp [Eq. (25)]. Assuming that p takes integer
values, we fitted c̃T (k) with the form of Eq. (26), but
with kζ replaced by ln(k)kζ when ζ is even, from which
we robustly determined that p = 6, implying ζ = 4. To
determine the form of the small-r behavior of v(r;a), we
observed that vHNC(r) is strongly repulsive at small r,
which is consistent with the inverse power-law form (43)

with a
(1)
j > 0. Therefore, the initial form of the pair

potential was chosen to be

v(r;a) = ε1r
−p1 − ε2r

−6. (53)

Note that although the form (53) is a generalized LJ po-
tential, it was determined via statistical-mechanical the-
ory from the target pair statistics alone, without knowl-
edge of the functional form of the target-generating po-
tential. We verified that v(r;a) satisfies the condition
h2
T (r) � |βv(r;a)| for large r, which is required to ap-

ply the asymptotic formula (19). The reader is refereed
to Appendix for additional implementation details. Min-
imization of Ψ using the form (53) yielded Ψ < 0.002
within one single stage of optimization, i.e. no re-
selection of the basis function was needed. The optimized
parameters are given by ε1 = 3.98, p1 = 11.93, ε2 =
4.00, which is in excellent agreement with the target-
generating Lennard-Jones potential (52), as shown in
Fig. 3(b). One can see that the configuration of the
optimized equilibrium system [Fig. 3(a)] resembles that
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of the near-critical target [Fig. 1(a)], and exhibits an
expected large correlation length. As anticipated, there
is excellent agreement between the target and optimized
pair statistics in both direct and Fourier space [Fig. 3(c)–
(d)]. The individual errors, defined by (2) and (3), are
given by Dg2 = 6.0 × 10−4 and DS = 5.7 × 10−4. The
total L2-norm error, defined by (1), is E = 0.034.

We also applied the IBI and the IHNCI procedures to
the same target pair statistics. The trial potentials in
the IBI procedure failed to converge and gave liquid-gas
phase separated states. The IHNCI procedure yielded
a potential that is similar to our optimized potential
but only in the small-r range 0 ≤ r ≤ 1. However,
it does not very accurately capture the large-r behav-
ior of vLJ(r). The errors for the IHNCI procedure are
Dg2 = 0.0074, DS = 0.011, E = 0.13. Note that E ob-
tained via IHNCI is an order of magnitude larger than
that obtained via our method due to the inaccuracy in
the large-r behavior of v(r) as well as the accumulation of

simulation errors in the binned potential. We also applied
our methodology to LJ fluids at other state points, and
find that for systems with long-ranged g2(r), including
dense liquids near freezing, E obtained via our method is
generally an order of magnitude lower than than that ob-
tained via IHNCI. Therefore, our methodology appears
to be superior to previous methods in solving these in-
verse problems for fluids in the critical region and dense
liquids.

B. Liquid under the Dzugutov potential

To demonstrate that our inverse methodology is capa-
ble of treating systems equilibrated under nonstandard
complex interactions, we study a 3D liquid under the
Dzugutov potential, which is believed to be a good glass
former [40, 73, 74]. Following Ref. [73], the form of the
potential vD(r) is given by

vD(r)

ε
=
A

ε

ï( r
σ

)−m
− B

ε

ò
exp

Å
c

r − a

ã
H
(a− r

σ

)
+
B

ε
exp

Å
d

r − b

ã
H

Å
b− r
σ

ã
, (54)

where H(x) is the Heaviside step function, A,B are en-
ergy parameters in units of ε, m is a dimensionless expo-
nent, a, b, c, d are distance parameters in units of σ. The
distance, density and temperature are made dimension-
less as r/σ, ρσ3 and kBT/ε. Henceforth, we take ε = 1,
σ = 1 and kB = 1. The values of A,B,m, a, b, c, d cho-
sen for this study are given in the Appendix. Fig. 4(b)
plots the form of the potential, from which it is clear
that vD(r) is piecewise smooth, with oscillations at small
r and a cutoff at which the potential exhibits a discon-
tinuous first derivative at the cutoff distance r = b. We
generated a 3D systems equilibrated under vD(r) and
then extracted the corresponding targeted pair statistics
g2,T (r) and ST (k). The density and temperature chosen
for the target system are ρ = 0.5 and T = 1, which is a
dense liquid state. Again, as in Sec. V A, we do not as-
sume the functional form (54) when applying the inverse
algorithm, and the only input data to the algorithm are

ρ, T, g2,T (r) and ST (k).

To apply our methodology described in Sec. IV, we
first accurately obtained the small-k behavior for c̃T (k)
from S(k) via the Ornstein-Zernike equation (23) and
performed its inverse Fourier transform (8), from which
we determined the large-r behavior of cT (r) ∼ −βv(r)
has an effectively superexponential decay. To obtain an
initial guess of v(r;a) for small- and intermediate-r, we
observe that vHNC(r) has a strong repulsion for r < 1 and
is oscillatory in the range 1 < r < 2. We fitted vHNC(r)
with the forms 40–24 and found the best fit of vHNC(r)
is given by the exponential-damped oscillatory form 41.
Thus, we started with an initial v(r;a) that is a sum of
a power-law function and two exponential-damped basis
functions. After one iteration of re-selecting basis func-
tions, the final form of the optimized pair potential is
given by

vF (r;a)

ε
=



2∑
i=1

εi
rpi

+ ε3 exp

[
−
Ç

r

σ
(1)
3

å2
]

cos

Ç
r

σ
(2)
3

+ θ3

å
+ ε4 exp

[
−
Ç

r

σ
(1)
4

å4
]

cos

Ç
r

σ
(2)
4

+ θ4

å
+

7∑
i=5

εi cos

Å
r

σi
+ θi

ã r ≤ 2

∑2
i=1

εi
rpi + ε3 exp

ñ
−
Å

r

σ
(1)
3

ã2
ô

cos

Å
r

σ
(2)
3

+ θ3

ã
+ ε4 exp

ñ
−
Å

r

σ
(1)
4

ã4
ô

cos

Å
r

σ
(2)
4

+ θ4

ã
r > 2,

(55)

where the undamped oscillatory functions f5, f6, f7 re- sulted from the re-selection of the basis functions, which
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FIG. 4. (a) A snapshot of a 3D configuration 512-particle system that is equilibrated under the optimized potential [Eq. (55)]
for the Dzugutov liquid. (b) The target-generating potential vD(r) (54) and the optimized pair potential (55). (c) Targeted
and optimized pair correlation functions. (d) Targeted and optimized structure factors.

fine-tunes v(r;a) in the range 0 ≤ r ≤ 2; see Appendix
for details. Note that while the functional form (55)
is different from that of the target-generating potential
(54), this is expected, because the latter is not known
a priori in application of our algorithm. However, Fig.
4(b) show that the plots for vF (v;a) and vD(r) closely
agree with one another, indicating that our methodol-
ogy has precisely recovered the target-generating poten-
tial. We verified that vF (r;a) satisfies the condition
h2
T (r)� |βv(r;a)| for large r, which is required to apply

the asymptotic formula (19). The reader is refereed to
Appendix for additional implementation details. Figure
1(a) and 4(a) show that configurations of the target and
optimized systems closely resemble each other. There
is also excellent agreement between the target and op-
timized pair statistics in both direct and Fourier space
[Fig. 4(c)–(d)]. The individual errors, defined by (2) and
(3), are given by Dg2 = 0.0010 and DS = 0.0010. The

total L2-norm error, defined by (1), is E = 0.045. On
the other hand, the errors for the IHNCI procedure is
Dg2 = 0.0040, DS = 0.0049, E = 0.094. Note that E ob-
tained via IHNCI about twice of that obtained via our
method due to the the accumulation of simulation errors
in the binned potential.

C. Equilibrium system corresponding to
nonequilibrium random sequential addition pair

statistics

Our methodology provides a powerful means to test the
Zhang-Torquato conjecture [30] by determining whether
classical equilibrium systems under an effective pair in-
teraction can be attained that accurately match the pair
statistics of nonequilibrium systems. Probing systems
with identical pair statistics but different higher-body
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statistics will also shed light on the degeneracy problem
[44, 45].

Here, we choose our nonequilibrium target system to
be the random sequential addition (RSA) packing pro-
cess [41, 42, 69, 70, 75], which has important applica-
tions in protein and polymer deposition models. Starting
with an empty but large volume Ω in Rd, the RSA pro-
cess is produced by randomly, irreversibly, and sequen-
tially placing nonoverlapping (hard) spheres of diameter
D into this volume under periodic boundary conditions
subject to a nonoverlap constraint. If a new sphere does
not overlap with any existing spheres at some time t, it
is added to the configuration; otherwise, the attempt is
discarded. One can stop the addition process at any t,
obtaining RSA configurations with a range of packing
fractions φ(t) up to the infinite-time maximal saturation
value φs = φ(∞). For identical spheres in 2D, φs ≈ 0.547
[41, 42, 70].

It is known that g2(r)’s for RSA processes at the satu-
ration limit possess a logarithmic divergence as r → D+,
independent of dimension [76]. This suggests that the
pair potential corresponding to a saturated RSA pack-

ing, if it exists, also possesses a corresponding singu-
larity. Therefore, we choose as our target a 2D RSA
packing very near, but not exactly at, saturation, with
φ = 0.534 = 0.976φs, which avoids treating the afore-
mentioned singularity, but is still a challenging target.
We set D to be unity to generate the target RSA system.
A snapshot of the target system is given in Fig. 5(a).

The effective pair potential v(r;a) must have a hard
core [Eq. (39)] for r ≤ 1 to respect the nonoverlap con-
straint. To determine the large-r behavior of v(r;a),
we used the asymptotic analysis of c̃T (k) described in
Sec. III and found that that βcT (r) has superexponen-
tial decay rate that is best described by the a Gamma-
function form (40). For intermediate values of r, we ob-
served that the HNC approximation contains a minimum
at the contact radius r = 1 and exhibits apparent os-
cillations about the horizontal axis. Therefore, starting
from an initial potential that is a sum of a hard core, a
non-oscillatory Gamma-form function (for the minimum
at contact), and two Gamma-damped oscillatory func-
tions, we went through 4 iterations of optimization and
re-choosing basis functions and arrived at the following
final form of the parameterized pair potential:

vF (r;a) =

∞ r ≤ 1

ε

ï
−
∑2
j=1

εj
Γ(r/σj) +

∑7

j=3
εj cos

(
r/σ

(1)
j

+θj
)

Γ
(
r/σ

(2)
3

) ò
r > 1,

(56)

which satisfies the condition h2
T (r)� |βvF (r;a)| for large

r, which is required to apply the asymptotic formula
(19). In our simulations, we let both the energy scale
ε and the dimensionless temperature kBT/ε to be unity.
The optimized parameters are provided in Table IV of
the Appendix, which includes other implementations de-
tails. First, observe that the configuration of the opti-
mized system Fig. 5(a) is visually very similar to the
targeted nonequilibrium configuration in Fig. 1(c). Fig-
ure 5(b) shows the optimized potential, which possesses
a sharp well at the hard-sphere diameter r = 1, and
another broader well at r = 1.66. As shown in Fig. 5(c)–
(d), the optimized pair potential gives pair statistics that
agree well with the target nonequilibrium pair statistics.
The individual errors are Dg2 = 0.0023 and DS = 0.0015
and the total L2-norm error is E = 0.062. This provides
a vivid example that demonstrably adds to the growing
evidence of the validity of the Zhang-Torquato conjecture
[30].

By contrast, the individual errors resulting from the
IHNCI procedure are Dg2 = 0.0033 and DS = 0.0060,
while the total L2-norm errors is E = 0.096, which are
slightly larger than those from our method due to the ac-
cumulation of random errors. The fact that the IHNCI
is relatively accurate for this target is due to the super-
exponential decay of g2,T (r), which translates to a fast

decaying pair potential v(r) via the HNC approximation.

D. Equilibrium system corresponding to
nonequilibrium 3D cloaked URL system

In this subsection, we apply our methodology to the
challenging task of determining an equilibrium system
corresponding to the pair statistics of a nonequilibrium
hyperuniform cloaked uniform randomized lattice (URL)
model [43]. In URL models, each point in a d-dimensional
simple cubic lattice L = Zd is displaced by a random
vector that is uniformly distributed on a rescaled unit
cell bC = [−b/2, b/2)d , where b > 0 is a scalar factor
and C is a unit cell of the lattice. By definition, the
lattice constant is set to be unity. It has been shown
that the structure factor for the URL point process con-
tains Bragg peaks that coincide with the unperturbed lat-
tice as well as a diffuse part such that limk→0 S(k) ∼ k2

[43, 77, 78]. Remarkably, Klatt et al. showed that the
Bragg peaks in the structure factors vanish completely,
or become “cloaked”, when b takes integer values [43].

We applied our methodology to determine a positive-
temperature equilibrium system with one- and two-body
interactions that realizes the pair statistics of a 3D
cloaked URL model with ρ = 1, b = 1. Such a classical
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FIG. 5. (a) A snapshot a 2D configuration 1,000-particle system that is equilibrated under the optimized potential [Eq. (56)]
for the target nonequilibrium RSA packing near its saturation state. (b) Optimized pair potential. (c) Targeted and optimized
pair correlation functions. (d) Targeted and optimized structure factors.

system must be thermodynamically incompressible; see
Sec. II C. The fact that the target system is hyperuni-
form with α = 2 implies that the effective pair potential
has the asymptotic form v(r) ∼ 1/r; see Eq. (30). After
fitting the HNC approximation with Eqs. (40)–(43) for
the small-r range 0 ≤ r ≤ 2, we determined the initial
form of the pair potential to be

v(r;a) = ε [vl(r;al) + vs(r;as)] , (57)

where

vl(r;al) =
ε1

r
(58)

and

vs(r;as) = −ε2 exp (−r/σ2)

rp2
+ ε3 exp

−Çr − σ(1)
3

σ
(2)
3

å2


(59)
are the long-ranged and short-ranged parts of v(r;a), re-
spectively; see the Appendix for details. We verified that
Eq. (57) satisfies the condition h2

T (r) � |βv(r;a)| for
large r to apply (19). Henceforth, we set both the energy
scale ε and the dimensionless temperature kBT/ε to be
unity. We reiterate that vl(r;al) can be regarded as a
Coulombic interaction between “like-charged” particles.
The one-body potential was treated using the procedure
described in Sec. IV D. Under periodic boundary condi-
tions with a cubic simulation box of edge length L, the
effective interaction between particle i and all images of
particle j (50) is given by
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ve,PBC(rij ;a) =
∑
n

ε1

|rij + nL|
− ε1

L3

∫
R3

1

x
dx +

∑
n

vs(|rij + nL|;as)−
1

L3

∫
R3

vs(x;as)dx (60)

where n are sites of the cubic lattice Z3. Since vs(r;as) is
short-ranged, the third term in (60) is dominated by the

minimum image of j and the fourth term of (60) vanishes
in the limit of large L. Therefore,

ve,PBC(rij ;a) =
∑
n

ε1

|rij + nL|
− ε1

L3

∫
R3

1

x
dx + vs(rij), L→∞. (61)

The first two terms of (61), which are integrals over
long-ranged potentials, can be converted to an absolutely

convergent integral and efficiently evaluated using the
Ewald summation technique [65, 68]:

∑
n

ε1

|rij + nL|
− ε1

L3

∫
R3

1

x
dx =

∑
n

ε1

|rij + nL|
− ε1

L3

∫
R3

1

|rij + x|
dx

=
ε1

L

Ñ∑
n

erfc(π1/2|rij/L+ n|)
|rij/L+ n|

− 1 +
∑
n6=0

1

πn2
exp
(
−πn2

)
exp[2iπn(rij/L)]

é
,

(62)

where n = |n|. Thus,

ve,PBC(rij ;a) =
ε1

L

Ñ∑
n

erfc(π1/2|rij/L+ n|)
|rij/L+ n|

− 1 +
∑
n6=0

1

πλ2
exp
(
−πλ2

)
exp(2iπn(rij/L))

é
− ε2 exp (−r/σ2)

rp2
+ ε3 exp

−Çr − σ(1)
3

σ
(2)
3

å2
 , L→∞

(63)

which is the effective potential that we used in Monte
Carlo simulations under periodic boundary conditions.

The form of the parameterized potential Eq. (57)
achieved the desired convergence criterion Ψ < 0.002 in
one single optimization stage, i.e., no re-selection of ba-
sis function was needed. The optimized parameters are
listed in Table V of the Appendix. Figures 1(d) and 6(a)
show the snapshots of the target and the optimized sys-
tems, respectively, which are visually indistinguishable.
Figure 6(b) plots the short-ranged part of the effective
potential, i.e. vs(r;as) = v(r;a)−0.940/r against r. Fig-
ure 6(c) and (d) show g2(r) and S(k), respectively, for the
target and optimized systems. The pair statistics of the
target cloaked URL is in excellent agreement with those
of the optimized equilibrium system in both direct and
Fourier space. The individual errors are Dg2 = 4.8×10−4

and DS = 7.5×10−4 and the L2-norm error is E = 0.035,
all of which are remarkably relatively small.

Importantly, the IBI and IHNCI procedures cannot
treat hyperuniform targets. First, they do not include
one-body potentials. Second, they impose a cut-off on

the extent of the pair potential, which is not appropriate
for the required long-ranged interactions.

VI. CONCLUSIONS AND DISCUSSION

We have formulated a novel optimization algorithm to
find effective one- and two-body potentials with high pre-
cision that correspond to pair statistics of general trans-
lationally invariant disordered many-body equilibrium or
nonequilibrium systems at positive temperatures. The
versatility and power of our inverse methodology to accu-
rately extract the effective pair interactions was demon-
strated by considering four diverse target systems: (1)
3D liquid under the Dzugutov potential; (2) 2D Lennard-
Jones system in the vicinity of its critical point; (3) 2D
nonequilibrium RSA packing; and (4) a 3D nonequi-
librium hyperuniform “cloaked” URL. We showed that
the optimized pair potentials generate corresponding pair
statistics that accurately match their corresponding tar-
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FIG. 6. (a) A portion of a 3D configuration of a 2,744-particle system that is equilibrated under the optimized effective one-
and two-body potential for the target 3D cloaked URL. Only 512 particles are displayed. (b) Optimized pair potential [Eq.
(57)] minus its long-ranged repulsive part 0.940/r. (c) Targeted and optimized pair correlation functions. (d) Targeted and
optimized structure factors.

gets with total L2-norm errors that are an order of magni-
tude smaller than that of previous methods. The results
of our investigation lend further support to the Zhang-
Torquato conjecture [30], which states that any realizable
g2(r) or S(k) corresponding to a translationally invari-
ant nonequilibrium system can be attained by a classical
equilibrium ensemble involving only (up to) effective pair
interactions.

The capability of our procedure to precisely deter-
mine equilibrium systems corresponding to nonequilib-
rium pair statistics has important implications. First,
our procedure provides an effective means to test the
Zhang-Torquato conjecture for structures that span di-
verse hyperuniform and nonhyperuniform classes [30].
Second, the dynamics leading to a nonequilibrium sys-
tem that has the same pair statistics as one drawn from
an equilibrium ensemble must be reflected in differences
in their respective higher-order statistics. Thus, such

differences in the higher-order statistics is expected to
provide a measure of the degree to which a nonequilib-
rium system is out of equilibrium. Third, such investi-
gations will enable one to probe systems with identical
pair statistics but different higher-body statistics, which
is expected to shed light on the well-known degeneracy
problem of statistical mechanics [44, 45, 79]. Fourth, one
could explore thermodynamic and dynamic properties of
such effectively equivalent equilibrium systems, such as
phase behaviors, excess entropies [7, 80], and inherent
structures [81], which are outstanding problems for future
research. Fifth, structural properties of the effectively
equivalent equilibrium states, such as nearest-neighbor
probability distribution functions, percolation threshold
and fluid permeability, enable one to infer these nontriv-
ial attributes of the nonequilibrium states, which are cru-
cial in determining mechanical and electronic properties
of materials [82]. Finally, our study enables one to gen-
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erate tunable nonhyperuniform and hyperuniform mate-
rials.

Another promising application of our methodology is
to numerically investigate the realizability problem, i.e.,
whether hypothetical functional forms of g2(r) or S(k)
at fixed ρ can be attained by many-particle configura-
tions [27, 30, 83–86]. This is an outstanding problem in
statistical physics, as it has been shown that certain func-
tional forms of pair statistics are not realizable, even if
they meet all the explicitly known realizability conditions
[83, 85]. Our procedure provides a powerful means to test
whether there exist equilibrium many-body systems with
up to pair interactions that realize hypothetical target
pair statistics at all length scales.

The generalization of our methodology to anisotropic
systems described in Sec. IV E can be applied to de-
termine effective one-and two-body potentials that re-
produce target pair statistics for liquid crystal phases.
Such a concrete example includes the nematic phase of
oriented ellipsoids shown in Fig. 7. In this partic-
ular case, the shape of the ellipsoids can be inferred
from the range of repulsion of the anisotropic effective
pair potential v(r;a). It is also straightforward to ex-
tend our methodology to inverse problems for statisti-
cally homogeneous multicomponent systems that consist
of different species A,B, .... Here, the goal is to find
equilibrium systems with up to pair potentials that re-
produce all the intraspecies and interspecies pair corre-
lation functions {gAA(r), gAB(r), ..., gBB(r), ...} as well
as their corresponding structure factors. To accom-
plish this task, one must choose a different set of ba-
sis functions for each species-specific trial pair potential
{vAA(r,aAA), vAB(r,aAB), ..., vBB(r;aBB), ...} based on
statistical-mechanical theory [87, 88]. The algorithm de-
scribed in Sec. IV C can be then applied to optimize each
species-specific pair potential.

FIG. 7. Schematic illustration of a statistically homogeneous
but anisotropic nematic liquid-crystal configuration.

A substantially more challenging extension of our
methodology is to targeted pair statistics derived from

general statistically inhomogeneous system in which
there is a preferred origin in the system, e.g. liquid-gas
interfaces, which requires a position-dependent one-body
potential φ(r) and a pair potential that depends on abso-
lute positions φ2(r1, r2). To treat such systems, one could
apply the inhomogeneous Ornstein-Zernike equations [7]
and the associated closures, such as the LovettMouBuf-
fWertheim equation [89], to obtain an initial guess for the
functional forms of both φ(r) and φ2(r1, r2) [90]. How-
ever, it will be significantly more nontrivial to find appro-
priate pointwise functional forms for the basis functions
and to perform the corresponding optimizations for in-
homogeneous systems, and so represents an outstanding
subject for future research.

We note that machine-learning approaches [91] could
be used as an alternative to the BFGS technique for
optimization of the potential parameters a to improve
computational efficiency. More specifically, the train-
ing phase of machine-learning techniques, i.e., generat-
ing a sufficient number of [v(r;a), g2(r;a) and S(k;a)]
pairs for many different parameter supervectors a, can
be completely parallelized. Combining machine-learning
techniques with our inverse algorithm is an outstanding
problem for future research.

Finally, we remark that while the main focus of the
present work concerns classical systems, one could also
consider inverse problems for targeted pair statistics of
quantum many-body systems, such as those involving bo-
son or fermion statistics [92, 93] or superfluidity as exhib-
ited by liquid helium at low temperature [94, 95]. One
could start with some experimentally measured g2(r) or
S(k) for a quantum fluid and determine if there exist clas-
sical many-particle systems interacting with up to pair
potentials that produce the same pair statistics, which is
often the case. For instance, it is known that the pair
statistics of the 1D free-fermion system are equivalent to
those of a classical system on a unit circle under a loga-
rithmic interaction at positive T , known as the circular
unitary ensemble [96, 97]. Another possible problem is
to determine (at constant ρ and T ) how pair potentials
in an initially classical fluid must be modified to keep the
same pair distribution as the particles reduce their mass
to become increasingly quantized, either as fermions or
bosons. Investigating inverse problems for quantum sys-
tems is a fascinating area for future research.
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Appendix: Implementation details of the
methodology for each of the targets

1. Lennard-Jones fluid in the vicinity of the critical
point

To estimate the large-r behavior of v(r), we first fit-
ted the the direct correlation function of the target sys-
tem cT (r)/β in the range 1.5 ≤ r ≤ 5 with Eq. (40)–
(43), in which the oscillatory factors were eliminated as
cT (r) is not oscillatory about the horizontal axis. The
form with the lowest BIC was given by a power law
−cT (r)/β ∼ −Er−p, where p = 5.9 ± 1.2. To more ac-
curately estimate the large-r behavior of v(r), c̃T (k) in
the range 0 ≤ k ≤ 4 was fitted with the expected small-
k functional forms of c̃(k) associated with p = 5, 6, 7,
respectively. (We fitted c̃T (k) instead of ST (k), as the
former gave lower fit residuals.) Table I shows the re-
sults of the fits along with their corresponding BIC. Al-
though the fit for p = 5 yielded the lowest BIC, its cor-
responding nonanalytic term in c̃(k) is positive, which
is inconsistent with the desired attractive large-r behav-
ior of v(r). Thus, the large-r asymptotic behavior of
v(r) is best described by v(r) ∼ −E/r6, where E is
estimated to be 3.88 via a numeric fit using Eq. (26),
but with kζ replaced by ln(k)kζ . To choose a functional
form for the small-r behavior of v(r), we observed that
the HNC approximation in the range 0.9 ≤ r ≤ 1 is
strongly repulsive and can be best described by a power
law function (43). Since vHNC(r) is not oscillatory about
the horizontal axis, we eliminated the oscillatory factor

cos
Ä
r/σ

(1)
j + θj

ä
. We found that vHNC(r) in the range

0.9 < r < 10 can be well fitted by the parameterized
trial potential Eq. (53), in which the initial values of the
parameters are ε1 = 3.90, p1 = 11.51, ε2 = 3.88.

In the optimization stage of the inverse procedure, we
set the parameters defined in Sec. IV to be σg2 = 4, σS =
2, A = 1, λ = 1, δa = 0.1, ε = 0.002, ε′ = 0.02. The
criterion Ψ < ε is achieved within one single stage of
optimization. The optimized v(r;a) gives ε1 = 3.98, p1 =
11.93, ε2 = 4.00.

2. Liquid under the Dzugutov potential

The target-generating Dzugutov potential is given by
54, where the parameters used in this work are listed in
Table II. To apply our methodology, we first note that
ST (k) in the range 0 ≤ k ≤ 1.5 is fitted accurately by
0.169+0.0251k2 +0k4, which suggests v(r) at large r has
exponential or superexponential decay. We accurately
obtained the small-k behavior for c̃T (k) and performed
inverse Fourier transform (8), from which we determined
that −cT (r)/β ∼ v(r) has an effectively superexponential
decay at large r.

To obtain an initial guess of v(r;a) for small- and
intermediate-r, we observe that vHNC(r) has a strong re-
pulsion for r < 1 and is oscillatory in the range 1 < r < 2.
We fitted vHNC(r) in the range 0 ≤ r ≤ 5 with the forms
(40)–(24) and found the fit with the lowest BIC is given
by the exponential-damped oscillatory form 41. Thus, we
started with an initial v(r;a) that is a sum of a power-law
function and two exponential-damped basis functions”
with M = 2 and 4, respectively. This combination of M
values achieved the lowest BIC among all combinations.
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(A.1)

In the optimization stage of the inverse procedure,
we used the parameters σg2 = 4, σS = 2, A = 1, λ =
0.05, δa = 0.1, ε = 0.002, ε′ = 0.02. The optimization
using the initial set of basis functions (A.1) stalled at
Ψ = 0.011, which is larger than the tolerance ε. Thus, we
added basis functions via a fit of the difference between
target and trial potentials of main force (46). The ad-
ditional basis functions include another power-law func-
tion to accurately capture the repulsive interactions, as
well as three undamped oscillatory functions in the range
0 ≤ r ≤ 2 to capture the asymmetric peaks and valleys
in g2.T (r) in that range. Upon re-optimization of the
parameters, the potential form (55) achieved the desired
error tolerance Ψ < 0.002. The optimized parameters are

listed in Table III.

3. Equilibrium system corresponding to
nonequilibrium random sequential addition pair

statistics

To choose an initial set of basis functions, we first
observe that the corresponding c̃T (k) in the range 0 ≤
k ≤ 3 can be excellently fitted by the analytic function
−24.4 + 1.51k2 + 0.00668k4. This implies that v(r) at
large r has exponential or superexponential decay. Thus,
we fitted vHNC(r) in the range 1 < r < 8 with Eqs. (40)–
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TABLE I. Fits of c̃T (k) for the target near-critical LJ fluid in the range 0 ≤ k ≤ 4.

Form of v(r) at large r Form of c̃(k) at small k m0 m2 m4 m6 m∗ BIC

−r−5 ∑3
i=0m2ik

2i +m∗k3 2.30 -5.64 -0.292 9.76 × 10−4 2.44 -252

−r−6 ∑3
i=0m2ik

2i +m∗ ln(k)k4 2.21 -4.44 1.08 0.00862 -0.692 -248

−r−7 ∑3
i=0m2ik

2i +m∗k5 2.14 -4.02 1.08 0.0307 -0.333 -188

TABLE II. Parameters of the target-generating Dzugutov po-
tential [Eq.(54)].

A 5.92 b 1.94
B 1.28 c 1.1
m 16 d 0.27
a 1.87

TABLE III. Optimized parameters of the pair potential (55)
for the 3D Dzugutov liquid.

ε1 3.743 θ4 0.7713
p1 11.108 ε5 -1.072
ε2 0.7342 σ5 0.1619
p2 16.641 θ5 4.455
ε3 45.126 ε6 2.893

σ
(1)
3 0.7738 σ6 0.2416

σ
(2)
3 0.1227 θ6 1.349
θ3 0.1501 ε7 6.017
ε4 24.704 σ7 1.036

σ
(1)
4 0.1096 θ7 3.193

σ
(2)
4 0.1686

(42), and found that the fit with lowest BIC was achieved
by a sum of two oscillatory Gamma functions and one
non-oscillatory Gamma function. Our initial choice of
the parameterized potential is given by

v(r;a) =

∞ r ≤ 1

− ε1
Γ(r/σ1) +

∑3

j=2
εj cos

(
r/σ

(1)
j

+θj
)

Γ
(
r/σ

(2)
2

) r > 1.

(A.2)

In the optimization stage of the inverse procedure,
we used the parameters σg2 = 4, σS = 2, A = 1, λ =
0.5, δa = 0.1, ε = 0.002, ε′ = 0.02. The optimization
using the initial set of basis functions (A.2) stalled at
Ψ = 0.01, which is larger than the tolerance ε. We ob-
served that this was due to two reasons: (a) the optimized
g2(1+;a) was lower than the target g2,T (1+), and (b) the
maximum in g2,T (r) at r = 2.2 was not well reproduced:
the optimized g2(r;a) had a maximum at r = 2.05 in-
stead. In order to fix these discrepancies, in the second
stage, we included in v(r;a) one more oscillatory and one
more non-oscillatory Gamma functions, i.e.,

v(r;a) =

∞ r ≤ 1

−
∑2
j=1

εj
Γ(r/σj) +

∑5

m=3
εj cos

(
r/σ

(1)
j

+θj
)

Γ
(
r/σ

(2)
3

) r > 1.

(A.3)

Re-optimizing the parameters in Eq. (A.3) still did not
reach the desired convergence criterion, but this time

TABLE IV. Optimized parameters of the RSA effective pair
potential (56).

ε1 1.200 × 1062 ε5 0.5765

σ1 0.0200 σ
(1)
5 0.223

ε2 7.610 θ5 0.5056
σ2 0.214 ε6 -0.2232

ε3 0.05790 σ
(1)
6 0.213

σ
(1)
3 0.0912 θ6 1.352
θ3 1.918 ε7 0.5458

ε4 0.3947 σ
(1)
7 0.292

σ
(1)
4 0.190 θ7 4.395

θ4 1.329 σ
(2)
3 0.697

TABLE V. Optimized parameters of the 3D cloaked URL
effective pair potential (57).

ε1 0.940 ε3 0.0910

ε2 1.57 σ
(1)
3 0.650

σ2 0.195 σ
(2)
3 0.292

p2 0.790

solely due to the reason (b) described above. Therefore,
we iteratively added Gamma-damped oscillatory func-
tions and optimized the parameters, until Ψ < 0.002 was
achieved. The final form of the parameterized pair po-
tential is given by Eq. (56) and the optimized parameters
are listed in Table IV.

4. Equilibrium system corresponding to
nonequilibrium 3D cloaked URL system

The fact that the target is hyperuniform with α = 2
implies that the pair potential has the asymptotic form
v(r) ∼ 1/r [Eq. (30)]. To obtain an initial form of the
small- and intermediate-r behaviors, we fitted vHNC(r)
in the range 0 ≤ r ≤ 2 with Eqs. (40)–(43), where the
oscillatory factors were eliminated as vHNC(r) is not os-
cillatory about the horizontal axis. The form with lowest
BIC was achieved by Eq. (57).

During the optimization step, we used the parameters
σg2 = 4, σS = 2, A = 1, λ = 2, δa = 0.05, ε = 0.002
and ε′ = 0.02. The criterion Ψ < ε was achieved in one
single stage of optimization. The optimized parameters
are listed in Table V.
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