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Extracting environmental forces from noisy data is a common yet challenging task in complex
physical systems. Machine learning (ML) represents a robust approach to this problem, yet is
mostly tested on simulated data with known parameters. Here we use supervised ML to extract
the electrostatic, dissipative, and stochastic forces acting on micron-sized charged particles levitated
in an argon plasma (dusty plasma). By tracking the sub-pixel motion of particles in subsequent
images, we successfully estimated these forces from their random motion. The experiments con-
tained important sources of non-Gaussian noise, such as drift and pixel-locking, representing a data
mismatch from methods used to analyze simulated data with purely Gaussian noise. Our model
was trained on simulated particle trajectories that included all of these artifacts, and used more
than 100 dynamical and statistical features, resulting in a prediction with 50% better accuracy
than conventional methods. Finally, in systems with two interacting particles, the model provided
non-contact measurements of the particle charge and Debye length in the plasma environment.

I. INTRODUCTION

Huge amounts of experimental data are often collected
faster than can be interpreted. In complex physical or
biological systems, this data mostly comes in the form
of tracked positions of individual agents or particles, yet
random noise makes the inference of internal and exter-
nal forces challenging. Conventional statistical methods
often result in systematic error, and require special treat-
ment of error estimation [1, 2]. Machine learning (ML)
algorithms can infer forces from trajectories without sys-
tematic error [3–9], but their reported performance has
been restricted to labeled simulated data rather than un-
labeled experimental data. Another restriction is data
mismatch [10, 11]. Data is almost always simulated
with Gaussian noise, which is presumed in many infer-
ence algorithms, but experimental data may include non-
Gaussian noise and other artifacts such as systematic
drift. Subsequently, modern inference algorithms should
be benchmarked using experimental data where parame-
ter estimates can be verified by alternative, independent
methods.

Dusty plasmas, where micron-sized charged particles
are suspended in a low-density gaseous plasma, provide
opportune experimental data for dynamical inference
methods. The particles experience a wide array of forces
including electrostatic repulsion, velocity-dependent drag
from neutral and charged ions, and stochastic thermal
kicks [12]. As a result, dusty plasmas display a wide
range of complex, nonequilibrium dynamical phenomena,
including superthermal excitations from non-reciprocal
forces [13–15], oscillations between “turbulent” and “qui-
escent” states [16–18], parametric resonance and kinetic
heating [19–21], spontaneous oscillations at low pressures
[22, 23], helical dust “strings” [24, 25], and vortical struc-
ture formation at high magnetic fields [26–28]. However,
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the individual interactions between particles are a sub-
ject of active research [29–31], and the external forces
acting on a single particle can be complex [22, 32–34].

ML has already been applied to a few distinct areas
of dusty plasma research. Examples include the inter-
pretation of Langumir probe and electron density mea-
surements [35–37], and the prediction of particle genera-
tion and annihilation in fusion devices [38]. Additionally,
ML has been used to identify phase boundaries in dense
dust systems [39], and to assist with stereoscopic track-
ing of many particles in three dimensions [40]. Bayesian
analysis and ML have also been applied to investigate
the nonlinear dynamics of single dust particles [41]. Im-
portantly, these dynamics provide information about the
dust charge, interaction potential, and external fields, es-
sentially acting as a non-contact probe of the system.
Both the dust charge (Q) and Debye screening length
(λ) between interacting dust particles can by estimated
by an analysis of the noisy dynamics [30], two parameters
which are often difficult to accurately measure.

Here we show how the undisturbed, random motion
of one and two particles in a dusty plasma can be inter-
preted using ML to provide accurate information about
their inter-particle and environmental forces. Crucially,
our ML methods are trained with simulations that con-
sider real experimental artifacts such as anisotropic con-
finement, nonconservative forces, stochastic Lévy noise,
non-Gaussian tracking error (pixel-locking), and experi-
mental drift. These artifacts can be observed in a statis-
tical analysis of the data, yet they rarely included in dy-
namical inference procedures, leading to data mismatch.
In our procedure, features are extracted from the simu-
lated trajectories to train supervised ML models. The
models simultaneously predict system-wide parameters
with 50% better accuracy than traditional methods such
as Fourier spectrum and maximum likelihood estimation
in simulated trajectories.

In the experiments, one key feature is that many of
the parameters are independently inferred by analyzing
the particles’ recovery to equilibrium after a perturba-



2

tion, thus labelling the data and verifying the model’s
performance on experimental time series. Based on la-
beling with this alternative method, our prediction on
experimental data is evaluated to have the same accu-
racy as simulated data, alleviating data mismatch. Fur-
thermore, in experiments with two particles, we provide
an accurate estimation of Q and λ solely from the parti-
cles’ pixel-scale Brownian motion without knowledge of
other system-wide parameters, such as Epstein damping.
These results will help guide other studies that use ML
to quantitatively infer system parameters in real-world,
noisy experimental data.

The rest of this paper will be organized as follows. In
Sec. II, we detail our experimental setup and 3D parti-
cle imaging and tracking methods. In Sec. IIIA, we in-
troduce the linearized single particle model used for our
simulations. Section IIIB explains the dominant source
of errors in our experiments. Their mismatch from non-
correlated Gaussian noise that is commonly used in sim-
ulations is observed by statistical analysis. We then ex-
plain how we handle these errors in our simulations. In
Sec. IIIC, we describe the features extracted from sim-
ulated and experimental data. These features are used
by our ML models. Section IIID explains the different
ML models and their corresponding performance on sim-
ulated test data compared with conventional methods.
Section IIIE describes the alternative way that we label
our experimental data. Finally, Sec. IIIF demonstrates
the performance of our ML models on experimental, sin-
gle particle data. Section IV expands our methods to
systems of 2 particles. In Sec. IVA, we introduce the
changes to the linearized model for 2 particles. Section
IVB and IVC explains the simulation details and the fea-
tures used for the ML models. Lastly, IVD shows our
predictions on experimental two particle data, including
an inference of the particle charge and Debye length.

II. EXPERIMENTAL METHODS AND
PARTICLE TRACKING

Our experiments used melamine-formaldehyde (MF)
particles with diameters 9.46 ± 0.10 µm and 12.8 ± 0.3
µm (microParticles GmbH). The particles were electro-
statically levitated in a low-pressure argon plasma above
an aluminium electrode with diameter 150 mm (Fig.
1a), similar to previous experiments [16, 22]. The argon
plasma was generated by a 13.56 MHz radio-frequency
voltage applied to the electrode, resulting in 2.9 ± 0.1
W of input power and a fixed dc bias voltage of -36.3 ±
1.2 V. An aluminium ring was placed on the edge of the
electrode to provide horizontal confinement. The plasma
pressure, P , was varied between 0.6 Pa and 1.3 Pa. Un-
der these conditions, the typical electron temperature in
the plasma was 1.3-1.5 eV [22].

To visualize the particles levitated in the plasma en-
vironment, a horizontal laser sheet was generated by fo-
cusing with a cylindrical lens, similar to previous experi-

ments [16, 17, 22]. The scattered light from the particles
is captured from above by a Phantom V7.11 high-speed
camera equipped with a macro lens. This allowed track-
ing the particle positions in the horizontal, xy-plane. Ad-
ditionally, we used a mirror attached to a galvo motor to
oscillate the laser sheet with a 50 Hz sawtooth wave at an
amplitude of a few millimeters. The timebase of the cam-
era was synchronized to the function generator driving
the galvo, and the camera recorded at 1000 Hz (Fig. 1a),
resulting in 20 images at different vertical positions per
oscillation of the laser sheet. With this tomographic 3D
tracking, we simultaneously obtained information about
the vertical and horizontal motion of the particles.

The spatial resolution of our imaging system was 51
µm per pixel in the xy-plane, and 200 µm between im-
age slices in the z-direction. However, by tracking the 3D
particle motion using an open source software (TrackPy
[42]), the position of the particles can be located with
much better accuracy. The image representing the scat-
tered light from a single particle is shown in Fig. 1b. The
centroid of the particle “blob” is found by calculating the
center-of-mass of the pixels, where the pixel brightness
represents the mass contribution of a single pixel [42].
The same centroid procedure is done with image slices in
the z-direction. A probability density function of the dec-
imal part of the tracked positions (xd) is shown in Fig. 1c,
showing a strong bias towards integer values. This bias is
known as pixel-locking [43]. Using the single-pixel inte-
rior filling function (SPIFF) algorithm [44, 45], these er-
rors can be statistically corrected from the tracked data.
Ultimately, our estimated sub-voxel resolution in track-
ing the particles was ≈ 4 µm in the xy-plane, and ≈ 16
µm in z.

This sub-pixel error was confirmed using an indepen-
dent procedure. We created digital movies of bright “par-
ticles” moving unidirectionally across a projection screen.
The screen was imaged with our camera so that the par-
ticles appeared similar in size on the camera sensor when
compared to the experiments (i.e. Fig. 1b). Since the tra-
jectory of the particles was pre-determined in the movie,
we compared the tracked positions to the known values.
Despite these procedures, the horizontal resolution was
still a significant fraction of the amplitude of the Brow-
nian motion in the experiments. This was evidenced by
systematic statistical effects in the analysis of the dynam-
ics, and will be discussed in Sec. III B.

III. SINGLE PARTICLE MOTION

A. The Linearized Model

A typical xy trajectory for a single, isolated particle is
shown in Fig. 1d. The x and y time series corresponding
to this trajectory is shown in Fig. 1e-f. Without any ex-
ternal perturbations, the particle experienced thermally-
excited motion in three dimensions. The amplitude of
the motion was ≈ 50 µm in the xy plane. A dominant
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FIG. 1. (a) Experimental setup for the 3D tomographic imag-
ing and particle tracking. The oscillating mirror varies the
angle of the incoming laser (wavelength 532 nm). The con-
verging lens focuses the beam in z, and the cylindrical lens
expands the beam in the xy plane. Particles are imaged and
tracked from above as described in the text. (b) Image of the
scattered light from a single particle with diameter 12.8 µm.
(c) Probability distribution of the decimal part of tracked po-
sitions, prior to SPIFF correction. (d) A 45 s trajectory for
a single 12.8 µm particle undergoing stochastic motion. (e-
f) Time series of the x and y position corresponding to the
same trajectory. (g) z-position as a function of pressure for
12.8 µm (blue circles) and 9.46 µm (red triangles) particles.
(h) Dominant frequency of motion in the z-direction for both
sizes of particles, obtained by Fourier transform.

angular frequency of motion (ω ≈ 1-2 Hz) is clearly vis-
ible in the time series. The amplitude of motion in z
was much smaller; less than our spatial resolution. Nev-
ertheless, we measured the z-position of the particle as
a function of gas pressure (Fig. 1g), which increased at
lower pressure as the electrode’s sheath expanded. Also,
by Fourier transforming the time series of the z-position,
we estimated the vertical frequency of oscillation (ωz,
Fig. 1h), which was much larger than the horizontal fre-
quency, indicating strong confinement in the z-direction.

Due to the small amplitude of motion, to lowest or-
der, the particles behaved as stochastic harmonic oscil-
lators. Since the amplitude of motion in z was much
smaller due to the strong confinement, we will ignore
motion in the z-direction for our linearized model. Let
~r(t) = x(t)~ex + y(t)~ey denote the two-dimensional (2D)
position of a particle at time t, and dotted variables re-
fer to time derivatives. The linearized dynamics of one
particle reads:

~̈r = −~∇φ+ ~∇× ~A− γ~̇r + ~N(α) (1)

φ =
ω2

2
[(1− δ)(x cos θ + y sin θ)2+

(1 + δ)(−x sin θ + y cos θ)2]

(2)

~A =
kc
2

(x2 + y2)~ez (3)

This model contains 6 parameters, γ, ω, δ, θ, kc, and α.
The deterministic confinement force has two components.
The conservative potential φ resembles a 2D spring char-
acterized by 3 parameters: the average frequency ω, the
asymmetry δ between two principal axes, and the an-
gle θ from the x-axis to the weaker principle axis. Two
eigenfrequencies, ω− = ω

√
(1− δ) and ω+ = ω

√
(1 + δ),

and θ are displayed in Fig. 2a. The nonconservative vec-

tor potential ~A, characterized by a parameter kc, rep-
resents a rotational force possibly due to drag from the
background ion flow [46], particle asymmetries [33], or
magnetic fields [47].

Additionally, the particle experiences drag from the
background neutral gas. According to Epstein’s law as-
suming diffuse reflection from neutral gas collisions on
the particle surface, the damping coefficient can be ex-
pressed as [22, 34]:

γ = 1.44
P

apρp

√
2mar

πkBT
. (4)

Here, P is the gas pressure, ap is the particle radius,
ρp = 1510 kg/m3 is the mass density of the particle, mar

is the mass of an argon atom, kB is Boltzmann constant,
and T = 300 K is room temperature. An important
assumption here is that the particle size is smaller than
the mean free path (≈ 5 mm at P = 1 Pa). For the
particles with diameter 2ap = 12.8 µm, γ/P = 0.95 Pa−1

s−1. For the particles with diameter 2ap = 9.46 µm, γ/P
= 1.29 Pa−1 s−1.
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FIG. 2. (a) Linearized external forces on the particle, as de-
scribed in the text. The black circle represents an equipo-
tential surface of the harmonic confinement. The eccentricity
is exaggerated. (b) Probability distribution of the decimal
part of positions after simulated pixel-locking. (c) A simu-
lated trajectory of length 45 s for a single particle undergoing
stochastic motion. (d-e) Time series of the x and y position
corresponding to the trajectory shown in (b).

B. Handling Random Noise, Parameter Drift, and
Measurement Error in simulation

The last term in Eq. 1 is a stochastic acceleration,
N(α), which follows a stable Lévy distribution. The
parameter α will be determined by inference. We do
not assume a priori that the stochastic motion is purely
Brownian (α = 2), and α < 2 indicates a more heavy-
tailed distribution. The Brownian motion of particles in
experiments is driven primarily by random impulses from
the environment. Thus, in the simulations, temporally-
independent random noise is added to the acceleration of
the particles at each time step. The Lévy-stable noise was
generated by the python function scipy.stats.levy stable
with parameter skewness β = 0 and center µ = 0.
The noise scale c and the parameter for heavy-tailness
α ∈ (1.6, 2.0) was independently chosen for each simula-
tion.

For all simulations, we used a time step ∆t = 0.02 s
to closely follow the experiments. The parameters ω,
γ, δ, θ, kc, and α are randomly chosen from a uni-
form distribution prior to each simulation. The range
of values possible for each parameter are listed in Table
I. For the maximum values of kc, we chose kc,max =

min(1 s−2, 0.9×
√
ω4δ2 + ω2γ2), which guaranteed that

the confinement force was able to provide the necessary
centripetal acceleration to keep the particle in a bounded

a b

FIG. 3. Probability density function (PDF) of the x-

component of the velocity, |vx|, normalized by
√
〈v2x〉, where

the average is over time. (a) The velocity distribution of sim-
ulated data. Red circles represent α = 2 (Gaussian noise).
Green squares represent α = 1.8 (Non-Gaussian noise). Yel-
low triangles represent α = 2, but with simulated pixel-
locking and SPIFF correction. The solid lines are fits to the
form y = Avp with more weight attached to the left side of the
curve (see Sec. III C, part 4). The fitted value of the exponent
p is shown in the inset. (b) 3 different velocity distributions
for experimental trajectories and the associated fits with ex-
ponent p. All 6 trajectories in the curve undergoes a same
low-pass filter with a 4 Hz cutoff.

stable orbit. Since none of the parameters have a length
scale in their units, the simulated Lévy noise scale was
arbitrarily set to c =

√
γω2/∆t.

Drift was inevitably present in nearly all experiments.
This was most noticeable in the drift of the equilib-
rium position of the particle. The drift was small, less
than 1 pixel, but is still comparable to the amplitude
of the Brownian motion. We modeled this in simula-
tions as a temporally-correlated Gaussian noise added
to the equilibrium positions. To simulate a time series
of temporally-correlated noise, ai, with standard devia-
tion (STD) σ and characteristic correlation time τ much
larger than simulation time step, τ >> ∆t = 0.02 s, we
used the recursive relation:

a0 = N0

ai =

(
1− ∆t

τ

)
ai−1 +

∆t

τ
Ni.

(5)

Here Ni is an array of independent and identically-
distributed Gaussian random numbers with zero mean
and unit variance. The final sequence is adjusted by sub-
tracting the mean from each element in the series, and
then normalizing the STD to be σ. During simulation,
the equilibrium positions (x0 and y0) both drift with the
same timescale τ ∈ (12, 800) s and potentially different
amplitudes σ ∈ (0, 0.5), randomly chosen for each simu-
lation (Eq. 5).
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As discussed in Sec. II, pixel-locking was an important
source of noise in experimental data. Thus, measure-
ment errors were added to the simulated position time
series after all the time steps were completed. This was
intended to simulate errors associated with tracking the
particles in the images. To simulate pixel-locking in the
position time series, we converted the simulated position
to pixels using a length scale lpixel and a random offset
xpixel ∈ (−0.5, 0.5). Then we applied a transformation
to the decimal portion, xd ∈ (−0.5, 0.5), of the pixel:

xd =
x+ xpixel
lpixel

− round

(
x+ xpixel
lpixel

)
, (6)

x∗d = sgn(xd)×
|2xd|pd

2
+Nt(σd). (7)

Here x∗d is the transformed pixel value, pd is an expo-
nent randomly chosen between (1, 4) for each time series,
and Nt is a Gaussian noise with zero mean and STD
σd ∈ (0, 0.1). The distribution of the decimal part of
simulated ‘pixels’ xd is plotted in Fig. 2b. Finally, as in
the experiments, we used the single-pixel interior filling
function (SPIFF) algorithm [45] on x∗d to correct sim-
ulated data before training the model. An example of
a simulated trajectory and its x and y components are
shown in Fig. 2c and 2d-e, respectively.

Though pixel-locking was a small source of error, it led
to large systematic errors in dynamical quantities such
as the 1D velocity distribution. Without further model-
ing the effects of pixel-locking, these errors can be easily
mistaken for stochastic noise with α < 2. In a stochastic
under-damped harmonic oscillator simulated with α = 2
and Gaussian measurement error, the 1D velocity distri-
bution was well-fit by the form logP (vx) = Avpx with
p = 2 (Fig. 3a, red circles). However, a simulation
with either a smaller value of α (green squares), or
pixel-locking (yellow triangles) both led to a significantly
smaller value of the fitted parameter p. Experimentally,
the fitted p was usually smaller than 2 (Fig. 3b). It is
possible to minimize pixel-locking errors in the velocity
distribution function by defocusing the camera [30, 43],
however, our 3D imaging and tracking methodology re-
quired particles with significant brightness due to the low
exposure time. Subsequently, it was not possible to de-
termine whether α < 2 or pixel-locking leads to non-
Gaussian distributions with our current analysis.

C. Features for ML

The data used to train the ML model consisted of sim-
ulated time series of both the x and y motion of the
particle. Typically, each time series contained 15,000
to 100,000 elements, depending on the total length of
time of the motion. Although in principle it is possi-
ble to use the raw data as input to the ML model, this
would drastically increase the computation time. Thus,

we choose to extract hundreds of relevant dynamical fea-
tures of the motion in order to train the model. These
ranged from Fourier transforms and autocorrelations, to
more sophisticated inference algorithms such as under-
damped Langevin inference (ULI) [2].

The confining potential for the particles consists of an
asymmetric harmonic trap in x and y, as shown in Fig.
2a. We first extracted a rough estimation of the prin-
ciple axes, defined by θ, for a 2D time series [xt, yt],
t = 0, 1, 2, . . . , T . T is the length of a single time series,
and is the first feature. The total time duration of the
series is T ×∆t, where ∆t = 0.02s. In polar coordinates,
φt = arctan yt

xt
. We used 20 bins to form a histogram of

φt between (−π/2, π/2) and fit the probability density
with

p(φ) =
1 + δhist cos 2(φ− θhist)

π
. (8)

Here δhist and θhist are two features.
Let 〈pi, qi〉 = ΣTi piqi/T . The correlation matrix C was

computed:

C =

[
〈x, x〉 〈x, y〉
〈x, y〉 〈y, y〉

]
. (9)

The eigenvalues of the matrix are λ(1 − δeig) and λ(1 +
δeig and their eigenvectors are (cos θeig, sin θeig) and
(− sin θeig, cos θeig). Here λ, δeig, and θeig are three fea-
tures. After calculating the eigenvectors, (xt, yt) are pro-
jected onto the (estimated) weaker and stronger principle
axes for further analysis:

wt = xt cos θeig − yt sin θeig

st = xt sin θeig + yt cos θeig
(10)

wt and st are then normalized into unit STD, and the
following feature extraction algorithms are applied to
(wt, st):

1. Fourier spectrum. This is the most commonly used
tool to analyze the motion of a 1D harmonic oscilla-
tor, ξt. We compute the Fourier spectrum and only
analyzed data between 0.5 s−1 < ω < 4 s−1. This
is fitted to analytical prediction for a 1D stochastic
harmonic oscillator:

ωI(ω) = AFT

[
ω2

(
1− ω2

FT

ω2

)2

+ γ2
FT

]−1/2

(11)

where A, ωFT and γFT are fitting parameters.
Although θeig is a good estimate of the principal
axes, we performed Fourier analysis on a combi-
nation of wt and st: ξt = wt cosφ + st sinφ. The
following pseudocode describes the procedure:

for φ = [−π/4, 0, π/4, π/2]:
ξt = wt cosφ+ st sinφ,
Conduct 1D Fourier spectrum on ξt,
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TABLE I. The parameters for 1-particle simulation.

Name Description Range Drift amp. Drift time

ω confinement freq. (1.3,2.5) s−1 None None
γ damping coef. (0.4,1.7) s−1 None None
δ asymmetry (0,0.35) None None
θ weak axis (−π/2, π/2) None None
kc vortex force coef. (−kc,max, kc,max) s−2 None None
α noise distribution (1.6,2.0) None None
x0 equi. position 0 (0,0.5) (12,800) s
y0 equi. position 0 (0,0.5) (12,800) s
lpixel simulated pixel width (0.3,1) None None

Fit the spectrum using Eq. 11,
AFT,φ, ωFT,φ and γFT,φ are features.

Altogether 12 features are extracted using
the Fourier spectrum.

2. Autocorrelation is another analysis technique used
on 1D time series, ξt, and is defined as:

A(τ) =

T−τ∑
t=0

ξtξt+τ/(T − τ). (12)

A(τ) was computed for ξt and fitted to the analytic
form for a 1D stochastic harmonic oscillator:

A(τ) =

(
1 +

γ2
A

ω2
A

)
e−γAτ cos

(
ωAτ − arctan

γA
ωA

)
(13)

Similar as Fourier spectrum, the following loop is
performed to extract features.

for φ in [−π/4, 0, π/4, π/2]:
ξ = w cosφ+ s sinφ,
Normalize ξ into zero mean and unit variance
Calculate the autocorrelation by Eq. 12,
Fit the autocorrelation using Eq. 13,
ωA,φ and and γA,φ are features.

Altogether 8 features are extracted using au-
tocorrelation.

3. Percentiles and equipartition law. Let P (ξ, p) in-
dicate the p percentile of a 1D time series ξt, the

quantity ζ = P (ξ,1)−P (ξ,99)
P (ξ,30)−P (ξ,70) contains qualitative in-

formation about the heavy-tailness of the distribu-
tion of the stochastic noise that drives ξ. Further-
more, according to equipartition, the time-averaged
kinetic and potential energies should be equal. As
a result,

ω2
ep =

∑T−1
t=1 ξ′2t∑T−1
t=1 ξ2

t

(14)

is a rough estimation of the eigenfrequency if
~eξ is a principle axis for the confinement, where

ξ′t = ξt+1−ξt−1

2∆t and ∆t = 0.02s. To extract
features, the following loop is performed.

for φ in [−2π/3, −π/3, 0, π/3, 2π/3, π/2]:
ξ = w cosφ+ s sinφ,
Calculate ζφ and ωep,φ as features.

Altogether 12 features are extracted.

4. Velocity distribution. For a 1D time series ξt, the
central difference velocity is calculated, ξ′t. Then
we compute the probability distribution P (ξ′n) of

ξ′n = |ξ′t|/
√
〈ξ′2t 〉, as done in Fig. 3. Were the noise

purely Gaussian (α = 2) with no measurement er-
ror, then log(P (ξ′n)) ∝ −ξ′2n . A more heavy-tailed
distribution (see Fig. 3) may indicate α < 2 or
pixel-locking measurement error. Since the distri-
bution is rather complicated, three different fits are
performed to extract features. The first is a fit of
logP versus ξ′n:

logP (ξ′n) = A0(ξ′n)p0 , (15)

where a fitting weight, e
log P

2 , is applied to attach
more importance to the beginning of the curve.
A0 and p0 are fitting parameters. The second fit
linearly fits the logP vs. ξ′n curve with ξ′n > 2.5.
The linear coefficient p1 is recorded. The third fit
linearly fits P VS ξ′n with ξ′n > 2.5. The linear
coefficient p2 is recorded. Note that the second
and third fits lack physical meaning, but they
provide some qualitative information that helps
the ML model give quantitative predictions. The
following loop was used:

for φ in [−π/12, π/4, 7π/12]:
ξ = w cosφ+ s sinφ,
Plot the histogram of P (ξ′n)
Fit histograms to get features p0,φ, p1,φ, p2,φ.

Altogether 9 features are extracted.

5. Intermittency analysis. For a 2D time series
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(wt, st), a scalar velocity is defined as

ξ′t =

√
(wt+1 − wt−1)2 + (st+1 − st−1)2

2∆t
(16)

and its average over time τ is defined as

ξ̄′i(τ) =

(i+1)τ∑
t=iτ+1

ξ′t
τ

(17)

where i = 0, 1, 2, . . . , bT−1
τ −1c. We introduced this

particular measure because at relatively high values
of the vortical force amplitude, kc, the particle dis-
plays intermittent behavior characterized by large
orbital excursions from equilibrium, yet below the
critical value of kc,max. As a result, the ξ′ fluctu-
ates at lower frequencies than other time scales in
this system. This is characterized by the standard
deviation (STD) of ξ̄′i(τ) over i. Two features are
extracted from the 2D trajectory with τ = 500 and
1300, respectively.

6. Vorticity estimation. Given a 2D time series
(wt, st), the 2D velocity vector ~vt is first calculated.

Let vmean =
√
〈v2
t 〉 where 〈· · · 〉 represents aver-

aging over t. A qualitative estimation of angular
velocity is used:

Ω(τ) =
1

∆t

〈
~vt × ~vt+τ

vmean

(
vt+vt+τ

2

)
τ

〉
. (18)

This form puts a larger weight on larger velocities,
which is necessary since Ω is completely dominated
by noise for small velocities. Ω(1) and Ω(5) are two
features used in the model.

7. Linear correlation and mutual information. Built-
in python packages [48] are used to compute the lin-
ear correlation and mutual information between all
pairs of time series (w, s), (w, vw), (w, vs), (s, vw),
(s, vs), where vw (vs) is the central difference veloc-
ity associated with w (s). These measurements are
most relevant for large values of kc, where circular
motion can be detected. Altogether this provides
10 features.

8. Underdamped Langevin Inference (ULI) [2]. ULI is
a maximum-likelihood algorithm based on modified
linear-regression. The time series w, s, vw, and vs
are used as inputs, along with a linear model of the
forces, and the parameters of interest (i.e. ω, γ,
etc.) are estimated. There are 8 coefficients in the
linear regression, which are 8 features.

9. The previous 8 analyses gives 63 features. Then,
a band-pass filter is applied to wt and st with an
upper threshold = 2 Hz and a lower threshold =
0.01 Hz. The previous 8 analyses are repeated for
63 more features. This was done to reduce noise in

a

time series length (s)

b

c

d

(s
-2

)

FIG. 4. The prediction error of various models for multiple
parameters on one particle simulated test data. Red stars rep-
resent ULI, green triangles represent Fourier spectrum, blue
squares represent neural network, and orange circles repre-
sent gradient boosting. Note that the Fourier spectrum can-
not predict kc and must be based on a known θ. Since ML
is trained on a certain range of all parameters (Table I), un-
reasonable predictions of Fourier spectrum and ULI are also
cropped to that range.

the original data, yet by including analysis on both
filtered and unfiltered data, we avoid losing infor-
mation with little cost of adding features. Counting
the 6 features in preprocessing, altogether there are
132 features for the motion of single particles.

D. ML Methods and Performance

Two python-based ML algorithms (gradient boosting,
an ensemble of decision trees, and neural network [48])
were trained on 132 extracted features from 400,000 sim-
ulated time series (training data set) to predict the 6
randomly-chosen parameters. Within the algorithms, the
gradient boosting model has parameters n estimators =
250, max depth = 5, and the dense neural network has
5 hidden layers, with size (128,64,64,32,16) and all hy-
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FIG. 5. (a-b) Two different experiments of the same particle relaxing to equilibrium after a perturbation. The pressure was
P = 0.80 Pa. The magenta lines are fits using Eqs. 21-22. The red and blue lines indicate ω+ and ω− and their orientations,
respectively. (c-f) The prediction from ML (the mean of the predictions from neural network model and gradient boosting
model, red circles), ULI (yellow triangles), and reference estimation from the perturbation experiments (Pert., cyan squares)
for γ, ω, δ, and θ for particles with diameter 12.8µm. The purple line in (c) represents the theoretical value of Epstein’s Law
(Eq. 4). (g) α and (h) kc as predicted by ML. These parameters cannot be verified by the perturbation experiments. The
inset in (g) shows the prediction of α correlates with the potential temperature of the particle. Red squares represents 12.8 µm
particles and blue triangles represent 9.46 µm particles. Error bars were obtained from predictions on the simulated test data
set, and errors based on fitting perturbed trajectories are smaller and not shown for clarity.

perbolic tangent activations. Before training, both the
features and the targets are normalized by the whole
training batch to zero mean and unit variance. The per-
formance of each method was benchmarked on 80,000
simulated time series (test data set). Figure 4f shows
that ML methods are ≈ 1.5× more accurate at predict-
ing ω and γ than simply fitting analytical expressions to
the Fourier spectrum of the data along the principal axes
of confinement, and 2-3× more accurate than ULI [2].

With regard to Underdamped Langevin Inference
(ULI), we note that the performance was excellent and
comparable to the prediction error for ML when us-
ing only Gaussian noise, no pixel-locking, and no drift.
These sources of noise seemed to dramatically reduce the
performance of ULI, yet these sources of noise are un-
avoidable in real experimental data. However, despite
it’s lack of parameter estimation power on single, noisy
data sets, ULI consistently ranked as one of the most im-
portant predictive features in the ML algorithms. Em-
ploying ULI in the simulated features increased the total
simulation and feature extraction time by 150%.

E. Labeling Experimental Data

It is challenging to verify the accuracy of results when
applying ML models to unlabeled experimental data.

However, in our experiments, we measured the param-
eters using an independent, alternative method. By per-
turbing the particle with a magnet outside the chamber
and observing the particle’s relaxation to equilibrium,
we fit the 2D trajectory and obtained estimates of ω, γ,
δ, and θ. Initially, we used a “mechanical” method to
peturb the particle position by moving a grounded metal
rod in close proximity to the single, levitated particle.
However, this method would sometimes lead to unwanted
particles being deposited in the experiment. By using a
small, rare-Earth magnet outside of the vacuum cham-
ber, we found nearly identical results without introduc-
ing unwanted particles. The magnet was removed in a
fraction of a second, while the particle relaxation process
took more than 4 s.

Two examples of particle trajectories during relaxation
to equilibrium after a perturbation, and the correspond-
ing best fit, are shown in Fig. 5a-b. Assuming kc = 0
and ignoring the stochastic noise term, Eqs. 1-3 can be
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solved analytically:

w(t) = Awe
−γt/2 cos

(
t

√
ω2
− −

γ2

4
+ φw

)
(19)

s(t) = Ase
−γt/2 cos

(
t

√
ω2

+ −
γ2

4
+ φs

)
(20)

x(t) = w(t) cos θ − s(t) sin θ (21)

y(t) = s(t) cos θ + w(t) sin θ (22)

Here the fitting parameters Aw, As, φw, and φs depend
on the initial conditions, and γ, ω−, ω+, and θ are an
estimation of the model parameters as described in Sec.
III A, assuming kc = 0.

F. Predicting Experimental Data - Results

We directly compared these measurements with the
results from the ML model (the mean of the predictions
from neural network and gradient boosting), which mea-
sures the parameters in situ without perturbations. The
difference between the model’s predictions and the labels
inferred from the aforementioned perturbation method
lay within the error bars estimated from the simulated
test data in parameters γ, ω, δ and θ. In other words,
the model predicts experimental data as accurately as
simulated data, so the mismatch between experimental
and simulated data was alleviated. In general, ULI was
able to predict ω, δ, and θ, yet with an accuracy that
was poor compared to ML, which may be expected since
ULI does not require training from multiple datasets.

Both the perturbation method and ML show excellent
agreement with the prediction of γ from Epstein’s Law
(Eq. 4). The confinement asymmetry, δ, could be as large
as 0.2 although the experimental configuration was quite
symmetric and the illuminating laser only contributed
to a 1% asymmetry since a gradient in laser intensity is
needed to change the confinement strength. Addition-
ally, the gas flow and pumping rate were low and did not
affect δ. We speculate that the asymmetry in the con-
finement may be due to background flows in the plasma
environment. ULI produced wildly varying predictions
of γ, even sometimes negative values. Thus, we did not
include it in Fig. 5c.

In analyzing the stochastic noise, we found that the
prediction of the Lévy parameter α reflected the particle’s
effective temperature, 2kBT ≈ mω2(〈x〉2 + 〈y〉2), where
kB is Boltzmann’s constant (Fig. 5g, inset). We have as-
sumed an equipartition between kinetic and potential en-
ergy, and expressed the temperature here in terms of the
average potential energy to avoid calculating derivatives
for the velocity. Importantly, no information about the
temperature was passed to the ML model since all time
series were normalized. Reported values of T in dusty
plasmas driven by Brownian motion vary from 300-1000
K [21, 49]. For most experiments, we found T = 300−460
K, with 1.9 < α < 2, indicating nearly Gaussian noise

from the room-temperature neutral collisions (Fig. 5g,
inset). Larger temperatures typically corresponded to
smaller values of α. We speculate that this could be
caused by contamination with undetectable, small dust
particles since the effective temperature was seen to in-
crease over time in some experiments. Often these par-
ticles were “dropped” by shutting off the plasma, and
a new particle was deposited in its place. In any case,
the source of the higher effective temperatures was non-
Gaussian, although we could not definitively identify the
origin of the noise.

The non-conservative force from Eq. 3 was smaller than
the prediction error bars for most experiments (Fig. 5h).
Part of the motivation for including kc in our linearized
model were observations that particles can undergo small
elliptical orbits without any apparent input of energy
[33]. In Nosenko et al. [33], the gravitational leveling
of the electrode played a role, presumably due to a feed-
back between the plate geometry and the background
ion flows. Another possibility would be a non-spherical
or broken particle, which could then interact with back-
ground ion flows.

IV. TWO PARTICLE MOTION

A. The Linearized Model

When two particles are present, their mutual repulsion,

m~fij = mfp(r)~eij , displaces them from the center of the
confining potential, as shown in Fig. 6a. Here, fp is the
reduced force, ~eij is a unit vector from particle i to j, r is
the particle separation, and m is the mass of a particle.
At equilibrium, the particle separation is r0, which varies
with pressure and the vertical position z (Fig. 6 b-c). In
particular, below P ≈ 1 Pa, r0 sharply increased to a
plateau and the height increased, presumably due to an
increase in the plasma Debye length. Here we aim to
simultaneous infer:

ω2
−
r0

2
= fp(r0), (23)

ω2
p = −dfp

dr

∣∣∣∣
r=r0

, (24)

and all other model parameters from Eqs. 1-3 with high
accuracy using noisy data. We linearize the small-
amplitude motion of each particle about their equilibrium
position. The equation of motion for particle i is:

~̈ri = −~∇φ+ ~∇× ~A−~fij − γ~̇ri + ~N(α), (25)

~fij = fp~eij =
(
−ω2

p(r − r0) + ω2(1− δ)r0

2

)
~eij . (26)

The equilibrium force and its differential can be used to
solve for 2 independent parameters in a model for fp. The
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FIG. 6. (a) Two charged particles experience mutual repul-
sion, characterized by frequency ωp at equilibrium, and exter-
nal harmonic confinement. kc and ω+ are omitted for clarity.
All susequent panels show parameter estimates as a function
of pressure, P . (b-c) The equilibrium particle separation and
vertical height above the electrode varied with the gas pres-
sure.

most commonly used model for fp assumes a screened,
Coulomb interaction:

FD = mfD =
Q2

4πε0r

(
1

r
+

1

λ

)
e−r/λ. (27)

Here ε0 is the permittivity of free space. With this as-
sumption, similar linearized models have been used to
directly infer Q and λ from the one-dimensional motion
of two particles using Fourier analysis [29, 30, 50, 51].
Here we allow for entanglement between motion in two
dimensions, and provide estimates of all model parame-
ters. Analogous to the single particle model, parameters
γ, ω, δ, θ, kc, α, and ωp were randomly chosen to simulate
time series using Eqs. 25-26. The same feature extraction
methods as described for a single particle were applied to
the center-of-mass and relative coordinates, (~r1 + ~r2)/2
and ~r1 − ~r2 [52] with some alterations described in Sec.
IVC. The neural network and gradient boosting models
were trained on 227 extracted features from 400,000 sim-
ulated time series to predict the 7 parameters, and their
performance on simulated test data is shown in Fig. 7.

a

b

time series length (s)

c

d

e

(s
-2

)

FIG. 7. The prediction error of various models for multiple
parameters on two particle simulated test data. Red stars rep-
resent ULI, green triangles represent Fourier spectrum, blue
squares represent neural network, and orange circles represent
gradient boosting.

B. Simulation Details

For simulations involving two particles, the drift of the
parameters can change the equilibrium separation of the
particles, which is comparable to the amplitude of the
Brownian motion. Thus, we allowed for a small drift of
many parameters, as listed in Table II. Importantly, the
introduction of a repulsive force between the particles
leads to a natural length scale, r0, which is the equi-
librium separation between the particles after balancing
external confinement and mutual repulsion. In the sim-
ulations, r0 is set to 1, but is allowed to drift. This fixed
length scale means we must choose the amplitude of the
noise to match what is observed in the experiments. The
noise scale, c = c0

√
γω2/∆t, is similar to simulations of

for one particle, but here c0 � r0. The value of c0 is
randomly chosen in each simulation, and represents the
amplitude of Brownian motion in units of length mea-
sured by the particle separation, r0. Note that c has
units of acceleration since mass is normalized and c0 has
units of length.

Furthermore, to make the model more general, a sec-
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TABLE II. The parameters for 2-particle simulation.

Name Description Range Drift amp. Drift time

ω confinement freq. (1.3,2.5) s−1 (0,2%) (12,800) s
ωp interaction freq. (1.7,3.3) s−1 (0,2%) (12,800) s
γ damping coef. (0.4,1.7) s−1 (0,2%) (12,800) s
δ asymmetry (0,0.35) (0,0.01) (12,800) s
θ weak dimension (−π/2, π/2) (0,0.1) (12,800) s
kc vortex force coef. (−kc,max, kc,max) s−2 None None
α noise distribution (1.6,2.0) None None
c0 noise scale (0.005,0.03) None None
x0 equi. position 0 (0,0.02) (12,800) s
y0 equi. position 0 (0,0.02) (12,800) s
r0 equi. seperation 1 (0,0.02) (12,800) s
m1 mass ratio (0.9,1.1) None None
A 2nd order coef. (-3,10) s−1 None None

lpixel simulated pixel width (0.005,0.02) None None

ond order term with random coefficient A was added to
the reduced particle interaction force,

fp =

(
A

r0
(r − r0)2 − ω2

p(r − r0) + ω2(1− δ)r0

2

)
. (28)

This is identical to Eq. 26, albeit with the addition of
the second order term. Note that typically r − r0 ≈
c0 � 1, so the second order term is negligible, but was
included for generality. Experimentally, the two particles
may be slightly different in size, so a mass difference was
considered in simulations. We randomly chose the mass
of one particle, m1, to vary by 10% (Table II). As a
reminder, none of the parameters have a mass unit, so
we can arbitrarily fix the sum of the masses, m1+m2 = 2.

The acceleration of each particle ~̈ri was calculated as

~̈ri = ~fi/mi (29)

where ~fi is the sum of all the reduced forces exerted on
particle i. After each simulation, pixel-locking noise was
added to the trajectory of each particle with lpixel, as
listed in Table II. For all simulations, we used a second
order, Velocity Verlet time stepping method to integrate
the equations of motion.

C. Features of two particle motion

For two particle systems, the rough estimation of θ
is simply the direction in which the particles align (the
weak axis), so we don’t perform the preprocessing step.
The 4D time series representing the motion of the two
particles is projected into the center-of-mass motion and
the relative motion. The same steps 1-9 as Sec. IIIC
applies to the center-of-mass motion (126 features), and
similar methods are applied to the relative motion with
the following revisions:

1. The fit of the Fourier spectrum only needs 2 projec-
tions, parallel and perpendicular to the alignment
of the two particles, instead of 4. Furthermore, an
additional fit is conducted to the Fourier spectrum
of the mode perpendicular to the alignment, where
motion predominantly occurs in the azimuthal di-
rection. If the asymmetry δ = 0, this mode would
have zero frequency. Thus we used a window 0.1
s−1 < ω < 1 s−1, and γFT , ωFT , but not AFT ,
are recorded as features. Altogether there are 8
features instead of 12.

2. The same logic applies for autocorrelation, so there
are 6 features instead of 8.

3. Percentiles and equipartition analysis are per-
formed to 2 (parallel and perpendicular) projec-
tions rather than 6. Altogether 4 features instead
of 12.

4. Velocity distribution analysis is performed to 2 pro-
jections rather than 3. Altogether 6 features in-
stead of 9

The revised 8 analyses gives 46 features. After the afore-
mentioned smoothing, the analyses are performed again
for another 46 features. Moreover, since the trajectory is
normalized by the particle separation so that r0 = 1, the
STD of each of the 4 modes before and after smoothing
are 8 new features. Plus the time series length, altogether
we have 63 × 2 + 46 × 2 + 8 + 1 = 227 features for the
motion of two particles.

D. Predicting Experimental Data - Results

Fig. 8 shows the ML model prediction on experimental
data, for particles with diameters 12.8 µm (label 1) and
9.46 µm (label 2). The prediction of δ is significantly
different between the two sizes of particles, as shown in
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FIG. 8. ML predictions for the two particle systems. Data is shown for 12.8 µm particles (denoted by 1) and for 9.46 µm
particles (denoted by 2). The ML prediction is the average of results from the neural network and gradient boosting methods.
(a-c) The predictions of δ, kc, and γ by ML are represented by blue circles with error bars estimated from Fig. 4. The magenta
line in (c) is the theoretical γ from Epstein’s law. (d) The confinement frequency ω (blue circles) and interaction frequency√

2ωp (cyan squares) predicted by ML. (e-f) The Debye length λ and particle charge Q calculated from the frequencies using
Eqs. 27 (green triangles) and 30 (magenta squares) from the main text. The magenta line is a linear fit to the magenta squares
to guide the eye.

Fig. 8a. This is likely due to their difference in vertical
equilibrium position in z (Fig 1g). Though kc seems sys-
temically positive for both particles, its amplitude was
usually smaller than the error bar (Fig. 8b). We did not
specifically train the model on the parameter θ since it
is essentially determined by the alignment of the vector
~r2 − ~r1. Although a finite value of kc would lead to an
angular displacement away from the weak confinement
axis, we found that a numerical value of kc = 0.1 s−2

would lead to an small angular displacement of ≈ 0.1
radians.

The damping γ varied linearly with P and was well-
described by Epstein’s law (Eq. 4) for both particles, as
illustrated in Fig. 8c. The error bars also decreased con-
siderably when compared to the analysis of a single par-
ticle (Fig. 4 vs. Fig. 7). Both ω and ωp displayed a slight,
non-monotonic variation with pressure, outside the range
of the error bars in the prediction (Fig. 8d). We note that
the eigenfrequency for the relative coordinate motion is

√
ω2
p/µ+ ω2

−, where µ = m1m2/(m1 + m2) is the re-

duced mass. If the masses of the particles are identical,
then µ = 1/2. However, assuming that the particles’
mass differ by less than 10%, µ = 0.495± 0.005. There-
fore, the coefficient

√
1/µ ≈

√
2 is included in Fig. 8d for

clarity.

For 12.8 µm diameter particles, the “kink” for ω and
ωp lied at the steepest decrease of r0 in Fig. 6. Although
these features may be related, we cannot say for sure
since the particle height, charge, and Debye length all
vary with pressure, and all contribute to ω and ωp. Ad-
ditionally, we found that the parameter α could not be
well-predicted from the center-of-mass and relative co-
ordinates in the two particle system. Although we are
uncertain why the prediction failed for α, we speculate
that the distribution in errors from pixel locking are non-
additive (unlike the Lévy stable distribution). The mo-
tion of the center-of-mass, for example, is the sum of
the particle positions. Thus the total noise distribution
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for the center-of-mass and relative coordinates could be
quite different from one-particle system.

Finally, to estimate Q and λ, we used two models for
fp. The first is Eq. 27, and the second model is derived
from a potential (mfw = −dφw/dr) that incorporates
the virtual charge (q̃) from the ion wake beneath each
particle [18, 53]:

φw =
Q2

4πε0λ

[
e−r/λ

r/λ
− q̃ λe−rw/λ

rw + bλe−rw/λ

]
. (30)

Here rw =
√
r2
0 + 0.12λ2, q̃ = 0.3, and b = 1. The pa-

rameter b controls the size of the virtual charge cloud.
After inferring ωp and ω−, the interaction force and it’s
derivative at r = r0 were numerically solved for Q and λ,
following Eqs. 23 and 24. For both models of the inter-
action force, the predictions of Q and λ differed by only
10%, as shown in Fig. 8e-f, for both sizes of particles.
We expect this difference to be much larger if the parti-
cles have significant vertical separation, where ion wake
interactions lead to non-reciprocal forces [14].

For both particles, Q decreased with pressure. The
Debye screening length λ also decreased with pressure for
12.8 µm particles, but there seemed to be a kink in λ for
the 9.46 µm particle data at P ≈ 0.75 Pa. This is likely
due to the variation in height with pressure, and a similar
feature is also visible in δ (Fig. 8a2). It is also important
to note that the error in estimating Q and λ can be up to
10× larger than ω (Fig. 8e-f). This can be illustrated by
examining Eqs. 23, 24, and 27. These equations can be
solved analytically, resulting in the following expression
for λ:

λ =
r0

2

 ω2
p + ω2

−√
ω4
p − ω4

−

− 1

 . (31)

When ωp is close to ω−, perhaps with overlapping error
bars, then the uncertainty in λ diverges. This emphasizes
the importance of accurate estimation of all parameters,
independent of the model chosen for fp. Although we
allowed for a 10% variation in mass between the particles,
this variation was not considered when calculating Q.
The reported values of Q should be taken as an average
of the charge on both particles since the mass of each
particle may be slightly different.

Finally, we can compare the results shown in Fig. 8f to
theoretical predictions in our plasma conditions. First,
we can estimate the total Debye length in the plasma,

λD =

√
kBε0TeTi

e2np(Te + Ti)
, (32)

where np is the quasi-neutral plasma density, Ti is the
ion temperature, and e is the elementary charge. As
stated previously, Te ≈ 1.3-1.5 eV, and Ti ≈ 0.026 eV,
so that λD is dominated by the ion temperature. For
our experimental conditions, the plasma density has been

measured previously using a Langmuir probe, and np ≈
2 − 5 × 1013 m−3 [22]. Thus, we expect λD ≈ 160-260
µm. However, the screening length between particles (λ)
is known to be 5-15 times larger than λD [54]. Thus, our
measurement of 1-2 mm shown in Fig. 8e is reasonable
and approximately 10× larger than λD. Although λD is
expected to increase at low pressures since np decreases,
the exact dependence of the screening length λ on the ion
Debye length λD is not well understood, especially within
a plasma sheath. Subsequently, we do not currently have
an explanation for the non-monotonic behavior seen in
Fig. 8e2.

Second, the particle charge Q can be estimated, to
lowest order, by orbital-motion-limited (OML) theory
[32, 55, 56]. In its simplest form, we assume that the elec-
tron and ion concentrations are equal (quasi-neutrality).
The electron velocity distribution is Maxwellian, but the
ion drift velocity ui towards the electrode must be con-
sidered in the ion velocity distribution. In this regime,
the dust charge is determined by solving the following
equation numerically (see section 2.4.3 in [32]):

0 =

√
Temi

Time
eeQ/4πε0akBTe− (33)

erf(ξ)
(
2πεakBTi

(
2ξ2 + 1

)
− qQ

)
8
√
πεakBTiξ

− 1

2
e−ξ

2

,

where erf(ξ) is the error function. The parameter ξ is
the ratio of the drift velocity to the ion thermal velocity,
ξ = ui/vi,th, where vi,th =

√
2kBTi/mi, mi is the mass of

an argon ion, and me is the electron mass. For a simple
estimate, we use the Bohm velocity for the ions because
the particles levitate near the edge of the plasma sheath,
so that ui =

√
kBTe/mi.

Using the parameters from our experiment, ξ ≈ 5, and
OML theory predicts that the 9.46 µm particles are nega-
tively charged with 16,600-19,200 electrons, and the 12.8
µm particles are negatively charged with 22,500-26,000
electrons. This is in excellent agreement with the results
shown in Fig. 8f. Additionally, the dust charge should
decrease as pressure increases since ion-neutral collisions
become more important as the mean free path decreases
([57], [58], section 2.4.4 in [32]). This expectation is also
consistent with Fig. 8f. A more quantitative analysis of
the pressure dependence of the particle charge is ham-
pered by small but simultaneous variations of electron
temperature, drift velocity, and plasma density as the
pressure is changed in the experiment. Additionally, al-
terations to OML theory to include collisions typically ig-
nore ion drift, and both are present in our experiments.
Overall, these results highlight the importance of mea-
suring particle charge in-situ, as demonstrated here.

V. CONCLUSION

In conclusion, we have overcome two major restric-
tions when inferring parameters from experimental data
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with ML: data labeling and mismatch. In our dusty
plasma experiments, we label our data by observing par-
ticles’ relaxation after perturbation. The mismatch be-
tween commonly-simulated data (with Gaussian stochas-
tic forces or Gaussian measurement error), and exper-
imental data (with drift, pixel-locking, non-Gaussian
stochastic force, etc.) is handled by including these arti-
facts in our simulation. The agreement between the label
for experimental data and our models’ prediction demon-
strates the alleviation of this mismatch. Additionally,
this work provides simultaneous and accurate estimates
of multiple parameters from noisy data, for example, the
model provides an accurate in-situ determination of Ep-
stein drag, the particle charge, and the Debye length in
dusty plasmas.

Our ML model employed supervised machine learning
since stochastic forces and trajectories are an inevitable
part of the dynamics. Ideally, the forces in dusty plasmas

could be inferred from the experimental data itself, with-
out the need for simulations in the training data set. In
dynamical systems with many particles, the interaction
force cannot be linearized, yet particle motion is domn-
inated by deterministic forces, and noise is secondary.
Thus it may be possible to infer interaction forces in more
complex and dynamic systems, which remains an open
challenge.
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