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Kinetic simulations of collisionless (or weakly collisional) plasmas using the Vlasov equation are
often infeasible due to high resolution requirements and the exponential scaling of computational cost
with respect to dimension. Recently, it has been proposed that matrix product state (MPS) methods,
a quantum-inspired but classical algorithm, can be used to solve partial differential equations with
exponential speed-up, provided that the solution can be compressed and efficiently represented as
an MPS within some tolerable error threshold. In this work, we explore the practicality of MPS
methods for solving the Vlasov-Poisson equations in 1D1V, and find that important features of
linear and nonlinear dynamics, such as damping or growth rates and saturation amplitudes, can be
captured while compressing the solution significantly. Furthermore, by comparing the performance
of different mappings of the distribution functions onto the MPS, we develop an intuition of the
MPS representation and its behavior in the context of solving the Vlasov-Poisson equations, which
will be useful for extending these methods to higher-dimensional problems.

I. INTRODUCTION

Understanding the behavior of collisionless plasmas
would greatly further our research of astrophysical phe-
nomena and fusion energy systems. The Vlasov equa-
tion, a 6-D nonlinear partial differential equation (PDE),
provides an ab-initio description of the dynamics of such
plasmas and is deemed to be the gold standard in plasma
simulation. It can be solved deterministically using Eu-
lerian [1–5] or semi-Lagrangian [6–14] grid-based meth-
ods. Unlike the alternative particle-in-cell (PIC) ap-
proach [15–22], these methods do not suffer from stochas-
tic noise issues; however, they are extremely computa-
tionally expensive thanks to the exponential scaling of
cost with respect to dimensionality and the resolution re-
quirements stemming from the multi-scale dynamics that
characterizes the vast majority of nonlinear plasma be-
havior. These issues seriously limit our ability to simulate
collisionless plasma phenomena, thus hindering progress
in a wide range of fundamental and applied problems.

In this paper, we investigate an alternative ap-
proach: the use of matrix product states (MPS) to solve
the Vlasov-Poisson equation within a finite-difference
scheme. Matrix product states are a quantum-inspired
computational framework traditionally employed in the
simulation of quantum many-body systems, where they
have been used with great success [23–27]. However, it
has recently been proposed that the utility of MPS meth-
ods extends beyond quantum applications, and that one
can use MPS to solve PDEs with (formally) exponential
reduction in computational cost [28, 29].

An MPS is an ansatz that provides an approximate
but systematically improvable low-rank representation of
the data of interest. Furthermore, the MPS framework
also provides a means of efficiently manipulating the data
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within this representation. Formally, one choice of MPS
ansatz is equivalent to the tensor train representation, in
which the data is decomposed into a series of tensors each
corresponding to one of its dimensions, and then com-
pressed by limiting the rank (the correlations) between
each dimension. Tensor trains have been employed to
solve PDEs in a variety of contexts ranging from fluid dy-
namics to molecular electronic structure [30–33], includ-
ing the Vlasov-Poisson and Vlasov-Maxwell equations in
up to 6-D space [13, 14, 34–37]. However, the intended
MPS ansatz mirrors that of quantized tensor trains [38–
40], in which the data is decomposed into smaller compo-
nents such that one can limit the correlations within each
dimension as well. To the best of our knowledge, quan-
tized tensor trains have only been discussed in a limited
number of contexts including solving the Fokker-Planck
equation [30], the chemical master equation [41, 42], and
finite element solvers of elliptic multi-scale problems [43–
45]. More relevant is the recent work by Gourianov et al.,
in which they demonstrate the efficiency of MPS meth-
ods for simulating Navier-Stokes turbulence in two and
three dimensions [46]. Still, the physics of the Navier-
Stokes equation (a fluid equation) is fundamentally dif-
ferent from that of the more precise Vlasov equation (a
kinetic equation) discussed here. Thus, our detailed in-
vestigation of MPS methods in the context of the Vlasov
equation is novel and warranted.

If the solution to a PDE can be efficiently represented
as an MPS, meaning that the rank required to represent
the solution within some tolerable error is roughly log-
arithmic with respect to the size of the data, then the
computational cost of solving the PDE would also scale
polylogarithmically with respect to the size of the data,
formally achieving exponential speed-up over classical di-
rect numerical simulation methods. Our work serves as
an exploratory investigation into the so-called compress-
ibility of the solutions to the Vlasov-Poisson system and
the practicality of using MPS methods to solve for its
dynamics. While we only consider systems with one co-
ordinate in space and one coordinate in velocity (1D1V),
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we are able to draw conclusions about the efficiency of
the representation and discuss considerations for scaling
up to higher dimensions.

This paper is organized as follows. We first provide a
brief introduction to matrix product state (MPS) algo-
rithms, though we point the reader to Refs. [28] and [29]
for a more thorough introduction. We then present our
results, starting by first investigating the efficiency with
which the MPS ansatz can represent the solutions to
the Vlasov-Poisson equations. After verifying that the
MPS ansatz is indeed an efficient representation, we in-
vestigate the practicality of solving these equations com-
pletely within the MPS framework, which involves per-
forming compressions (i.e., low-rank approximations) of
the state at each time step. We conclude with an analysis
of our results and a discussion of future work.

II. PROBLEM STATEMENT

The Vlasov equation describes the evolution of the dis-
tribution function of particle species s, fs(x,v, t), over
the phase space defined by position (x), velocity (v), and
time (t). In the presence of electric forces only, it is given
by

∂fs
∂t

+ vs · ∇rfs +
qs
ms

E · ∇v,sfs = C[fs], (1)

where qs and ms are the the species charge and mass,
respectively. The operator ∇r denotes the gradient in
spatial coordinates, and ∇v,s denotes the gradient taken
along the velocity coordinates, which can be discretized
differently for the ions and electrons. The electric field E
is only defined on spatial coordinates; in the electrostatic
case that we consider here, it is computed from Poisson’s
equation,

∇2φ = − 1

ε0

∑
s

qs

∫ ∞
−∞

fs dv, (2)

E = −∇φ, (3)

where φ is the scalar electric potential and ε0 is the per-
mittivity. The term C[fs] is the collision operator which,
strictly speaking, is neglected in the traditional definition
of the Vlasov equation. In this work, if not specified, we
too take this term to be zero. However, in some cases, for
numerical-noise mitigation purposes, we add weak colli-
sions using the Dougherty collision operator [47, 48].

We choose to solve the Vlasov-Poisson equation using
finite differences on a uniform grid in real space and an-
alyze three paradigmatic test cases: nonlinear Landau
damping, the Buneman instability, and shock wave for-
mation. Details on the set-up of these problems can be
found in Appendix A.

III. METHOD OVERVIEW

A. MPS Representation of Classical Data

Suppose we can represent f , the solution to our K-
dimensional PDE, on a discretized grid with N = dL grid
points along each dimension, resulting in a total of dKL

data points. We can equivalently represent the data as a
KL-legged tensor for which the size of each dimension is
d, or

f (x1, . . . , xK) ∼= f (i1, . . . , iKL) ,

where the set indices {ij} can take on integer values from
0 to d−1 and index the position of the element of interest
along the jth leg. (To avoid confusion with the dimen-
sionality of the PDE (K), we refer to the dimensionality
of a tensor as its number of legs; the origin is from tensor
network diagrams, in which an n-dimensional tensor is
represented as a shape with n legs sticking out of it.)

We then decompose this tensor into an MPS by per-
forming singular value decompositions (SVDs) in a iter-
ative fashion, yielding

f (i1, . . . , iKL) =
r1∑

α1=1

...

rKL−1∑
αKL−1=1

M (1)
α1

(i1)M (2)
α1,α2

(i2) . . .M (KL)
αKL−1

(iKL)

(4)

where M (j) are 3-legged tensors (2-legged for j = 1 and
j = KL) and rj is the rank associated with the SVD
decomposition between tensors j and j+ 1. This decom-
position is depicted in Fig. 1(a).

For an exact, full-rank representation, as one travels
towards the middle of the chain, the rank increases ex-
ponentially, with rj = dmin(j,KL−j). However, one can
obtain a low-rank approximation of the original state
by only retaining components corresponding to the D
largest singular values in the decomposition at each bond.
The truncation error arising from compression at bond
j, defined as the normalized Frobenius norm of the dif-
ference between the original state f and the compressed
state fD, is

εj =
||f − fD||F
||f ||F

=

(
rj∑
i=D

(
σ̃

(j)
i

)2
)1/2

, (5)

where {σ̃(j)} are the singular values at bond j, or-
dered from largest to smallest, normalized such that∑
i(σ̃

(j)
i )2 = 1. Note that the singular values must be

obtained when the MPS is in the proper canonical form
(see SI for details). The parameter D, often referred to
as the bond dimension, thus determines both the accu-
racy of the representation and the computational cost
of the MPS algorithm. The compressibility of the data,
such that it can be represented as an MPS of some small
bond dimension (to be defined later) with tolerable error,
is the crux of MPS algorithms.
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FIG. 1. Tensor network diagrams depicting (a) the conver-
sion of a vector into an MPS, and (b) solving the PDE using
MPS. We first compute the time derivative, assumed to be a
function of our state f(t), within the MPS framework. This
involves applying the desired operations (represented as ma-
trix product operators (MPOs), depicted as 1-D chains of
square tensors) to the state and summing all of the terms
together. We then compute the state at the next time step.
At this point, the bond dimension of f(t+ ∆t) is larger than
its original value due to the various operations applied to the
MPS, so the MPS needs to be recompressed. This is done
by first canonicalizing the MPS using QR decompositions,
and then performing the compression via SVD and retaining
only the D largest singular values at each bond (see SI for
details). In these diagrams, n-dimensional tensors are rep-
resented by shapes with n legs. Legs that are connected to
each other represent tensor contractions along those dimen-
sions. Tensors in canonical form are depicted using triangles
and obey the property denoted in the yellow box, or that∑

u,lAl,r(u)A∗l,r′(u) = δr,r′ .

B. Time Evolution Using MPS

One advantage of the matrix product framework is that
one can perform linear operations on an MPS while re-
maining in matrix product form, eliminating the need
to convert it back to its original vector form. Fig. 1(b)
depicts the procedure of performing time evolution with
MPS. Analogous to the representation of vectors as MPS,
operators that act on the state f , such as the gradient,
can also be written in matrix product form (ie. matrix
product operators, or MPOs). Elemental multiplication
can be reframed as multiplication of the state with a diag-
onal operator, and taking the dot product involves taking
the sum of those products. Details on these operations
are in Appendix B. Solving the initial value problem is
then no different from traditional matrix-vector multipli-
cation methods, except all the calculations are done with
the vectors and matrices in matrix product form.

However, as one performs operations on the state f ,

the bond dimension will grow, eventually becoming un-
necessarily large and unmanageable. Thus, one needs to
compress the MPS back to the desired bond dimension.
The compression of the data is done by first putting the
MPS into canonical form via iterative QR decompositions
and then performing the low-rank approximation using
iterative SVD decompositions (see the SI and Ref. [23]
for details). Unfortunately, the compression step does
introduce computational overhead, which we discuss in
the next section.

C. Cost Analysis

Assume that our state f is represented as an MPS with
bond dimension D, and that we operate on the state with
an MPO of bond dimension Dw using a naive contrac-
tion and compression scheme. The cost of applying the
MPO to the MPS is simply the cost of tensor contrac-
tion, which scales like O(KLD2

wD
2d2). The resulting

MPS now has a bond dimension of DDw, and it needs to
be compressed to bond dimension D. The cost of putting
the MPS in canonical form via QR decompositions scales
like O(dD3D3

wKL), and the cost of the actual SVD com-
pression scales like O(d2D3DwKL). As such, the cost
of the MPS algorithm is dominated by the canonicaliza-
tion and compression of the MPS at each time step. If
Dw is constant and independent of the number of grid
points in the discretization, which is the case for the lin-
ear finite difference operations on a uniform grid (see SI
and Ref. [28] for details), then one can say the algorithm
formally scales like O(D3K logdN). In comparison, tra-
ditional sparse matrix-vector multiplication scales like
O(NK). Thus, if D scales logarithmically with vector
size, the MPS framework provides exponential speed-up.

One complication arises with the nonlinear term in the
Vlasov-Poisson equation. Because the force felt by the
states (i.e. the electric field) is determined from the dis-
tribution functions themselves, the bond dimension of
the MPS representation of the electric field will depend
on the problem of interest and can also depend on grid
size. If the bond dimension of the electric field is DF ,
then the cost of canonicalizing the nonlinear term scales
like O(D3D3

F ). In the worst case, DF will depend lin-
early with D. However, for the Vlasov equation, we ex-
pect DF to be closer to

√
D since the electric field only

has coordinates in position space and not the full phase
space. In this case, the increase in cost mirrors that of
traditional methods, which exhibit a similarly increased
scaling of O(N3K/2). One potential advantage of the
MPS framework is that we may be able to approximate
the force term and represent it with smaller bond dimen-
sion without significant loss of accuracy in the simulated
dynamics. We elaborate on this in Section IV B 3. Ad-
ditionally, slightly more advanced contraction and com-
pression schemes, such as the zip-up algorithm [49], may
offer reduced scaling with respect to DF .

In this work, we set d = 2. However, if we had chosen
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d = N , L = 1, we would arrive at the more common ten-
sor train formalism, in which the data is decomposed in
between but not within each dimension. The dominant
cost of tensor train methods is also the canonicalization
and compression step, which scales like O

(
ND3D3

wK
)
.

Choosing a smaller d and compressing the data within
each dimension, as done here, will lead to exponential
speed-up with respect to N , the number of grid points
along each dimension. The proposed MPS method will,
however, have a larger prefactor scaling the computa-
tional cost because of the bond dimensions of the opera-
tors in MPO form. In the tensor train format, operators
are often separable along each dimension with Dw = 1.
(The primary exception lies in computing the nonlinear
term.) Fortunately, for finite difference methods on a uni-
form grid, the MPO bond dimensions are independent of
N and typically relatively small, around 2 to 5.

Because the range of feasible simulation resolutions is
limited by feature size and time-stepping constraints, and
therefore is relatively small, it is difficult to show the
logarithmic dependence of D with respect to system size
with only 2-dimensional (1D1V) systems. Instead, since
MPS methods suffer from computational overhead due
to the D3 scaling in the compression step despite for-
mally showing exponential reduction in cost, here, we
compare the proposed MPS method to traditional direct
numerical simulation. By direct comparison of compu-
tational costs, we can loosely define Dcompete = NK/3,
below which MPS methods might be competitive against
traditional direct numerical simulation methods. (Note
that this value by definition does not—and should not—
demonstrate logarithmic scaling of D; it is simply a value
dependent on the simulation grid defined to help com-
pare costs of MPS methods and traditional methods.)
For N = 29 and K = 2, this would correspond to
Dcompete = 64, or an 8-fold reduction from the maximum
possible bond dimension. For the 1D1V systems that we
consider here, we do not expect MPS methods to signifi-
cantly outperform direct numerical simulation methods.
Rather, this work serves as a proof-of-principle investi-
gation and a first step to considering higher dimensional
systems in the future.

As a brief side note, when solving the Vlasov equation,
it is not uncommon to save the distribution functions
with the intention of restarting the simulation from that
point in time. The amount of memory required for stor-
ing an MPS of bond dimension D is O(K logd(N)D2d),
which is exponentially less than the O(NK) cost for stor-
ing the state in its vector representation. Since solutions
to the Vlasov equation can be up to 6-D, saving them
in MPS form can significantly reduce storage costs, pro-
vided that they are sufficiently compressible.

IV. RESULTS

The results will be presented as follows: we start by
computing the dynamics of nonlinear Landau damping

without any compression (i.e., without low-rank approxi-
mations), and then gauge the compressibility of the elec-
tron and ion distributions within the MPS representa-
tion. We also compare results for different MPS con-
structions. After verifying that the distribution functions
can be efficiently represented as an MPS, we then in-
vestigate solving the PDE by performing time evolution
with compression at each time step. We present results
for nonlinear Landau damping, the Buneman instability,
and shock-wave formation in 1D1V. In all calculations,
we use MPS with d = 2.

A. State Compressibility

Numerically exact simulations of the Vlasov-Poisson
equation are performed within the MPS framework by
enforcing the truncation error εj at each bond to be less
than some small threshold value (we use a threshold of
10−10). These calculations are referred to as simulations
with no compression.

We first consider the case of nonlinear Landau damp-
ing. As shown in Fig. 2, our code yields the anticipated
dynamics, in good agreement with results obtained from
the code Gkeyll [5] (small discrepancies are to be ex-
pected because Gkeyll is a discontinuous Galerkin finite-
element code whereas we employ a (less accurate) finite-
difference scheme and use a larger time step).

To quantify the compressibility of the distribution
functions in the MPS representation, one can measure
the Von Neumann entanglement entropy (EE) at each
internal bond, defined as

S
(j)
MPS = −

rj∑
i=1

(σ̃
(j)
i )2 log2 (σ̃

(j)
i )2, (6)

where σ̃(j) are the normalized singular values associated
with bond j. The maximally entangled case is when all rj
singular values are equally weighted at

√
1/rj , yielding

an entanglement entropy of log2(rj). Generally speaking,
the larger the entanglement entropy, the less compress-
ible the state and the larger D needs to be in order to
accurately represent it.

The interpretation of the entanglement entropy de-
pends on the mapping chosen during the initial reshaping
of the vector of data to the KL-dimensional tensor. For
1-D systems, the most straightforward choice is to have
the nth data point be indexed in the MPS by the d-nary
representation of n. In this mapping, the MPS has a
multigrid representation, with the left-most tensor corre-
sponding to the coarsest grid and subsequent tensors cor-
responding to increasingly fine grid resolutions [28, 29].
The entanglement entropy thus measures the degree of
correlations between grids of different resolutions, which
in turn suggests that systems with scale separation can
be efficiently represented by MPS.

For higher dimensional data, a priori, there exist mul-
tiple equally reasonable mappings one can consider. For
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FIG. 2. Landau damping without compression of the distribution functions. (a) Plot of energy density of electric field, electron
distribution, and ion distribution over time for perturbation wavevector k = 0.75. Results from Gkeyll [5] are shown in dotted
black as reference. (b) The corresponding ion and electron distribution functions at t = 60.

example, our 2-D data can be mapped to the MPS such
that the tensors indexing a given dimension are appended
sequentially. Then, for each dimension, the tensors can
be ordered from coarse to fine grid resolution or the re-
verse. We consider three variants in which the tensors of
each dimension both go from coarse to fine (S1), the first
dimension is ordered from fine to coarse while the second
is ordered from coarse to fine (S2), as well as the opposite
(S3). Alternatively, the data can be mapped such that
tensors corresponding to similar grid resolutions but dif-
ferent dimensions are adjacent to each other (IF). This
interleaved ordering is used by Gourianov et al. [46], but
they also contract tensors across different dimensions to-
gether so that now d = 2K (IG). These different orderings
are shown in the top row of Fig. 3.

The remainder of Fig. 3 shows the entanglement en-
tropy of the MPS representations of the ion and elec-
tron distributions for the nonlinear Landau damping test
case at the normalized time of t = 60, as well as the
root-mean-square (rms) error of the distribution function
compressed to bond dimension D with respect to the un-
compressed result. We compare solutions obtained from
solving the Vlasov-Poisson equations on grids with differ-
ent resolutions (2L grid points per dimension for a fixed
domain with L ranging from 6 to 10), and also compare
results for different MPS orderings.

The shape of the EE curves describes the amount of
correlations between different grid resolutions at each
bond. The shapes change for the different MPS orderings
because the different tensor orderings affect the amount
of information that must be carried by each bond. How-
ever, we find that the magnitudes and spread of the EEs
along each bond remain comparable for the different or-
derings, with the exception of the electron distribution

for S3 ordering, whose maximum EE is roughly half of
that of the others.

Let us first consider MPS in the S1 ordering. As shown
in Fig. 2(b), the ion distribution appears to approxi-
mately be uniform in position space and Maxwellian in
velocity space. The EE at the center bond connecting the
spatial dimension and velocity dimension is on the order
of 10−3 to 10−4, meaning that the distribution function
is close to separable. The EE of the bonds connecting
tensors corresponding to the spatial dimension is of the
same order of magnitude. The small magnitude of the EE
is to be expected given the simplicity of a near-uniform
distribution, since there would only be negligible correla-
tions between features of different length scales along x.
The plateau in the EE for spatial grid tensors suggests
that the EE is dominated by the correlation of the coars-
est grid in x to the velocity grid tensors; we verify this
using the result for S2 ordering, which shows that the
EEs of bonds connecting increasingly fine spatial grids
to the rest of the MPS drop off by about a factor of 2.
Because the MPS must capture the Maxwellian distribu-
tion in velocity space, the EE for bonds corresponding
to the velocity dimension are nonzero. We expect the
EE at coarser grid resolutions to be larger, such that it
captures the general shape of the distribution function,
while the EE at finer grid resolutions are smaller, since
they are only responsible for adding smoothness to the
function. The visible drop in the EE for increasingly fine
velocity grid tensors again suggests that the dominant
correlations between the x and v dimensions are at the
coarse grid.

The electron distribution function is more interesting.
The EE at the center bond is about a value of 1, mean-
ing that the spatial and velocity dimensions are no longer
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FIG. 3. Entanglement entropy for solution to 1D1V Landau damping at t = 60.0. (top row) Different MPS orderings of a
2D state. Arrows correspond to ordering of tensors from coarse to fine grid resolution. (middle row) Entanglement entropy of
the ion and electron distributions for Landau damping with initial conditions A = 0.5 and k = 0.75 evolved to time t = 60
using 2L grid points per dimension. For the sequential orderings, the EE at the center bond corresponds to the EE if using a
tensor train format. (bottom row) Root-mean-square (rms) error of the same distribution functions when compressed to bond
dimension D with respect to the original uncompressed representation for each grid resolution.

separable. However, we still see a plateau in EE at finer
grid resolutions in x, suggesting that the EE in the bonds
is dominated by the correlation of velocity space with the
coarsest grids in x. The jump in EE at the first bond
from the center suggests that the additional correlations
between x and v are mostly not with the coarse velocity
grid. The smaller EE for the S3 ordering in this par-
ticular test case indicates that there are instead strong
correlations between the coarse grid of one dimension and
the fine grid of the other. Indeed, consistent with our ex-
pectations, the electron distribution (shown in Fig. 2(b))
exhibits slightly skewed striations along x.

The same kind of analysis on the EE curves can be
done for the interleaved orderings. For the IF ordering,
we observe a step-like structure in the EE, in which the
changes in the EE occur predominantly at every even
bond. This means that the EE is dominated by corre-
lations within the second dimension, as was determined
above. The EE for the IG ordering has a similar shape to
the IF result, meaning that there is little entanglement
between the x and v dimensions at the paired grid scales.

We now compare the EE for simulation results ob-

tained using different grid resolutions (different L). If
the distribution function is sufficiently resolved, as is the
case for the ion distribution, the EE for each bond does
not change when increasing the grid resolution. The bond
connecting MPS to the additional tensor corresponding
to the finest grid resolution exhibits an EE that appears
to scale with the grid spacing. (This is because the values
at these grid points can be approximated using a Taylor
expansion, yielding singular values proportional to 1 and
∆x at that bond). If the distribution function is not suf-
ficiently resolved, as is the case for the electron distribu-
tion, the EE at each bond can change. In the worst case,
doubling the resolution along both dimensions would in-
crease the EE by 1 at all bonds. However, the increase
in EE observed here is much less than that, suggesting
that only a small amount of information is added. For
this particular test case, the additional information is en-
coded very efficiently for the S3 ordering, as we do not
see a visible increase in EE for any of the bonds.

The entanglement entropies measured are all relatively
small: the EE at the center bond has a theoretical max-
imum value of L, but the maximum observed value is
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2. As such, we expect the distribution functions to be
very compressible. We measure the error arising from
the compression, which we define as the rms error of the
compressed distribution function with respect to its un-
compressed value for the specified grid resolution. Note
that this is not a measure of the error of the distribution
function with respect to the solution’s true value.

When compressing the MPS to D = 8, the rms errors
are only on the order of 10−3 to 10−4 for the ion dis-
tribution and 10−2 for the electron distribution for all
grid resolutions. Compared to the ions, the rms error
for the electrons decays relatively slowly with increased
bond dimension at small D; increasing the accuracy in
the electrons from 10−2 to 10−3 requires increasing the
bond dimension by a factor of 4. A slower drop in rms er-
ror suggests that the distribution function is dominated
by a few modes but contains many weaker components
that will need to be included in order to achieve the de-
sired degree of accuracy. It also appears for this par-
ticular test case that the sequential ordering performs
marginally better than the interleaved ordering, exhibit-
ing smaller rms error for a specified D.

Comparing the bond dimension required to achieve the
desired degree of accuracy provides insight on the scal-
ing of D with respect to the number of grid points along
each dimension, N = 2L. For the electron distribution,
if one is satisfied with relatively large compression errors
on the order 10−3, the bond dimension required generally
converges with increased grid resolution. However, with
the exception of the S3 ordering, the bond dimension re-
quired to achieve a smaller compression error appears to
increase with grid size; for a compression error on the
order of 10−6, the D required appears to scale like dαL

where α is some small constant. Because no collisions are
included in these calculations, some of this additional in-
formation may be due to noise introduced at the grid
level by the finite difference time-stepping scheme. How-
ever, as mentioned above, increasing the grid resolution
incorporates additional components weighted by coeffi-
cients that scale with grid spacing. As a result, since the
compression error is measured with respect to the un-
compressed solution of the specified grid resolution, the
lower resolution solutions would appear more compress-
ible since they contain less information and do not fully
capture the features that can only be resolved on a finer
grid. The convergence of rms error with respect to L for
the S3 ordering is in part due to the particularly low EE
at all bonds for this specific test case, but also suggests
that the S3 ordering is able to more efficiently represent
the extra information within the higher resolution state
(along with any numerical noise), such that the bond
dimension required for a desired rms error converges to
some finite value as one increases grid resolution.

In summary, consistent with the fact that the true dis-
tribution function only contains a finite amount of infor-
mation, the EE only increases slightly as it quickly con-
verges to that of the maximum grid resolution. This sug-
gest that the amount of information in the distribution

function can be described by the entanglement entropy
at each bond of its MPS representation. As a result, the
MPS ansatz should provide an efficient representation of
the distribution functions, since the cost of manipulating
the data is correlated to the amount of information in
the state itself and not on the number of grid points in
the discretization. Additionally, by comparing how the
EEs vary for different MPS orderings, one can provide
insight on the dominant correlations within the distribu-
tion function.

In this nonlinear Landau damping test case, the species
distribution functions can be represented with rms error
on the order of 10−2 or less with small bond dimension of
about D = 8. While the rms error drops relatively slowly
at small values of D, the curve steepens at larger bond di-
mension. The different MPS orderings appear to behave
relatively similarly, though the S3 ordering yields a par-
ticularly compressible MPS representation for. The S3
ordering also exhibits the best convergence in compres-
sion error with respect to bond dimension for increasing
grid resolution, such that the bond dimension required
for the desired compression error does not grow linearly
with the number of grid points used in the discretization.
However, note that while knowing how the bond dimen-
sion scales with respect to grid resolution is important
for cost arguments, in practice, the resolution is often set
by the physics.

B. Compressed Time Evolution

We now investigate the performance of MPS methods
in solving the Vlasov equation while compressing the dis-
tribution functions and electric field to some prescribed
bond dimension D at each time step. For the sake of
simplicity, in the results presented here we only com-
press the MPS representing the distribution function to
the specified bond dimension at each actual time step, as
opposed to each intermediate time step in the standard
fourth-order Runge-Kutta procedure (RK4). This is the
most expensive option but also the most accurate. We
refer the reader to Appendix C 2 for further discussion
on algorithmic variations one can consider.

In order to obtain dynamics accurate within O(∆t4)
of the uncompressed results at all time steps, the tol-
erable truncation error at each time step must be less
than ∆t5 due to the accumulation of errors in the time
evolution scheme. However, if one is less interested in
the exact distribution function at a given point in time
but more interested in the general behavior of the sys-
tem, as is often the case, a larger truncation error can
be tolerated. Unfortunately, compression can introduce
numerical noise, potentially in the form of sharp features
that would cause numerical instabilities in finite differ-
ence schemes. However, we find that when using the S3
and interleaved orderings we often can capture important
features of the dynamics with remarkably robust perfor-
mance, even when compressing the state by more than a
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factor of 8.

1. Nonlinear Landau damping

We first revisit the same nonlinear Landau damping
problem analyzed in previous sections. Results of solv-
ing the Vlasov-Poisson equations with compressed time
evolution are shown in Fig. 4. The simulations are per-
formed on a 26 × 28 grid, with grid spacings ∆x ≈ 0.13,
∆ve ≈ 0.047, and ∆vi ≈ 0.0011. The MPS representa-
tion can have a maximum bond dimension of 27.

As discussed in the Cost Analysis section, MPS meth-
ods begin to be competitive with traditional matrix-
vector multiplication methods when the bond dimension
is roughly Dcompete ∼ (NxNv)

1/3, where Nx and Nv are
the number of grid points used along the x and v dimen-
sions. For this problem, Dcompete = 24, and is about a
5-fold reduction from the maximum bond dimension of
27. We find that this level of compression is very man-
ageable, as we are still able to compute the electric field
energy density within 10% of the result obtain from un-
compressed time evolution for times less than 40. For
longer times, though the error grows, the energy den-
sity of the field remains close to zero—the large relative
error is in part due to the small amplitude of the field.
While less accurate, higher levels of compression (smaller
D) still yield results with the correct damping and satu-
ration behavior. Furthermore, even for the aggressively
compressed D = 16 case, the distribution functions at
t = 60 are visually remarkably similar to those of the
uncompressed result (Fig. 2(b)), capturing the same hor-
izontal striations with only some small differences.

Out of the different MPS orderings considered, the S3
ordering yields the most accurate results when D = 24.
This is consistent with our previous analysis (Fig. 3)
which showed that the S3 ordering yields the lowest max-
imum entanglement entropies and the smallest rms com-
pression error. The performance of the other MPS order-
ings are similar to each other. Again, while these results
exhibit larger error in the saturation regime, they all still
capture the main features of dynamics.

2. Buneman instability

We now consider the 1D1V Buneman instability [50],
for which the background configuration differs from the
nonlinear Landau damping case only in that the electron
distribution is now centered at v0,e = ωp,e/k in velocity
space, where ωp,e is the electron plasma frequency. To
reduce numerical noise, we also include collisions with
a collision frequency of about 0.007ωp,s for each species
(this is much smaller than the linear growth rate of about
0.2ωp,e). The results for initial perturbation strength
A = 10−3 and wavevector k = 0.10 on a 5122 grid are
shown in Fig. 5. We find that we can compress the data
to a bond dimension of 64, a factor of 8 reduction from

the maximum value, and still obtain the anticipated dy-
namics of the system, with the energy in the electric field
accurate to about 10%. Visually, the distribution func-
tion looks similar to the uncompressed version, except
for some noise in the ion distribution at small velocities.

The complexity of the distribution functions is closely
correlated to the degree of nonlinearity in the dynam-
ics. In the linear regime at times less than about 40,
the system is extremely compressible, as evidenced by
small compression errors on the order of 10−10 in both
the ion and electron distributions and good convergence
with respect to bond dimension. However, in the nonlin-
ear regime, the rms compression errors are at about 10−2

for a bond dimension of D = 32. Consistent with our ob-
servations in the case of Landau damping, the MPS with
sequential ordering perform better in the linear regime,
in which the distribution function remains closer to a sep-
arable state; however, the interleaved orderings perform
slightly better for the nonlinear regime in which multi-
scale structures often dominate.

While the error in the electric field energy density at
a given point in time for the D = 32 result is large, we
are still able to capture the general shape of the energy
density over time. In Fig. 5(d), we find that the en-
ergy density in the electric field is of the correct order of
magnitude and roughly follows the shape of the expected
results. Furthermore, as shown in Fig. 5(c), we are still
able to roughly see the same swirling features in the elec-
tron distribution. Interestingly, it appears as if collisions
at a higher collision rate had been used since many of the
features in the distribution function and the electric field
energy density have been smoothed out.

3. Approximation of the nonlinear term

As mentioned in the Cost Analysis section, the cost of
computing and compressing the nonlinear term using the
MPS framework scales like O(D3

FD
3), where DF is the

bond dimension of the MPS representation of the electric
field. Since the electric field is obtained from the ion and
electron distribution functions, the bond dimension of
its MPS representation (DF ) will vary depending on the
problem of interest. As such, computing the nonlinear
term can potentially be significantly more expensive than
the linear terms. However, as shown in Fig. 6, when per-
forming time evolution with the electron and ion distribu-
tion functions compressed to D = 64, we can compress
the electric field to just DF = 4 while still remaining
within 10% of the result obtained without compression
of the electric field. The compression error of the electric
field is on the order of 10−2. This shows that one is able
to compress the electric field MPS aggressively without
introducing significant error in the dynamics, thereby re-
ducing the cost associated with computing the nonlinear
term. This will need to be investigated more carefully
for higher dimensional problems, but it may be another
source of speed up in MPS calculations.
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FIG. 4. Compressed time evolution for nonlinear Landau damping with k = 0.75 on a 26 × 28 grid. (a-c) Ion and electron
distributions (over one period in x) at t = 60 obtained from compressed time evolution with D = 24 and S3 ordering, with
D = 16 and S3 ordering, and with D = 16 and IG ordering, respectively. (d) Electric field energy density for different levels of
compression for MPS with S3 ordering. (e) Relative error in the electric field energy density of the compressed time evolution
results with respect to the uncompressed case for different levels of compression. S3 ordering is used. Results for D = 24
are within 10% of the uncompressed result for times less than t = 40. Results for D = 64 are exact with respect to the
uncompressed result, meaning that each truncation error at each bond εj is less than 10−10, and thus no blue line is shown
in this plot. (f) Electric field energy density of the compressed time evolution for different MPS orderings at bond dimension
D = 24. Results for S1 and S2 ordering appear to be identical and are closely overlapping.

4. Collisionless shocks

Simulations of shock-wave formation in plasmas are
performed on a 5122 grid, and the results are shown in
Fig. 7. We are able to capture the dynamics with a bond
dimension of D = 64 within 10% accuracy of the en-
ergy density. However, compared to the previous test
cases, these calculations are much more sensitive to fur-
ther compression. For example, even though the error
when compressing the distribution functions to D=32 is
less than 10−3 at early times, simulations using S2, IF,
and IG orderings fail drastically during that time. MPS
with S1 and S3 ordering perform better, though they also
fail at about t = 600 once the error in the ion distribution
becomes on the order of 10−1.

This unstable behavior is due to the accumulation of
compression errors over time as opposed to a numerical
instability. When the simulation fails, the electron distri-
bution function develops an unphysical wiggle at around
x = −150 (see Fig. 7(b)). Reducing the time step does
not improve performance, and while adding collisions can
delay the onset of the failure, the collision rates required
for stability at long times are too large as they would af-
fect the observed dynamics. This test case is likely more

sensitive to compression errors than the previous tests be-
cause the error generates a finite charge density in regions
where it should be zero, which can grow over time. Thus,
while compression errors of the ion and electron distribu-
tion functions may be of a tolerable amount, the relative
error of the charge density at each point in space is much
larger. Therefore, unsurprisingly, the MPS algorithm as
presented is less advantageous for problems where high
accuracy in the distribution functions is required. How-
ever, we still are able to obtain stable and reasonably
accurate results with a bond dimension of D = 64, which
is just an eighth of the maximum possible bond dimen-
sion.

Note that the observed results are specific to the RK4
time evolution scheme used. Alternative time evolution
schemes might yield more compressible distribution func-
tions if the methods generate less numerical noise, and
also may be more robust to the introduced compression
errors. Investigations on this topic are ongoing.
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FIG. 5. Buneman instability. (a-c) Distribution functions of the ions and electrons at normalized time t = 80 obtained without
compression, a bond dimension of D = 64, and a bond dimension of D = 32 using the S3 ordering. (d) Electric field energy
density for different levels of compression. The curve in dotted black is obtained using Gkeyll for an external reference. (e)
Electric field energy density in the nonlinear regime for different MPS orderings (f, g) Relative error in the electric field for
different compression levels and different MPS orderings. Note that the interleaved orderings have larger error in the linear
growth regime but perform better in the nonlinear regime. (h, i) Rms error of the ion and electron distribution function after
compression of the exact (uncompressed) results to D = 32 at each time step, evaluated for different MPS orderings.

V. DISCUSSION

The above results suggest that MPS methods can ef-
ficiently represent solutions to the Vlasov-Poisson equa-
tion in 1D1V, and that one can also use a compressed
finite difference time evolution scheme to solve for the
dynamics of the plasma with reduced cost while still cap-
turing its important features. In most cases, we find
that one can generally compress the MPS representa-
tion of the ion and electron distribution functions to a
bond dimension of about Dcompete = d(Lx+Lv)/3 and still
determine the energy of the electric field within 10% of
that obtained without any compression. We estimate this
amount of compression to be enough for MPS to begin to
be competitive with sparse matrix-vector multiplication
methods. Meeting this benchmark now is encouraging,
since we expect MPS methods to exhibit more speed-up
for higher dimensional systems. We also find that even
smaller bond dimensions can be used; though less ac-

curate, main features of the dynamics, such as growth
rates and saturation energies, as well as features in the
distribution function itself, can be captured.

The compressibility of the distribution function is per-
haps unsurprising, given the inefficiency inherent to fi-
nite difference methods; one needs a grid fine enough
to accurately compute the gradients in the distribution
function, and thus not all data points are providing sig-
nificant information regarding its shape. However, the
fact remains that the MPS framework is able to pro-
vide a more efficient representation of the data, leading
to (formally) exponentially reduced computational costs.
Analyzing the compressibility and entanglement entropy
of distribution functions when mapped to different MPS
orderings (as done in Fig. 3) can also help provide phys-
ical insight on the dynamics, enabling us to understand
how information between different grid scales and differ-
ent dimensions propagates over time.

While the choice of MPS ordering did not appear to
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FIG. 6. Approximate calculation of the nonlinear term for the
Buneman instability. Ion and electron distribution functions
are compressed to bond dimension D = 64. (a) Traces of the
electric field energy in time with different levels of compression
of the electric field (DF ). (b) Relative error in electric field
energy density with respect to the D = 64 time evolution
result but with no compression of the electric field. (c) Error
in the electric field after compression to the specified DF for
each time step.

significantly affect the compressibility of a given distribu-
tion function, their performance during compressed time
evolution varied significantly. For example, in the Bune-
man instability test case, the MPS with S1 and S2 order-
ing are susceptible to numerical instabilities generated by
compression, whereas the interleaved and S3 orderings
appear to be much more robust, even with aggressive
compression. This suggests that locality of tensors corre-
sponding to fine grids is important for the robustness of
MPS methods in a finite difference scheme, because the
compression tends towards removing weak features at the

fine grid scales. However, robustness to noise also sug-
gests the tendency to remove weaker fine scale features,
as observed in Fig. 5(c).

The errors of compressed time evolution with the S3,
IF, and IG orderings were generally within an order of
magnitude of each other (collisionless shocks being an ex-
ception). Nonetheless, we found that the S3 ordering per-
formed better in the linear or weakly nonlinear regimes,
in which the distribution functions largely remain sep-
arable across the two dimensions. In contrast, the in-
terleaved orderings performed better in regimes where
nonlinear effects dominate. This is within expectations,
since nonlinear dynamics are known to be multi-scale and
the interleaved MPS groups tensors of similar grid scale
together. The grouped version (IG) appeared to yield
marginally lower error than the factored version (IF).
However, the computational cost of this ansatz scales
like dK instead of Kd. While an unimportant difference
for the 1D1V case, this trade-off between performance
and cost would need to be investigated at higher dimen-
sions (i.e., K = 6). Compared to the sequentially or-
dered MPS, the interleaved ordering may feel less natural,
particularly when performing operations like derivatives
and integrals along certain dimensions and when consid-
ering grids with different resolutions along each dimen-
sion. However, carefully optimized implementation aside,
these are not particularly strong reasons to avoid using an
interwoven ordering. Though they are less accurate than
the sequentially-ordered MPS in the linear regime, such
calculations often only require modest bond dimension so
the compression error is still relatively small. Thus, this
is a relatively small trade-off compared to increased com-
pressibility in the nonlinear regime. However, while it is
unclear how well an MPS with interleaved ordering would
perform for higher dimensional systems (Gourianov et al.
consider 3-D simulations using the grouped interwoven
geometry, but they refrain from making strong claims
about its performance [46]), one might expect it to out-
perform an MPS with sequential ordering. For one, it is
no longer possible to have an MPS with S3-like ordering
in which dimensions are separated sequentially while also
having tensors corresponding to fine grids be grouped to-
gether. As such, any higher-dimensional sequentially or-
dered MPS may be susceptible to numerical instability.
Alternatively, as mentioned by Refs. [29] and [46], one
might consider representing the data using other tensor
network ansatzë, such as tree tensor networks or 2-D ten-
sor networks (PEPS) [51, 52].

As in the 1D1V case, using MPS methods for prob-
lems of higher dimensions should still provide significant
speed up for systems that exhibit separability of dimen-
sions and length scales. However, numerical studies of
various test cases are required to make more informative
claims and are an obvious next step, particularly since
MPS methods promise exponential reduction in compu-
tation and storage costs with respect to direct numerical
simulation if the system is compressible.

In addition to considering higher dimensional systems,
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FIG. 7. Compressed time evolution for shock-wave formation on a 5122 grid. (a) Distribution of ions and electrons at a time of
1000 obtained using S3 ordering and bond dimension D = 64. (b) Distributions at a time of 707 obtained using S3 ordering and
bond dimension D = 32. (c) Relative error in electric field energy density and total energy density obtained using the specified
bond dimension and S3 ordering. (d) Rms error generated by compressing the uncompressed ion and electron distributions to a
bond dimension of D = 32 at each time step, evaluated for different MPS orderings. (e) Electric field energy density computed
using compressed time evolution with D = 32 for different MPS orderings. (f) Electric field energy density computed using
compressed time evolution, with the inclusion of various noise-mitigation methods such as adding collisions and using a smaller
time step, computed using MPS with D = 32 and S3 ordering.

there are many other potential directions for future work.
For example, our current implementation uses a basic fi-
nite difference scheme to solve the Vlasov equation, and
we use explicit RK4 as our time stepping scheme. As a
result, despite the exponential speed-up obtained when
using the MPS representation to solve the PDE at each
time step, the total computational cost still has an ex-
ponential scaling due to the CFL time step constraint.
To avoid this, we can consider using a semi-Lagrangian
method [6, 11, 13]. A more involved solution would be to
investigate implicit time stepping schemes. Implicit time
evolution is often not done because it requires performing
a matrix inversion, outweighing the benefits of being able
to use a larger time step. However, in the MPS frame-
work, because the solution to the PDE is now represented
as a network of smaller tensors, one can consider perform-
ing iterative local optimizations to implicitly solve for the
next time step [28]. Alternatively, one could consider us-
ing the MPS framework with other methods for solving
PDEs, such as spectral methods or finite element meth-
ods. These methods may also be more robust to noise
introduced by the MPS compression methods.

Improving our time evolution scheme and altering the
MPS algorithm to conserve plasma properties like energy
or momentum, would also be of interest as it may yield

more desirable results in some cases. There already exist
some algorithms in the tensor train community that we
could consider [36, 53]. Additionally, MPS methods are
designed to minimize the L2-norm of the compression
error. In contrast, the relevant norm for a distribution
function is the L1-norm. Thus, it may also be interesting
to investigate how using MPS to represent the square
root of the distribution function would compare to the
results presented here.

Lastly, as mentioned in the introduction, the MPS
methods used here are not specific to the Vlasov-Poisson
equation, and extending these methods to solve the
Vlasov-Maxwell equations or other kinetic formulations,
such as the gyrokinetic equations, is straightforward.

VI. CONCLUSION

MPS methods can efficiently represent and solve the
1D1V Vlasov-Poisson equation using a finite-difference
scheme. We show this by measuring the entanglement
entropy and the error generated by compression for nu-
merically exact solutions to the Vlasov-Poisson equation.
We also perform time evolution with compression at each
time step, investigating the behavior in both linear and
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nonlinear regimes. The success of the MPS method varies
depending on the design of the MPS. However, we are
ultimately able to compute the dynamics within 10%
accuracy while compressing the distribution function by
about a factor of 8. When the solutions are compressed
even further, while some details are lost, we are still able
to capture general features of the plasma, including the
approximate morphology of the electron and ion distri-
bution functions; as well as the oscillation frequencies,
linear damping or growth rates, and saturation energies
of the electric field.

VII. CODE AVAILABILITY

Code is available upon request.
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Appendix A: Methods

1. Numerical Experiments

We demonstrate the utility of the MPS algorithm for
solving the Vlasov-Poisson equation through a few test
cases. All our simulations are done in units normalized
to the Debye length λD, electron plasma frequency ωp,e,
and the electron thermal velocity vth,e.

a. Nonlinear Landau damping

The initial distributions of the ions and electrons are
given by

fi(x, v) =
1√

2πv2
th,i

e−v
2/2v2th,i , (A1)

fe(x, v) =
1√

2πv2
th,e

e−v
2/2v2th,e (1 +A cos(kx)) , (A2)

where v2
th,s = Ts/ms is the thermal velocity of particle

species s, with Ts the temperature and ms the mass. In
our simulations, we use a realistic mass ratio of mi/me =
1836, perturbation strength of A = 0.5, and wavevector
k = 0.75. Simulations are performed on a uniformly
discretized grid with periodic boundary conditions in x
and zero-gradient boundary conditions in v. The bounds
of the spatial domain are ±aπ/k, where a is the number

of periods to be included to ensure the grid spacing is as
desired. For the electron distribution, the bounds of the
simulation domain in v are ±6vth,s for the electron and
ion distributions.

b. Buneman instability

The initial distributions of the ions and electrons are
given by

fi(x, v) =
1√

2πv2
th,i

e−v
2/2v2th,i , (A3)

fe(x, v) =
1√

2πv2
th,e

e−(v−v0)2/2v2th,e (1 +A cos(kx)) ,

(A4)

with v0 = ωp,e/k. We use a mass ratio of mi/me = 25,
and perform simulations with perturbation strength of
A = 10−3 and wavevector k = 0.10. We use a uni-
form discretization in x from −π/k to π/k with periodic
boundary conditions, and a uniform discretization in v
with zero-gradient boundary conditions. For the elec-
tron distribution, the bounds of the simulation domain
in v are ±6ωp,e/k. For the ion distribution, the bounds
are ±50vth,i.

c. Shock-wave formation

The initial distributions of the ions and electrons are
given by

fi(x, v) = H(x) exp
(
−(v − v0)2/2v2

th,i

)
+

(1−H(x)) exp
(
−(v + v0)2/2v2

th,i

)
, (A5)

fe(x, v) = H(x) exp
(
− (v − v0)

2
/2v2

th,e

)
+

(1−H(x)) exp
(
− (v − v0)

2
/2v2

th,e

)
, (A6)

where H(x) is the Heaviside step function, set v0 =
1.5(Te/mi), and use a realistic mass ratio of mi/me =
1836. Our simulations are performed using a uniform dis-
cretization in x and v, both with zero-gradient boundary
conditions. The spatial simulation domain has bounds
of ±250λD. For the electron distribution, the bounds of
the simulation domain in v are ±6vth,e. For the ion dis-
tribution, the simulation domain is from (−10vth,i − v0)
to (10vth,i + v0).

2. Time Evolution Procedure

To solve the Vlasov-Poisson equations, we compute the
spatial advection term using an upwind finite-difference
scheme [54] and the gradient in velocity using a centered
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finite-difference scheme, both with second-order accu-
racy. Time evolution is performed using standard RK4.
We use an adaptive time-stepping scheme, in which the
time step is a specified fraction of the maximum allowed
by the Courant-Friedrichs-Lewy (CFL) limit [55]. We use
a time step that is 0.9 of the CFL limit. The maximum
time step is calculated as

∆tmax =

(∑
s

|vs|max

∆x
+
|qs||E|max

ms∆vs

+
νs|vs|max

∆vs
+

2νsv
2
th,s

∆v2
s

)−1

(A7)

where ∆x and ∆vs are the grid discretizations along
x and v, |vs|max is the maximum velocity magnitude,
|E|max is the maximum electric field magnitude (mea-
sured at each time step), vth,s is the thermal velocity,
and νs is the collision rate.

3. Collision Operator

When collisions are included in the simulations, we use
the Dougherty collision operator [47],

C[fs] = νs∇v,s ·
[
(v− v0,s)fs + v2

th,s∇v,sfs
]
, (A8)

where v0,s is the average velocity, vth,s is the thermal
velocity, and νs is the collision frequency.

Appendix B: Common Matrix Product State Operations

In this section we briefly describe the common operations performed on the matrix product states (MPS) when
solving the Vlasov-Poisson equation. For a more complete introduction for MPS methods in the context of solving
partial differential equations, we direct readers to Refs. [29] and [28]. Ref. [23] also provides a good overview of MPS
methods, even though it is written for applications in quantum physics.

1. Matrix-vector multiplication

Assume that the vector is represented as an MPS

f(i1, ...iL) =
∑

α1,...,αL−1

A(1)
α1

(i1)A(2)
α1,α2

(i2) ... A(L)
αL−1

(iL) , (B1)

and the operator is represented as an MPO

O(o1, ...oL, i1, ...iL) =
∑

β1,...,βL−1

B
(1)
β1

(o1, i1)B
(2)
β1,β2

(o2, i2) ... B
(L)
βL−1

(oL, iL) . (B2)

To perform a matrix-vector multiplication, we contract over the indices {i1, ..., iL}, yielding

g(o1, ...oL) =
∑

γ1,...,γL−1

C(1)
γ1 (o1)C(2)

γ1,γ2(o2) ... C(L)
γL−1

(oL) , (B3)

where

C(n)
γn−1,γ(on) =

∑
in

B
(n)
βn−1,βn

(on, in)A(n)
αn−1,α(in) (B4)

and γn = (αn, βn). Thus, the bond dimension of g = Af is the product of the bond dimensions of f and A.

2. Addition

Suppose we have two MPS,

f(i1, ...iL) =
∑

α1,...,αL−1

A(1)
α1

(i1)A(2)
α1,α2

(i2) ... A(L)
αL−1

(iL) , (B5)

g(i1, ...iL) =
∑

β1,...,βL−1

B
(1)
β1

(i1)B
(2)
β1,β2

(i2) ... B
(L)
βL−1

(iL) . (B6)
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The sum of h = f + g is given by

h(i1, ...iL) =
∑

δ1,...,δL−1

C
(1)
δ1

(i1)C
(2)
δ1,δ2

(i2) ... C
(L)
δL−1

(iL) , (B7)

where

C(n)(in) =

[
A(n)(in) 0

0 B(n)(in)

]
, (B8)

and δn is the concatenation of indices αn and βn. As such, the bond dimension of h is the sum of the bond dimensions
of f and g.

3. Derivatives

We choose to solve the PDE using finite difference methods on a uniform grid with spacing ∆x. We also choose to
map our data onto the MPS with physical dimension d = 2 using a binary mapping, as described in the main text.

a. First Derivative, Centered, Periodic Boundary Conditions

In this case, the first derivative along one axis, assuming periodic boundary conditions and using a second-order
centered finite difference scheme, is

∂

∂x
≈ 1

∆x

[
I S+ + S− S+ + S−

] I S− S+

0 S+ 0
0 0 S−

I S− S+

0 S+ 0
0 0 S−

 . . .
I S− S+

0 S+ 0
0 0 S−

c1(S− − S+)
c1S

+

−c1S−

 (B9)

where

S+ =

[
0 0
1 0

]
, S− =

[
0 1
0 0

]
and c1 = 1/2.

b. First Derivative, Forward, Periodic Boundary Conditions

The second-order accurate forward finite difference MPO is given by

∂

∂x
≈ 1

∆x

[
I S− S+

] I S− 0
0 S+ 0
0 0 S+

 . . .
I S− 0

0 S+ 0
0 0 S+

I S− 0
0 S+ 0
0 S+ I

 c0I + c1S
−

c1S
+ + c2I + c3S

−

c3S
+

 (B10)

where c0 = −3/2, c1 = 2, c2 = −1/2.

c. First Derivative, Backward, Periodic Boundary Conditions

The second-order accurate backward finite difference MPO can be obtained by interchanging S+ and S−, and using
c0 = 3/2, c1 = −2, c2 = 1/2.

d. First Derivative, Centered, Zero Gradient Boundary Conditions

For central finite difference first derivatives with non-periodic boundary conditions, we compute the first derivative
by first building this backbone MPO

∂

∂x
≈ 1

∆x

[
I S− S+

] I S− S+

0 S+ 0
0 0 S−

 . . .
I S− S+

0 S+ 0
0 0 S−

c1(S− − S+)
c1S

+

−c1S−

 (B11)
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where c1 = 1/2. We then add MPOs representing the desired boundary conditions. In the case of zero gradient
boundary conditions, we utilize the ghost cell method and prescribe the next grid point outside the simulation
boundary to have the same value as the grid point immediately inside of the boundary. Thus, we add the matrices

Mleft =

[[
0 −c1
0 0

]]
⊗
[[

0 0
0 1

]]
⊗ . . .⊗

[[
0 0
0 1

]]
, (B12)

Mright =

[[
0 0
0 1

]]
⊗ . . .⊗

[[
0 0
0 1

]]
⊗
[[

0 0
c1 0

]]
(B13)

where c1 = 1/2 and the MPOs have a total length of L.

e. Second Derivative, Centered, Periodic Boundary Conditions

The MPO for the second-order central finite difference second derivative assuming periodic boundary conditions
can be written as

∂2

∂x2
≈ 1

∆x2

[
I S+ + S− S+ + S−

] I S+ S−

0 S− 0
0 0 S+

 . . .
I S+ S−

0 S− 0
0 0 S+

c0I + c1(S− + S+)
c1S
−

c1S
+

 . (B14)

where c0 = −2, c1 = 1.

4. Dot Product

In order to take the dot product between two MPS, we have to ‘diagonalize’ one of them into an MPO. An arbitrary
MPS can be written like

f(i1, ...iL) =
∑

α1,...,αL−1

M (1)
α1

(i1)M (2)
α1,α2

(i2) ...M (L)
αL−1

(iL) . (B15)

Diagonalizing it yields the MPO

f(o1, ..., oL, i1, ...iL) =
∑

α1,...,αL−1

M (1)
α1

(o1, i1)M (2)
α1,α2

(o2, i2) ...M (L)
αL−1

(oL.iL) (B16)

where

Ml,r(o, i) = Ml,r(i) δi,o (B17)

and δij is the Kronecker delta. Diagrammatically, this would look like

where the squiggly lines in blue represents the delta function. (The blip as it crosses the horizontal bonds means that
it does not interact with it.) In this new tensor network, each tensor now has two legs, and thus it has the form of a
matrix product operator.

5. Inverse Laplacian

Having an MPO for the second derivative and a method with which to add MPOs together, we can obtain an MPO
representation of the Laplacian. To obtain the inverse, one can use Newton’s method, which solely involves matrix
multiplications. Alternatively, we can use a density matrix renormalization group style optimization.

However, because we only consider 1D1V systems in this work, we obtain the operator by starting with a matrix
representation of the Laplacian operator, inverting it, and then converting it into an MPO. For higher dimensional
systems, this method still may be a viable option because even though the computation is expensive, the inverse
Laplacian can be stored after it is computed and thus only needs to be computed once.

For 1-D systems, we found that the MPO of the inverse Laplacian (where the Laplacian is accurate to second order)
requires a bond dimension of about 5 if retaining singular values up to 10−10.
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6. Upwind time evolution

For the advection term in the Vlasov equation, we use an upwind time evolution scheme, in which gradients
multiplied by positive velocities are computed using a backward finite difference stencil while gradients multiplied by
negative velocities are computed using a forward finite difference stencil, or

∂

∂x
≈
[
∂

∂x

]
forward

H(v) +

[
∂

∂x

]
backward

(1−H(v)) (B18)

where H(v) is the Heaviside step function
MPOs of the derivatives using a forward and backward finite difference stencil are described above. The MPO

representing the Heaviside function can be obtained by numerically solving for the MPS representation of H(v), and
then diagonalized into an MPO. For a discretized grid centered at 0, the bond dimension of the MPO is 2. If the MPOs
of the forward and backward time evolution derivative have bond dimension Df and Db respectively, then the new
MPO will have at most a bond dimension Df+Db. Thus, while there is some overhead associated with performing
an upwind scheme, if it results in less noise in the time evolved state, it is ultimately worthwhile, especially since the
noise can often artificially reduce the compressibility of the MPS.

7. Integration

A first-order integration scheme (required for solving the Poisson equation),∫ xN−1

x0

f(x) dx ≈
N−1∑
i=0

f(xi)∆x (B19)

can be performed by contracting the MPS representing f(x) with the MPS

I(i1, ..., iL) = ∆x

[
1
1

]
⊗
[
1
1

]
⊗ . . .⊗

[
1
1

]
(B20)

Appendix C: Canonicalization and Compression

An important part of MPS algorithms is the compression of the MPS to a smaller bond dimension. Doing the
compression accurately requires one to put the MPS in a canonical form.

An MPS has a left canonical form and a right canonical form, respectively defined as

f(i1, ..., iL) =
∑

α1,...,αL−1

L(1)
α1

(i1) ... L(L−1)
αL−2,αL−1

(iL−1)M (L)
αL−1

(iL) , (C1)

f(i1, ..., iL) =
∑

α1,...,αL−1

M (1)
α1

(i1)R(2)
α1,α2

(i2) ... R(L)
αL−1

(iL) , (C2)

and a mixed canonical form where the tensors left of the nth tensor are in left canonical form and tensors to the right
are in right canonical form:

f(i1, ..., iL) =
∑

α1,...,αL−1

L(1)
α1

(i1) ... L(n−1)
αn−2,αn−1

(in−1)M (n)
αn−1,αn

(in)R(n+1)
αn,αn+1

(in+1) ... R(L)
αL−1

(iL) (C3)

where the tensors Ll,r(u) and Rl,r(u) have the property∑
l,u

Ll,r(u)L∗l,r′(u) = δr,r′ ,
∑
r,u

Rl,r(u)R∗l′,r(u) = δl,l′ (C4)

while the tensors Ml,r(u) have no constraints.
To canonicalize the MPS, one performs an iterative QR decomposition procedure. For example, to put the MPS in

left canonical form, starting from the left-most tensor in the chain, we decompose the nth tensor into two using QR
decomposition, and then contract the R matrix into the (n+ 1)th tensor:
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QR canonicalization

. . . . . . ⇒ . . . . . .

Q R

⇒ . . . . . .

∑
α1,α2,...

M (1)
α1

(i1)M (2)
α1,α2

(i2) . . . =
∑

α1,α2,...

∑
β1

Q
(1)
β1

(i1)R
(1)
β1,α1

M (2)
α1,α2

(i2) . . .

=
∑

β1,α2,...

Q
(1)
β1

(i1)

(∑
α1

R
(1)
β1,α1

M (2)
α1,α2

(i2)

)
. . . =

∑
β1,α2,...

Q
(1)
β1

(i1) M̃
(2)
β1,α2

(i2) . . . (C5)

The orthonormal properties of Q ensures that it is of left canonical form, which we represent using a left-facing
triangle. One repeats this process with the following tensor until one reaches the end of the MPS.

Once the MPS is in canonical form, we can compress the MPS using a similar iterative scheme, except instead
of performing a QR decomposition one decomposes the tensor via singular value decomposition (SVD) and retains
only the D largest singular values. In the cartoon below, we assume the MPS is already in right canonical form.
We decompose the nth tensor using SVD. We reduce the size of the bonds between U , S and V T by keeping only
the D largest singular values and the corresponding orthonormal vectors. Again, the U tensor by definition is in left
canonical form, so we contract S and V T into the (n+ 1)th tensor in the MPS.

SVD compression

. . . . . . ⇒ . . . . . .

U S V T

≈ . . . . . .

[U ]D [S]D
[
V T
]
D

⇒D D . . . . . .D

∑
α1,α2,...

M (1)
α1

(i1)R(2)
α1,α2

(i2) . . . =
∑

α1,α2,...

∑
β1

U
(1)
β1

(i1)Sβ1
(V T )

(1)
β1,α1

R(2)
α1,α2

(i2) . . .

=
∑

β1,α2,...

U
(1)
β1

(i1)

(∑
α1

Sβ1
(V T )

(1)
β1,α1

R(2)
α1,α2

(i2)

)
. . . (C6)

=
∑

β1,α2,...

U
(1)
β1

(i1) M̃
(2)
β1,α2

(i2)R(3)
α2,α3

(i3) . . . (C7)

Again, we represent the left/right canonical tensors with left/right-facing triangles. This procedure is repeated for
the (n+ 1)th tensor until one reaches the right end of the chain.

An alternative compression scheme (not used in this work) is a local optimization scheme inspired by density matrix
renormalization group (DMRG) methods. Here, one sweeps through the tensors and updates them such that the error
between the original MPS f and the compressed result f ′ is minimized. For example, the optimal value of the nth

tensor (M (n)) of the compressed MPS is found by solving

arg min
M(n)

||f − f ′||2 , (C8)

which can be done using standard methods like conjugate gradient descent. Because the updates are local, one
typically has to sweep through the MPS at least a few times to converge to the optimal solution. The advantage of
optimization-based compression is that one now can impose constraints on the system (as is done in Ref. [46]).

1. Modified Compression Scheme

The technical details of compression via SVD are outlined above. We mention that one typically compresses the
MPS by performing SVD decompositions starting from one end and ending at the other. However, in an effort to
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minimize the introduction of unphysical noise as a result of state compression at each time step, we use an alternative
truncation scheme inspired by tensor train methods for the sequentially ordered MPS.

In our 2D system, the middle bond corresponds to entanglement between data along x and v. When bipartitioning
the MPS at this bond, we can write the distribution function as

f(x, v; t) =
∑
r

σr(t)gr(x; t)hr(v; t)

where gr(x; t) and hr(v; t) are orthonormal 1-D functions. Keeping the D largest singular values is equivalent to
retaining only the terms in the sum corresponding to the largest coefficients σr. This low-rank approximation should
not generate unphysical noise within the functions gr(x; t) and hr(v; t) themselves. In contrast, compressing the other
bonds, which carry information between coarser and finer grid resolutions within x and v, could result in numerical
artifacts that cause numerical instabilities.

So, in our modified compression scheme we first compress the center bond joining the two halves corresponding to
the two different dimensions. After performing this compression step and removing some information from our state,
we then continue to compress gr(x; t) and hr(v; t) by compressing the remaining tensors in the MPS. The steps of the
compression are given below:

1. Write the MPS in mixed canonical form with the with tensors left of L+ 1 in left canonical form and the tensor
right of L+ 1 in right canonical form.

2. Decompose the tensor via singular value decomposition M (L+1) → USV T

3. To avoid extra canonicalization steps, we insert diagonal matrices S−1 and S in between S and V T

4. Contract L(L)US →M (L)

5. Contract SV TR(L+2) →M (L+2)

6. Perform iterative SVD compression scheme for tensors at positions L to 1

7. Perform iterative SVD compression scheme for tensors at positions L+ 1 to 2L

8. Absorb S−1 into a neighboring tensor.

Note that the compressed MPS is no longer in a canonical form. However, this does not matter since we immediately
apply MPOs to the MPS, which also does not preserve canonicalization.

Interestingly, we found that this compression scheme can improve performance for S1 or S2 ordering, but does not
seem to significantly affect S3 results.

2. Compressed time evolution algorithm

Given an initial value problem ∂f
∂t = y(f, t), the fourth order Runge-Kutta time evolution scheme is given as follows:

fn+1 = fn +
1

6
∆t (k1 + 2k2 + 2k3 + k4) (C9)

where k1 = y (tn, fn) (C10)

k2 = y

(
tn +

∆t

2
, fn +

∆t

2
k1

)
(C11)

k3 = y

(
tn +

∆t

2
, fn +

∆t

2
k2

)
(C12)

k4 = y (tn + ∆t, fn + ∆tk3) (C13)

The most accurate way of computing the next time step would be to perform no active compression until obtaining
the state at the next time step, fn+1. However, while this algorithm formally still would scale like O(D3 log(N)), the
constant scaling factor may be large.

However, we could consider performing intermediate compression steps, such as compressing the intermediate states
as well as the derivatives. We investigate different levels of compression, defined as

C1. Only compression of the state at the next time step fn+1
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C2. Additionally compress intermediate states, e.g. fn + ∆t
2 k1

C3. Additionally compress the sum of derivatives (k1 + 2k2 + 2k3 + k4)

C4. Additionally compress each of the derivatives

C5. Additionally compress terms that are added together when computing the derivatives

In general, as one goes down the list, we expect the compression scheme to be cheaper but also less accurate. While
the later schemes actively compress the MPS more times, they are cheaper because (1) due to the O(D3) scaling
of computational costs, performing multiple compressions of MPS with smaller bond dimension is often cheaper
than performing a single compression of an MPS with larger bond dimension, and (2) even if the MPS is not actively
compressed to the specified bond dimension at the intermediate steps, we still perform the MPS compression procedure
and only truncate singular values such that the truncation error at each bond is less than 10−10 and one does not
restrict the MPS bond dimension. Otherwise, the bond dimension of our state would quickly become unmanageable.

We find that in the case of shock-wave formation, compression at each intermediate state in the RK4 time stepping
scheme performs comparably to only compressing the final state of the next time step. In contrast, compressing the
derivatives introduces significantly more error. This is shown in Fig. 8.
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FIG. 8. Electric field energy densities the for shock-wave formation test case using the different compressed time evolution
schemes detailed above. Results are for (a) S3 and (b) S1 orderings.

Appendix D: Additional results for the Buneman instability

In Fig. 9, we compare the ion and electron distribution functions obtained without compression, with compression
to bond dimension D = 64 at each time step, and with compression to bond dimension D = 32. We also show results
obtained using Gkeyll for reference.

In Fig. 10, we plot the density, momentum, and energy of the ion and electron distribution functions. The uncom-
pressed result and the D = 64 result show good agreement with each other. They also show reasonable agreement
with results from Gkeyll at shorter simulation times, but the differences become more significant at longer times,
especially for the measurement of electron momentum.
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FIG. 9. Ion and electron distributions at specified times for the Buneman instability with initial perturbation of wavevector
k = 0.10 and amplitude A = 10−3. The different rows are results obtained with Gkeyll [5], our code with no compression, and
our code with compression to D = 64 and D = 32 at each time step (using S3 ordering).
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FIG. 10. Zeroth, first and second moments of the distribution functions for the Buneman instability with initial perturbation
of wavevector k = 0.10 and amplitude A = 10−3 at the specified times. Plots compare results obtained without compression,
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