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The superlubric-pinned transition in the depinning dynamics of a two-dimensional (2D) solid dusty
plasma modulated by 2D triangular periodic substrates is investigated using Langevin dynamical
simulations. When the lattice structure of the 2D solid dusty plasma perfectly matches the triangular
substrate, two distinctive pinned and moving ordered states are observed, as the external uniform
driving force gradually increases from zero. When there is a mismatch between the lattice structure
and the triangular substrate, however, on shallow substrates, it is discovered that all of the particles
can slide freely on the substrate even when the applied driving force is tiny. This is a typical
example of superlubricity, which is caused by the competition between the substrate-particle and
particle-particle interactions. If the substrate depth increases further, as the driving force increases
from zero, there are three dynamical states consisting of the pinned, the disordered plastic flow, and
the moving ordered. In an underdense system, where there are fewer particles than potential well
minima, it is found that the occurrence of the three different dynamical states is controlled by the
depth of the substrate, which is quantitatively characterized using the average mobility.

PACS numbers:

I. INTRODUCTION

Assemblies of collectively interacting particles mod-
ified by substrates have been widely studied over the
past decades in various two-dimensional (2D) systems,
including vortices in type-II superconductors [1], colloidal
monolayers [2], pattern-forming systems [3, 4], electron
crystals on a liquid helium surface [5], and dusty plas-
mas [6]. For these physical systems modified by sub-
strates, a variety of new physical phenomena are discov-
ered, such as directional locking [7], superlubricity or the
Aubry transition [8], Shapiro steps [9], anomalous trans-
port [10], and pinning/depinning dynamics [11]. In these
studies, the external substrates have various forms, in-
cluding one-dimensional (1D) periodic substrates [12], 2D
periodic substrates [13], quasicrystalline substrates [14],
quasiperiodic substrates [15], and even random sub-
strates [16].

In the field of nanoscience, Aubry’s theoretical con-
cept [17] for achieving frictionless sliding is one of the
most challenging topics in nanotribology [18–20]. It is
known that the 1D Frenkel-Kontorova model [21] consist-
ing of a chain of interacting particles under a static sinu-
soidal potential exhibits a remarkable dynamical phase
transition, first described by Aubry [17]. When the shal-
lowness of the substrate is below a critical value that
depends on the precise parameters and incommensurabil-
ity [22], the 1D incommensurate chain-substrate interface

can no longer be pinned, indicating that the static fric-
tion is zero. The absence of static friction is termed su-
perlubricity [23–26]. When the substrate depth is greater
than the critical value, however, the static friction of the
studied system is no longer zero, leading to the appear-
ance of a superlubric-pinned transition [8], also called the
Aubry transition. Experimentally, the Aubry transition
has been observed in various 1D [27–29] and 2D [30–32]
systems.

Dusty plasma [33–40], also called complex plasma, typ-
ically refers to a collection of highly charged micron-sized
particles of solid matter in a partially ionized gas. Under
laboratory conditions, these dust particles typically are
charged to a high negative charge of ≈ −10−4e by ab-
sorbing free electrons and ions in plasmas [41, 42]. Their
mutual interaction can be described with the Yukawa
repulsion [43], also called the Debye-Hückel potential,
where the shielding effect comes from the free electrons
and ions in plasmas. Due to their high negative charges,
these dust particles are confined by the electric field of
the plasma sheath and can be self-organized into a single
layer [41, 42], forming a so-called 2D dusty plasma. In
experiments, these negatively charged dust particles are
strongly coupled and exhibit typical solid-like [44, 45] or
liquid-like [46, 47] properties. As the dust particles move
inside the plasma gas environment, they always experi-
ence a weak frictional gas damping force [48]. Individ-
ual particle tracking capabilities have made it possible to
study a variety of fundamental physics phenomena using
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dusty plasmas [49–54].
Recently, the collective behaviors of 2D dusty plasmas

modified by various periodic substrates have been studied
using Langevin dynamical simulations [6, 55–60]. When
the interparticle interaction of these dust particles com-
petes with a 1D periodic substrate, a variety of inter-
esting new phenomena are generated, such as splitting
of the phonon spectra [6], a structure transition [55], and
oscillation-like diffusion [56]. If a gradually increasing ex-
ternal driving force is applied to these 1D substrate mod-
ulated dust particles, three distinctive dynamical states
clearly appear [57], which are the pinned, disordered plas-
tic flow, and moving ordered states [58]. In addition, for
a 2D dusty plasma modulated by 2D periodic substrates,
various distinctive behaviors caused by the relative mo-
tion of particles in each potential well [59] and a direction
locking effect [60] are also studied.
A natural next question is whether the Aubry transi-

tion also exists in dusty plasmas. The previous Aubry
transitions were mainly studied in overdamped colloidal
systems [61–63]; however, under underdamped conditions
such as those found in 2D dusty plasmas, it is still not
clear whether the properties of the Aubry transition or
the superlubric-pinned transition [8] might be modified.
Without an investigation in an underdamped system,
the nature of the superlubric-pinned transition cannot be
fully understood. Thus, we study the superlubric-pinned
transition of a 2D dusty plasma under 2D periodic trian-
gular substrates using various structural and dynamical
diagnostics.
In this paper, we report the superlubric-pinned tran-

sition of a two-dimensional solid dusty plasma under a
periodic triangular substrate using Langevin simulations.
In Sec. II, we briefly introduce our Langevin simulation
method. In Sec. III, we present the obtained results of the
superlubric-pinned transition, mainly from various struc-
tural and dynamical diagnostics, including the collective
drift velocity Vx, the 2D distribution function g(x, y), the
fraction of sixfold coordinated particles P6, the averaged
mobility µ, and the total potential energy per particle
Eparticle. Finally, we briefly give our summary of find-
ings in Sec. IV.

II. SIMULATION METHOD

Traditionally [33–40], 2D dusty plasmas can be char-
acterized using two dimensionless parameters [64, 65],
which are the coupling parameter Γ = Q2/(4πǫ0akBT )
and the screening parameter κ = a/λD. Here, T is the
averaged kinetic temperature for dust particles, Q is the
charge of one single particle, a = (πn)−1/2 is the Wigner-
Seitz radius [66] with the 2D areal number n, and λD is
the Debye screening length. To normalize the length, we
use either the Wigner-Seitz radius a or the average dis-
tance between two nearest neighbors, called the lattice
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FIG. 1: Variation of the collective drift velocity Vx for a 2D
Yukawa solid modulated by triangular substrates with vari-
ous depths U0 and mismatch ratios ρ, as the external driving
force Fd increases from zero. Here ρ is defined as ρ = w/b,
the ratio of the distance between the potential wells w to the
lattice constant b. For ρ = 1 and a small substrate depth of
U0 = 0.001E0, the collective drift velocity Vx is nearly zero at
small external driving force Fd, indicating that all particles
are pinned at the bottom of the potential well. However, for
the same depth U0 = 0.001E0, Vx increases linearly with the
increasing external driving force Fd when ρ = 0.89 and 1.1,
suggesting that the particles slide freely due to the competi-
tion between the substrate and the interaction between parti-
cles. As the depth of the substrate increases to U0 = 0.01E0,
Vx is nearly zero when Fd is small, indicating that all parti-
cles are in the pinned state. For comparison, the results of
U0 = 0 indicate the response for particles sliding freely with-
out a substrate. Note, the conditions of our simulated 2D
Yukawa solid are always Γ = 1000 and κ = 2.

constant b. For the 2D triangular lattice we study here,
b = 1.9046a.
Langevin dynamical simulations are performed to in-

vestigate the dynamics of a single layer solid dusty
plasma on 2D periodic triangular substrates. In our sim-
ulations, for each particle i, the equation of motion [57]
is

mr̈i = −∇Σφij − νmṙi + ξi(t) + FS
i + Fd. (1)

Here, the particle-particle interaction −∇Σφij comes
from the binary Yukawa repulsion [48] with φij =
Q2 exp(−rij/λD)/4πǫ0rij , where rij is the distance be-
tween two dust particles i and j. The terms −νmṙi and
ξi(t) represent the frictional gas drag and the Langevin
random kicks [67, 68], respectively. The latter two terms
of FS

i and Fd come from the substrate and the external
driving, which will be explained in detail next. Note,
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FIG. 2: Particle arrangement (a, c, e) and the corresponding
2D distribution functions g(x, y) (b, d, f) for our simulated 2D
Yukawa solid under a triangular substrate with U0 = 0.01E0

and ρ = 0.89 driven by different levels of the external force
Fd. When Fd = 0 in (a, b), the particles form an ordered
triangular lattice, agreeing well with the pinned state. When
Fd = 0.006F0 in (c, d), the particles form a disordered struc-
ture, consistent with the disordered plastic flow state. When
Fd = 0.011F0 in (e, f), all particles are arranged in a nearly
perfect triangular lattice, independent of the locations of the
potential wells of the substrate, corresponding to the moving
ordered state.

we follow the traditional Langevin simulation method to
choose the random kick term ξi(t) from the fluctuation-
dissipation theorem [67, 68] of 〈ξi(0)ξ(t)〉 = 2mνkBTδ(t),
where T is the simulated system temperature. Here, the
delta function δ(t) indicates the random kick is local in
time. Clearly, this choice of the random kick ξi(t) has
a zero mean and a Gaussian distribution with a width
related to the system temperature [67, 68].
In our simulations, the substrate force FS

i is derived
analytically from the expression of the substrate. Here,
we assume a periodic triangular substrate [62], which has
the form of W (x, y) = − 2

9
U0[

3
2
+ 2 cos(2πxw ) cos( 2πy√

3w
) +

cos( 4πy√
3w

)], where U0 and w correspond to the depth

and width of the potential wells, in units of E0 =
Q2/4πǫ0a and a, respectively. As a result, the force
from the periodic triangular substrate is just Fs

i =
− 8πU0

9w sin(2πxw ) cos( 2πy√
3w

)x̂ − 8πU0

9
√
3w

[cos(2πxw ) sin( 2πy√
3w

) +

sin( 4πy√
3w

)]ŷ, in units of F0 = Q2/4πǫ0a
2. The last term

on the right-hand side of Eq. (1) is just the external driv-
ing force Fd = Fdx̂, in units of F0. Note, to mimic the
dynamics of a single layer solid dusty plasma, in our sim-
ulations, all these forces, as well as the particle motion,
are completely constrained in a 2D plane.

Our simulation parameters are listed as follows. We
specify Np = 1024 particles constrained in a 61.1a×52.9a
rectangular box with the periodic boundary conditions.
To reduce the temperature effect on the depinning be-
havior, the conditions of the 2D dusty plasma are fixed
as Γ = 1000 and κ = 2, corresponding to a typical
2D Yukawa solid [69]. The frictional drag coefficient is
fixed to ν/ωpd = 0.027, close to the typical experimental
value [41], where ωpd = (Q2/2πε0ma3)1/2 is the nominal
dusty plasma frequency [66]. For each simulation run,
we integrate ≥ 107 steps with a time step of 0.005ω−1

pd to
obtain the positions and velocities of all particles.

To quantify the lattice mismatch between the particle
number and the 2D substrate, we follow Ref. [22] and
define the mismatch ratio ρ = w/b. Due to the peri-
odic boundary conditions, the substrate width w is cho-
sen so that there are integer numbers of potential wells
within the simulation box. For comparison, we focus on
three specified mismatch ratio values [22], correspond-
ing to the underdense regime with ρ = 0.89, the ideally
dense regime with ρ = 1.0, and the overdense regime
with ρ = 1.1. In these regimes, the particle number Np

is smaller than, exactly the same as, and larger than
the potential number Nw, respectively. For our simula-
tions with various values of the substrate depth U0 and
the mismatch ratio ρ, we gradually increase the external
driving force Fd along the x direction from zero. After
the simulation system reaches the steady state, we record
the particle positions and velocities to calculate various
diagnostics of the 2D distribution function g(x, y), the
collective drift velocity Vx, the fraction of sixfold coordi-
nated particles P6, the averaged mobility µ, and the total
potential energy per particle Eparticle. Note that in addi-
tion to the results of Np = 1024 reported here, we have
also performed a few test runs with Np = 4096 to confirm
that our reported results are system size independent.

III. RESULTS AND DISCUSSION

A. Superlubricity and Aubry transition

In Fig. 1, we calculate the collective drift velocity Vx for
all particles of our simulated 2D solid dusty plasma un-
der triangular substrates, for various values of the depth
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U0 and the mismatch ratio ρ, while the driving force
Fd increases monotonically. Here, we calculate Vx us-

ing Vx = N−1
p 〈

∑Np

i=1 vi · x̂〉 in units of aωpd, where vi

is the velocity of the particle i. Clearly, Vx is the drift
velocity only along the direction of the driving force Fd.
Note, for all of our reported results in this paper, the
conditions of the 2D Yukawa solid are always unchanged
with Γ = 1000 and κ = 2, while the conditions of the
substrate and the driving force vary.
For our obtained drift velocity Vx at a mismatch ra-

tio of ρ = 1 in Fig. 1, two distinctive states are observed,
similar to those found for the depinning of 2D dusty plas-
mas under 1D periodic substrates [57, 58]. At ρ = 1, the
number of particles is exactly the same as number of po-
tential minima, indicating perfect matching, as shown in
Fig. 2(c) of Ref. [59]. As shown in Fig. 1, for ρ = 1
at the small driving force Fd, the collective drift veloc-
ity Vx is nearly zero, indicating that the system is in
the pinned state. As the driving force Fd increases fur-
ther to Fd = 0.0012F0, Vx suddenly jumps directly from
0 to a linearly increasing regime for a substrate depth
of U0 = 0.001E0, where 0.0012F0 is termed the depin-
ning threshold [57]. The linearly increasing regime of
Vx completely overlaps with the drift velocity for the 2D
Yukawa solid with zero substrate or U0 = 0, and the
fixed slope of the linear increase is just the frictional gas
damping νm [57]. This clearly indicates that all parti-
cles slide freely, independent of the 2D periodic trian-
gular substrate, agreeing well with the features of the
moving ordered state. We confirm that, when the sub-
strate depth increases for the perfect matching condition
of ρ = 1, these two states always exist, while the depin-
ning threshold increases monotonically.
Interestingly, in Fig. 1, we find that superlubricity oc-

curs [23–26] for mismatch ratios of ρ = 0.89 and 1.1 in
our simulated solid dusty plasma under a periodic trian-
gular substrate, where all particles slide freely under the
substrate. Clearly, when ρ = 0.89 or 1.1, the particle
number is mismatched with the substrate structure. If
the substrate depth is small, such as U0 = 0.001E0, at
mismatch ratios of ρ = 0.89 or 1.1 the drift velocity Vx

always increases linearly with increasing external driving
force Fd, suggesting that the particles slide freely and
that there is no depinning threshold. In fact, this behav-
ior of the drift velocity is almost identical to the Vx curve
for the zero substrate system U0 = 0 in Fig. 1. The loss
of the depinning threshold Fcrit for ρ = 0.89 and 1.1 at
U0 = 0.001E0 reflects a typical property of superlubric-
ity, namely, the ability of the particles to slide under any
finite driving force Fd on a nonzero substrate due to the
competition between the substrate-particle and particle-
particle interactions.
If the substrate depth U0 increases further, as shown

in Fig. 1 for U0 = 0.01E0 at mismatch ratios of ρ = 0.89
and 1.1, the previously observed superlubricity disap-
pears. Here, when Fd is small, Vx is nearly zero, indicat-

ing that all particles are in the pinned state, as further
confirmed by other diagnostics later. As the driving force
Fd increases, two different dynamical states are observed,
which are the disordered plastic flow and the moving or-
dered states, similar to those in Fig. 2 of Ref. [57].
In Fig. 1, for ρ = 0.89 or 1.1, when the substrate

depth increases from U0 = 0.001E0 to 0.01E0, we find
a superlubric-pinned transition, or the Aubry transi-
tion [17]. In fact, from the previous investigation in col-
loids [22] and our results in Fig. 1, it is qualitatively
expected that any physical systems under 2D periodic
triangular substrates with either overdense (ρ>1) or un-
derdense (ρ<1) conditions undergo a similar superlubric-
pinned transition as a function of increasing substrate
depth U0. In the latter sections, we mainly focus on the
physics of the underdense condition of our system.

B. Three dynamical states

To study the structure of our simulated dusty plasma
solid under 2D periodic triangular substrates in Fig. 1
for different driving forces, we plot the particle arrange-
ment using their positions and then calculate the corre-
sponding 2D distribution function g(x, y) for our simu-
lated 2D Yukawa solid with the substrate conditions of
U0 = 0.01E0 and ρ = 0.89, as shown in Fig. 2. Here, the
2D distribution function [70] g(x, y) is the static struc-
tural measure widely used for anisotropic systems such
as the system studied here, and it provides the probabil-
ity density of finding a particle at a 2D position relative
to a chosen central particle. Through comparison with
the drift velocity results in Fig. 1, there are clearly three
typical dynamical states consisting of the pinned, the dis-
ordered plastic flow, and the moving ordered that appear
during the depinning of a 2D solid dusty plasma under a
2D periodic triangular substrate. Figure 2 confirms these
three states directly from the particle arrangements and
the corresponding 2D distribution function g(x, y).
When the external driving force Fd = 0, as in Figs. 2(a)

and 2(b), most of the particles have six nearest neigh-
bors, with only a few defects scattered randomly, and
the corresponding g(x, y) exhibits a highly ordered struc-
ture. These features agree well with the properties of
the pinned state. When the driving force is larger, as
at Fd = 0.006F0 in Figs. 2(c) and 2(d), a large num-
ber of particles no longer have six neighbors and the
corresponding g(x, y) has disordered features, suggest-
ing that some particles escape from the cages formed
by their neighbors, leading to the disordered plastic flow
state. When the driving force is high enough to over-
come the triangular substrate, such as at Fd = 0.011F0

in Figs. 2(e) and 2(f), almost all particles have six near-
est neighbors and the corresponding g(x, y) exhibits a
highly ordered structure again, indicating that the sys-
tem is in the moving ordered state, so that all particles
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form a nearly perfect triangular lattice, independent of
the locations of the potential wells of the substrate. Thus,
the three different states inferred from Fig. 1 are further
confirmed by the structure measures in Fig. 2. Note,
a similar trio of typical dynamical states are also ob-
served in a defective flux-line lattice [71], Skyrmions [72],
superconducting vortices [73], vortex lattices [74], and
the depinning of 2D dusty plasmas on 1D periodic sub-
strates [57, 58].

C. Superlubric-pinned transition

To focus on the dynamics of the underdense regime,
we fix the mismatch ratio to ρ = 0.89 and then calcu-
late the collective drift velocity Vx and the correspond-
ing fraction of sixfold coordinated particles P6 as shown
in Fig. 3 for our simulated 2D solid dusty plasma un-
der triangular substrates with various depths U0. Here,

P6 [2] is defined as P6 = N−1
p 〈

∑Np

i=1 δ(6−zi)〉, where zi is
the coordination number of particle i obtained from the
Voronoi construction. For a perfect 2D triangular lat-
tice, P6 = 1, while the value of P6 is reduced for a more
disordered 2D system.
From our obtained drift velocity Vx and the corre-

sponding P6 at the mismatch ratio ρ = 0.89 in Fig. 3,
we further confirm the appearance of the three dynami-
cal states described above. For a shallow substrate depth
of U0 = 0.001E0 in Fig. 3, the collective drift veloc-
ity Vx always increases linearly with the driving force
Fd and the corresponding P6 is always P6 ≈ 1, indicat-
ing that all of the particles slide freely and the lattice
is highly ordered. In fact, the results of Vx and P6 for
ρ = 0.89 and U0 = 0.001E0 almost exactly match those
found for U0 = 0, further suggesting that the system is
in the moving ordered state. For a deeper substrate of
U0 = 0.004E0, the decay of P6 to a reduced value and the
relatively steep increase of Vx over the range Fd<0.005F0

in Fig. 3 suggest that some particles overcome the con-
straint of the substrate and the cages formed by their
neighboring particles, so that disordered plastic flow oc-
curs. However, for large driving forces Fd>0.006F0, Vx

increases linearly with Fd and the corresponding P6 goes
back to 1 again, clearly indicating that the system reaches
the moving ordered state. If the substrate depth in-
creases further to U0 = 0.0075E0 or even to U0 = 0.01E0,
the Vx and P6 curves in Fig. 3 indicate that all three of
the distinctive dynamical states occur. When Fd is small,
Vx is nearly zero and P6 is relatively high with P6>0.8,
so that the system is in the typical pinned state. When
Fd increases to an intermediate level of Fd<0.009F0, we
clearly observe that Vx increases more steeply and the
value of P6 decreases substantially, corresponding to the
disordered plastic flow state. As the driving force in-
creases further to Fd>0.01F0, Vx increases linearly with
Fd and the corresponding P6 goes back to high values

close to 1, in good agreement with the moving ordered
state.
Based on the results in Fig. 3, we find that the oc-

currence of three dynamical states depends not only on
the value of the driving force Fd but also on the depth
of the substrate U0, as shown in Fig. 3. If the substrate
depth is shallow, such as U0 = 0.001E0, the pinned state
disappears completely, reflecting the typical property of
superlubricity, and the moving ordered state always oc-
curs even for the lowest driving force Fd. From our in-
terpretation, this superlubricity for the mismatch ratio
of ρ 6= 1 is attributed to the increased repulsive inter-
action between particles, which is able to overcome the
forces from the substrate on the particles. If the sub-
strate depth increases further to U0 = 0.004E0, the con-
straint from the substrate is enhanced and the particle
arrangement is modified to a more disordered structure,
resulting in the observed disordered plastic flow state.
When the driving force Fd is large enough to completely
overcome the constraint from the substrate, the moving
ordered state emerges. If the substrate depth increases
further to U0 = 0.0075E0 or even to U0 = 0.01E0, the
constraint from the substrate is large enough to strongly
confine all particles, leading to the pinned state. As the
driving force Fd gradually increases from zero to higher
values beyond the depinning threshold, the plastic flow
state occurs first, and then the moving ordered state oc-
curs. Note, we also calculate the kinetic temperatures
of kBTx and kBTy in our simulated 2D Yukawa system
during the depinning procedure, which exhibit significant
synchronized peaks associated with the disordered plastic
flow state, very similar to those found for the depinning
of 2D Yukawa systems modulated by 1D substrates, such
as in Fig. 5(a) of [58] and Fig. 6 of [57].
As presented in Fig. 4, to better define the pinned state

of our simulated system, we calculate the averaged mo-
bility µ of our simulated system for the fixed mismatch
ratio ρ = 0.89 at various substrate depths U0, as the
external force Fd increases gradually. Here, µ [22] is de-
fined as the ratio of the collective drift velocity Vx to the
driving force Fd,

µ =
νmVx

Fd
, (2)

where ν is the frictional drag coefficient. In the absence
of a substrate, the averaged mobility µ of our simulated
system should always be around unity, since the driv-
ing force Fd is completely balanced by the frictional gas
damping νmVx.
The averaged mobility µ at ρ = 0.89 in Fig. 4 indicates

that three distinctive states clearly appear. For a shal-
low substrate depth of U0 = 0.001E0 in Fig. 4, we find
that the averaged mobility µ ≈ 1, indicating that the
driving force Fd equals the frictional gas damping νmVx.
This suggests that all particles slide freely under the con-
finement of the triangular substrate, corresponding to the
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moving ordered state. If the substrate depth U0 increases
further to U0 = 0.005E0, µ decreases substantially when
the driving force Fd is small due to the enhancement of
the confinement from the substrate. However, when the
driving force increases to Fd>0.006F0, µ goes back to
µ ≈ 1, indicating that the system reaches the moving or-
dered state. If the substrate depth U0 further increases to
U0 = 0.01E0, at small Fd there is a substantial decrease
in µ to much lower values very close to 0. Here the value
of Vx is nearly zero, corresponding to the pinned state.
As Fd increases to Fd ≈ 0.0009F0, the value of µ increases
sharply to a value µ ≈ 0.3, and remains in this range
even when the driving force increases to Fd = 0.006F0.
The nonzero value of µ that is substantially smaller than
unity indicates that the driving force Fd is higher than
the frictional gas damping νmVx, so that only a portion
of particles are able to move in response to the driv-
ing force, corresponding to the plastic flow state. When
Fd further increases beyond this intermediate range, the
value of µ increases abruptly to a value close to unity,
indicating that the system has entered the moving or-
dered state. Note that in comparison with the mobility
for overdamped colloidal systems, such as in Ref. [22],
although the general trend of the variations in mobility
we observe is almost the same, our mobility results for
dusty plasmas seem to be much more noisy. We attribute
this noisy feature of the mobility to the underdamping of
the particle motion, since the fluctuations of the particle
velocity are much more substantial than what is found
for the overdamped colloids in Ref. [22].

Here we follow the criterion suggested in Ref. [63] to
distinguish the plastic flow state from the pinned state
using the obtained mobility results in Fig. 4. In Ref. [63],
it is suggested that a mobility of µ<10% means that the
particles are pinned. As a result, a criterion of µ = 10%
can be used to divide the pinned and the disordered plas-
tic flow states, as indicated by the dashed line in Fig. 4.
The intersection between the obtained mobility results
and µ = 10% corresponds to the critical driving force
Fcrit where the pinned and the disordered plastic flow
states both occur. The inset of Fig. 4 presents our ob-
tained Fcrit results for the varying substrate depth U0

when ρ = 0.89. Clearly, as the substrate depth increases,
our obtained Fcrit values increases from 0 to higher val-
ues. Here, Uc is the critical substrate depth value, often
called the critical Aubry depth Uc [22, 63], beyond which
the corresponding Fcrit is higher than 0, i.e., the pinned
state starts to occur when the substrate depth U0>Uc.
However, if U0<Uc, then Fcrit is always zero, indicating
that the pinned state no longer occurs. That is, the sub-
strate is not able to confine particles even under a very
tiny driving force, and superlubricity occurs.

To study the transition of the static structure for our
simulated 2D solid dusty plasma under a triangular sub-
strate, we calculate the potential energy per particle
Eparticle in Fig. 5 while the mismatch ratio ρ and the

substrate depth U0 both vary. Here, Eparticle is the sum-
mation of both the averaged particle-particle repulsive
potential Upp and the averaged particle-substrate poten-
tial Wsp, both calculated from the obtained particle po-
sitions in simulations. In Fig. 5, to distinguish between
the pinned and unpinned states, we draw a dashed line
based on the criterion of the obtained mobility of µ = 0.1,
as described above. For all parameters above this dashed
line, the pinned state never occurs, so that superlubricity
always happens. However, as the depth of the substrate
increases to U0 = 0.0075E0 or further to U0 = 0.01E0, a
pinned state appears below this dashed line, leading to
the appearance of the plastic flow and the moving ordered
states as the driving force increases from zero.
The transition between the pinned state and the un-

pinned, or superlubric, state for different conditions can
be clearly identified from Fig. 5. Regardless of the value
of the substrate depth U0, when the mismatch ratio ρ
is close to unity, Eparticle decreases sharply, suggesting
that the particles are strongly pinned at the bottom of
the potential well. If the substrate is shallow, such as for
U0 = 0.001E0, the variation of Eparticle indicates that as
the mismatch ratio ρ gradually increases, the system un-
dergoes a transition from the superlubric to the pinned,
and then to the superlubric state again. We attribute this
superlubric-pinned-superlubric transition to the competi-
tion between the substrate-particle and particle-particle
interactions. If the substrate depth U0 increases further
to U0 = 0.01E0, Eparticle exhibits a much more pro-
nounced downward trend, suggesting that the confine-
ment from the substrate is greatly enhanced, even when
ρ 6= 1. In addition, we also find that for a given substrate
depth U0, it is more difficult to achieve the pinned state
when ρ ≫ 1 or ρ ≪ 1, probably due to the extreme mis-
match between the lattice structure and the substrate.

IV. SUMMARY

In summary, using Langevin dynamical simulations,
we find a superlubric-pinned transition in the depinning
dynamics of a 2D solid dusty plasma modulated by 2D
triangular periodic substrates while the mismatch ratio
varies. For a mismatch ratio of unity, from the calculated
overall drift velocity we observe two distinctive states:
the pinned and the disordered plastic flow. If the sub-
strate is shallow, however, then for mismatch ratios of
ρ = 0.89 or ρ = 1.1, the pinned state completely dis-
appears and all particles are able to slide freely on the
substrate even when the applied driving force is tiny,
consistent with superlubricity. We attribute this su-
perlubricity to the competition between the substrate-
particle and particle-particle interactions. If the sub-
strate depth increases further, a gradual increase of the
driving force from zero produces three dynamical states
of the pinned, the disordered plastic flow, and the moving
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ordered states.

In the analysis of the dynamics in the underdense
regime with a mismatch ratio of ρ = 0.89, we find that
the occurrence of three dynamical states is strongly con-
trolled by the substrate depth. The finding is obtained
from various diagnostics, including the 2D distribution
function, the collective drift velocity, the fraction of six-
fold coordinated particles, the averaged mobility, and the
total potential energy per particle. If the substrate depth
is shallow, the system is always in the moving ordered
state, leading to our observed superlubricity. If the sub-
strate depth increases further, the disordered plastic flow
state begins to appear at small driving forces and there is
a transition to a moving ordered state at larger driving
forces. If the substrate depth increases further, as the
driving force increases from zero, three dynamical states
are clearly observed. Previous studies of superlubric-
pinned transitions focused on overdamped systems; how-
ever, our current simulations clearly show that this tran-
sition also occurs in underdamped systems. Our simu-
lation results suggest that the superlubric-pinned transi-
tion may be realized in future dusty plasma experiments.
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FIG. 3: Variation of the collective drift velocity Vx (a) and
the corresponding fraction of sixfold coordinated particles P6

(b) for the 2D Yukawa solid modulated by triangular sub-
strates with various depths U0 as the external driving force
Fd increases for a fixed mismatch ratio ρ = 0.89. For small
substrate depths of U0 = 0 and U0 = 0.001E0, the linear in-
crease of Vx with Fd and the unchanging value of P6 = 1.0
both indicate that the system is always in the moving or-
dered state. When the substrate depth increases to a larger
value of U0 = 0.004E0 , at lower driving forces Fd < 0.005F0

the values of Vx and P6 are depressed below the values found
at U0 = 0.001E0, clearly indicating that disordered plastic
flow occurs. However, at higher driving forces Fd > 0.005F0 ,
Vx and P6 rise to match the values found at U0 = 0.001E0,
clearly indicating that the moving ordered state forms. As the
depth of the substrate increases to U0 = 0.0075E0 or further
to U0 = 0.01E0, the variations of Vx and P6 with Fd clearly
indicate that the three states of pinned, disordered plastic
flow, and moving ordered lattice all appear.



11

0 0 002. 0 004. 0 006. 0 008. 0 010. 0 012.

0

0 2.

0 4.

0 6.

0 8.

1 0.

U0 E0=0.001

=0.003U0 E0

=0.005U0 E0

=0.007U0 E0

=0.0075U0 E0

=0.009U0 E0

=0.01U0 E0

A
v
e

ra
g

e
d
 m

o
b

il
it

y
m

F /Fd 0

6 8 10

/10-3U0 E0

Uc

0

2

4

F
F

c
ri

t/
1

0-4
0

m = 0.1

FIG. 4: Obtained averaged mobility µ of our simulated 2D
Yukawa solid under triangular substrates with varying sub-
strate depth U0 and fixed mismatch ratio ρ = 0.89 for increas-
ing external driving force Fd. Clearly, for the typical shallow
substrate with U0 = 0.001E0, when Fd gradually increases
from zero, the averaged mobility µ ≈ 1, suggesting that the
system is always in the moving ordered state. As the substrate
depth U0 increases, µ decreases substantially, and a disor-
dered plastic flow occurs. As the substrate depth U0 further
increases beyond the critical Aubry depth of Uc = 0.007E0,
the particles are strongly pinned to the substrate while Fd is
small, clearly indicating the formation of a pinned state. Due
to the random motion of the particles, we follow Ref. [63] and
define the particles to be sliding freely until µ drops below
10% of the µ = 1 free sliding limit. The dashed line indi-
cates the value of µ, below which the system is defined to be
pinned. The inset in the lower right corner shows the depin-
ning threshold Fcrit as the substrate depth U0 increases from
zero.
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FIG. 5: Obtained total potential energy Eparticle per parti-
cle of our simulated 2D Yukawa solid under triangular sub-
strates with varying substrate depth U0 and increasing mis-
match ratio ρ. Here, Eparticle is defined to be the sum of
the averaged particle-particle repulsion Upp and the averaged
particle-substrate interaction energy Wsp. Clearly, for each
depth U0, when ρ is close to 1, Eparticle decreases sharply,
suggesting that all particles are strongly pinned at the bot-
tom of the substrate because the arrangement of particles is
perfectly matched with the substrate configuration. When
the substrate depth U0 is small, such as U0 = 0.001E0,
the variation of Eparticle indicates that the system undergoes
a superlubric-pinned-superlubric transition while ρ increases
due to the competition between the substrate-particle and
particle-particle interactions. As the substrate depth U0 in-
creases gradually, Eparticle decreases substantially, indicating
that the constraint of the substrate on the particles is en-
hanced, and the pinned state occurs when ρ 6= 1. Based on
the criterion of the mobility µ, as in Fig. 4, we draw a dashed
line to indicate the boundary between the pinned and un-
pinned states.


