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Abstract: The role of fixed degrees of freedom in soft/granular matter systems has broad applica-
bility and theoretical interest. Here we address questions of the geometrical role that a scaffolding
of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity
of jamming. Our 2d simulated system consists of soft particles and fixed “pins”, both of which
harmonically repel overlaps. On one hand, we find that many of the critical scalings associated
with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On
the other hand, the presence of pins lowers the jamming threshold, in a universal way at low pin
densities and a geometry-dependent manner at high pin densities, producing packings with lower
densities and fewer contacts between particles. The onset of strong lattice dependence coincides
with the development of bond-orientational order. Furthermore, the presence of pins dramatically
modifies the network of forces, with both unusually weak and unusually strong forces becoming
more abundant. The spatial organization of this force network depends on pin geometry and is
described in detail. Using persistent homology we demonstrate that pins modify the topology of the
network. Finally, we observe clear signatures of this developing bond-orientational order and broad
force distribution in the elastic moduli which characterize the linear response of these packings to
strain.

INTRODUCTION

Jamming of soft or granular materials constitutes a tran-
sition from fluid-like to a solid-like state that can sup-
port finite stress. The disordered geometry of grain-grain
contact forces is a key aspect of these solids [1].The out-
of-equilibrium nature of jammed phases has supported
much activity in development of new statistical models
[2, 3]. Traditionally, the transition to jamming is marked
by control parameters of system density, applied stress,
and the analog of temperature for macroscopically large
grains; and is depicted in the Liu-Nagel jamming phase
diagram [4, 5]. To this venerable diagram, it has been
suggested that a new axis might be added, representing
the density of quenched disorder [6]. This indicates an
interest in the jamming and glass communities on how
quenched disorder in the form of pinned grains affects
the transition of systems, either under applied drive, or
in its absence: the so-called “Point J”.

One might be motivated to study matter with fixed de-
grees of freedom for many reasons. Flowing states of
matter are impacted by obstacle-filled substrates in both
ordered and random geometries [7, 8]. Pinned inclusions
have modified phase transition behavior [9, 10] and ob-
stacle lattices have been used to sort biomaterials [11, 12].
Pinned particles in glass-formers can tune spatial hetero-
geneity, kinetic fragility and the transition point [13–16].
Scaling theory near Point J can be extended to describe
quenched disorder via a pinning susceptibility [17, 18].

So called “partly pinned systems” have served as a
theoretically-advantageous model, in which a fraction of
equilibrated, fluid particles are pinned to serve as a con-
fining matrix, through which the remaining, mobile par-
ticles flow [19]. In the current study, in contrast with
simulations where particle positions are frozen during the
creation of a fluid, jammed or glassy state, pins are placed
at the outset of the simulation, and are centers of force
of negligible size. Their role is both to exclude volume
and to scaffold the emerging jammed structure. We find
that pins produce some surprises, in terms of how they
tune the jamming threshold, reduce mean contact num-
ber, and modify the network of forces - enhancing the
likelihood both of weak and strong forces at jamming.
These changes are reflected in the linear elastic proper-
ties of the solid.

SIMULATION DETAILS

Particles are frictionless, soft, repulsive discs: the so-
called “Ising Model” of jamming for their simplicity, yet
fidelity in reproducing the physics of more realistic mod-
els. N frictionless particles and Nf dramatically smaller,
fixed particles called “pins” interact via the well-studied
harmonic, repulsive potential:

V =

{
0 rij > dij

ε(1− rij
dij

)2 otherwise , (1)



where rij is the distance between the centers of parti-
cles i and j, and dij is the sum of particle radii. Equal
numbers of large and small particles with the size ratio
rL/rS = 1.4, known to discourage ordered packing, are
initially placed at random in a two-dimensional simula-
tion cell with periodic boundary conditions. Pin radii
are roughly a factor of 1000 smaller than those of small
particles; results are independent of this size ratio. We
study numbers of particles in the range N = 230 − 920.
Nf particles (a number which varies depending on the
type of analysis performed) are fixed in a desired lattice
geometry: square, triangular, honeycomb or random.
We will see in what follows that both pin density for
a given lattice geometry, and choice of lattice geome-
try serve as tuning parameters of the packing. One can
characterize the pin density by introducing the parame-
ter α, the ratio of area of a particle to area of box per
pin. However, given pins are placed in different Bravais
lattices with lattice constant a, it is also worthwhile to
characterize the density of pins by the ratio of length
scales λ ≡ rS/a. These are related via

λ2 = α
g

c
(2)

where g is a geometrical factor equal to 1,
√

3/2, 3
√

3/4
for square, triangular and honeycomb lattices and c =
π
2 (1 + 1.42). A third measure of pin density which will
be convenient is Nf/N . When curves from multiple pin
densities are shown on the same plot, each color will rep-
resent a fixed value of Nf/N so that square and triangu-
lar lattices may use the same color scheme. It is the case
that:

α = φ Nf/N . (3)

Energy is minimized via the FIRE algorithm [20]. Final
configurations will be considered jammed in this study if
they have local mechanical stability (local jamming), pos-
itive lowest vibrational mode (collective jamming) and
percolation (cluster spans the cell). The latter has been
found to be necessary [21] as sufficiently dense pins en-
able the presence of mechanically-stable finite clusters.
Unsupported particles, “rattlers”, are excluded from fur-
ther analyses of contacts, force statistics and elastic mod-
uli.
We use two approaches to find the jamming transition.
The volume fraction, φ(p), for these jammed configura-
tions with different final pressures p can be linearly ex-
trapolated to p = 0 to identify configuration-averaged,
critical volume fraction φc. Alternatively, one could iden-
tify the φ at which a distribution of configurations has a
point of inflection in its jamming probability [5, 21]. Both
criteria agree in our work. Further, for analyses which
seek scaling behavior, a pressure sweep protocol employs
several hundred initial configurations and for each, mod-
ifies particle size in a search for a target pressure, which
is successively reduced.

About units: Unless otherwise stated, for derived quanti-
ties like pressure and elastic moduli, we use as an energy
unit ε and as a length unit rs. About notation: While N
is used above to indicate an input parameter in the sim-
ulation, below we will sometimes refer to the number of
particles in the rigid, spanning cluster at jamming. This
excludes rattlers, the fraction of particles which have zero
contacts at minimum energy. As is conventional in the
jamming literature, we will not introduce new notation;
but will try to be clear in stating when N excludes or
includes rattlers.

Figure 1 illustrates a sample jammed configuration of
particles formed around a square lattice of 64 pins, with
α = 0.23 and λ = 0.33. At low pressures, typically only a
fraction (roughly half) of pins participate in the stability
of the configuration.

FIG. 1. Jammed configuration with λ = 0.33 and α = 0.23
corresponding to Nf = 64 pins arranged in a square lattice,
highlighting the network of interparticle forces. Bond colors
differ by contact type and widths indicate strength of force.
Pins which (fail to) contact a particle are (black) red. Pins
are greatly magnified for visibility.

JAMMING THRESHOLD

At low pin densities, Figure 2 aligns with results from a
wealth of earlier studies [6, 17, 21–23] - a reduction in
φc with increasing pinned particle concentration. Here,
this is a rather trivial result since pins occupy negligible
volume, and serve only to stabilize the particle network.
While this work emphasizes ordered pin lattices, we ob-
serve the result that at low pin densities, when typical
obstacle separations are very much greater than a parti-
cle diameter, randomly pinned lattice thresholds are in
full agreement. Moreover, the linearity of these random
lattice results extend to higher pin densities, allowing us
to obtain a more precise estimate of the initial slope of
φc(α).

There are practical issues to studying very dense ran-
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dom pin “lattices” for example, they tend to stabilize
many finite clusters. This limit, however, could prove in-
teresting for future work: we note that at high random
pin densities, we should approach a static version of the
random Lorentz gas (RLG), a model of a single particle
moving among many pins which has been very useful for
studying the connection between real glassy systems and
mean-field theory. [24–26]. It seems likely that the RLG
can be viewed in some sense as the limit of large pin
density, when pins are placed randomly rather than on a
lattice. Just as the RLG has proven useful for studying
corrections to mean-field theory in the dynamics, dense
random pinning may prove useful to study corrections to
mean-field theory in mechanical properties.
Interestingly, Figure 2 shows that φc(α) evolves from
a lattice independent, linearly decreasing function to a
more complicated form, featuring plateaus which begin
at lattice-dependent values of α. The onset of major
plateaus roughly corresponds to λ = 1/4 (indicated by
dotted lines for each lattice geometry), when two small
particles can no longer “fit” between neighboring pins.
Also visible is the departure from linearity at roughly
λ = 0.18 (dashed lines) when the same is true for two
large particles between pins. Clearly, there must exist
other “magic numbers” when small clusters in a maxi-
mally random jammed packing [27] would be disrupted
by pins. The slight increase in φc with pin density (in
square and triangular lattice plateaus) is to our knowl-
edge the first time one has observed fixed degrees of free-
dom raising a jamming threshold by disrupting packing.
The initial linear decrease of φc(α) in Figure 2, which
continues to the highest densities for randomly-spaced
pins, has been explained by the argument that pin-
separation, a, replaces the correlation length which di-
verges at jamming [6, 17]. One finds φ(0)−φ(α) = −mα
with m = 0.11. The order of magnitude of this slope is
surprisingly well-estimated by a simple mean field, count-
ing argument. The number of contacts at jamming is
given by the Maxwell criterion for isostaticity: critical
contact number zc = 4 in d = 2 dimensions[28]. There
are a fraction of f pins which each provide a contact with
a single particle. That is, a fraction f of pins are crit-
ical to the stability of the system; whereas the remain-
ing fraction experience zero force and can be removed
with no impact on stability. (Interestingly, we find that
f has no observable trend with pin density, nor are ad-
jacent critical pins spatially correlated.) Further, it is
overwhelmingly unlikely that these tiny pins are in con-
tact with more than one particle at Point J. In the limit
α→ 0 this suggests that the critical number of particles,
Nc required for jamming with a fixed lattice and box size
is

Nc(α)−Nc(0) = −fNf/4. (4)

Substituting f = 0.55 ± 0.05 from analyzed configura-
tions, in the limit of small α ≈ Nf

N φc(0), and upon con-

verting from Nc(α) to φc(α), we find m = 0.16 ± 0.02.
One might argue that this crude counting argument over-
estimates the slope in the absence of particle rearrange-
ment or deviation from the jammed structure without
pins. (Four pins must be closely spaced if they are to
replace contacts from missing particles.) However one
expects rearrangement, which is to say deviation from
the jammed structure without pins, as described below.

FIG. 2. Jamming packing fraction φc vs pin to particle ratio α
for square (red, �), triangular (green, 4), honeycomb (blue,
◦), and random (black, filled circles) pin lattices. At low α,
φc collapses for all lattices and is linear, with slope in rough
agreement with a mean field, isostaticity argument. As α in-
creases, there is deviation from linearity and plateaus which
are commensurate with values of λ (dashed and dotted lines,
λ = 0.18 and 0.25 for large and small particles respectively)
where pairs of particles in contact would first experience ex-
cluded volume from adjacent pins (inset sketch).

EXCESS BONDS, CONTACT NUMBERS AND
SCALING BEHAVIOR

Above the critical packing fraction, N non-rattler parti-
cles are held in place by neighbors. The isostatic limit
is achieved when the average number of contacts felt by
particles is the minimum required for collective stability,
when the number of particulate degrees of freedom equals
the number of constraints [28, 29]. Point J is isostatic in
simple models like polydisperse hard and soft frictionless
spheres, as well as grains with circular asperities which
model friction [30], but is the exception in richer models
of granular and soft matter, including anisotropic parti-
cles and other frictional models [31, 32]. In the presence
of pins, the system still has Nd degrees of freedom, but
the translational zero modes are absent. Thus the cri-
terion for isostaticity is generalized [21, 22] as having
Nbonds

iso interactions or “bonds” between particles where

Nbonds
iso = dN − qd (5)

with q = 1 or 0, without and with pins respectively.
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In order to support a finite pressure (or equivalently,
have a positive bulk modulus), there must exist a set
of nonzero bond compression forces that produces no net
force on any particle. Such a vector of forces is known as
a state of self stress, and in order to have exactly one an
extra contact is required [33–35], giving

Nbonds
min = dN − qd+ 1 (6)

At finite pressure, p, one defines Nbonds
excess(p) as the number

of bonds over and above Nbonds
min .

We find that Nbonds
excess(p) → 0 as p → 0 in all lattice ge-

ometries studied, even when the number of pins rivals the
number of particles. Figure 3 illustrates the relationship
between Nbonds

excess and p for the square pin lattice. One ob-
serves the expected crossover from a low-pressure regime
finite-size scaling [36] to one which scales as Nbonds

excess ∼ pβ
where β = 1/2. This well-accepted critical value which
has been repeatedly observed in experiments and simu-
lations [5, 37, 38] is independent of pin density.
There is a jump from Z = 0 to Z = Zc as Point J is
approached from φ < φc [39]. In the absence of pins,
Nbonds

excess is trivially proportional to N(Z − Zc); scaling
behavior is often pitched as Z − Zc ∼ pβ . In the pres-
ence of pins it is no longer true that NZ is twice the
number of bonds, since a particle-particle bond supports
two particles, but a pin-particle bond supports only one.
Thus, no simple stability argument leads to a definition
of Zc(α), which is free to differ from the zero pin value
of Zc(0) = 2d− 2d/N + 2/N [34]. Indeed, Zc(α) is a de-
creasing function as seen in Figure 4, despite the system
remaining isostatic at Point J. This reduction in contacts
has been observed in previous work on square pin lattices
[21]. Comparison with Figure 2 suggests that when φc is
higher for a given lattice (less facilitation of jamming), zc
is also higher. This makes sense; the pin lattice permits
lower coordination, hence less material in the rigid com-
ponent of the structure. Also previously observed has
been a growth in the fraction of rattlers with pin den-
sity. A jammed system made with traditional materials,
which is both less coordinated and less dense thanks to
pins (in 3d, rods) has potential use as a microengineered
material. Further pin-related modifications of the mate-
rial, in the form of the force network and elastic moduli,
are discussed below.

FORCE NETWORKS

Probability distribution functions

Experiments using microscopy or photoelasticity provide
empirical measurements of the distribution of contact
forces in granular packings [40, 41]. Experimental force
data can also inform theoretical models which produce

FIG. 3. Number of excess bonds as a function of N2p, a scal-
ing which collapses finite-size effects as in ref. [36]. Filled
symbols: N = 230, open symbols: N = 920. Here rattlers
must be excluded from N to achieve collapses since the rat-
tler fraction depends strongly on pin density. The number
of excess bonds goes to zero at zero pressure, except for a
small number associated with localized states of self stress in
2d bidisperse systems [36]; note that pins appear to suppress
this effect. Outside of the finite-size region, Nexcess ∝

√
p re-

gardless of pin densitiy.

FIG. 4. The critical contact number zc vs. pin to particle
density ratio α. To determine zc(α), we fit a power law of the
form z(p) = zc(α) + pβ and extrapolate to p = 0. Colors and
symbols are as in Figure 2.

simulations of realistic jammed materials [42]. In any
static packing, one finds particles in mechanical equilib-
rium with a nontrivial distribution of forces. The fragile,
jammed state has long been recognized to have a distribu-
tion of forces with extended force chains [43] that lead to
probability distributions with “long tails”[44], when com-
pared with solids which are either ordered, or disordered

4



but in regimes of strong jamming, yield or flow [45, 46].
Exponential tails have been observed in experiments on
foams, emulsions and granular packings [38, 42, 47]. Sim-
ulational models featuring a variety of repulsive forces
have exponential tails [48]. One subtlety relevant to our
analysis concerns the lack of self-averaging near jamming,
in that the average force 〈f〉 varies substantially from
configuration-to-configuration. It has been shown that
P (F ), where F ≡ f/〈f〉 is normalized by each configura-
tion’s average, 〈f〉, shows a Gaussian, not an exponential
tail [49]. (The force ensemble, which is able to probe ex-
ceptionally rare forces, also ultimately reveals a Gaussian
behavior in d = 2 [50].) On the other hand, if the en-
semble of configurations corresponds to a single pressure,
then using the ensemble-averaged mean force will also be
best modeled with a Gaussian tail (something we con-
firmed for the data of Figure 5 below).

Several thousand configurations at a single pressure near
p = 0 were averaged to produce the contact force dis-
tributions in Figure 5. For zero pins, the distribution is
well fit by a Gaussian as expected [49]. With pins, there
are heavy tails which gain weight with pin density. Insets
to Figure 5 are snapshots showing chains of exceptionally
strong forces which terminate on pins. Well-known meth-
ods for robustly fitting tails of probability distributions
to heavy tails [51, 52] provide fits of the form of a power
law P (F ) ∼ F−τ . Comparison is also made with alterna-
tive heavy tailed distributions, which is a best practice in
order to determine goodness-of-fit [52]. Alternative forms
are moderately competitive; but on the heuristic assump-
tion that tails obey a power law the exponents are shown
in Table I. In the table, τ is the maximum likelihood
estimator for the power [51]. The ‘tail” of the distribu-
tion is set by minimizing the Kolmogorov-Smirnov (KS)
statistic. This procedure is sound for Nf = 36 − 121;
however a KS minimum with a corresponding plateau in
τ does not exist for Nf = 0, 16.

Apparent in Figure 5 and Table I is that the shape of the
tail is progressively less-well parametrized by α as pin
density increases. The jamming threshold in Figure 2
supports this notion, as well as suggesting the possibility
that for sufficiently high pin densities the exponent τ
is marginally better parametrized by λ, hence the pin
separation in units of particle size.

When will a distribution of granular forces exhibit heavy
and possibly power law tails? For increasingly coordi-
nated packings, Ref. [50] shows increasingly heavy tails
(albeit in the limit of forces much rarer than a non-force-
ensemble study like ours can resolve). The q-model [53]
for bead packings under gravity shows that exponential
tails are the rule for a wide variety of probabilistic models
for near neighbor forces, so long as force balance is re-
quired on each bead. Mean field theory and simulation as

Nf Square Lattice Triangular Lattice
α λ τ α λ τ

0 0 0 g 0 0 g
16 .058 .112 - .058 .104 -
36 .130 .167 8.71 .130 .156 8.09
64 .228 .222 5.18 .230 .207 6.22
100 .351 .275 4.09 .346 .254 4.65
121 .422 .301 3.72 .414 .278 4.33

TABLE I. Power law exponent, τ , for tail of force distribution,
where g indicates distribution is adequately fit as Gaussian
and − indicates that neither a gaussian nor power law fit is
meaningful.

FIG. 5. Contact force probability distribution, p(F ), for
square (�) and triangular (4) lattices and N = 230 parti-
cles, where F is normalized by the single-configuration aver-
age. Blue, orange green, red, purple and brown correspond to
0, 16, 36, 64, 100 and 121 pins, with densities and power law
exponents τ as shown in Table I. Data at each pin density
come from a single fixed (very low) pressure p; at different
pin densities p ranges from 7.5 × 10−8 to 7.9 × 10−8. Insets
of the figure (left, square and right, triangular lattice) show
strong force chains that end at pins.

well as exact calculation [54] reveal only one exceptional
case. This critical model, in which forces are transmit-
ted in unbranched chains through layers of beads, yields
a power law distribution of weights, w, on a typical bead:
p(w) ∼ w−c with c = 4/3 in d = 2. While more theoreti-
cal work on a model with pins is indicated, based q-model
results we might speculate that τ = 4/3 is a lower limit
on the scaling exponent we observe.
In the presence of pins, the distribution of forces becomes
much broader. Figure 6 shows that not only unusually
strong forces, but also unusually weak forces are much
more common. The scaling behavior of weak forces is
well-studied, and there are known inequalities that relate
scaling of the low-F region of P (F ) to the distribution
of gaps between particles [55]. While we leave the anal-
ysis of these scaling exponents for future work, we note
here that pins are effective at serving two purposes in-
volving weak forces which come into play when there is a
localized rearrangement. One is to provide weak lateral
forces to support bucklers [56], particles with the mini-
mum number of contacts. The other is to provide forces
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roughly collinear with the line between particle centers.
We term such pins “enablers” because, like pins which
support bucklers they enable unusually small interpar-
ticle overlaps, hence forces. Examples of bucklers and
enablers are shown in the inset of Figure 6.

FIG. 6. Low-F end of the force distribution of Figure 5,
showing an enhancement of the likelihood of extremely weak
forces, which grows with pin density. Data at each pin density
come from a single fixed (very low) pressure p; at different pin
densities p ranges from 7.5 × 10−8 to 7.9 × 10−8. The insets
show examples of pins serving as, on the lower left, a contact
for a buckler and, on the upper right, enablers which contact
either one or (extremely rare at low pressure) both particles
involved in the weak bond.

Locations of contacts

In our recent study on square bond lattices [21] it was
noted that pins induced spatial order. Pin-induced os-
cillations in the radial distribution function correlated
with crystal-like peaks in the scattering function S(~k).
Now we visualize the topology underlying these data, by
mapping the likely positions of points of contact (bonds)
between particles. As in the earlier study, these maps
aggregate a range of pressures slightly above the jam-
ming threshold. Figure 7 depicts several cases, in which
we aggregate data from statistically identical unit cells
around each pin in a single configuration, and also av-
erage over several thousand configurations. At low pin
density like Nf/N = 36/230, α = 0.10, the spatial fre-
quency of contacts between particles has its maximum on
circles, one particle diameter from a pin. At a pin density
where two circular loci intersect, there develop “figure-
8” interference patterns. Figure 8 shows how these come
about from the constraint that two particles that pack
between two pins. Data for Nf = 64 has three such
figure-8 features, two from small-large particle contacts,
and one from large-large. The 4-fold symmetry of the
lattice is obvious here and for Nf = 100, where there is
an additional figure-8 stemming from small-small parti-
cle contacts. While aforementioned interference features

FIG. 7. Heatmaps of the likelihood of locations of bonds
between particles, for N = 230. Red dashed lines denote di-
ameters of small and large particles. Correspondence between
Nf and particle density is as in Table I. Color bar represents
a logarithmic scale, from likely (yellow) to unlikely (purple).
This range varies slightly between sub-figures; but all corre-
spond roughly to one order of magnitude. a: Nf = 36 square.
b: Nf = 64 square. c: Nf = 100 square. d:Nf = 64 triangu-
lar.

are centered on the horizontal and vertical axes pass-
ing through a pin, for Nf = 100 there are additional
prominent features at 45o. These arise from interfer-
ence of large-large particle packing between next-nearest-
neighbor pins. Figure 7 additionally shows a triangular
pin lattice with Nf = 64. In this case there is the ex-
pected sixfold symmetry. Figure-8’s arise from contacts
between large-large particles; the density is just slightly
below that needed for large-small contacts anchored by
pins, as seen by the near touching of circular contours
around adjacent pins.

Figure 9 shows typical bond locations as in Figure 7,
with bonds filtered by force magnitude. A telling dif-
ference between these figures is that the strong inter-
particle bonds mapped in Figures 9a,c,e describe parti-
cles directly in contact with a pin, or more subtly, con-
nectioned to pins through adjacent particles. On the
other hand Figure 9b,d,f shows that the weak interparti-
cle bonds tend to occupy locations which are quite close
to a pin. The locations contributing to the strong-F
end of P (F ) of Figure 5 are observed to change little
when pressure is lowered, as seen in Figure 9c,e. But
the weak bonds become less concentrated near the pin
as in Figure 9d,f. This might be understood by ener-
getic considerations; the marginally stable state prefers
pins in contact with a single particle. However, when
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pressure is slightly increased, a second particle can move
into contact with both a particle and pin, leading to a
weak particle-particle contact at the low-F end of the
probability distribution.

FIG. 8. If the particle on the left is imagined fixed and particle
on right is imagined to move while both remain in contact
with neighboring pins, the points of contact (red) trace out
the figure-8 pattern shown.

FIG. 9. Heatmaps of preferred interparticle bond locations
for square pin lattices, filtered according to forces in the top
95th (a,c,e) and bottom 5th (b,d,f) percentiles. Red dashed
lines denote diameters of small and large particles. All lattices
are square. Correspondence between Nf and particle density
is as in Table I. Color bar represents logarithmic scale for
frequency of contact at a location. Nf = 36 in a, b; Nf = 64
in c-f. a-d are for a range of pressures slightly above Point J,
while e,f are for a single, very low pressure P = 8× 10−8.

Orientations of bonds

In Figure 5 of Ref. [21], the distribution of bond angles
was compared for square pin lattices of various densi-
ties. The distribution P (θ) became progressively more
anisotropic, with fourfold symmetry as one expected
given a square pin lattice. In the current study, we ex-
pect to see fourfold or sixfold symmetry from square or
triangular pin lattices respectively. Data shown in Fig-
ure 10 from moderately dense pin lattices indeed have
the expected symmetry.

There is a high level of detail in P (θ) as a function of
pin density, which is further compounded if one splits out
bonds only between particles of given sizes. On the other
hand, one can concisely represent the degree of angular
ordering with an order parameter as in Figure 11. This
shows the order parameter mq ≡ |〈eiqθ〉| with q = 4 for
square and q = 6 for triangular pin lattices, and N = 230
particles. As seen in earlier work for the square lat-
tice [21] an angular ordering transition occurs somewhere
around λ = 0.25. For the triangular lattice, this transi-
tion occurs at a lower value of λ (hence an even lower
value of α). This abrupt increase in mq with cubatic or
hexatic ordering is reminiscent of a phase transition as
seen in the nematic order parameter in uniaxial liquid
crystals with an ordering field [57] or with hard rods im-
mersed in matrices of randomly-placed hard spheres [58].
Moreover, Figure 11 shows that mq need not continue
to increase with increased pin density above the transi-
tion. Clearly, there are certain “magic numbers” for both
square and triangular lattices, at which the bonds’ ori-
entations show evidence of being organized by pins. The
onset of orientational order presents a difficult packing
problem, amplified by the bidispersity of the particles.
In Fig. 11, the onset distance between pins for orien-
tational order to emerge is the length of a linear two
particle bridge composed of small particles, but for the
triangular lattice, is quite close to the distance spanned
by a two particle bridge composed of large particles. It is
quite likely that the decreasing state space for clusters of
not only two, but three (and more) particles as pin den-
sity increases is a significant contributor to orientational
ordering.

Finally, while mq is a positive definite quantity as de-
fined, we use color - black vs. red or green - to indicate
changes in sign in the quantity 〈Re(eiqθ)〉 . This is an
indicator of a shift in the particular way that the lat-
tice symmetry is manifested. In particular, Figure 12
shows such a phase shift for the square lattice; in lieu
of π/4 and 3π/4 being the most likely bond angles for
Nf = 121, bonds are most likely oriented at 0 or π/2 for
Nf = 144, 169. This shift in most probable orientation
turns out to be consequential for the elastic properties
of the jammed solid. In Figure 14 we will see excellent
correlation between this shift in symmetry and the be-
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FIG. 10. Histogram proportional to the probability P (θ), that a bond makes angle θ with the horizontal axis. a: On Left and
center are pin configurations indicating horizontal, x, direction. On right is illustrative pair of particles, i and j, with bond
angle θij . b: P (θ) for N = 230. Blue: no pins, Orange: square lattice with Nf = 100 and λ = 0.275 Green: triangular lattice
with Nf = 64 and λ = 0.207.

havior of the Zener ratio, which indicates breaking of the
isotropy of the elastic tensor.

FIG. 11. Order parameter, mq, as a function of particle-
lattice constant ratio, λ. a: Square lattice, q = 4, b: triangu-
lar lattice, q = 6. Color is either black or red/green depending
on the sign of 〈Re(eiqθ)〉.

Topological analysis

In order to better understand the multiscale character of
the stress-bearing structures in the system, we leverage
topological data analysis to analyze the network formed
by particles (nodes of the network) and the interparti-
cle forces (edges of the network). Specifically, we follow
the procedure presented in Ref. [59] to determine the
persistence of features in the contact force network as

FIG. 12. Histogram proportional to the probability P (θ), that
a bond makes angle θ with the horizontal axis for the square
pin lattice with N = 230. Blue, orange and green correspond
Nf = 121, 144 and 169, which are the three highest values of
λ analyzed in Figure 11a.

we apply increasingly aggressive filtration of the network
by omitting forces below some threshold, and study how
the persistence depends on both pin density and pin ar-
rangement. The quantities of interest to emerge from this
analysis are the zeroth and first Betti numbers, β0 and
β1. For a given filtration of the contact force network, β0

is the number of disjoint (not connected by any edges)
components of the network. β1 counts closed paths of 4
or more edges which bound an empty region of the fil-
tered network. These quantities have proven to correlate
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with the mechanical response of granular systems in use-
ful ways. For example, the time evolution of persistent
features has been shown to correlate with material fail-
ure [60] and impact dynamics [61]. Of more relevance
to the present study, the persistent features of packings
have illuminated structural effects of particle shape [62],
exposing the sensitivity of bulk properties of packings
to particle-scale constraints imposed by grain geometry.
Thus persistent homology is a promising strategy to ex-
plore the effect of the quasi-local constraints imposed by
pins on a packing inside a pin lattice.
We find that the presence of pins has a dramatic impact
on the topoological properties of the contact force net-
work. Betti numbers are plotted vs filtration in Fig. 13.
We see that, in systems with no-to-few pins, the zeroth
Betti number is insensitive to very small filtrations before
turning up to reach an approximately gaussian peak. As
the number of pins is increased, the small-force plateau
vanishes and the peak in β0 becomes dramatically heavy-
tailed. These basic trends appear to be qualitatively in-
sensitive to the geometry of the pin array. Similarly, as
the pin number is increased, β1 transitions from roughly
Gaussian to an extremely heavy-tailed curve, qualita-
tively insensitive to the pin array geometry.

FIG. 13. a: The zeroth and b: first Betti numbers, normalized
by the number of non-rattler particles, plotted against the fil-
tering force (normalized by the mean force). The zeroth Betti
number is a measure of the number of disjoint components of
the network whereas the first Betti number is a measure of
the number of loops in the network.

These results suggest the pins play an important role

(reflected by the heavy tail in β0) as sinks for stresses
in the packings. Chains of strong interparticle forces are
able to terminate at the pins, akin to container bound-
aries in the Jansen effect but on a much more local scale.
We might hypothesize based on this interpretation alone,
that pressures in the packing would be less correlated
on scales greater than the pin spacing than for packings
without pins. Though testing this prediction is beyond
the scope of the present study, the scaling of β1 provides
a complementary picture. The persistence of loop-like
features at high-filtration suggests that large stresses are
transmitted around regions of relatively low-stress, visi-
bly anchored at a subset of pins.

ELASTIC PROPERTIES

How does the presence of pins affect the response of a
packing to perturbations? For a solid, the simplest de-
scription of the macroscopic response is linear elasticity,
and at the ordinary jamming transition the elastic moduli
show critical scalings near the jamming transition, with
bulk modulus

B ∼ p0 (7)

and shear modulus

G ∼ √p (8)

in an infinite system. In a finite system, G shows clear
finite-size corrections, crossing over to a plateauG ∼ 1/N
at small values of pN2 [36].
The elastic modulus tensor, from which these elastic con-
stants are derived, may be defined as

Cijkl ≡
∂2E

∂εij∂εkl
. (9)

In a normal packing, the meaning of the global εij is un-
ambiguous, and (for example) a shear εij may be realized
by transforming the vectors aj defining the periodic cell
as a′i = εijaj .
In our packings with pins, there is no longer a unique
choice of global deformation. One may imagine deform-
ing a sample while the pins remain fixed in their orig-
inal lattice. This deformation is incompatible with the
periodic simulation as it changes the ratio between the
sample volume and the pin lattice unit cell volume; thus,
simulating this deformation is somewhat complicated.
A different definition of strain which is much simpler to
analyze is a strain in which the array of pins is also forced
to deform along with the periodic cell. This second def-
inition, which we adopt, also has the convenient feature
of preserving the connection between the bulk modulus,
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the packing fraction, and the pressure which exists in
pin-free packings:

B = φ
dp

dφ
=
φ2

V

d2E

dφ2
. (10)

In practice we calculate elastic moduli using exact linear
response by inversion of the dynamical matrix.

The shear modulus in the presence of pins

As an ensemble, ordinary jammed packings are isotropic.
Packings formed in the presence of a square lattice of
pins, however, lose this isotropy, as is evident from Fig-
ures 10–12, and thus require an extra elastic constant to
describe them completely in two spatial dimensions:

B =
1

4
(Cxxxx + Cyyyy + 2Cxxyy) (11)

G1 ≡ Cxyxy (12)

G2 ≡
1

4
(Cxxxx + Cyyyy − 2Cxxyy) . (13)

We may equivalently describe the shear response by the
combination of the angle-averaged shear modulus

Ḡ =
1

2
(G1 +G2) , (14)

and the Zener ratio

ar = G1/G2. (15)

Figure 14a shows the angle-averaged shear modulus Ḡ
as a function of pressure for square lattices. The scal-
ing behaviour, with the expected exponent of 1/2 as in
Eq. 8, appears to be independent of pin density, and the
magnitude of the finite-size plateau of Ḡ appears to be
unaffected by pin density. The prefactor CḠp between Ḡ
and
√
p outside the finite-size regime, however, appears

to decrease with increasing pin density, roughly indepen-
dently of pin geometry even for large λ, as illustrated in
14b.
Figure 14c shows that the Zener ratio ar has a fairly weak
pressure dependence, and thus in Figure 14d we plot its
mean over all pressures as a function of pin density λ,
for both square and triangular lattices. As might be ex-
pected for systems with perfect sixfold symmetry[63], the
triangular pin lattice induces no sign of cubic anisotropy
at any pin density, while the square lattice does at suffi-
ciently high density. Comparing to Figure 11, we see that
the anisotropy ar−1 6= 0 of the elastic constants coincides
with the onset of orientational order m4. Furthermore,

when m4 changes sign, the sign of the anisotropy changes
as well.

One can understand this qualitatively by considering the
affine part of the elastic modulus tensor. Recall that the
affine moduli e.g. GA represent the energy cost of forcing
the particles to follow the applied deformation affinely;
this represents an overestimate of the true elastic moduli
because this affine deformation will tend to produce net
forces on each particle which must be relaxed away to
reach the true sheared state (and in fact, for the shear
modulus, GA is a gross overestimate, since it does not go
to zero as p→ 0).

We may easily show that

(ar)A =
〈sin2 (2θ)〉
〈cos2 (2θ)〉

=
1− 〈cos(4θ)〉)
1 + 〈cos(4θ)〉

≈ 1− 2Re 〈ei4θ〉.

(16)

Thus, the correlation we’ve previously seen between ar
and m4 qualitatively matches that which is expected for
the affine moduli. The agreement is not quantitative,
however; comparison of the numerical values shows that
this prediction from m4 underestimates the degree of
anisotropy by a factor of 2–3.

Dependence of the low-pressure bulk modulus on
pin density

As pressure is decreased toward zero, the bulk modulus
plateaus, as seen in Figure 15a. Thus an important re-
sult is that, as with the shear modulus, pins do not alter
a critical scaling exponent; in this case 0, for B(p) as
in Eq. 7. Yet, the plateau value, B0 has a systematic
dependence on pin density. Naively, one might assume
that the introduction of pins should stiffen the system,
and increase B. Indeed, at fixed φ, this should be true.
However, as we have seen earlier, increasing pin density
allows the packing to jam at a lower φc, with larger num-
bers of rattlers so the rigid network is even less dense than
one might expect from a knowledge of φc alone. Thus the
limiting value B0 need not increase with pin density; and
indeed the trend in Figure 15 is that it decreases.

How can we rationalize this trend? The basic idea is that
introduction of pins allows lower-density, more-fragile
packings to form. Qualitatively, a reduction in bulk mod-
ulus is seen in experiments on granular packings where in-
creased polydispersity leads to increased effective poros-
ity and reduced stiffness[64]. Further, for a broad range
of systems with structural disorder, increasing disorder
causes lattices near isostaticity to stiffen[65]; the flip side
is that the ordering provided by pins, would have the op-
posite effect. To make this idea precise, we note that the
plateau bulk modulus may be expressed as [66]:
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FIG. 14. Shear moduli of packings formed in the presence of pins. a: The angle-averaged shear modulus Ḡ shows pin-density-
independent scaling behaviour, with a finite-size plateau that is independent of pin density, but a different scaling prefactor.
Colors are same as in Figure 3; open symbols are N = 920 while filled symbols are N = 230. b: Scaling prefactor in Ḡ = CḠp

√
p

decreases as a function of pin density in square lattices. c: Zener ratio, measuring cubic anisotropy in the shear moduli, is
roughly, but not perfectly, independent of pressure at all pin densities for square lattices. d: For triangular lattices, the
pressure-averaged Zener ratio is independent of pin density. For square lattices, a strong cubic anisotropy in elastic constants
develops at the same λ as bond-orientational order (Figure 11).

B0,theory ≈
εNbonds

min

d2V

〈σf〉2bonds

〈σ2f2〉bonds
, (17)

where σ is the sum of radii for a particular bond, d = 2
in our case, and the volume V is thus the area of the sys-
tem. The left-hand factor expresses the fact that a less-
dense packing has a lower affine bulk modulus B0,A—
with fewer particles participating in the packing, fewer
bonds are present and thus the energy cost of an affine
deformation is reduced. The right-hand factor accounts
for the non-affine relaxation in the limit of small pressure;
a packing with a broader distribution of forces is able to
relax a greater fraction of the stress initially imposed by
an affine compression.

We thus see that the packings with pins are expected to
show a reduction in zero-p bulk modulus due to both fac-
tors: a reduced φc and a broader distribution of forces.
Figure 15b confirms this explanation by plotting the av-
erage value of the low-pressure bulk modulus B0, divided
by its value at λ = 0. The blue curve shows the decay of
B0 as the pin density increases. Further curves show the
average values of B0/B0,A and B0/B0,theory. The final
curve is perfectly flat, showing that the theory explains
the decrease of plateau bulk modulus with pin density.
Dividing by the affine modulus, on the other hand, only
removes a small part of the decrease with pin density.
Thus, although the reduced density at jamming explains
part of the reduction in B0, the dominant effect is the
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change in non-affine relaxation, which may be related to
the broadening of the distribution of forces.
We have thus found two nontrivial effects of the pin lat-
tice on the elasticity of the resulting packings. In the
shear moduli, a cubic lattice of pins induces a cubic
anisotropy, which is closely correlated with the develop-
ment of bond-orientiational order at sufficiently large pin
densities. In the bulk modulus, we find that the lattice
of pins stabilizes packings with much lower bulk moduli
than normal packings, and that this reduced modulus is
intimately connected to the broader distribution of forces
which is found in the presence of pins.

CONCLUSIONS

Simulated jamming of bidisperse soft discs with the ad-
dition of a lattice of fixed pins permits one to tune the
jamming threshold and structure of the force network, as
well as modify the solid’s elastic properties. A fragile,
marginally-stable jammed solid exists at zero pressure,
with the familiar value of critical exponent β = 1/2 for
scaling of the number of bonds above the isostatic limit.
Also familiar are the critical exponents that describe the
bulk and average shear modulus, as a function of pres-
sure. However, both the jamming threshold φc and the
critical contact number Zc are dependent on lattice den-
sity and identity, with φc showing plateau-like features
where lattice-specific, local packing effects are important.
For small pin densities, investigated quantities are inde-
pendent of lattice geometry. Maps of contact locations
within one unit cell of the lattice reveal an inhomoge-
neous, patterned structure indicative of packing around
pins. At sufficiently high pin density, the pattern’s sym-
metry matches that of the lattice. Distributions of bond
angles show anisotropy; with an angular order parameter
that rises from zero when particle diameter becomes com-
parable to pin separation. The bond angular probability
distribution undergoes detailed changes as pin density
changes. For a square (but not triangular) pin lattice,
this correlates with deviations of the Zener anisotropy,
ar, from unity. The result is a disordered solid with two
distinct shear moduli.
Dramatic pin-mediated changes occur in the distribution
of forces, including enhanced probability at both weak
and strong forces. A heuristic power law model for the
strong tails is employed: P (F ) ∼ F−τ , with exponent
τ found to decrease with increasing pins. Considerations
of persistent homology are employed, which show equally
dramatic effects of pins in enhancing loop-free topological
structures at low force filtration, and supporting both
types of topological structure at higher force filtrations.
This wealth of structural changes has consequences for
elastic behavior. In broad terms, both bulk and shear
moduli decrease with pin density. A more detailed the-
oretical treatment demonstrates that changes in contact

FIG. 15. a: Bulk modulus as a function of pressure for square
pin lattices, showing plateau at low pressure p. Colors as in
Figure 3; the modulus decreases at high pin densities (pink
represents a further higher pin density Nf/N = 144/230).
b: Low-pressure bulk modulus B0, divided by its value with
λ = 0 (no pins), in blue. B0 decreases as the pin density is in-
creased. Orange: 〈B0/B0,A〉 shows a slightly weaker decrease,
showing that the reduction in affine bulk modulus associated
with reduced jamming density plays some role in this reduc-
tion of B0, but only a small one. Green: 〈B0/B0,theory〉, where
B0,theory is given by Eq. 17, showing perfect agreement with
theory.

number, density, and enhanced breadth of force distri-
bution all contribute to the reduction in bulk modulus,
with the increased non-affine relaxation associated with
the broad force distribution being the main factor. Thus,
the placement of supporting pins prior to jamming is a
promising technique to engineer a disordered, jammed
material in two dimensions which is less dense and less
rigid, with mechanical anisotropy in the form of two dif-
ferent shear moduli. Photoelastic experiments on grains
jammed in the presence of pins, as well as extensions to
other situations of interest like jamming and yielding in
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the presence of shear or three dimensional materials sup-
ported by fixed rodlike structures, are promising avenues
for future work.
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