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Flocking in d = 2 is a genuine non-equilibrium phenomenon for which irreversibility is an essential
ingredient. We study a class of minimal flocking models whose only source of irreversibility is self-
propulsion and use the entropy production rate (EPR) to quantify the departure from equilibrium
across their phase diagrams. The EPR is maximal in the vicinity of the order-disorder transition,
where reshuffling of the interaction network is fast. We show that signatures of irreversibility
come in the form of asymmetries in the steady state distribution of the flock’s microstates. These
asymmetries occur as consequences of the time reversal symmetry breaking in the considered self-
propelled systems, independently of the interaction details. In the case of metric pairwise forces,
they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a
possible use of pair asymmetries both to quantify the departure from equilibrium and to learn
relevant information about aligning interaction potentials from data.

I. INTRODUCTION

Irreversibility is a distinguishing feature of active sys-
tems that enables remarkable collective phenomena not
seen at equilibrium. Examples include motility-induced
phase separation (MIPS), in which particles with strictly
repulsive interactions segregate into dilute and dense
phases spontaneously [1], and flocking, in which po-
lar systems with short-ranged ferromagnetic interactions
produce large-scale collective motion, even in d = 2
[2, 3]. These systems differ from their passive counter-
parts only in their constituents’ self-propulsion, which
can be viewed as a source of effective interactions, e.g.
the effective attraction seen in MIPS [4] or effective long-
range alignment in flocking.

The key ingredient for the emergence of such collective
phenomena is irreversibility. Self-propulsion can bring
an active system out of equilibrium by injecting energy
at the microscopic scale, even in the absence of alter-
native sources of irreversibility, like non-reciprocity of
interactions or time delays [5–8]. Yet, if the dynamics
obeys detailed balance, even when particles are motile
a Hohenberg-Mermin-Wagner-type theorem holds, pre-
venting any spontaneous breakdown of the rotational
symmetry of an equilibrium system in two dimensions
[9]. Irreversibility is then a necessary condition for the
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existence of 2D flocks exhibiting true long range order.

The departure of active matter from equilibrium has
become a topic of considerable interest in recent years
[10–15] and can be quantitatively addressed using var-
ious measures for the breakdown of detailed balance,
like effective temperatures, violations of the fluctuation-
dissipation theorem [16–20], or entropy production [21–
23]. Depending on the scale of interest, this is done
employing either agent-based or field-theoretical descrip-
tions. Most of the effort so far has focused on MIPS
models, especially in the phase-separated state (see [24]
for a review). Much less work, mainly using fluctuating
hydrodynamic models, has been done to systematically
quantify irreversibility in polar dry active matter [25–27].

Nonetheless, it has been noted that polar active mat-
ter has a stronger non-equilibrium character than apolar
active matter. For instance, it is known that, in contrast
to scalar field theories [28–30], activity is relevant (in the
RG sense) for continuous flocking models, such that the
critical properties of active polar systems are different
from their passive counterparts [31–34]. Additionally, it
has been shown that, in contrast to MIPS models where
only repulsive forces are present, when nonconservative
aligning torques are introduced pressure is no longer a
state function [35, 36].

In this paper, we quantify the departure from equilib-
rium in a minimal agent-based model of flocking, akin
to the standard Vicsek model [37], where the system
is described as an active ferromagnet composed of self-
propelled spins. We focus on microscopic descriptions of
flocks and study how they depart from equilibrium by
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means of the entropy production rate [38, 39]. We first
use this quantity to measure the breakdown of the time
reversal symmetry across the phase diagram, which we
find is maximal in the vicinity of the order-disorder tran-
sition, where reshuffling of neighbors is most efficient. We
relate irreversibility to asymmetries in the steady state
distribution, the details of which depend on the inter-
actions of the model. We propose that signatures of ir-
reversibility in the steady state distributions may then
reveal relevant information about aligning interaction po-
tentials in biological polar active systems.

II. STOCHASTIC THERMODYNAMICS OF
THE VICSEK MODEL

We consider a continuous-time variant of the original
two-dimensional Vicsek model, where the system is de-
scribed as a set of interacting Active Brownian Particles
(ABPs) performing rotational but not translational dif-
fusion, which self-propel at a fixed speed v0 and align to
each other through short-ranged ferromagnetic interac-
tions. The stochastic equation of motion reads:

dxi = v0e(θi)dt, (1)

dθi = Fi(X,Θ)dt+
√

2DdWi, (2)

where Wi(t) is a set of independent Wiener processes for
1 ≤ i ≤ N , e(θ) = (cos θ, sin θ) is the orientation vec-
tor in d = 2 and Fi(X,Θ) is the torque that reorients
the i-th particle. Since we are interested in quantifying
the effect of self-propulsion alone, we assume the torques
are symmetric, ensuring that the action-reaction princi-
ple holds. In this way, the only source of irreversibility
is particle motility. We note that models typically em-
ployed to simulate flocks, like the standard Vicsek model
[37, 40] or topological variants with fixed number of inter-
acting neighbors [41–43], involve non-reciprocal interac-
tions, generating additional irreversible phase space cur-
rents. Therefore we choose:

Fi(X,Θ) = −∂HXY (Θ; n(X))

∂θi
, (3)

where

HXY (Θ; n) = −J
2

∑

ij

nij cos(θi − θj) (4)

is the Hamiltonian of an XY model defined on a graph
with a given adjacency matrix n. Contrarily to the clas-
sical XY model, n is not constant but depends on time
(through the X variables, Eq. (1)).

The dynamics described by Eqs. (1)–(2) is Markovian
in the phase space of the N -body system, whose general
coordinate is z = (X,Θ), where X = (x1, . . . ,xN ) is the
set of particle positions and Θ = (θ1, . . . , θN ) is that of
velocity directions. We recall the definition of the average
entropy production as the Kullback-Leibler divergence

between the path probability of a stochastic trajectory
z(t), for 0 < t < τ , and its time-reversed z†(t). For a gen-
eral Markov process, where p[z(t)] = p[z(t)|z(0)]p0 (z(0)),
the average entropy production is decomposed as follows,
in the absence of external driving:

S(τ) = DKL

(
p[z(t)]||p[z†(t)]

)
= Shk(τ) + ∆S0. (5)

We denote by Shk = 〈log p[z(t)|z(0)]〉−〈log p[z†(t)|z†(0)]〉
the housekeeping entropy production [44], with 〈·〉 the
average over the ensemble of (forward) trajectories, and
by ∆S0 = 〈log p(z(0))〉 − 〈log p(z†(0))〉 the variation in
the Shannon entropy of the initial conditions of forward
and backward paths. Let Ṡ be the entropy production
rate (EPR), defined from (5) as:

Ṡ = lim
τ→∞

S(τ)/τ. (6)

In order to compute this quantity for the process in
Eqs. (1)–(2), we need to identify the parity under time
reversal (T) of all the state variable coordinates. Posi-
tions are time reversal symmetric, i.e. x(t) 7→ x†(t) =
x(τ − t), while we assume e(θ) is time reversal anti-

symmetric, e (θ(t)) 7→ e (θ(t))
†

= −e(θ(τ − t)), so that
the angular degrees of freedom acquire a global π offset:
θ†(t) = θ(τ − t) + π. Let us notice that, in the absence
of a translational diffusion term in Eq. (1), this choice
for the parity of v0e(θ) — typically identified as the self-
propulsion — is mandatory, since it must be interpreted
as a physical velocity. Adopting, on the contrary, a T-
even prescription would lead to a diverging EPR, due to
the deterministic nature of Eq. (1) (see App. A 1).

Provided that orientations are T-odd, the first equa-
tion is perfectly reversible and does not contribute to
Ṡ. We can therefore eliminate the positional degrees of
freedom and transform them into external parameters
controlling the temporal evolution of n(t) = n (X(t)).
In this way, the reference framework becomes that of a
quasi-statically driven Langevin process, with state vari-
ables Θ(t) and a set of time-varying parameters n(t)
[45, 46]. We remark that no separation of scales between
the dynamics of n(t) and Θ(t) is explicitly assumed, but
the protocol n(t) can be considered as ‘effectively quasi-
stationary’ in the sense that — as we verified numeri-
cally — it ensures that the many-body system is in the
same stationary state at the beginning and at the end
of its evolution. This property let the system behave as
if it was in local equilibrium [47] and will be crucially
exploited later.

Introducing the Onsager-Machlup action [48] of the
process into the formula of the housekeeping EPR and
assuming stationarity, we obtain (see App. A 1):

(7)

Ṡ =
1

D

∑

i

〈θ̇i(t) ◦ Fi(t)〉

= − J
D

∑

ij

〈θ̇i(t) ◦ nij(t) sin (θi(t)− θj(t))〉,
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where ◦ indicates the Stratonovich prescription. Ac-
cording to the definition of stochastic heat of Langevin
processes [49], Eq. (7) can also be interpreted as Ṡ =
D−1〈d̄q/dt〉, with d̄q the infinitesimal amount of heat dis-
sipated into the medium (conventionally positive). The
parameter D corresponds to both the rotational diffu-
sion coefficient of the ABP and the temperature of the
heat bath that the active ferromagnet is in contact with.
We recall that the stochastic heat we consider is not a
physical heat, and the EPR as defined here is not the
physical entropy: only when dealing with real thermo-
dynamic systems and baths, an identification with the
produced physical entropy is possible.

Another expression for the EPR can be obtained by
noticing that to write Eq. (7) we exploited the ergodicity
of the dynamics. Reintroducing an explicit time average
allows us to integrate by parts (see App. A 2), yielding:

Ṡ = lim
τ→∞

〈−HXY (Θ(τ); n(τ)) +HXY (Θ(0); n(0))〉
Dτ

− J

2D

∑

ij

〈ṅij(t) ◦ cos (θi(t)− θj(t))〉.

(8)

The first term in Eq. (8) is proportional to the rate of
change of the system’s internal energy, and vanishes un-
der the assumption of stationarity. The second term cor-
responds to the work done on the system per unit time,
divided by D. This interpretation is sound within the
‘external protocol’ framework described above, where

(9)

d̄wresh = −J
2

∑

ij

dnij(t) ◦ cos (θi(t)− θj(t))

=
∑

ij

dnij(t) ◦
∂HXY (Θ; n)

∂nij
(t)

represents the infinitesimal work of fictitious reshuffling
forces which rewire the adjacency matrix. When the sys-
tem is in a steady state, the average internal energy is
constant, so the EPR includes only contributions from
this irreversible work.

The fact that the dissipated heat coincides with the ir-
reversible work of the external (fictitious) forces is typical
of systems satisfying the local detailed balance condition
[47]. Although there is no a priori general reason for this
condition to be valid for a Vicsek-like model, the equality
between Eq. (7) and the second term of Eq. (8) has been
numerically verified in the whole phase diagram of all
the variants of the model we studied (inset in Fig. 1.i for
Model I). For the class of models described by Eqs. (1)–
(2) the equality of Eq. (7) and Eq. (8) follows indeed
from the combination of the Hamiltonian structure of
the aligning force (see App. A 2), and the stationarity of
the system (according to which the first term of Eq. (8)
vanishes).

Generalizations of the EPR formulas to d > 2 are ob-
tained in App. A 3.

III. NUMERICAL RESULTS

Let us now parametrize the connectivity matrix n(X)
and use the formulas above to compute the EPR from
numerical simulations of the model. We implement two
variants of the Langevin-Vicsek model in Eq. (1)–(2) with
short-range ferromagnetic interactions. In the first one
(Model I) we model a metric pairwise alignment with

n
(I)
ij (X) = Θ(R− |xi − xj |), (10)

in which Θ is the Heaviside step function. The sec-
ond variant (Model II) implements a topological multi-
particle interaction, with

n
(II)
ij (X) =

{
1 if i, j Voronoi neighbors

0 otherwise.
(11)

At each time step, we build a tessellation of the periodic
plane domain associated to the current particle configu-
ration using the CGAL library [50]. Voronoi neighbors
are pairs of particles belonging to adjacent cells in this
tessellation.

Both models are known to exhibit a phase transition
from a disordered isotropic phase to a polar ordered
phase, but with different phenomenology. Model I un-
dergoes a first order phase transition, where sharp phase
coexistence is realized in a wide portion of the ordered
phase (see Fig. 1.a,c and [51]). On the contrary, spatial
heterogeneities are largely suppressed in Model II, and
the transition seems to be of second order at the consid-
ered system sizes (Fig. 1.b,d). For a discussion on the
nature of the transition of active models with metric-free
interactions see [52–54].

Phase diagrams for the modulus of the polar order pa-

rameter Φ = 1
N

∣∣∣
∑N
i=1 e(θi)

∣∣∣ and for the EPR are plot-

ted in Figs. 1.e–l. We observe that, as control parame-
ters are varied, the two models depart from equilibrium
with roughly the same qualitative behavior: the entropy
production rate peaks at intermediate D values, while it
vanishes as D → ∞ or D → 0. A heuristic explanation
for this behavior is readily provided if we recall that in
the considered class of models non-equilibrium effects are
entirely due to the rewiring of the interaction network.

The existence of the first equilibrium limit is not sur-
prising [55]: at D → ∞ the system behaves as an ideal
gas of free ABPs. The existence of a second equilibrium
limit at D → 0 is less trivial, because of the presence of a
factor D−1 in Eqs. (7)–(8). In order to have Ṡ → 0, irre-
versible reshuffling (numerator of eq.(8)) must occur on
time scales that diverge faster than D−1, corresponding
to the ABP persistence time. The reference model in this
second limit is a perfectly ordered passive ferromagnet,
where reshuffling is suppressed by the strong alignment
of particle velocities. This result justifies the use of ap-
proximate equilibrium descriptions for strongly interact-
ing biological systems operating in this phase [56].
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FIG. 1: a–b: Typical configurations for Model I and Model II at different D values. c–d: Distribution of the number
of interacting neighbors associated to the configurations above. Bimodality at moderate to small D values indicates phase
coexistence in Model I. For Model II the distribution has an almost invariant shape, hence the amount of irreversible reshuffling
of the interaction network cannot be deduced from its static connectivity alone. Red dashed line: mean number of neighbors;
Green solid line: expected number of neighbors for a Poisson point patter on a torus (πρ

√
2R2 in the metric case c, 6 in d). e:

Polar order parameter (OP) of Model I. The white line is the mean field transition point [40]. f : EPR across the phase diagram
of Model I. g: EPR curves as a function of the rescaled distance from the mean field transition point, DMF = JρπR2/2. A
possible explanation for the remaining density dependence is provided in the main text. Inset: Equivalence of formulas (7) and
(8) is verified, guaranteeing stationarity of the observed processes. h: EPR per particle (Model I). Color code is associated
to the system size N . Strong finite-size effects are evident for small N in the symmetry-broken phase (where coexistence is

realized), but Ṡ/N seems intensive as N is increased. The dashed vertical line represents the spinodal (extracted from the
number of neighbors’ distribution for N = 8192). i: OP of Model II. j: EPR across the phase diagram of Model II. The
white line represents the alleged critical point. k: Density dependence of the EPR curves (discussed in the main text). Inset:

irreversibility is governed by a single control parameter, v0ρ
1/2, at fixed D. l: EPR per particle for Model II (different colors

for different N values). All curves perfectly collapse on a single master curve, which converges to the two equilibrium limits as
predicted. Simulation parameters: (Model I) R = 1, J = 1, v0 = 0.5; when not explicitly indicated N = 1024, ρ = 1. (Model
II) J = 1, v0 = 0.5; when not explicitly indicated N = 2048.

A simple argument can be made to predict a power- law decay of the EPR in the two equilibrium limits, as
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detailed in App. A 5. By approximating the amplitude
of correlations and reshuffling times in these two regimes,
we deduce from Eq. (8) that the expected EPR scaling at

high D is Ṡ ∼ D−2, whereas at low D the EPR must scale
as Ṡ ∼ D1/2. Figs. 1.l and 1.h show the agreement be-
tween these predictions and numerical results for Model
II (both regimes) and Model I (high D regime only).

Model-specific features in the EPR curves of Model I
and Model II are also visible. For instance, the two vari-
ants of the Vicsek model show an opposite trend of the
EPR with the average density of the system, ρ = N/L2,
as shown in Figs. 1.g and 1.k. In Model I an increase
in ρ pushes the system towards an equilibrium-like mean
field limit, by increasing the average number of neigh-
bors and reducing the effect of reshuffling. Conversely,
increasing ρ in Model II causes an effective increase in
the activity of the system. Since the average number of
Voronoi neighbors does not depend on the density, but
density modifies typical inter-particle distances, larger ρ
is equivalent to larger self-propulsion speed v0. As shown
in the inset of Fig. 1.k, the EPR of Model II is in fact
governed by a single control parameter, v0ρ

1/2.

The EPR curves of the two models also show a dif-
ferent shape and different sensitivity to finite size effects
(cf. Figs. 1.g vs. 1.k and Figs. 1.j vs. 1.l). In the topo-
logical Voronoi case (Model II), the EPR curves exhibit
a kink at the transition point, similar to that observed in
[15] for the ‘flocking dissipation rate’ of the Active Ising
Model, and a perfect collapse when rescaled by N . In
the metric case, EPR curves are smoother and tend to
flatten in the coexisting region as N is increased. We
notice indeed that at low to intermediate values of the
D parameter, where the two types of curves are furthest
from each other, Model I and Model II mostly differ in
the features of their typical macroscopic configurations —
most strikingly, the presence or absence of phase coexis-
tence (at least at the observed sizes). This observation
corroborates the recently proposed idea that structure
and dissipation are deeply interrelated in active matter
[57, 58].

As a final note, the use of formulas (7) and (8) suggests
that dissipation has a local origin in flocking models, ex-
plaining its extensive nature, but it does not seem to be
spatially localized, even if the system exhibits phase co-
existence. In contrast to MIPS models, we could not ob-
serve a spatial segregation of the particles that relates to
their dissipation [21, 22, 59]. On the contrary, the heat or
work contributions per single particle fluctuate in time,
assuming both positive and negative values, with an am-
plitude comparable to the fluctuations of the mean EPR,
rescaled by

√
N (see Fig. 6 in App. A 6). However, since

the EPR is a global quantity and its local decomposi-
tion is non-unique (we can always add a state function
with a well-defined steady-state average value), we can-

not exclude that different rewritings of Ṡ could unveil
alternative interesting interpretations.

IV. SIGNATURES OF IRREVERSIBILITY

Explicit expressions for the EPR of Vicsek-like models
allow us to identify model-dependent signatures of irre-
versibility in the steady state distribution of a flock. For
the sake of simplicity, we focus on Model I and compute:

ṅ
(I)
ij = −δ(R− |xi − xj |)

(xi − xj) · (vi − vj)

|xi − xj |
. (12)

The rewiring of the connectivity matrix in Model I only
depends on how mutual distances between pairs of parti-
cles evolve. Let us insert Eq. (12) into Eq. (8) and assume
stationarity to rewrite the EPR as:

Ṡ =
Jv0

2D

∑

ij

〈cosϕij [cos α̂ij − cos(α̂ij − ϕij)]〉|xi−xj |=R

(13)

where 〈·〉|xi−xj |=R is the conditional average over pairs
of particles at distance R. The variables ϕij , α̂ij are
angles parametrizing the mutual alignment and the rel-
ative angular position of the two particles, respectively
(see Fig. 2):

ϕij = (θj−θi) mod 2π , α̂ij = (α0
ij−θi) mod 2π, (14)

where α0
ij is the angle indicating the direction of the dis-

placement vector rij = xj−xi in a fixed reference frame,
in which the i-th particle’s orientation is θi. We can sym-
metrize Eq. (13) by introducing αij = α̂ij − ϕij/2 and
rewrite

Ṡ =
Jv0

2D
N2g(R)

∫

[0,2π]2
dαdϕ q(α,ϕ)ε(α,ϕ), (15)

where g(r) = 1
N2 〈

∑
ij δ (|xj − xi|−r)〉 is the pair corre-

lation function and

ε(α,ϕ) = cosϕ
[
cos
(
α− ϕ

2

)
− cos

(
α+

ϕ

2

)]
(16)

is proportional to an EPR density per pair of particles.
The quantity q(α,ϕ) is the (normalized) distribution of
particle pairs at distance R:

q(α,ϕ) =
〈∑ij δ(|rij |−R)δ(α̂ij − ϕij/2− α)δ(ϕij − ϕ)〉

N2g(R)
.

(17)

The time reversal operator acts on the newly intro-
duced angular variables in the following way:

ϕ†(t) = ϕ(τ − t), α†(t) = α(τ − t) + π. (18)

Hence, breakdown of the time-reversal symmetry, Ṡ 6= 0,
implies from Eq. (15) a symmetry breaking in the pair
distribution: q(α,ϕ) 6= q(α + π, ϕ). This means that
two mirror configurations like those in Fig. 2.a cannot
be equally probable. Specifically, since the EPR is non-
negative, for aligned pairs (cosϕ > 0) configurations with
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a

c
ε(α,ϕ)

b.i

b.ii

FIG. 2: a: The time reversal (TR) operator acts on the sys-
tem’s variables by flipping velocities and keeping positions
unchanged. Out of equilibrium, the two configurations can-
not be equally probable. b: Sample trajectories from a sys-
tem of N = 1024 particles (D = 3, J = 1, v0 = 0.5, ρ = 1,
Φ ' 0.21) elucidating the dissipation mechanism in Model
I. Black stretches indicate the portion of trajectory in which
the two particles are at a distance smaller than the inter-
action radius; grey stretches those where particles are at a
distance r > R and do not interact. In (b.i) strongly anti-
aligned particles start interacting with an initial phase differ-
ence of 0.95π (triangle, converging red arrows, corresponding
to a positive EPR contribution εin ' 1.76). Due to rota-
tional diffusion, they later leave each other’s neighborhood
at a new relative phase and displacement angle (square, blue
arrows), corresponding to εout ' −0.92. In (b.ii) converging
particles (cross) enter the interaction disk contributing to the
EPR negatively (εin = −0.34). After the interaction, they
diverge being more aligned than before (circle), so that the
EPR contribution associated to this configuration surmounts
the previous one: εout = 0.38. c: Contour plot of Eq. (16).

diverging particles are expected to be more probable than
ones with converging particles. On the contrary, for anti-
aligned pairs (cosϕ < 0), configurations with colliding
particles are expected to be more probable than ones
with divaricating particles (cfr. Fig. 2.b). This scenario
reflects the fact that birds leaving each other’s neighbor-
hood have been interacting in the past and are typically
more aligned than those which have not interacted di-
rectly before.

It is convenient to consider the logarithm of the par-
ticle pair distribution function, u(α,ϕ) = − log q(α,ϕ)
and decompose it into T-symmetric and T-antisymmetric
parts: u±(α,ϕ) = 1

2 [u(α,ϕ)± u(α+ π, ϕ)]. The ir-
reversibility condition now reads u−(α,ϕ) 6= 0, while

D = 0.5 D = 3.0 D = 8.0

FIG. 3: First row: Reconstructed log-distributions of pairs of
particles at distance R from numerical simulations of Model
I (N = 1024, v0 = 0.5, ρ = 1, J = 1). Second row:
Antisymmetric part of the log-distributions: −u−(α,ϕ) =
u(α + π, ϕ) − u(α,ϕ). A positive correlation with ε(α,ϕ),
shown in Fig. 2.c, is evident. Black lines represent the level
curves of the fitted λε(α,ϕ) function, with λ free parameter.

Eq. (15) is rewritten as

Ṡ ∝
∫

[0,2π]2
dαdϕ e−u+(α,ϕ) sinh (−u−(α,ϕ)) ε(α,ϕ).

(19)
The positivity of the EPR is translated into a positive
correlation between the log-distribution of particle pairs
−u−(α,ϕ) and the EPR density ε(α,ϕ). We show in
Fig. 3 the numerically reconstructed function −u(α,ϕ),
for different parameter values. In the disordered phase,
the log-distribution looks almost T-symmetric, as the
system is close to equilibrium (large D in Fig. 3, sec-
ond row). In the ordered phase non-negligible asymme-
tries are visible in the reconstructed distributions: these
are especially concentrated in the low probability region
where particles are anti-aligned (ϕ ∼ π).

It is worth remarking that the discussed features are
local, as they are observed at the scale of the interac-
tion radius R, which is much smaller than the system
size or the typical size of polar clusters in the ordered
phase. Asymmetries gradually disappear when we look
at larger scales, as shown Fig. 4. This property is not
specific to Model I, but holds independently of the pre-
cise parametrization of n(X), provided that it describes
a pairwise short-ranged interaction. Interestingly, a sim-
ilar asymmetric scenario has also been observed in [60]
in a variant of Model I with non-additive, non-pairwise
interactions.

Model II is another example of a system with non-



7

2 4
r

0.0

0.5

1.0

1.5

2.0
‖u
−
‖ 1

(r
)

D = 3.0

D = 3.5

D = 4.0

D = 4.5

D = 5.0

D = 8.0

FIG. 4: Scalar measure for the degree of asymmetry of the
log-distribution of particle pairs at distance r: ‖u−‖1(r) =∫
dαdϕ|u−(α,ϕ; r)|. Curves peak at r = R (dashed line) for

all the considered D values. Lowering the rotational diffusion
coefficient, the decay to zero at large r gets slower because
of the presence of heterogeneous structures affecting the pair
distribution. The trend of these curves is qualitatively rem-
iniscent of −∂rn(r) = δ(r − R). All data are collected form
simulations of systems of N = 2048 particles.

pairwise interactions, since nij(X) is not a simple func-
tion of the mutual distance between particles i and j. As
a consequence, we do not have a simple expression for ṅij
to fill in Eq. (8). Since the number of Voronoi cells must
be conserved, reshuffling can occur only via the formation
of m-fold vertices, with m ≥ 4. Such transitional config-
urations are realized when the particles form an m-sided
polygon inscribed in a circle, so signatures of irreversibil-
ity must be sought for in m-particle densities (especially
m = 4, since other transitional configuration than the
lowest order 4-fold vertex are unlikely to occur).

V. IRREVERSIBILITY-INDUCED EXPLICIT
SYMMETRY BREAKING

The fact that irreversibility constrains asymmetries in
the two-body distribution (for Model I) is an example of a
more general result concerning systems with T-odd state
variable coordinates. Following the line of reasoning of
[61], it can be shown that for a whole class of stationary
Langevin processes, the irreversibility condition implies
a symmetry breaking in the non-equilibrium steady state
distribution of the system. This symmetry breaking only
depends on the parity of the state variable coordinates
under time reversal and it is easy to predict, without solv-
ing the steady state Fokker-Planck equation. Nonetheless
it may be typically hard to observe because it requires
reconstructing the full steady state distribution, while it
is not guaranteed to survive projection, coarse graining,
or any other dimensional reduction of the variable space.

Given a stationary additive process z(t) described by
a Langevin equation

żα = Aα(z) +Bαβξβ , (20)

whose coordinates have a definite parity under time re-
versal — i.e. zα

†(t) = εαzα(τ − t) with εα = ±1 —

the condition Ṡ > 0 implies that at least one of the two
following statements is violated (see App. B):

Airrα (z) +Dαβ∂βφ+(z) = 0 ∀α, (21)

∂αφ−(z) = 0 ∀α. (22)

Here D = 1
2B>B is the diffusion matrix of process (20);

Arev and Airr indicate the common decomposition of
the drift term A into a reversible and an irreversible part
[44]; φ± are the T-symmetric and T-antisymmetric parts
of the quasi-potential φ = − logψ(z), where ψ(z) is the
non-equilibrium steady state (NESS) distribution of the
system.

When the state variable only contains even coordinates
with respect to time reversal, Eq. (21) must be violated,
since φ−(z) = 0. In contrast, when Arev(z) = 0, the sta-
tionarity condition, combined with irreversibility, implies
φ−(z) 6= 0 (see App. B). This means that any Langevin
additive process with null reversible drift and having co-
ordinates in the state variable that change sign under
time reversal exhibits signatures of irreversibility in its
NESS distribution.

The considered class of 2D flocking models corresponds
to this second scenario, independently of the interaction
matrix parametrization, as better described in App. B.
Hence the NESS distribution must be asymmetric under
time reversal:

logψ(X,Θ) 6= logψ(X,Θ + π). (23)

The discrete T symmetry which is here explicitly bro-
ken can be viewed as a π-rotation in the velocity sub-
space V = (v1, . . .vN ), where vk = eiθk . Therefore, a
continuous rotational symmetry in the velocity subspace
cannot hold; we can think of this fact as an irreversibility-
induced explicit breakdown.

However, a different symmetry is preserved: the
Fokker-Planck operator and the NESS distribution are
invariant if arbitrary identical rotations are performed
on both the external space of positions and the internal
space of the polar order parameter:

ψ(eiθ0X,Θ + θ0) = ψ(X,Θ) ∀θ0 ∈ R. (24)

As a consequence of Eq. (24), the marginalized pdf
ψ(Θ) =

∫
[0,L]2N

dXψ(X,Θ) is rotationally invariant,

even when the dynamics of the polar active system is
irreversible. Similarly, the marginalized distribution of
positions, ψ(X) =

∫
[0,2π]N

dΘψ(X,Θ), is invariant un-

der rotations.
In conclusion, the above discussion does not compel

explicit symmetry breaking in ψ(Θ), but underlines the
lack of continuous symmetry under velocity rotations in
the coupled (X,V) space, which appears as a hypothesis
in known Hohenberg-Mermin-Wagner theorems (includ-
ing [9]). In our Langevin-Vicsek model, this symmetry
is only recovered at equilibrium, where the absence of
reshuffling disentangles positions and velocities.
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VI. CONCLUSION

Real life flocks and flocking models are often given as
examples of strongly out of equilibrium systems. How-
ever, analysis of real flocks has showed that they can
function close to equilibrium if the self-propulsion leads
the interaction network to rearrange on slow timescales
compared to the local orientational dynamics [56]. Mo-
tivated by the observation that self-propulsion and irre-
versibility are not always synonymous and that the for-
mer alone is not a sufficient condition to explain the spon-
taneous emergence of collective behavior in polar active
matter [9], we measured how flocks depart from equi-
librium across their phase diagram. We employed the
entropy production rate as the natural quantifier for the
breakdown of detailed balance and exploited its positive-
ness to identify signatures of irreversibility in minimal
agent-based flocking models.

While general statements can be deduced from the
parity of the state variables alone, the way such sig-
natures are manifested conveys model-specific informa-
tion about alignment interactions in the flock. For the
considered class of Vicsek-like models, violations of the
time reversal symmetry are indeed due to the interplay
between self-propulsion and the (otherwise equilibrium-
like) alignment interactions. Self-propulsion makes parti-
cles motile, but interaction is required to probe the effect
of motility, through the rewiring of the interaction net-
work.

It is worth noting that rewiring could in principle be
reversible, if it occurs in a symmetric way. However,
the way information is transferred from velocity to posi-
tional degrees of freedom prevents this from happening.
The evolution of bird positions can be seen as an effec-
tive external protocol for the dynamics of the orientation
degrees of freedom. The protocol is however not arbi-
trary: it must ensure that the XY Hamiltonian is on
average stationary — a condition that implies a feedback
between the state of the driven system and the driving
protocol. A better understanding of the thermodynamic
and information-theoretical meaning of the rewiring of
the interaction network may help understand not only
the microscopic origin of the symmetry breaking out of
equilibrium, but also how to control a flocking system in
any thermodynamic phase.

Since irreversibility consists in a symmetry breaking
(with respect to the time reversal transformation), it is
not surprising that signatures of the out-of-equilibrium
nature of the dynamics can be detected in asymmetries
of the steady state distribution of the system. When
the collective dynamics emerges from reciprocal pairwise
interactions, such signatures of irreversibility can be de-

tected in the pair distribution, at the scale of the inter-
action radius. Asymmetries are washed away on larger
scales, if the system is sufficiently homogeneous.

Our analysis suggests that irreversibility-related fea-
tures can be exploited as a tool to infer relevant informa-
tion about microscopic interaction mechanisms in active
polar systems from the experimental data. Numerical
simulations also show that the EPR is highest in the co-
existence region of the metric additive Vicsek model, and
peaks at the alleged critical point in the Voronoi Vic-
sek model, suggesting that the effects of irreversibility in
polar active matter should be mostly visible in systems
lying at the onset of collective motion. Candidate exper-
imental models could be, for instance, moderate density
actomyosin motility assays [62] or insect swarms [63].

Lastly, the numerically computed EPR exhibits a finite
size scaling compatible with an extensive nature of the
observable. It would be interesting to investigate how the
EPR and the scaling we measure from agent-based micro-
scopic models relates to the EPR of fluctuating coarse-
grained theories and its scaling [64].
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APPENDIX A: Derivation of EPR formulas

1. Heat dissipation

The process in Eq. (1)-(2) is Markovian, so the path
probability associated to it reads:

p[X(t),Θ(t)] ∝ ψ(X(0),Θ(0))e−AI [X(t),Θ(t)] (A1)

where ψ(X,Θ) is the steady-state distribution of the N -
body system, and
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AI [X(t),Θ(t)] = lim
ε→0

lim
∆t→0

Ns−1∑

s=0

N∑

i=1

1

∆t





1

ε2
[
xs+1
i − xsi − v0e(θsi )∆t

]2
+

1

4D
[θs+1
i − θsi + J

∑

j

nsij sin(θsi − θsj )∆t]2




(A2)

is the Onsager-Machlup (OM) action [48] (in the Itô pre-
scription — any other α-type prescription would lead to
the same final expression for the EPR, since the process
is additive). Ns indicate the number of steps of ampli-
tude ∆t in which the trajectory is discretized, and the
limit is taken while keeping Ns∆t = τ . The presence of
the ε-dependent term in Eq. (A2) comes from the rep-
resentation of δ(ẋi − v0ê(θi)) as the singular limit of a
Gaussian of variance ε2. This regularization corresponds
to adding an infinitesimal translational diffusion noise to
the deterministic Eq. (1), in order to make the diffusion
matrix of the two-dimensional process nonsingular.

Assuming that the system is in a steady state, the
variation in the Shannon entropy of the initial state
distribution vanishes, ∆S0 = 〈logψ (X(0),Θ(0)) −
logψ

(
X†(0),Θ†(0)

)
〉0 = 0, and the entropy production

of the irreversible process reduces to the housekeeping en-
tropy production [44]: S(τ) = Shk(τ) = AI [X(t),Θ(t)]−
AI [X†(t),Θ†(t)], where X†(t) and Θ†(t) indicate the
time-reversed trajectories.

Using Eqs. (A2) and the OM action of the time-
reversed trajectory, we can compute the entropy produc-
tion rate and obtain a first formula:

Ṡ =
〈q̇〉
D

= − J
D

∑

ij

〈θ̇i ◦ nij sin(θi − θj)〉

= lim
Ns→∞

lim
∆t→0

1

Ns∆t

N∑

i=1

Ns−1∑

s=0

〈θ
s+1
i − θsi

∆t
· F

s
i + F s+1

i

2
〉,

(A3)

where F si = Fi(X
s,Θs) = −J∑j nij(X

s) sin(θsi − θsj ) is
the torque acting on the i-th particle at time step s, and
〈·〉 is the average over the ensemble of non-equilibrium
stationary paths. Here the limit is taken in such a way
that Ns∆t → ∞. Eq. (A3) coincides with the average
stochastic heat [49] dissipated by the system into a heat
bath at temperature D per unit time, divided by D or,
equivalently, to the work rate of the aligning torques.

2. Local equilibrium

An alternative formula to Eq. (A3) is obtained by elim-
inating the spatial d.o.f.s and projecting the process to
those phase space directions where the irreversible cur-
rent has nonzero components. In this reduced space,
the diffusion matrix is invertible and no regularization
is needed. The effect of the eliminated d.o.f.s is taken
into account by recognizing them as parameters driving

the system through a transformation that does not mod-
ify the average value of the effective XY Hamiltonian (4).
Having rephrased the problem in this way, we can follow
[47], and proceed by discretizing the trajectories of the
angular d.o.f.s and of the protocol parameters as follows:

direct : Θ0
X1−→Θ1

X2−→Θ2 . . . ΘM−1
XM−→ΘM ;

time− reversed : Θ0
X1←−Θ1

X2←−Θ2 . . . ΘM−1
XM←−ΘM .

Let us now assume the local detailed balance condition
[47] (justified a posteriori by numerical results — no a
priori assumption assumption of time scale separation
which is valid in every region of the phase diagram can
be made):

Pc(Θn; Xn+1)P (Θn
Xn+1−→Θn+1)

Pc(Θn+1; Xn+1)P (Θn+1
Xn+1−→Θn)

= 1, (A4)

where

Pc(Θ; X) =
1

Z(X)
e−βHXY (Θ;n(X)) (A5)

is the equilibrium Boltzmann distribution of an XY spin
system on a fixed network with connectivity matrix n(X)
and β = D−1. Using hypothesis (A4) to compute the
entropy production of the discretized Markov process,

S = 〈log
Pc(Θ0; X0)

Pc(ΘM ; XM )
+ log

∏M−1
n=0 P (Θn

Xn+1−→Θn+1)
∏M−1
n=0 P (Θn+1

Xn+1−→Θn)
〉

= 〈log

M−1∏

n=0

Pc(Θn; Xn)

Pc(Θn; Xn+1)
〉,

(A6)

and taking the continuous limit yields for the EPR:

Ṡ = β〈
∑

i<j

ṅij ◦
[
∂HXY (Θ; n)

∂nij
− 〈∂HXY (Θ; n)〉c,n

∂nij

]
〉,

(A7)
where 〈·〉c,n is the equilibrium over the canonical ensem-
ble, for fixed n. The same result is obtained by applying
the standard rules of stochastic calculus to Eq. (A3). Re-
calling that this expression involves a time average (elim-
inated under the assumption of ergodicity), we can per-
form an integration by parts resulting into:

(A8)
Ṡ = − J

2D

∑

ij

〈ṅij ◦ cos(θi − θj)〉

+ lim
τ→∞

〈HXY (τ)−HXY (0)〉
τ

.
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Let us now assume that the system is in a steady state,
where the average XY Hamiltonian does not vary with
time (or at most sublinearly). Eq. (A8) then reduces to
the rate of work which fictitious reshuffling forces make
on the system:

Ṡ =
〈ẇresh〉
D

= − J

2D

∑

ij

〈ṅij ◦ cos(θi − θj)〉. (A9)

Let us remark that these fictitious forces are not inde-
pendent of the system’s state: thanks to this crucial de-
pendency between the external protocol and the state of
the system we can have a nonzero EPR.

3. Arbitrary dimension

The generalization of the activeXY model to the d > 2
case is the active O(n) ferromagnet, whose dynamics is
described by:

dxαi = vαi dt, (A10)

dvαi = Pαβi


−J

∑

j

nijv
β
j + v0ξ

β
i


 , (A11)

where 〈ξαi (t)ξβi (t′)〉 = δijδαβδ(t− t′) and Pαβi (t) = δαβ −
vαi (t)vβi (t)/v2

0 is the orthogonal projector to vi(t) that
is required for normalization purposes. For d > 2 the
process is multiplicative: the prescription to integrate
Eqs. (A10)–(A11) is the Stratonovich one.

The corresponding generalization of the EPR formu-
las (A3) and (A9) to the d-dimensional case reads:

Ṡ =
〈d̄q〉
dt

=
J

Dv2
0

∑

ij

〈v̇αi (t) ◦ Pαβi (t)nij(t)v
β
j (t)〉; (A12)

Ṡ =
〈d̄w〉
dt

= − J

2Dv2
0

∑

ij

〈ṅij(t) ◦ vαi (t)vαj (t)〉. (A13)

4. Equilibrium limits

The obtained EPR formulas reveal the existence of sev-
eral equilibrium limits for the Vicsek model. Two of them
obviously correspond to v0 → 0, where activity is sup-
pressed and the model corresponds to an equilibrium XY
ferromagnet, and J → 0. From inspection of Eq. (A3)
a third equilibrium limit can be deduced, for D → ∞,
since torques and phase increments are bounded. In this
limit, the interaction term in Eq. (2) becomes negligi-
ble, compared to the noise, and the system behaves as
in the non-interacting equilibrium case. Because of the
equivalence between Eqs. (A3) and (A9), this means that
reshuffling is suppressed as the rotational diffusion coef-
ficient increases. Particles tend indeed to swirl around
their positions, being stack in the vicinity of their own
neighborhood for a long time (see Fig.5).

Another equilibrium limit, which is independent of the
parametrization of nij , corresponds to D → 0. In the
strongly polarized phase the system approaches the be-
havior of a passive ferromagnet in the co-moving refer-
ence frame. The relevant (asymmetric) contribution of
reshuffling is suppressed faster than D in this limit, re-
sulting in an effective equilibrium behavior. An approx-
imate argument for this fact is provided in A 5.

Two other nontrivial equilibrium limits can be deduced
for the two variants of the Vicsek model considered in the
main text, by varying the control parameter ρ. In the ad-
ditive metric case (Model I) the ρ→∞ limit corresponds
to an equilibrium limit, since the system approaches an
effective mean field configuration. In the topological case
(Model II) the opposite limit, ρ → 0, is an equilibrium
one.

Enhancement of reshuffling close to the transition is
witnessed by the decay of the reconstructed autocorrela-
tion function of the connectivity matrix:

Cnet(t) =
1

N(N − 1)

∑

ij

〈nij(t0 + t)nij(t0)〉t0 , (A14)

where 〈·〉t0 denotes a time average over multiple starting
times. We show the quantity (A14) computed for Model
II in Fig. 5. The fastest decay is observed at the alleged
critical point (Dc ' 2). All the curves, for varying D,
are well-fitted by the functional form:

Cnet(t) ∼M(1 + cta)−d, (A15)

which was empirically introduced in [65] to measure the
average fraction of non-changing neighbors after a time
delay t in real flocks of birds. We fitted Eq. (A15) on
numerical data by taking as fixed parameters d = 2 and
M = 6 (the average degree of a Voronoi vertex in a planar
graph is fixed by the Euler formula). Results from the
fit are shown in Fig. 5.g where parameters are plotted
parametrically versus the average EPR of the system.

5. Scaling with D

Let us focus on Eq. (A9) in the two equilibrium lim-
its D → 0 and D → ∞. The parameter D enters in
the formula through cos(θi− θj) (alignment of bird pairs
that are changing their status of neighbors), ṅij (reshuf-
fling rate), and the D−1 prefactor. Let us suppose that
cos(θi − θj) ∼ C(l), with C the (full) spatial correlation
function of birds’ velocities, which we assume isotropic,
and l the interaction radius (in Model I) or the average
distance of a pair of birds which are leaving each other’s
Voronoi shell (in Model II). In this paragraph the symbol
∼ must be read as ‘approximately proportional to’. Let
us assume that the typical reshuffling rate, τresh ∼ ṅ−1

ij ,
is related to the time needed for a particle to travel the
same reference distance l:

〈|∆x(τresh)|2〉 ∼ l2. (A16)
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FIG. 5: a: Subsample of trajectories of diffusing particles in different regimes. All the trajectories span the same time interval.
In the symmetry broken phase the trajectories are shown in the reference frame of the center of mass; mutual diffusion occurs
mainly in the transverse direction with respect to collective motion (black arrow). At D = 2, where reshuffling is mostly
efficient, the flock is disordered but the motion of the particles is still persistent. Persistence is reduced as the rotational
diffusion coefficient D is increased. In all cases, N = 1024, ρ0 = 1. b: Autocorrelation function of the adjacency matrix of the
flock, Cnet(t), defined as in Eq. (A14). The color map refers to D values. The maximum point of the EPR, D = 2, is marked
in red and corresponds to the curve with the fastest decay. Dashed lines are the fitted curves from Eq. (A15). c–d: Parametric
plot of fitted parameters, a and c, versus EPR. The figure shows a positive correlation both for the effective diffusion coefficient
c and exponent a. Close to the transition point (marked by the red dot) reshuffling is the most efficient and the system is in
the farthest condition from an equilibrium one.

In the low D regime the system is deeply ordered and
we can adopt the spin-wave approximation. This approx-
imation consists in linearizing the equations of motion
by taking into account only the transverse fluctuations
of the velocity variables (or spin wave excitations) v0πi,

where πi ⊥ V = 1
N

∑N
i=1 vi. The magnitude of these

Gaussian fluctuations scales as |πi|∼ D1/2. The corre-
sponding low-D expansion of the correlation function is
C(l) ∼ 1−|π|2∼ 1−D. In Model II

∑
ij ṅij = 0 because

the average degree of a vertex in a Delaunay triangulation
of the plane (Voronoi tessellation’s dual) is exactly 6 [66],
so a nonzero contribution to the EPR is only expected to
come from the connected velocity correlation. In Model
I a similar argument holds on average, if the system is in
a stationary condition. Hence we shall replace C(l) with
Cc(l) ∼ D and estimate τresh from Eq. (A16). Since the
system is strongly ordered, mutual displacement occurs
mainly in the transverse space to the collective direction
of motion, and we can assume that l is typically small
enough to work in the ballistic regime. The condition

〈∆x2
⊥(t)〉 ∼ |π|2t2 ∼ l2 (A17)

identifies a reshuffling time scale τresh ∼ D−1/2, so that
Ṡ ∼ D1/2.

In the high D regime thermal noise dominates over
alignment interactions. The limit model is an ideal gas
of free ABPs, whose mean squared displacement is known
[67]:

〈∆x(t)2〉 =
2v2

0

D

[
t− 1

D

(
1− e−Dt

)]
∼ l2. (A18)

From Eq. (A18) we deduce (both in ballistic and diffusive
limits) that the reshuffling rate scales as τ−1

resh ∼ D−1. In
this disordered phase, the full velocity correlation func-
tion corresponds to the connected one, which exhibits a
sharp, short range decay: Cc(l) ∼ e−l/ξ(D), where ξ(D) is
a finite correlation length, of the order of l, which scales
as D0 as D →∞. Therefore, the resulting scaling for the
EPR is Ṡ ∼ D−2.

6. Single particle decomposition

Let us focus on Model I, where phase coexistence is
realized. We consider the statistics of single-particle con-
tributions to the EPR from Eqs. (A3) and (A9), respec-
tively corresponding to the heat rate per particle, divided
by D:

ṡi =
q̇i
D

= − J
D

∑

j

〈θ̇i ◦ nij sin(θi − θj)〉, (A19)

and work of reshuffling forces per particle, divided by D:

ṡi =
ẇi
D

= − J

2D

∑

j

〈ṅij ◦ cos(θi − θj)〉. (A20)

The goal of this analysis is to unveil possible correlations
between dissipation and spatial segregation of each self-
propelled particle, as it has been observed in scalar active
matter.

In contrast to MIPS models [21, 22, 59], however, dis-
sipation seems to occur in a non-localized way in the
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FIG. 6: a: Time series of the average EPR of the flock (grey) and of the contribution of a sample single particle, properly
rescaled (red), computed as in Eq. (A19) (top) or as in Eq. (A20) (bottom). The two time series have comparable fluctuations,
especially when the stochastic heat is considered (top). This fact shows that all the particles contribute in the same way to the
global EPR. b: Probability density of the single-particle stochastic heat (left, from Eq. (A19)) or irreversible work of fictitious
reshuffling forces (right, from Eq. (A20)). The histogram is unimodal, even when particles are organized into polar clusters, in
clear contrast with the MIPS phenomenology [59].

system. Two findings have been made in the context
of scalar active matter: first of all, the analysis of both
coarse-grained models and microscopic agent-based mod-
els for MIPS has shown that the breakdown of the time-
reversal symmetry occurs at the interfaces, whereas in the
bulk of both the dense and dilute phases the EPR density
vanishes [21, 22]. A second analysis on a different type of
microscopic model (ABP with repulsive interactions, in
contrast to Active Ornstein-Uhlenbeck particles) has re-
vealed that the work of the self-propulsion force per single
particle assumes a different value depending on the par-
ticle’s position inside the system [59]. The probability
distribution of the active work per particle is assumed
to obey a large deviation principle and the associated
rate function is found to be non-convex. The values cor-
responding to the minima of the rate function are the
typical active work values of particles belonging to the
bulk of the two phases; work values in the non-convex
region are typical of particles at the interface.

If we represent the EPR contribution per particle, us-
ing either Eq. (A19) or Eq. (A20), we see that violations
of the time reversal symmetry are not concentrated at
the interface; on the contrary, the bulk contributes sig-
nificantly (not with a definite sign) — see supplemen-
tary movies. If we also consider the time series of single-
particle EPR contributions, we see that they largely fluc-
tuate, taking both positive and negative values. The
typical amplitude of fluctuations is comparable to that

of the rescaled average EPR of the system, 1√
N

∑N
i=1 si

(Fig. 6.a). Finally, the histograms of the time-averaged
single particle contributions, shown in Fig. 6.b, seem to
have a unimodal shape, corroborating the idea that in
polar flocks there is no correspondance between the par-
ticle’s energetic role and its positioning in the flock.

APPENDIX B

In this section we want to analyze general consequences
deriving from the irreversibility condition on ABP mod-
els with alignment. We start by recalling some results
presented in [61] and move from them to:

1. derive a new formula for the entropy production of
non-equilibrium stochastic process driven by addi-
tive noise (Eq. (B14));

2. show that the irreversibility condition induces on
any ABP-based model of flocking an explicit asym-
metry in the steady state distribution of the sys-
tem’s microstates;

3. generalize this last result to any Langevin system
with completely irreversible drift.

1. General results

Let us consider a general stochastic additive process
z(t) described by a Langevin equation with drift term
A(x) and diffusion term D. Let ψ(z) be the steady-state
distribution that solves the stationary Fokker-Planck
equation: LFPψ(z) = −∇ · j(z) = 0, where

j(z) = A(z)ψ(z)−D∇ψ(z) (B1)

is the probability current. This current is standardly
decomposed into a reversible and irreversible part [44]
as:

jrev(z) = Arev(z)ψ(z), (B2)

jirr(z) = Airr(z)ψ(z)−D∇ψ(z), (B3)

where:

Arevα (z) =
1

2
[Aα(z)− εαAα(εz)] , (B4)
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Airrα (z) =
1

2
[Aα(z) + εαAα(εz)] , (B5)

with ε denoting the time reversal operator. For now,
we assume that ε acts linearly on the state variable z
(precisely, diagonally with εα = ±1 ∀α).

A necessary and sufficient condition for detailed bal-
ance to hold is that the two following conditions are ver-
ified (in addition to stationarity, ∇ · j = 0) [68]:

jirr(z) = 0 and Dαβ(z) = εαεβDαβ(εz). (B6)

Therefore the condition of irreversibility implies jirr(z) 6=
0, when D is independent of z. This condition is sufficient
to guarantee the positivity of the entropy production in
a proper NESS, i.e. in the absence of external drivings,
where the total entropy production reduces to the house-
keeping entropy production:

Ṡhk =

∫
dzψ(z)V irrα (εz)

(
D−1(εz)

)
αβ
V irrβ (εz). (B7)

In (B7) V(z) = j(z)/ψ(z) is the phase space velocity
[44], which is decomposed as Vrev(z) +Virr(z) following
(B3). In [61] Dal Cengio et al. identified Eq. (B7) with
a second expression for the EPR given in [44],

Ṡ =

∫
dzψ(z)V irrα (z)

(
D−1(z)

)
αβ
V irrβ (z), (B8)

to derive the following constraint:

∑

αβ

D−1
αβV

irr
α (z)V irrβ (z) =

∑

αβ

D−1
αβV

irr
α (εz)V irrβ (εz).

(B9)

Eq. (B9) is valid almost surely if the diffusion matrix
is invertible and z-independent. Using the definition of
Virr and the property Airrα (z) = εαA

irr
α (εz), Eq. (B9)

implies:

∑

α

[
Airrα (z) +Dαβ∂βφ+(z)

]
∂αφ−(z) = 0 (B10)

almost surely. The functions φ± are defined as the
T-symmetric and T-antisymmetic parts of the quasi-
potential φ(z) = − logψ(z):

φ+(z) =
1

2
[φ(z) + φ(εz)] , φ−(z) =

1

2
[φ(z)− φ(εz)] .

(B11)

For the sake of simplicity, let us assume D is diagonal.
All the results can be generalized to the non-diagonal
case, if D is symmetric and positive definite. We remark
that it is not possible to merely invoke the diagonaliz-
ability of D through a change of basis, because we need
all the coordinates of z to have a definite parity under
time reversal.

We start from an explicit rewriting of the entropy pro-
duction rate from Eq. (B8):

Ṡ =

∫
dz e−φ(z)

∑

α

D−1
αα

[
Airrα (z) +Dα∂αφ(z)

]2
.

(B12)
Exploiting the symmetries of Airr, φ+ and φ−, we can
rewrite Eq. (B12) as

(B13)

Ṡ =

∫
dz 2 cosh (φ−(z)) e−φ+(z)

∑

α

D−1
αα

[(
Airrα (z) +Dαα∂αφ+(z)

)2
+Dαα (∂αφ−(z))

2
]

+

∫
dz 4 sinh (φ−(z)) e−φ+(z)

∑

α

(
Airrα (z) +Dαα∂αφ+(z)

)
∂αφ−(z).

The second line of Eq. (B13) is zero thanks to Eq. (B10), hence:

Ṡ =

∫
dz cosh (φ−(z)) e−φ+(z)

∑

α

[
D−1
αα

(
Airrα (z) +Dαα∂αφ+(z)

)2
+ (∂αφ−(z))

2
]
≥ 0. (B14)

Equality is realized in Eq. (B14) iff both of the following
conditions are verified:

Airrα (z) +Dα∂ααφ+(z) = 0 ∀α (B15)

and

∂αφ−(z) = 0 ∀α ⇐⇒ φ−(z) = 0. (B16)

Notice that φ− cannot be a constant function different
from zero.

Breakdown of detailed balance imposes that at least
one of the terms in Eqs. (B15)–(B16) is nonzero, along
with the constraint (B10). If all the coordinates of the
state variable are T-even, then φ−(z) = 0 and violation
of Eq. (B15) is enforced. In the presence of T-odd coor-
dinates, φ−(z) can be different from zero.
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2. Application to Langevin-Vicsek model

The results presented above are valid for general
Langevin stochastic processes, provided that they are ad-
ditive with an invertible diffusion matrix. Let us now fo-
cus on our system of ABPs in Eqs. (1)–(2), which models
a Langevin-Vicsek flock.

Since we work in the absence of translational diffusion,
the D matrix is non-invertible, irrespectively of whether
we decide to study the process in the (X,Θ) phase space
or in the (X,V) phase space, where V = eiΘ. Moreover,
the process is non-additive in the second case. In the first

case the Θ variables are not T-even nor T-odd under time
reversal, but the time reversal operator acts by shifting
them of an amount π. Hence the hypotheses that led
to the derivation of the above results are not valid for
the polar system of interest. Nonetheless, we can still
derive from the irreversibility condition a condition on
the asymmetry of the steady-state distribution ψ(z).

Let us apply the same definition of quasi-potential
φ(z) and of its decomposition into T-symmetric and T-
antisymmetric parts given in (B11). Our goal is to show
(by contradiction) that irreversibility implies φ−(z) 6= 0.
Let us start from the stationary FPE,

v0

∑

i

e(θi) · ∇iψ = J
∑

ij

nij∂θi(sin(θi − θj)ψ) +D
∑

i

∂2
θiθiψ, (B17)

and derive the corresponding PDE for the quasi-potential φ:

(B18)v0

∑

i

e(θi) · ∇iφ = J
∑

ij

nij cos(θi − θj) + J
∑

ij

nij sin(θi − θj)∂θiφ+D
∑

i

∂2
θiθiφ+D

∑

i

(∂θiφ)2.

Let us apply the time-reversal operator to both the R.H.S. and L.H.S. of Eq. (B18) (this operation corresponds
to a change of variable from the state variable z to εz) and split the quasi-potential into its T-symmetric and T-
antisymmetric parts to rewrite a set of two coupled stationary equations:

(B19)

v0

∑

i

e(θi) · ∇iφ− = J
∑

ij

nij cos(θi − θj) + J
∑

ij

nij sin(θi − θj)∂θiφ+

+D
∑

i

∂2
θiθiφ+ +D

∑

i

(∂θiφ+)2 +D
∑

i

(∂θiφ−)2;

v0

∑

i

e(θi) · ∇iφ+ = J
∑

ij

nij sin(θi − θj)∂θiφ− +D
∑

i

∂2
θiθiφ− + 2D

∑

i

(∂θiφ+)(∂θiφ−). (B20)

We now assume that φ−(z) = 0 in Eq.(B19). The result-
ing equation for ψ = eφ+ is of the form:

0 = J
∑

ij

nij∂θi(sin(θi − θj)ψ) +D
∑

i

∂2
θiθiψ. (B21)

This equation is solved by the Boltzmann distribution
that we would have in the absence of self-propulsion:

ψ(z) = f(X) exp[−H(z)] ⇐⇒ φ+(z) =
H(z)

D
+ c(X),

(B22)
with c(X) an arbitrary constant. Uniqueness of the sta-
tionary solution of a Fokker-Planck equation is guaran-
teed under rather general smoothness hypotheses on the
solution and drift term [69]. Let us notice that we cru-
cially exploited the symmetry of nij to write the steady
state solution as Eq. (B22). We can conclude that the
non-equilibrium condition is contradicted: the hypothe-
sis φ−(z) = 0 leads to an absurdum.

In Langevin-Vicsek models, the condition φ−(z) 6= 0
corresponds to requiring that

ψ(X,V) 6= ψ(X, eiπV), (B23)

i.e. irreversibility constrains an explicit symmetry break-
ing under rotations in the internal space of velocities. A
possible way to measure of the degree of irreversibility of
the process is to quantify the asymmetry of the steady
state pdf in Eq. (B23). However, reconstructing the N -
body probability density is clearly an out-of-reach task,
both in numerical simulations or real experiments. Hav-
ing some knowledge of the aligning interaction potential
HXY (Θ; n(X)) allows us to visualize the asymmetry on
a much lower-dimensional space, and to predict how the
second law of thermodynamics (Ṡ ≥ 0) constrains the
realization of such asymmetries.
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3. Langevin processes with irreversible drift

The result obtained in the previous section can be ex-
tended to any Langevin process where Arev(z) = 0 and
the state variable coordinates have a definite parity un-
der time reversal. It is sufficient to write the stationary
Fokker-Planck equation

∇ ·A + A · ∇φ+D∇2φ+D (∇φ)
2

= 0 (B24)

and perform a change of variable, identifying z as εz′. Us-
ing the decomposition of A and φ into their T-symmetric
and T-antisymmetric components, and combining (re-
spectively with a positive and negative sign) the resulting
equation with (B24), one can obtain the two following
equations:

∇O ·Airr
O + Airr

E · ∇Eφ− + Airr
O · ∇Oφ+ +D∇2φ+ +D (∇φ+)

2
+D (∇φ−)

2
= 0 (B25)

∇E ·Airr
E + Airr

E · ∇Eφ+ + Airr
O · ∇Oφ− +D∇2φ− + 2D∇φ+ · ∇φ− = 0. (B26)

The subscripts in the equations above indicate the par-
ity of the state variable coordinates, which can be split
as z = (zE , zO), such that εz = (zE ,−zO). Assuming
that φ−(z) = 0 (absurdum), the sum of (B25) and (B26)
yields

∇ ·
(
Airrψ

)
+D∇2ψ = 0, (B27)

where we have identified ψ = eφ+ . Providing natural

boundary conditions to the FPE (B24), we deduce from
(B27) that Airrψ + D∇ψ = 0. This condition, together
with φ−(z) = 0, implies detailed balance. Therefore irre-
versibility implies, in a system where Arev = 0 and the
state variables coordinates are either T-odd or T-even,
that φ−(z) 6= 0.

[1] M. E. Cates and J. Tailleur, Annual Review of Condensed Matter Physics 6, 219 (2015),
https://doi.org/10.1146/annurev-conmatphys-031214-014710, URL
https://doi.org/10.1146/annurev-conmatphys-031214-014710.

[2] H. Chaté, Annual Review of Condensed Matter Physics 11, 189 (2020).
[3] J. Toner, Y. Tu, and S. Ramaswamy, Annals of Physics 318, 170 (2005), ISSN 0003-4916, special Issue, URL

https://www.sciencedirect.com/science/article/pii/S0003491605000540.
[4] T. F. F. Farage, P. Krinninger, and J. M. Brader, Phys. Rev. E 91, 042310 (2015), URL

https://link.aps.org/doi/10.1103/PhysRevE.91.042310.
[5] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Nature 592, 363 (2021), ISSN 1476-4687, URL

https://doi.org/10.1038/s41586-021-03375-9.
[6] L. P. Dadhichi, J. Kethapelli, R. Chajwa, S. Ramaswamy, and A. Maitra, Phys. Rev. E 101, 052601 (2020), URL

https://link.aps.org/doi/10.1103/PhysRevE.101.052601.
[7] M. J. Bowick, N. Fakhri, M. C. Marchetti, and S. Ramaswamy, Phys. Rev. X 12, 010501 (2022), URL

https://link.aps.org/doi/10.1103/PhysRevX.12.010501.
[8] S. A. M. Loos and S. H. L. Klapp, Scientific Reports 9, 2491 (2019), ISSN 2045-2322, URL

https://doi.org/10.1038/s41598-019-39320-0.
[9] H. Tasaki, Phys. Rev. Lett. 125, 220601 (2020), URL https://link.aps.org/doi/10.1103/PhysRevLett.125.220601.

[10] E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. van Wijland, Phys. Rev. Lett. 117, 038103 (2016), URL
https://link.aps.org/doi/10.1103/PhysRevLett.117.038103.

[11] S. C. Takatori and J. F. Brady, Phys. Rev. E 91, 032117 (2015), URL
https://link.aps.org/doi/10.1103/PhysRevE.91.032117.

[12] L. Dabelow, S. Bo, and R. Eichhorn, Phys. Rev. X 9, 021009 (2019), URL
https://link.aps.org/doi/10.1103/PhysRevX.9.021009.

[13] P. Pietzonka and U. Seifert, Journal of Physics A: Mathematical and Theoretical 51, 01LT01 (2017), URL
https://doi.org/10.1088/1751-8121/aa91b9.

[14] C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. Howard, C. F. Schmidt, and F. C. MacKintosh, Science 352, 604
(2016), https://www.science.org/doi/pdf/10.1126/science.aac8167, URL
https://www.science.org/doi/abs/10.1126/science.aac8167.

[15] Q. Yu and Y. Tu, The energy cost for flocking of active spins (2022), URL https://arxiv.org/abs/2205.13149.
[16] D. Loi, S. Mossa, and L. F. Cugliandolo, Phys. Rev. E 77, 051111 (2008), URL

https://link.aps.org/doi/10.1103/PhysRevE.77.051111.

https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://www.sciencedirect.com/science/article/pii/S0003491605000540
https://link.aps.org/doi/10.1103/PhysRevE.91.042310
https://doi.org/10.1038/s41586-021-03375-9
https://link.aps.org/doi/10.1103/PhysRevE.101.052601
https://link.aps.org/doi/10.1103/PhysRevX.12.010501
https://doi.org/10.1038/s41598-019-39320-0
https://link.aps.org/doi/10.1103/PhysRevLett.125.220601
https://link.aps.org/doi/10.1103/PhysRevLett.117.038103
https://link.aps.org/doi/10.1103/PhysRevE.91.032117
https://link.aps.org/doi/10.1103/PhysRevX.9.021009
https://doi.org/10.1088/1751-8121/aa91b9
https://www.science.org/doi/abs/10.1126/science.aac8167
https://arxiv.org/abs/2205.13149
https://link.aps.org/doi/10.1103/PhysRevE.77.051111


16

[17] G. Szamel, Phys. Rev. E 90, 012111 (2014), URL https://link.aps.org/doi/10.1103/PhysRevE.90.012111.
[18] D. Levis and L. Berthier, EPL (Europhysics Letters) 111, 60006 (2015), URL

https://doi.org/10.1209/0295-5075/111/60006.
[19] C. Maggi, N. Gnan, M. Paoluzzi, E. Zaccarelli, and A. Crisanti, Communications Physics 5, 55 (2022), ISSN 2399-3650,

URL https://doi.org/10.1038/s42005-022-00830-5.
[20] S. Dal Cengio, D. Levis, and I. Pagonabarraga, Phys. Rev. Lett. 123, 238003 (2019), URL

https://link.aps.org/doi/10.1103/PhysRevLett.123.238003.
[21] C. Nardini, E. Fodor, E. Tjhung, F. van Wijland, J. Tailleur, and M. E. Cates, Phys. Rev. X 7, 021007 (2017), URL

https://link.aps.org/doi/10.1103/PhysRevX.7.021007.
[22] D. Martin, J. O’Byrne, M. E. Cates, E. Fodor, C. Nardini, J. Tailleur, and F. van Wijland, Phys. Rev. E 103, 032607

(2021), URL https://link.aps.org/doi/10.1103/PhysRevE.103.032607.
[23] E. Crosato, M. Prokopenko, and R. E. Spinney, Phys. Rev. E 100, 042613 (2019), URL

https://link.aps.org/doi/10.1103/PhysRevE.100.042613.
[24] J. O’Byrne, Y. Kafri, J. Tailleur, and F. van Wijland, Time-irreversibility in active matter: from micro to macro (2022),

URL https://doi.org/10.1038/s42254-021-00406-2.
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