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Despite the prevalence of biological and physical systems for which synchronization is critical, existing theory

for optimizing synchrony depends on global information and does not sufficiently explore local mechanisms that

enhance synchronization. Thus, there is a lack of understanding for the self-organized, collective processes that

aim to optimize/repair synchronous systems, e.g., the dynamics of paracrine signaling within cardiac cells.

Here we present “grass-roots” optimization of synchronization, which is a multiscale mechanism in which

local optimizations of smaller subsystems cooperate to collectively optimize an entire system. Considering

models of cardiac tissue and a power grid, we show that grass-roots-optimized systems are comparable to

globally optimized systems, but they also have the added benefit of being robust to targeted attacks or subsystem

islanding. Our findings motivate and support further investigation into the physics of local mechanisms that can

support self-optimization for complex systems.

I. INTRODUCTION

The ability for large systems of dynamical units to self-

organize and produce robust collective behavior continues to

drive a large body of research [1, 2]. Applications include

cardiac dynamics [3], brain dynamics [4], cell signaling [5],

and power grids [6]. Weak synchronization and desynchro-

nization events often lead to pathological behavior, e.g., spiral

wave breakup in cardiac tissue [7, 8] and black outs in power

grids [9], thereby motivating optimized systems for strong, ro-

bust synchronization.

While man-made systems such as power grids can be de-

signed using global structural and dynamical information [10,

11], such information is likely unavailable to biological pro-

cesses that are known to rely on local interactions, such

as cell-to-cell paracrine signaling among cardiac cells [12].

While a great deal is known about how biological systems

function, comparatively little is understood about the self-

optimization processes responsible for constructing and main-

taining/repairing such systems. Moreover, it is reasonable to

hypothesize that optimization is itself a collective, coordinated

behavior. A stronger theoretical understanding of mechanisms

for collective self-optimization may deepen our understanding

of diverse biological systems and has the potential to revolu-

tionize the way we engineer systems–or rather, design systems

to engineer themselves. Collective optimizations constitute an

under-explored family of collective behavior, and there is a

lack of multiscale optimization theory to provide insight into

how local optimizations might coordinate to globally optimize

both synchronous and other kinds of systems.

In this paper, we explore grass-roots optimization for cou-

pled oscillator networks, whereby the parallel optimization of

smaller subsystems can be coordinated to collectively opti-

mize the global synchronization properties of the entire sys-

tem. In general, subsystems can be defined in a variety of

ways: community structure [13], spatially distinct regions in

a geometric network [14], or other partitions of a network af-

ter a geometric embedding [15]. Such locally defined sub-
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systems are consistent with the tissue microenvironments that

emerge via paracrine signaling in cardiac tissue undergoing

stem cell therapy [12]. Our main finding is an intuitive multi-

scale mechanism for grass-roots optimization of synchroniza-

tion that involves two steps: local subsystem optimization,

whereby subsystems are independently optimized in paral-

lel; and global subsystem balancing, whereby the subsystems

are balanced with one another. Grass-roots optimization co-

ordinates two seemingly contrasting ideas whereby (i) opti-

mized networks tend to connect dissimilar oscillators, and (ii)

similarity between two oscillators promotes their entrainment.

Specifically, a multiscale approach allows subsystems to be

treated as near-identical “macro-oscillators” while preserving

and taking advantage of heterogeneity on a microscopic scale.

We demonstrate the utility of grass-roots optimization

across a range of networks where subsystems arise naturally:

random networks with communities, a power grid, and a geo-

metric network model. Moving beyond phase oscillators, we

also use a nonlinear cardiac pacemaker model for which we

optimize voltage and gating variables of pacemaker cells [16].

In addition to successfully optimizing synchronization dy-

namics, grass-roots-optimized systems also have the added

benefit of being more robust to subsystem dismantling under

a targeted attack or intentional islanding than globally opti-

mized systems. These experiments highlight grass-roots opti-

mization as a viable mechanism by which diverse types of sys-

tems can robustly self-optimize, providing a plausible mech-

anism to support biological systems as well as decentralized

engineering strategies for complex man-made systems.

The remainder of this paper is organized as follows. In

Sec. II we summarize some preliminaries and present our

main result: a grass-roots optimization framework for network

synchronization. In Sec. III we present numerical experiments

to highlight the effectiveness of this framework, and in Sec. IV

we conclude with a discussion of our results.

II. MAIN RESULTS

Here, we review a synchronization optimization framework

in Sec. II A, present a local approximation theory for opti-
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FIG. 1. Grass-roots optimization for a network of heterogenous phase oscillators. (a) Visualization of Kuramoto order parameter r ∈ [0, 1]
and mean field ψ ∈ [0, , 2π) for a set {θj} of oscillator phases with θj ∈ [0, 2π). Strong phase synchronization occurs when θi ≈ θj for

any i and j, which yields r ≈ 1. (b) Synchrony-optimized networks that maximize r can be obtained using the synchrony alignment function

(SAF) [22], which reveals two microscale, intuitive mechanisms that promote synchronization: positive correlations between an oscillator’s

natural frequency ωi and its associated node degree di; and negative correlations among the frequencies ωi and ωj of neighboring oscillators

i and j. (c) Here, we develop grass-roots optimization to reveal a multiscale mechanism for optimization with two steps: the mean frequency

〈ω(s)〉 within each subsystem s is balanced across the subsystems; and subsystems are separately optimized.

mization in Sec. II B, and develop a grass-roots optimization

framework for synchronization in Sec. II C. We visualize vi-

sualize synchrony optimization and our grass-roots approach

in Fig. 1.

A. The Synchrony Alignment Function (SAF)

We begin by reviewing the synchrony alignment function

for the optimization of networks of heterogeneous oscillators.

Consider a network of coupled, heterogeneous phase oscilla-

tors whose dynamics are given by

θ̇i = ωi +K

N
∑

j=1

AijH(θj − θi), (1)

where θi and ωi are the phase and natural frequency of oscilla-

tor i = 1, . . . , N , parameterK is the global coupling strength,

network structure is encoded in an adjacency matrix A, and H
is a 2π-periodic coupling function. Here, we focus on the case

of unweighted, undirected networks with Aij = 1 if oscilla-

tors i and j are connected and 0 otherwise, although these

properties may be relaxed without much trouble. We also use

classical Kuramoto coupling [17], i.e., H(·) = sin(·), but em-

phasize that one may choose other functions H provided that

H ′(0) > 0 and H(∆θ) = 0 for some ∆θ near zero. Notably,

phase oscillator models such as Eq. (1) have been found to

be suitable models for naturally-occuring phenomena such as

chromosomal coordination [18] and integrate and fire dynam-

ics of cardiac pacemakers [19], as well as mechanical systems

such as power grids [20, 21].

The degree of synchronization is measured by the magni-

tude r ∈ [0, 1] of the Kuramoto order parameter

reiψ = N−1
N
∑

j=1

eiθj , (2)

which we illustrate for a strongly synchronized state in

Fig. 1(a). By linearizing around the synchronized state one

obtains

r ≈ 1− J(ω, L)

2K2
, (3)

where

J(ω, L) =
1

N

N
∑

j=2

〈vj ,ω〉2
λ2
j

(4)

is the Synchrony Alignment Function (SAF) [22]. The SAF

utilizes the alignment of the natural frequencies ω with the

eigenvalues {λj}Nj=1 and eigenvectors {vj}Nj=1 of the combi-

natorial Laplacian, L = D−A, where D = diag(k1, . . . , kN )
is a diagonal matrix that encodes the nodal degrees, ki =
∑N

j=1 Aij . Synchronization is optimized (i.e., r is maxi-

mized) by minimizing J(ω, L), which may be done by align-

ing ω with the eigenvectors of L that are associated with

larger eigenvalues. The SAF framework has been utilized

across several optimization scenarios, including undirected

and directed networks [22, 27], finding optimal perturbations

and network rewirings [28, 29], synchronizing phase-coherent

chaotic oscillator networks [30], and dealing with frequency

uncertainty [31].

Minimizing the SAF with ω ∝ vN also reveals intuitive key

properties of synchrony optimized systems including degree-
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frequency correlations and anti-correlations between neigh-

boring frequencies [22]. These are illustrated in Fig. 1(b), as

neighboring oscillators tend to have frequencies with opposite

signs, and high-degree nodes tend to be substantially faster or

slower (i.e., larger or smaller natural frequencies) with respect

to the average. While such local properties are associated with

optimization, they alone do not guarantee it, nor do they of-

fer insight toward mesoscale/multiscale properties and mech-

anisms enabling collective optimization.

B. Local Approximation for Networks with Two Subsystems

Here, we present a local approximation of the SAF, which

which we will use to identify a multiscale mechanism under-

lying grass-roots optimization. For simplicity, here we only

consider the case of a network with two subsystems, leaving

further generalization to the Appendix. The three subsystem

case is detailed in Appendix A, and generalization to an arbi-

trary number of subsystems is discussed in Appendix B.

Writing the adjacency matrix as A =

[

A(1) B(12)

B(12)T A(2)

]

,

where A(1) ∈ R
N1×N1 , A(2) ∈ R

N2×N2 , B(12) ∈ R
N1×N2 ,

and N1 and N2 are the sizes of the respective subsys-

tems, the Laplacian is given by L = L0 + LB, where

L0 = diag(L(1), L(2)), L(1,2) = D(1,2) − A(1,2), and

LB =

[

DB(12) −B(12)

−B(12)T DB(12)T

]

with diagonal matrices DB(12)

and DB(12)T whose entries are row sums of B(12) and B(12)T ,

respectively. We assume B(12) to be sparser than A(1)

and A(2) so that ‖LB‖ ≪ ‖L0‖ under a suitable matrix

norm (e.g., the Frobenius norm). We then define ∆L =
(‖L0‖/‖LB‖)LB so that L(ǫ) = L0+ǫ∆L recovers the orig-

inal network structure for the choice ǫ = ‖LB‖/‖L0‖ ≪ 1.

Next, we discuss the spectral properties of L0. Since this

matrix encodes the two subsystems in isolation, its eigen-

value spectrum is the union of the eigenvalue spectrum of

L(1) and L(2). Specifically, ordering the eigenvalues of L(1)

and L(2), respectively, 0 = µ1 < µ2 ≤ · · · ≤ µN1 and

0 = ν1 < ν2 ≤ · · · ≤ νN2 (where we assume that the sub-

systems are themselves connected), this implies that L0 has

two zero eigenvalues, λ1 = λ2 = 0, with the rest positive,

so that the nullspace of L0 requires some care. Rather than

choosing eigenvectors v1 ∝ [1,0]T and v
2 ∝ [0,1]T , whose

entries are constant within one subsystem and zero within the

other, it is advantageous to instead choose v
1 = 1√

N
[1,1]T

and v
2 =

√
N1N2

N
[1/N1,−1/N2]

T so that v1 is independent

of ǫ and characterizes the nullspace of L(ǫ), and v
2 is asso-

ciated with an eigenvalue that converges to 0 as ǫ → 0 but is

strictly positive for ǫ > 0. The other N − 2 eigenvectors of

L0 are given by {vj}Nj=3 =
{

[uj,0]T
}N1

j=2

⋃
{

[0,xj ]T
}N2

j=2
,

where {uj}N1

j=1 and {xj}N2

j=1 are the eigenvectors of L(1) and

L(2).

Considering 0 < ǫ ≪ 1, each eigenvalue of L(ǫ) varies

continuously with ǫ [26], so we may write λj(ǫ) = λj +

ǫδλ
(1)
j + ǫ2δλ

(2)
j + O(ǫ3). We similarly assume v

j(ǫ) =
v
j + ǫδvj(1) + ǫ2δvj(2) + O(ǫ3). Since λ2(ǫ) ≪ 1 and

λj(ǫ) ∼ 1 for j = 3, . . . , N , the term associated with j = 2
needs to be treated separately, so we write

J(ω, L(ǫ)) =
1

N

〈ω,v2(ǫ)〉2
λ2
2(ǫ)

+
1

N

N
∑

j=3

〈ω,vj(ǫ)〉2
λ2
j(ǫ)

. (5)

Upon expanding the N − 1 terms contributing to the SAF in

Eq. (5), we find that they all take a similar form except for a

factor of ǫ,

( 〈ω,vj(ǫ)〉
λj(ǫ)

)2

= ǫαj

( 〈ω,vj〉2
(λj)2

)

+ ǫ1+αj

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)

+ ǫ2+αj

(

〈ω, δvj(1)〉2 + 2〈ω,vj〉〈ω, δvj(2)〉
(λj)2

−
4δλ

(1)
j 〈ω,vj〉〈ω, δvj(1)〉

(λj)3
+

(3(δλ
(1)
j )2 − 2λjδλ

(2)
j )〈ω,vj〉2

(λj)4

)

+O(ǫ3+αj ),

(6)

where αj = −2 when j = 2, but is otherwise zero. Due to the the different scaling with ǫ, the terms associated with j = 2 are

larger than those for j ≥ 3. Inserting Eq. (6) into Eq. (5) yields

J(ω,L(ǫ)) = ǫ−2N−1

(

〈ω,v2〉2

(δλ
(1)
2 )2

)

+ ǫ−1N−1

(

2〈ω,v2〉〈ω, δv2(1)〉
(δλ

(1)
2 )2

− 2δλ
(2)
2 〈ω,v2〉2

(δλ
(1)
2 )3

)

+N−1

(

〈ω, δv2(1)〉2 + 2〈ω,v2〉〈ω, δv2(2)〉
(δλ

(1)
2 )2

− 4δλ
(2)
2 〈ω,v2〉〈ω, δv2(1)〉

(δλ
(1)
2 )3

+
(3(δλ

(2)
2 )2 − 2δλ

(1)
2 δλ

(3)
2 )〈ω,v2〉2

(δλ
(1)
2 )4

)

+ η1J(ω
1, L1) + η2J(ω

2, L2) + ǫN−1
N
∑

j=3

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)

+O(ǫN−1, ǫ2), (7)
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where we have used that 1
N

∑N

j=3
〈ω,vj〉2
λ2
j

=

η1J(ω
(1), L(1)) + η2J(ω

(2), L(2)) and ηs = Ns/N is

the fraction of nodes in subsystem s ∈ {1, 2}. We note that

Eq. (7) diverges in the limit ǫ → 0, as does Eq. (5) and, in

fact, so does the original SAF in Eq. (4). However, in this

limit the network becomes disconnected, so we are interested

in the behavior of Eq. (7) for finite, but small ǫ.

While Eq. (7) may appear daunting, the key insight is

that the inner product 〈ω,v2〉 appears in several leading-

order terms. Recalling the structure of v2, and writing ω =
[ω(1),ω(2)]T , where ω

(1) and ω
(2) are the frequency vectors

corresponding to the two subsystems, we have that 〈ω,v2〉 =√
η1η2(〈ω(1)〉 − 〈ω(2)〉). Thus, if the subsystems’ mean fre-

quencies can be engineered to match, 〈ω(1)〉 = 〈ω(2)〉, then

many terms vanish to yield

J(ω, L(ǫ)) = η1J(ω
(1), L1) + η2J(ω

(2), L2)

+ ǫN−1
N
∑

j=3

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)

+N−1 〈ω, δv2(1)〉2

(δλ
(1)
2 )2

+O(N−1ǫ, ǫ2), (8)

which has the leading order approximation

J(ω, L(ǫ)) ≈ η1J(ω
(1), L1) + η2J(ω

(2), L2). (9)

Thus, when the subsystems’ mean frequencies are equal, or

nearly equal, we find that the SAF of the full system can be

approximated as the weighted average of the SAFs for the sub-

systems. A generalization of this theory is presented in Ap-

pendices A and B, and we discuss and utilize these results in

the next section.

C. Grass Roots Optimization of Phase Synchronization

We now present a method for grass-roots optimization of

synchronization, including a multiscale mechanism in which

subsystems coordinate local optimizations to optimize a sys-

tem’s global synchronization properties. Consider a network

that can be partitioned into C subsystems such that the ad-

jacency matrix A may be rewritten in a block form A =
AD + B, where AD = diag(A(1), . . . , A(C)) is a block-

diagonal matrix containing the subsystems’ adjacency matri-

ces, and the off-diagonal blocks of B encode edges between

subsystems. We assume that the blocks in B are sparser than

the diagonal blocks in AD and that the diagonal blocks in B
are matrices of zeros. For each subsystem s, we define its

associated combinatorial Laplacian matrix L(s) and its asso-

ciated vector ω(s) of frequencies.

As we show in the Appendices, under the condition where

the subsystems’ mean oscillator frequencies are equal, the

SAF for the full system may be approximated by a linear com-

bination of the subsystem-specific SAFs,

J(ω, L) ≈ η1J(ω
(1), L(1)) + · · ·+ ηCJ(ω

(C), L(C)),
(10)

where ηs is the relative size of subsystem s. This result leads

to the following multiscale mechanism for grass-roots opti-

mization:

(i) Global balancing of subsystems: achieve a balanced set

of local mean frequencies across all C subsystems, i.e.,

minimize maxs,s′ |〈ω(s)〉 − 〈ω(s′)〉|;

(ii) Local optimization of subsystems: optimize the local

SAFs, i.e., minimize each J(ω(s), L(s)).

These two steps are illustrated in Fig. 1(c), where the net-

work is divided into disjoint subsystems which are then bal-

anced and separately optimized. This framework is flexible

and fits a wide range of application-specific constraints. These

two intuitive steps help fill the theoretical gap between exist-

ing global optimization theory and local heuristics that pro-

mote synchrony.

III. NUMERICAL EXPERIMENTS

In this section we present numerical experiments to high-

light the utility of grass roots optimization for network syn-

chronization. In Sec. III A we show that globally optimized

and and grass-roots optimized systems have similar synchro-

nization properties. In Sec. III B we show that grass-roots op-

timized networks have the added advantage of being robust

to subsystem islanding or fragmentation. In Sec. III C we

highlight how the framework is also effective for optimizing

a cardiac dynamics model that does not fit the precise form of

Eq. (1).

A. Grass-Roots Optimization for Three Network Examples

We now illustrate the effectiveness of grass-roots opti-

mization across three classes of networks: (i) networks

with community structure (generated by the stochastic block

model [23] with two communities of sizes N (1;2) = 100 and

mean intra- and inter-degrees 〈k(1;2)〉 = 5 and 〈k(12)〉 = 1);

(ii) the RTS 96 power grid [24]; (iii) and noisy geometric net-

works [25] (with N = 200 nodes placed randomly in a 4 × 1
box with 95% of links placed between the closest possible

nodes pairs and the other 5% of links placed randomly, with a

mean degree of 〈k〉 = 8). As shown in Figs. 2(a)–(c), we

partition the three classes of networks into two, three, and

four subsystems, respectively. (The four subsystems of the

geometric networks are defined by the ± sign combinations

in the first two non-trivial eigenvectors of L.) For each net-

work, we assume that natural frequencies are given and cannot

be modified, but may be rearranged. Thus, a global balance

between subsystems [step (i)] may be obtained by shuffling

frequencies between subsystems, while the subsystems may
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FIG. 2. Grass-roots optimization. Illustrations of (a) a random network with two communities, (b) the IEEE RTS 96 power grid, and (c) a

random geometric network. (d)–(f) The degree of synchronization r and (g)–(i) synchronization error 1− r as a function of coupling strength

K for the three respective network types with either randomly allocated frequencies (green triangles), globally-optimized frequencies (blue

circles), or grass-roots optimized frequencies (red crosses).

be locally optimized [step (ii)] by then shuffling frequencies

within each subsystem. To optimize each network, we use an

accept-reject algorithm, proposing 5 × 104 switches between

randomly chosen pairs of frequencies and accepting switches

that decrease the SAF.

In Figs. 2(d)–(f), we plot r vs K for systems with ran-

domly allocated (green triangles), globally optimized (blue

circles), and grass-roots optimized (red crosses) frequencies

for the three classes of networks. All data points are averaged

across 50 random networks and natural frequency realizations

(drawn from the standard normal distribution) except for the

power grid, where the same network is used. Note the com-

parably strong synchronization properties for both the global

and grass-roots optimized cases, and that sometimes grass-

roots-optimized systems even exhibit stronger synchrony than

the globally optimized systems due to the optimization algo-

rithms’ stochasticity. To differentiate the two cases we plot

the synchronization error 1 − r vs K in a log-log scale in

Figs. 2(g)–(i), revealing that grass-roots optimization is effec-

tive across a wide range of network structures.

B. Application to Islanding of Power Grids

Here we highlight an advantage of grass-roots optimized

networks versus globally optimized networks: they yield net-

works whose synchronzation properties are more robust to

when subsystems are islanded or dismantled from one an-

other. For instance, modern power grids feature microgrids–

smaller subsystems that island (i.e., separate) themselves from

the larger grid [20]. We predict such a feature to be advanta-

geous in biological processes, which is a main motivator for

our work.

As an example, we consider the RTS 96 power grid be-

fore and after the islanding of three subsystems [illustrated

in Fig. 3(c)]. In Fig. 3(a) we plot time series of the three

local order parameters using global (solid blue) and grass-

root (dashed red) optimization with K = 1 and normally-

distributed frequencies. Edges between subsystems are re-

moved at time t = 0. Before islanding (t < 0) both cases

display strong synchronization properties. After islanding

(t ≥ 0) the globally-optimized system displays significantly

weaker synchronization properties and a desynchronization

event (indicated by oscillations). On the other hand, the grass-

roots optimized system maintains its strong synchronization
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FIG. 3. Robustness to islanding and target attacks. (a) Example of

local (subsystem) order parameters for the RTS 96 power grid before

and after islanding at t = 0 for global (solid blue) and grass-roots

(dashed red) optimization. (b) Density of local (subsystem) SAFs

after islanding for global (solid blue) and grass-roots (dashed red)

optimization. (c) Illustration of the islanded subsystems.
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(a) (b) (c)

random global grass-roots

FIG. 4. Grass-roots optimization of cardiac pacemakers. For a ge-

ometric network of N = 100 cardiac pacemakers with two subsys-

tems, the time series of non-dimensional voltage for (a) random, (b)

globally optimized, and (c) grass-roots optimized allocations.

properties. This is further demonstrated in Fig. 3(b), where

we plot the density of local, i.e., subsystem-specific, SAFs for

globally (solid blue) and grass-roots (dashed red) optimized

systems obtained from 104 realizations. We indicate the re-

spective means J(ω(s), L(s)) = 0.1427 and 0.0629 of the lo-

cal SAFs with vertical lines.

C. Application to Cardiac Pacemakers

Next we demonstrate that grass-roots optimization may be

effectively used to optimize oscillator systems that do not fit

the specific form of Eq. (1). We study a model of cardiac

pacemaker cells [16] whose states (vi, hi) for i = 1, . . . , N
correspond to non-dimensional voltage and a gating variables

that summarize ionic concentrations and evolve via

v̇i = τ−1
i f(vi, hi) +Kv

∑

j=1

Aij(vj − vi), (11)

ḣi = τ−1
i g(vi, hi) +Kh

∑

j=1

Aij(hj − hi), (12)

where f(v, h) = h(v+0.2)2(1− v)/0.3− v/6 and g(v, h) =
1/150+ (8.333× 10−4)[1− sgn(v− 0.13)]{0.5[1− sgn(v−
0.13)] − h}. The timescales τi represent local heterogene-

ity, scaling the period of each isolated cell, resulting in an ef-

fective natural frequency proportional to τ−1
i . We consider a

geometric network of N = 100 pacemakers with two subsys-

tems, take τ−1
i to be uniformly distributed in [0.4, 1.6], and

use Kv = 0.0072 and Kh = 0.0035 (to indicate a stronger

coupling via the voltage diffusion compared to ionic diffu-

sion). We then implemented random, globally optimized, and

grass-roots optimized allocations, plotting the resulting time

series of voltage in Figs. 4(a)–(c), respectively. Individual

time series vi(t) are plotted lightly, while the mean is plot-

ted with a dark stroke. Despite the stiff, nonlinear dynam-

ics, both grass-roots and global optimization work remarkably

well, yielding a strong, robust series of mean action potentials,

while the random allocation does not.

IV. DISCUSSION

While recent progress has been made in optimizing col-

lective behavior in complex systems, the resulting techniques

and methodologies rely largely on global network informa-

tion [10, 11, 22, 27, 28]. Given direct evidence of paracrine

signaling, i.e., local communication, in biological systems

and the likelihood that global information is unavailable,

the collective, self-organizing processes by which naturally-

occurring systems self-optimize remain an open critical ques-

tion. Grass-roots optimization is a multiscale mechanism for

coordinating and optimizing the local synchronization proper-

ties of a network’s subsystems that provides a plausible mech-

anism for self-optimization in biological and other systems,

such as cardiac pacemakers [3] and genetic oscillators [18].

It can also support the design of decentralized, parallelizable

and scalable algorithms to engineer man-made systems that

are robust to network dismantling. Notably, these very same

features may have provided an evolutionary advantage for bi-

ological systems that crucially depend on synchronization.
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Appendix A: Local Approximation of the SAF for Networks with Three Subsystems

To provide insight into systems with more than two subsystems, we present here the case of three subsystems and derive a

local approximation to the SAF analogous to the one which we presented in the main text. In this case the network adjacency

matrix can be written in block form as

A =





A(1) B(12) B(13)

B(12)T A(2) B(23)

B(13)T B(23)T A(3)



 , (A1)

where A(1), A(2), and A(3) are the adjacency matrices for the three subsystems and B(12), B(13), and B(23) captures the

connections between the respective subsystems. We denote the sizes of the three subsystems by N1, N2, and N3 so that

A(1) ∈ R
N1×N1 , A(2) ∈ R

N2×N2 , A(3) ∈ R
N3×N3 , B(12) ∈ R

N1×N2 , B(13) ∈ R
N1×N3 , and B(23) ∈ R

N2×N3 . We are
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interested then in the perturbed combinatorial Laplacian, given by

L(ǫ) = L0 + ǫ∆L, (A2)

where

L0 =





L(1) 0 0
0 L(2) 0
0 0 L(3)



 , (A3)

∆L = (‖L0‖/‖LB‖)LB , and

LB =





DB(12)+B(13) −B(12) −B(13)

−B(12)T DB(12)T +B(23) −B(23)

−B(13)T −B(23)T DB(13)T +B(23)T



 . (A4)

Once again, the choice ǫ = ‖LB‖/‖L0‖ ≪ 1 recovers the original Laplacian matrix.

As in the two-subsystem case, it is useful to first discuss the spectral properties of L0. Since it is a block-diagonal matrix, its

eigenvalues are given by the union of the eigenvalues of the respective blocks,

{λj}Nj=1 = {µj}N1

j=1

⋃

{νj}N2

j=1

⋃

{ηj}N3

j=1, (A5)

where {µj}N1

j=1 denotes the eigenvalues of L(1), {νj}N2

j=1 denotes the eigenvalues of L(2), and {ηj}N3

j=1 denotes the eigenvalues

of L(3). The associated eigenvectors are given by

{vj}Nj=1 =











u
j

0

0











N1

j=1

⋃











0

x
j

0











N2

j=1

⋃











0

0

y
j











N3

j=1

. (A6)

where {uj}N1

j=1, {xj}N2

j=1, and {yj}N3

j=1 are the associated eigenvectors for L(1), L(2), and L(3), respectively. The most critical

observation to make is that each diagonal block of L0 has a trivial eigenvalue, namely, µ1, ν1, η1 = 0, so the nullspace of L0 is

three-dimensional since it has a triple eigenvalue degeneracy at λ1,2,3 = 0. It is then convenient to rewrite the basis vectors for

this trivial eigenspace using the following eigenvectors:

v
1 =

1√
N





1

1

1



 , v
2 =

√
N1N2

N1 +N2





1/N1

−1/N2

0



 , v
3 =

√
N2N3

N2 +N3





0

1/N2

−1/N3



 , (A7)

where, similar to the two subsystem case, v1 is the constant-valued eigenvector that is associated with the synchronization

manifold and whose eigenvalue λ1 = 0 remains constant as ǫ increases (i.e., v1(ǫ) = v1 regardless of ǫ). On the other hand,

v
2 and v

3 will play important roles in the perturbation analysis since λ2(ǫ) and λ3(ǫ) must take positive values for any ǫ > 0.

We note that the vector
√
N1N3/(N1 +N3)





1/N1

0

−1
T/N3



 may also be used in place of either v2 or v3, but as it is just a linear

combination of the two vectors already chosen, it yields the same results given below.

Given the initial spectral properties of L0, we consider the following perturbative expansions. Specifically, for the eigenvalues

of L(ǫ) we have

λj(ǫ) = ǫδλ
(1)
j + ǫ2δλ

(2)
j +O(ǫ3), (A8)

for j = 2, 3 and

λj(ǫ) = λj + ǫδλ
(1)
j + ǫ2δλ

(2)
j +O(ǫ3), (A9)

for j = 4, . . . , N . We again assume that the eigenvectors of L(ǫ) are continuously differentiable to approximate

v
j(ǫ) = v

j + ǫδvj(1) + ǫ2δvj(2) +O(ǫ3). (A10)
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for j = 2, . . . , N .

Our primary interest is the SAF of the perturbed network, and as we did in the two subsystem case with the term associated

with j = 2, here we will treat the terms associated with j = 2 and 3 separately:

J(ω, L(ǫ)) =
1

N

( 〈ω,v2(ǫ)〉
λ2(ǫ)

)2

+
1

N

( 〈ω,v3(ǫ)〉
λ3(ǫ)

)2

+
1

N

N
∑

j=4

( 〈ω,vj(ǫ)〉
λj(ǫ)

)2

. (A11)

We now consider the contribution of these different terms. Beginning with the terms associated with j = 2 and 3, insert Eqs. (A8)

and (A10) into the relevant terms in Eq. (A11), expand, and collect similar terms to obtain

1

N

( 〈ω,vj(ǫ)〉
λj(ǫ)

)2

= N−1ǫ−2

(

〈ω,vj〉2

(δλ
(1)
j )2

)

+N−1ǫ−1

(

2〈ω,vj〉〈ω, δvj(1)〉
(δλ

(1)
j )2

−
2δλ

(2)
j 〈ω,vj〉2

(δλ
(1)
j )3

)

+N−1

(

〈ω, δvj(1)〉2 + 2〈ω,vj〉〈ω, δvj(2)〉
(δλ

(1)
j )2

−
4δλ

(2)
j 〈ω,vj〉〈ω, δvj(1)〉

(δλ
(1)
j )3

+
(3(δλ

(2)
j )2 − 2δλ

(1)
j δλ

(3)
j )〈ω,vj〉2

(δλ
(1)
j )4

)

+O(N−1ǫ). (A12)

On the other hand, for j = 4, . . . , N , we insert Eqs. (A9) and (A10) into the relevant terms in Eq. (A11), expand, and collect

similar terms to obtain

1

N

( 〈ω,vj(ǫ)〉
λj(ǫ)

)2

= N−1

( 〈ω,vj〉2
(λj)2

)

+N−1ǫ

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)

+N−1ǫ2

(

〈ω, δvj(1)〉2 + 2〈ω,vj〉〈ω, δvj(2)〉
(λj)2

−
4δλ

(1)
j 〈ω,vj〉〈ω, δvj(1)〉

(λj)3

+
(3(δλ

(1)
j )2 − 2λjδλ

(2)
j )〈ω,vj〉2

(λj)4

)

+O(N−1ǫ3). (A13)

Inserting Eqs. (A12) and (A13) into Eq. (A11), we then obtain

J(ω, L(ǫ)) = N−1ǫ−2

(

〈ω,v2〉2

(δλ
(1)
2 )2

+
〈ω,v3〉2

(δλ
(1)
3 )2

)

+N−1ǫ−1

(

2〈ω,v2〉〈ω, δv2(1)〉
(δλ

(1)
2 )2

− 2δλ
(2)
2 〈ω,v2〉2

(δλ
(1)
2 )3

+
2〈ω,v3〉〈ω, δv3(1)〉

(δλ
(1)
3 )2

− 2δλ
(2)
3 〈ω,v3〉2

(δλ
(1)
3 )3

)

+N−1

(

〈ω, δv2(1)〉2 + 2〈ω,v2〉〈ω, δv2(2)〉
(δλ

(1)
2 )2

− 4δλ
(2)
2 〈ω,v2〉〈ω, δv2(1)〉

(δλ
(1)
2 )3

+
(3(δλ

(2)
2 )2 − 2δλ

(1)
2 δλ

(3)
2 )〈ω,v2〉2

(δλ
(1)
2 )4

+
〈ω, δv3(1)〉2 + 2〈ω,v3〉〈ω, δv3(2)〉

(δλ
(1)
3 )2

− 4δλ
(2)
3 〈ω,v3〉〈ω, δv3(1)〉

(δλ
(1)
3 )3

+
(3(δλ

(2)
3 )2 − 2δλ

(1)
3 δλ

(3)
3 )〈ω,v3〉2

(δλ
(1)
3 )4

)

+ η1J(ω
1, L1) + η2J(ω

2, L2) + η3J(ω
2, L3) + ǫ



N−1
N
∑

j=4

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)



+O(N−1ǫ, ǫ2),

(A14)

where we have used that, for the three subsystem case, we have

1

N

N
∑

j=4

〈ω,vj〉2
λ2
j

= η1J(ω
1, L1) + η2J(ω

2, L2) + η3J(ω
3, L3). (A15)
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Lastly, to complete the analysis we consider not only the contributions of 〈ω,v2〉, but also 〈ω,v3〉. In particular, we note that

〈ω,v2〉 =
√
η1η2

η12
(〈ω1〉 − 〈ω2〉), (A16)

and

〈ω,v3〉 =
√
η2η3

η23
(〈ω2〉 − 〈ω3〉), (A17)

where ηij = (Ni +Nj)/N . Thus, if we may engineer the network such that 〈ω1〉 = 〈ω2〉 = 〈ω3〉, then all terms in Eq. (A14)

with 〈ω,v2〉 or 〈ω,v3〉 vanish, yielding

J(ω, L(ǫ)) = η1J(ω
1, L1) + η2J(ω

2, L2) + η3J(ω
2, L3) +N−1

(

〈ω, δv2(1)〉2

(δλ
(1)
2 )2

+
〈ω, δv3(1)〉2

(δλ
(1)
3 )2

)

+ ǫ



N−1
N
∑

j=4

(

2〈ω,vj〉〈ω, δvj(1)〉
(λj)2

−
2δλ

(1)
j 〈ω,vj〉2
(λj)3

)



+O(N−1ǫ, ǫ2), (A18)

where the leading-order behavior of the perturbed SAF is simply given by a weighted average of the subsystem-specific SAFs

and the weights come from their relative sizes, which is our desired result and the analogous version of Eq. (7) in the main text.

Appendix B: Local Approximation of the SAF for Networks with an Arbitrary Number of Subsystems

Before concluding, we emphasize that the three subsystem case above informs the generalization of the local approximation

to an arbitrary number of subsystems. In particular, for C subsystems, the unperturbed Laplacian L0 will contain C diagonal

blocks, each with a trivial eigenvalue. Thus, a basis for the trivial eigenspace must be chosen so that, in addition to v
1 ∝ 1, there

are C − 1 eigenvectors whose eigenvalues will becomes positive for positive ǫ. This can be done by choosing, for instance,

v
2 =













1/N1

−1/N2

0

...

0













, v
3 =













0

1/N2

−1/N3

...

0













, · · · , v
j =

















...

1/Nj−1

−1/Nj

...

0

















, · · · , v
C =













0

...

0

1/NC−1

−1/NC













. (B1)

Then, after expansion, setting 〈ω1〉 = · · · = 〈ωC〉 causes the two lowest order contributions to J(ω, L(ǫ)) originating from the

terms associated with j = 2, . . . , C to vanish, yielding, to leading order,

J(ω, L(ǫ)) ≈ η1J(ω
1, L(1)) + · · ·+ ηCJ(ω

C , L(C)). (B2)
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