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Despite the success achieved by the analysis of supervised learning algorithms in the framework
of statistical mechanics, reinforcement learning has remained largely untouched by physicists. Here
we move towards closing the gap by analyzing the dynamics of the policy gradient algorithm.
For a convex problem, namely the k-armed bandit, we show that the learning dynamics obeys a
drift-diffusion motion described by a Langevin equation, which coefficients can be tuned by the
learning rate. We explore the striking similarity between our Langevin equation and the Kimura
equation, describing genotypes evolution. Furthermore, we propose a mapping between a non-
convex reinforcement learning setting describing multiple joints of a robotic arm, and a disordered
system, namely a p-spin glass. This novel mapping enables us to show how the learning rate acts
as an effective temperature and thus is capable of smoothing rough landscapes, corroborating what
is displayed by the drift-diffusive description and paving the way for physics-inspired algorithmic
optimization based on annealing procedures in disordered systems.

I. INTRODUCTION

Statistical mechanics is a powerful tool for understand-
ing and constructing optimization algorithms. On one
hand, disordered systems, such as spin glasses or poly-
mers, prompted the development of new algorithms (sim-
ulated annealing [1], cluster algorithms [2], hysteric op-
timization [3]). On the other hand, existing optimiza-
tion algorithms have often been fruitfully analyzed in the
statistical physics’ framework, yielding knowledge about
their behavior, phase transitions and possible improve-
ment [4–8].

In recent years, the vast class of machine learning al-
gorithms [9] has enjoyed a great deal of attention. Neu-
ral networks [10, 11] are nowadays used to predict pro-
tein folding [12], search for exotic particles in high-energy
colliders [13], predict phase transitions in ferromagnetic
models [14] as well as properties of liquid crystals with
exceptional accuracy [15, 16], and in many other fields
[17]. At the same time, reinforcement learning [18, 19]
has proven to be a valuable tool for finding optimal jet
grooming strategies [20], in the pursue of the conformal
bootstrap program [21], or in the engineering of smart ac-
tive matter [22]. Nonetheless, numerous questions about
the algorithms’ functioning remain unanswered [23, 24].
Great progress has been made in the study of neural net-
works, the analogy between their highly non-convex loss
function landscapes and the free energy landscape of dis-
ordered systems has been extensively studied [25–27]. It
has been shown how the stochastic gradient descent algo-
rithm [28, 29] is prone to lead the network’s weights to-
wards a needed suboptimal, robust, and well-generalizing
region [30, 31]. However, all the results above are ap-
plicable to supervised learning problems, which can be
mapped to disordered systems by interpreting the loss
function as a Hamiltonian.
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Despite their late successes, reinforcement learning al-
gorithms have not yet received such analysis. This is
perhaps due to the lack of a clear mapping between RL
problems and disordered systems. We try to overcome
this gap by studying a subset of reinforcement learning
algorithms named policy gradients (PG) [32, 33]. PG are
the most universal training methods for reward-driven
learning, they can be applied without additional knowl-
edge of the agent’s surrounding. Their main disadvantage
is their tendency to converge to local maxima, thus learn-
ing a peculiar behavior, heavily dependent on the initial
parameters. Nonetheless, PG-based algorithms were ap-
plied with a tremendous success in areas such as robotics
[34], natural language processing [35], and games [36].
A proper understanding of the reasons of this success
is still an open question. We obtain a description for
the learning process in a convex landscape in terms of
drift-diffusion dynamics. By mapping a non-convex RL
setting to a spin glass at a finite temperature, we are able
to explain the effect of hyperparameters on the learning
success thanks to a mean-field analysis. As it turns out,
the learning rate is coupled to the temperature and, thus,
its variation allows one to perform an annealing.

II. THE REINFORCEMENT LEARNING
FRAMEWORK

The typical reinforcement learning setting, the so-
called Markov decision process [37], consists of an agent
acting in an environment with the purpose of maximiz-
ing a given utility function. The agent bases its decisions
on the environmental state s ∈ S, choosing an action
a ∈ A, according to its policy π(a|s). Subsequently, it
receives a feedback from the environment in terms of a
reward R ∈ R and the state of the environment changes
to a new one s→ s′. The reward is generated from a dis-
tribution conditioned to the state and the chosen action
q(r|s, a) and the transition between states is governed by
the probability density p(s′|s, a). From this new state, a
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new action can be taken, generating again a new reward
and a new state-transition. The sequence of rewards ob-
tained through this iteration is the agent’s maximiza-
tion goal. The central evaluated quantity is the return:
G =

∑∞
t=0Rtγ

t, i.e. the sum of the obtained reward se-
quence discounted by a factor γ, 0 ≤ γ < 1, which tunes
the importance of memory. Note that we used capital let-
ters for R and G because they are, in general, stochastic
variables. The utility function of the agent is the average
return: Qπ(s, a) = Eπ,p,q[G|S0 = s,A0 = a]. Denot-
ing the distribution of initial states ρ0(s), the expected
return of the policy π reads:

Jπ =
∑
s

ρ0(s)
∑
a

π(a|s)Qπ(s, a). (1)

Reinforcement learning aims to efficiently find a policy
π that maximizes Jπ. In general, the agent does not know
the rules that govern the environment (e.g. p and q), and
it must build its strategy based on the information that
it acquires while learning.

Here we analyze policy gradient algorithm [18]. It ex-
ploits the well-known idea of gradient ascent to find the
maximum of the return function (1). In this case the
policy π(a|s,θ) is parametrized with a d-dimensional set
of numbers θ = {θ1, . . . , θd}. The gradient ascent con-
sists in updating these parameters in the direction of
the steepest ascent of the average return (1). At state
s and for action a it can be proven to be ∂θJ(θ) =
Eπ,q,p [Qπ(s, a)∂θ log π(a|s,θ)]. However, since the agent
does not know how to compute this average (it does not
know p and q, as well as the utility function), it has to
rely on an estimate of this gradient. One solution is to
use the quantity (G(s, a) − h(s))∂θ log π(a|s,θ), where
G(s, a) is an estimate of the quality function, and h(s)
is an arbitrary action-independent function called base-
line. At each time step t, the new parameters θ(t+1)

will be derived from the current ones θ(t) by adding the
gradient, multiplied by a coefficient α, called learning
rate. To render the procedure invariant from the policy
parametrization, one can fix the Kullback-Leibler diver-
gence D(πt+1||πt) at all steps, therefore obtaining the
so-called natural policy gradient [38, 39]:

θ(t+1) = θ(t) + α F−1(t)

(
G(s(t), a(t))− h(s(t))

)
× ∂θ log π(a(t)|s(t),θ(t)),

(2)

where

(F )ij = Eπ
[
∂θi log π(a|s,θ)∂θj log π(a|s,θ)

]
. (3)

The matrix F is the Fisher information metric of the pol-
icy for the parameters θ [40]. There are several ways to
choose G(s, a), defining different types of policy gradient
algorithms. One straightforward possibility is to com-
pute the future return by sampling the rewards for the
next step of the process at fixed policy. This procedure
is called reinforce policy gradient [32].

III. DIFFUSION APPROXIMATION FOR
ONE-DIMENSIONAL K-ARMED BANDIT

We will begin our analysis by studying a case in which
a single agent can use k actions in an environment com-
posed of only one state. Such a problem is known in
literature as k-armed bandit [41] since it is analogous to
a slot machine with k arms, for which the player must
infer which arms give better rewards, whilst trying to
maximize his win. We will start with a scenario with
only two possible actions: A = {1, 2}. Since the gradient
is not affected by the particular parametrization choice,
we will use the convenient softmax function:

π(1|θ) = x(θ) =
1

1 + e−θ
, π(2|θ) = 1− x(θ). (4)

At every step t, the agent will choose actions 1 and 2 with
probabilities x(t) ≡ x(θ(t)) and 1 − x(t), respectively.
This will yield the total average return (1) for γ = 0:

J(θ(t)) = x(t)R1 + (1− x(t))R2, (5)

where Ra represent the stochastic reward extracted from
its corresponding distribution Ra ∼ qa = N (ra, σa). The
bandit setting allows us to choose a zero discount factor
γ = 0 without losing generality since the best policy is
independent of it and we will keep this through the rest
of the paper.

Our aim is to obtain an effective stochastic description
of the temporal evolution of the learning process, i.e. of
the trajectory of the policy x(t). In supervised learning,
the effective noise of stochastic gradient descent is often
modeled by heavy-tailed distributions [42, 43]. In our
case, since the stochasticity is induced by uncorrelated
Gaussian fluctuations in the rewards, we can describe
the process in terms of a Langevin equation:

dx

dt
= u(x) +

√
2D(x) · ηt, (6)

where ηt is white Gaussian noise with zero mean and
correlation Et[ητητ ′ ] = δ(τ −τ ′). To this end, we expand
the policy for small α by Taylor series:

dx(t) =
dx

dθ

∣∣∣∣
θ=θ(t)

dθ(t) +
1

2

d2x

dθ2

∣∣∣∣
θ=θ(t)

dθ2(t) + o(α2). (7)

Substituting the parameter update (2) in this expression,
and computing the derivatives of (4), we obtain the pol-
icy increments. The drift and the diffusion terms are
given by the average and the variance of these increments,
u(x) = Et[ẋ(t)|x(t)], and D(x) = Vart[ẋ(t)|x(t)]/2. We
refer the reader to the Supplemental Material for a thor-
ough derivation of these terms, while reporting here only
their final form obtained by expanding up to the second
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order in α:

u(x) = αx(1− x)(r1 − r2)︸ ︷︷ ︸
Selection

+
α2

2
(1− 2x) m︸ ︷︷ ︸
Mutations

,

D(x) =
α2

2
x(1− x)d1 +

α4

4
(1− 2x)2d2︸ ︷︷ ︸

Random genetic drift

.

(8)

The three coefficients m, d1 and d2 are positive and de-
pend on the reward variances as well as the policy, the
average rewards, and the baseline:

m =(1− x)
(
σ2
R1 + l21

)
+ x

(
σ2
R2 + l22

)
,

d1 =(1− x)σ2
R1 + xσ2

R2 + [(1− x)l1 + xl2]
2
,

d2 =(1− x)2
(3− x)c21 − 2l41

x
+ x2

(2 + x)c22 − 2l42
1− x

,

(9)

where ca = σ2
a + l2a and la = ra − h.

It is interesting to highlight the similarity with an
evolving population of competing species/genotypes, de-
scribed by the Kimura equation [44, 45]:

uK(x) = x(1− x)(f1 − f2)︸ ︷︷ ︸
Selection

−µ12x+ µ21(1− x)︸ ︷︷ ︸
Mutations

,

DK(x) =
1

2N
x(1− x)︸ ︷︷ ︸

Random genetic drift

,
(10)

where fi is the fitness of the genotype i, µij is the mu-
tation rate from genotype i to j, and N is the popula-
tion size. The mapping can be done by identifying geno-
types with the actions and the policy of each action with
the genotype frequency. In contrast to our expansion,
the Kimura equation is obtained by manually adding the
evolutionary forces: selection, mutation and random ge-
netic drift. Our derivation can perhaps be considered
more natural and clearly shows the symmetry between
the deterministic and stochastic forces, adding a term
proportional to (1− 2x) in the diffusion coefficient.

It is easy now to grasp how this dynamics evolves and
how it is affected by the algorithm’s parameters. Figure
1 shows the overall gradient dynamics, as well as the in-
dividual effects of the drift coefficients on it. The term
corresponding to natural selection attracts the policy to-
wards the best action, while the mutation term pushes it
away from pure strategies, i.e. x ∼ 0 and x ∼ 1. The in-
trinsic stochasticity of the algorithm appears in the diffu-
sion coefficient (8): small learning rates confine stochas-
ticity to the mixed strategy (x ∼ 1/2), while higher rates
will generate higher fluctuations in the vicinity of pure
strategies, as shown in Appendix A.

These insights can be used to improve the dynamics’
convergence by treating the learning rate as a dynamical
variable, which can be tuned according to a time sched-
ule [46]. The approximation in terms of an Itô stochastic
equation allows us to use Itô’s lemma to derive the opti-
mal scheduling of the learning rate. This turns out to be
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FIG. 1. Top: 102 lightly shaded trajectories of the ac-
tion probability x generated by a natural policy gradient
for the 2-armed bandit, along with their mean, compared to
the Langevin dynamics (8). The rewards are distributed as
N1(2)(r = ±1, σ = 1), while the learning rate is α = 0.01,
and the initial policy is close to the worst one x0 = 0.975.
Bottom: The contributions of mutation and selection on the
average Langevin dynamics near the boundaries, compared
to the natural policy gradient. Rewards are distributed as
N1(2)(r = ±1, σ = 9), α = 0.01, x0 = 0.5.

α(t) ∝ 1/
√
t, which is consistent with the results for the

so-called Exp3 algorithm [41], all details of the derivation
can be found in Appendix B.

All the obtained results can be easily generalized for
the case in which the agent has k possible actions and
their probabilities follow a k-dimensional drift-diffusion
motion:

dπa = ua(π)dt+

N∑
ab

σab(π)dWb , (11)

expressed here in the Itô form. The resulting coefficients
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for this motion are

ua =απa

(
ra −

∑
b

rbπb

)
+

α2

2

(
σ2
a(1− πa)(1− 2πa)−

∑
b 6=a

σ2
b (1− 2πb)πa

)
,

Dab =
α2

8
πaπb

(
δab

σ2
a

πa
+
∑
c 6=a,b

πcσ
2
c

− (1− πa)σ2
a − (1− πb)σ2

b

)
.

(12)
They drive the trajectory towards the best action by a
so-called replicator dynamics [47] proportional to α, and
away from pure strategies by the mutation term propor-
tional to α2. In addition, the diffusion term scatters the
trajectory proportionally to the rewards’ variances. A
thorough derivation of these results is reported in the
Supplemental Material.

IV. P-DIMENSIONAL K-ARMED BANDIT

The k-armed bandit can be viewed as a special case of
a more general model in which the return is expressed as

J =

K∑
i1,i2,...,ip=1

Ri1i2...ipπi1 · πi2 · . . . · πip , (13)

where
∑K
i=1 πi = 1, πi ≥ 0 ∀i ∈ {i1, . . . , ip}. Each prob-

ability distribution πi is defined over a distinct set of
K actions. All p such sets are independent. This picture
can be viewed simply as a factorization of the overall dis-
tribution π =

∏
i πi. It arises naturally when one deals

with an agent performing a set of actions at each time
step and the task is to optimize the resulting overall be-
havior. For instance, robotics deals with a multitude
of artificial joints flexed simultaneously [34, 48], produc-
ing a highly non-convex cost landscape, as portrayed in
Fig. 2. Furthermore, this model describes p interacting
agents, each performing independently their set of K ac-
tions [49]. The reward coefficients of each agent Ri1...ip
could be different in this case, but for equal constant
coefficients, this is a generalization of the random repli-
cant model [50–52]. Another useful interpretation arises
when an agent is performing a sequence of actions in a
state-changing environment so that for each state st, πt
is the policy over the set of its K actions. The ordered
set (π1, π2, . . . , πp) then corresponds to the sequence of
policies undertaken.

What is remarkable about this model is that now we
have a clear way to map a reinforcement learning prob-
lem to a disordered system. This can be achieved by
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FIG. 2. An example of the return (energy) landscape of a
robotic hand bending two fingers. Each finger can bend to
11 different angles, the return J is a function of the overall
configuration.

taking the instantaneous rewards to be normally dis-
tributed around their mean values N (Ri1i2...ip , σi1i2...ip),
and considering the system described by the Hamiltonian
H ≡ −J , obtained substituting mean rewards in (13).
Its temperature T (σ) is defined by the specific learning
algorithm, and for a policy gradient is proportional to
the diffusion coefficient of the Langevin dynamics (6).
A complete analogy with the physics of a magnet is de-
scribed in the Supplemental Material.

PG dynamics is described by a system of p multidimen-
sional Langevin equations, navigating through the rough
landscape of (13). To evaluate the effect of the learning
rate on this motion, we will shift our perspective from
the probabilities π to the parameters θ. The latter form
a basis defined by

dθ ∝ α∇ lnπ = ∇ lnφ, φ = πα. (14)

In other words, we move from a picture in which the
learning rate is affecting the parameters’ change to the
one where the learning rate is affecting the slope of the
probability manifold. We can define the following Hamil-
tonian for this new landscape,

H = −
K∑

i1,i2,...,ip

Ri1i2...ipφ
1/α
i1

φ
1/α
i2

. . . φ
1/α
ip

. (15)

We take K to be large and mean rewards to be self-
averaging, i.e. distributed as R ∼ N (0, σ) with σ2 ∼
1/K. This allows us to conveniently exploit methods
of mean-field theory to analyze the free energy averaged
over all possible rewards 〈F 〉 = −T 〈lnZ〉, where Z is the
partition function [53]. The mean partition function will
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look similar to the one of the spherical p-spin”, ”” [54, 55]
with planar rather than spherical constraints:

〈Z〉 =

∫ ∞
0

K∏
i=1

dpπi δ
p(
∑
i

πi −K)

×
∫ +∞

−∞

∏
i1,...,ip

dRi1...ip

× exp
[
−R2

i1...ipK
p + βRi1...ipπi1 . . . πip

]
,

(16)

where β = 1/T . The free energy expression can
be rendered tractable by the replica trick 〈lnZ〉 =
limn→0

1
n ln〈Zn〉 in order to compute its mean value [56].

〈Zn〉 =

∫
Dπ exp

 β2

4Kp−1

n∑
a,b

(
K∑
i

πai π
b
i

)p, (17)

where
∫
Dπ is a shorthand for the mea-

sure
∏n
a=1

∏K
i=1 dπ

a
i δ(
∑
j π

a
j − K). Introduc-

ing Qab =
∑
i π

a
i π

b
i by inserting the identity

1 =
∫
δ(Qab −

∑
i π

a
i π

b
i ) dQab, and changing to Fourier

representations for all delta functions, we obtain

Zn =

∫ n∏
a,b

K∏
i

dQabdΛabdξ
adπai ·

· exp

[
β2K

4

∑
ab

Qpab +K
∑
ab

QabΛab

−
∑
i

∑
ab

Λabπ
a
i π

b
i −

∑
ia

ξaπai +K
∑
a

ξa

]
.

(18)

For large K →∞, the integral is dominated by the saddle
point of the exponent’s argument, thus the free energy
can be recovered by solving a system of equations.

In the neighborhood of a pure strategy (where πa ≈
1, πb ≈ 0 ∀ b 6= a), the partition function for the Hamil-
tonian (15) can be recovered from Eq. (17) by substitut-
ing p → p/α. This will affect the saddle point equation
containing the temperature

0 =
p

4T 2α
Q

p
α−1
ab + Λab (19)

in a fundamental way: It will get modified by T →
√
αT .

Thus,
√
α acts as an effective temperature that modifies

the shape of the free energy landscape.

V. DISCUSSION

Our analysis sheds light on the ability of policy gradi-
ent to overcome obstacles in complex reward landscapes.
It appears that the dynamics of policies under PG follows
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FIG. 3. Two average trajectories of the Natural Policy
Gradient in a zero-sum game, corresponding to two differ-
ent learning rates. Each point on the trajectories repre-
sents a pair (π1(t), π2(t)). The average rewards are R1 =
((1,−1), (−1, 1)), R2 = ((−1, 1), (1,−1)). The variance for
all the rewards is equal to σ = 1. The starting point is
(0.75, 0.75), while the Nash equilibrium is at (1/2, 1/2).

a drift-diffusion motion with parameters strongly influ-
enced by the learning rate. Higher values of the latter
allow the policy to scatter and overcome obstacles. This
picture is corroborated by our mean-field analysis of the
free energy landscape for a complex reward scenario, with
multiple local minima. The learning rate appears to act
as an effective temperature smoothing the free energy
landscape. It follows that scheduling of this parameter is
essential to ensure the convergence to high value maxima.
Furthermore, it follows that this scheduling corresponds
to the physical process of annealing. This paves the road
to a plethora of physics-inspired optimizations (as pro-
posed, for instance, in [3, 57, 58]) to PG algorithms.

The p-dimensional k-armed bandit introduced here
serves as a handy model to unify the description of par-
titioned policies, multi-state environments, and multi-
agent interactions, by mapping them to a disordered sys-
tem at finite temperature. This can be particularly well
illustrated in the case of p = 2, which can be interpreted
as a Matrix Game [59–63] between two players, each hav-
ing its own reward matrix R1(2). It has been shown
[64] that replicator dynamics with cooperation pressure
u does not converge to all Nash equilibria below a criti-
cal value of u, unless we deal with a zero-sum game, i.e.
R1 = −RT2 . On the other hand, the cooperation pressure
acts in the replicator equation as the mutation term acts
in the Langevin approximation of PG. In the case of a
zero-sum game, the replicator trajectories can only fac-
torize into a number of converging spirals as shown in the
left side of Fig. 3, since Nash equilibria for pure strate-
gies are suppressed for K → ∞. If, instead, R1 6= −RT2 ,
dynamics can converge to pure strategies, but such equi-
libria have been shown to give birth to a spin glass phase
for low values of u [64].
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Appendix A: The effect of the second-order
expansion of the diffusion coefficient

Fig. 4 shows the comparison between average trajec-
tories of the action probability x for the 2-armed bandit
updated according to the Langevin dynamics.
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FIG. 4. Comparison between average trajectories of the ac-
tion probability x for the 2-armed bandit updated according
to the Langevin dynamics. The blue curve incorporates only
the diffusion coefficient obtained by first-order expansion in
α. The red one includes also the second-order α.

Appendix B: Regret bound and optimal learning
rate scheduling

The regret of the Natural Policy Gradient is the differ-
ence between the reward obtained by a policy up to time
T and the best possible reward one could obtain in the
same time. In terms of the k-armed bandit problem it is
defined as

RT = max
a∈{1,...,k}

T∑
t=1

Rta −
T∑
t=1

k∑
b=1

〈
πtb
〉
Rtb. (B1)

One can decompose this expression by introducing the
instantaneous regret for an arm

ρta = Rta −
k∑
b=1

πtbR
t
b. (B2)

The overall regret for that specific arm will then sim-

ply be RT,a =
∑T
t=1 〈ρta〉, and therefore the total regret

of the policy is the maximum of this quantity over all
arms RT = maxa∈{1,...,k}RT,a. We will consider the re-
wards to be independent stochastic variables, the only
constraint being that they are bounded Rta ∈ [0, RM ].
Nonetheless, the result holds true also for correlated out-
comes, non-stationary environments, and, the unluckiest
configuration that one can imagine.

Itô’s lemma states that if Xt is an Itô drift-diffusion
process satisfying the diffusion equation

dXt = utdt+
√

2DtdWt,

then any twice-differentiable function f(X) can be ex-
panded to the first order in time following

df =

(
ut
∂f

∂x
+Dt

∂2f

∂x2

)
dt+

√
2Dt

∂f

∂x
dWt + o

(
dt2
)
.

We will apply it to the average log-policy 〈log πa〉, ex-
panding it to the form

d

dt

〈
log πta

〉
=

〈
uta
πta

〉
+

〈
Dt
a,a

(πta)2

〉
=

αt〈ρta〉+
α2
t

2

(
〈(ρta)2〉 −

∑
b

(Rtb)
2(1− 〈πtb〉)

)
(B3)

and by making use of the fact that
〈
(ρta)2

〉
≥ 0 and the

rewards are bounded Rtb ≤ RM ∀b, t, we can write the
inequality〈

ρta
〉
≤ 1

αt

d

dt

〈
log πta

〉
+
αt
2

(k − 1)R2
M . (B4)

We can now bound the single-arm regret using the latter
equation:

Ra,T '
∫ T

0

dt
〈
ρta
〉
≤

(〈
log πTa

〉
αT

−
〈
log π0

a

〉
α0

)
+

R2
M

2
(k − 1)

∫ T

0

dtαt.

(B5)

Where we have discarded negative terms. For any final
probability distribution πTa , its logarithm will be nega-
tive and can be discarded leaving the bound unaltered.
If we chose a uniform initial distribution π0

a = 1/k ∀a
and assume that αT ≤ α0, we can rewrite the inequality
substituting the latter:

Ra,T ≤
log k

αT
+
R2
M

2
(k − 1)

∫ T

0

dtαt. (B6)

As we can see, the choice of scheduling function will in-
fluence the regret.

A convenient functional choice is αt = A/
√
t. In this

way, both contributions are equally weighted and the ex-
pression can be rewritten as

Ra,T ≤
(

log k

A
+R2

M (k − 1)A

)√
T . (B7)
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The function α = A/
√
T can be refined specifying the co-

efficient A so that the bound is minimized. It is easy to
see that such value is A =

√
log k/(k − 1)/RM . Substi-

tuting this term, one finds the bound for the regret and
the best scheduling of the learning rate for minimizing
this bound:

RT ≤ 2RM
√

(k − 1) log k T αt =
1

RM
,

√
log k

(k − 1) t
.

(B8)
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