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In classical statistics, the bias-variance trade-off describes how varying a model’s complexity (e.g.,
number of fit parameters) affects its ability to make accurate predictions. According to this trade-
off, optimal performance is achieved when a model is expressive enough to capture trends in the
data, yet not so complex that it overfits idiosyncratic features of the training data. Recently, it has
become clear that this classic understanding of the bias-variance must be fundamentally revisited
in light of the incredible predictive performance of “overparameterized models” – models that avoid
overfitting even when the number of fit parameters is large enough to perfectly fit the training data.
Here, we present results for one of the simplest examples of an overparameterized model: regression
with random linear features (i.e. a two-layer neural network with a linear activation function). Using
the zero-temperature cavity method, we derive analytic expressions for the training error, test error,
bias, and variance. We show that the linear random features model exhibits three phase transitions:
two different transitions to an interpolation regime where the training error is zero, along with
an additional transition between regimes with large bias and minimal bias. Using random matrix
theory, we show how each transition arises due to small nonzero eigenvalues in the Hessian matrix.
Finally, we compare and contrast the phase diagram of the random linear features model to the
random nonlinear features model and ordinary regression, highlighting the new phase transitions
that result from the use of linear basis functions.

I. INTRODUCTION

One of the core concepts in modern statistics and su-
pervised learning is the bias-variance decomposition. It
states that the test error, the predictive performance of
the model on new data, can be decomposed into three
parts: bias, variance, and noise [1–3]. The bias captures
errors due to underfitting, resulting from the inability
of a statistical model to sufficiently express statistical
relationships present in the data distribution. The vari-
ance, on the other hand, characterizes errors that result
from “over-fitting” unrepresentative aspects of the train-
ing data set that do not generalize (e.g., label noise). Fi-
nally, the noise describes irreducible errors in a test data
set due to randomness in the data generating process.

In classical statistics, the bias-variance trade-off sug-
gests that optimal predictive performance is achieved
by utilizing statistical models with intermediate model
complexities, balancing errors due to bias and variance.
While increasing a model’s complexity (e.g., increasing
the number of fit parameters) reduces bias, it comes at
the price of increasing variance. One of the most inter-
esting and surprising empirical results to emerge from
deep learning over the last five years is the realization
that this basic intuition is fundamentally incomplete; it
does not apply to “overparameterized” models where the
number of fit parameters is large enough to perfectly fit
the training data (i.e. achieve zero error on the training
data set) [4].

While the classic bias-variance trade-off still holds in
the underparameterized regime (i.e., for models that have
too few fit parameters to achieve zero training error),
once a model’s complexity is increased past the interpo-
lation threshold – the point at which the training error

goes to zero – the test error once again decreases. The
resulting combination of a “U-shaped” test error in the
underparameterized regime and the subsequent decrease
in test error in the overparameterized regime is now com-
monly referred to as a “double-descent” curve [5, 6]. This
double-descent behavior seems to be a generic property
of all overparameterized supervised learning models and
for this reason, has become a major area of research.

An important open question in the field is to under-
stand the double-descent phenomena in terms of classi-
cal ideas of bias and variance. One fruitful approach has
been to analyze analytically tractable models that ex-
hibit the double-descent phenomena [7–35]. Among, the
most popular of these models are linear regression (ridge
regression without basis functions) and the random non-
linear features model (a two-layer neural network with
an arbitrary nonlinear activation function where the top
layer is trained and parameters for the intermediate layer
are chosen to be random but fixed) [35]. Here, we build
upon this previous work by examining a random features
model for the special case of a linear activation func-
tion (i.e., the random linear features model). Using the
zero temperature cavity method, we derive analytic ex-
pressions for the bias-variance decomposition and relate
these results to the eigenvalue spectrum of the Hessian
matrix.

The training and test errors of the random linear fea-
tures have been computed analytically [8, 9, 15, 28, 34],
with a subset of these studies attempting to carrying
out bias-variance decompositions [9, 28, 34]. However,
these studies use non-standard definitions of bias and
variance that deviate from the traditional textbook defi-
nitions [1, 2]. This choice of definition can lead to quali-
tatively different and difficult to reconcile results. For ex-
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ample, the authors of Ref. 9 find that the bias diverges at
the interpolation threshold, while the authors of Ref. 28
find no such divergence (see Ref. 35 for an in-depth dis-
cussion). For this reason, here we utilize the standard
definitions and carry out the bias-variance decomposi-
tion in a manner consistent with traditional definitions
of these quantities in the underparameterized regime,
allowing us to identify which properties stem from the
model architecture versus random sampling of the data.
In addition, we use the zero-temperature cavity method
to provide an alternative derivation of the spectrum of
the Hessian matrix of the random linear features model
(i.e., the spectrum of a Wishart product matrix calcu-
lated previously in Ref. 36), allowing us to directly relate
the eigenvalues of the Hessian to the double-descent phe-
nomenon.

Summary of Major Results

We briefly summarize our major results:

• We derive analytic expressions for the test (gener-
alization) error, training error, bias, and variance
for the random linear features model with a non-
linear data distribution using the zero-temperature
cavity method.

• We find that the behavior of this model is charac-
terized by three distinct regimes: (i) an underpa-
rameterized regime with finite training error and
large bias, (ii) a second underparameterized regime
with minimal, constant bias, and (iii) an over-
parameterized, or interpolation, regime with zero
training error.

• We find that the three regimes are separated by
three phase transitions with two transitions to the
interpolation regime, each characterized by a diver-
gence in the test error, and one transition between
the large bias and minimal bias underparameter-
ized regimes. Importantly, we find that the vari-
ance, but not the bias, diverges at the phase tran-
sition to the interpolation regime.

• We explain how each phase transition arises as a
result of small nonzero eigenvalues in the Hessian
matrix and demonstrate how this phenomenon is
captured by susceptibilities.

• We explain how the presence of linear features leads
to an additional interpolation phase transition not
present in an analogous model with nonlinear acti-
vation functions. We use random matrix theory to
argue that the underlying reason for this difference
is that nonlinear basis functions implicitly regular-
ize small eigenvalues in the design matrix.

II. THEORETICAL SETUP

In this work, we focus on the supervised learning task
of using relationships learned from a training data set,
consisting of labels and associated input features, to ac-
curately predict the labels of new data points from their
input features. Here, we closely follow the theoretical
formalism previously described in Ref. 35.

A. Data Distribution (Teacher Model)

We consider data points (y, ~x), each consisting of a
continuous label y paired with a set of Nf continuous in-
put features ~x. We assume that the relationship between
the input features and labels (the data distribution or
teacher model) can be expressed as

y(~x) = y∗(~x; ~β) + ε (1)

where ε is the label noise. The unknown function y∗(~x; ~β)
represents the “true” labels and depends on a set of Nf
“ground truth” parameters ~β, characterizing the correla-
tions between the features and labels. Here, we restrict
ourselves to a teacher model of the form

y∗(~x; ~β) =
σβσX
〈f ′〉 f

(
~x · ~β
σXσβ

)
, (2)

where the function f is an arbitrary nonlinear function

and 〈f ′〉 = 1√
2π

∫∞
−∞ dhe−

h2

2 f ′(h) is a normalization con-

stant chosen for convenience with prime notation used to
indicate a derivative. Note that Eq. (2) reduces to a lin-

ear teacher model y∗(~x) = ~x · ~β when f(h) = h.
We draw the input features for each data point in-

dependently and identically from a normal distribution
with zero mean and variance σ2

X/Nf . We consider

ground truth parameters ~β and label noise ε that are
drawn independently from normal distributions with zero
mean and variances σ2

β and σ2
ε , respectively. Further-

more, we assume the labels are centered so that f has
zero mean with respect to its argument.

B. Model Architectures (Student Models)

We consider a student model of the form

ŷ(~x) = ~z(~x) · ŵ, (3)

where ŵ is a vector of Np fit parameters. For the random
linear features model, the vector of ‘hidden” features ~z(~x)
takes the form

~z(~x) = WT~x, (4)

where W is a random transformation matrix of size
Nf×Np, whose elements are drawn independently from a
normal distribution with zero mean and variance σ2

W /Np.
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C. Fitting Procedure

We train each model on a training data set consisting
of M data points, D = {(ya, ~xa)}Ma=1. For convenience,
we organize the vectors of input features in the training
set into an observation matrix X of size M × Nf and
define the length-M vectors of training labels ~y, training
label noise ~ε, and label predictions for the training set ŷ.
We also organize the vectors of hidden features evaluated
on the input features of the training set, {~z(~xa)}Ma=1, into
the rows of a hidden feature matrix Z of size M ×Np.

Given a set of training data D, we solve for the op-
timal values of the fit parameters ŵ by minimizing the
standard ridge regression loss function composed of the
mean squared label error with L2 regularization,

L(ŵ;D) =
1

2
‖∆~y‖ 2

+
λ

2
‖ŵ‖ 2

, (5)

where the notation ‖·‖ indicates an L2 norm,
∆~y = ~y − ŷ is the vector of residual label errors for the
training set, and λ is the regularization parameter. The
exact solution for the fit parameters resulting from this
loss function are

ŵ =
[
λINp + ZTZ

]−1
ZT~y. (6)

We will often work in the “ridge-less limit” where we take
the limit λ→ 0. In this limit, we refer to the matrix ZTZ
in the above expression as the Hessian matrix.

D. Model Evaluation

To evaluate a model’s prediction accuracy, we measure
the training and test (generalization) errors. We define
the training error as the mean squared residual label error
of the training data,

Etrain =
1

M
‖∆~y‖ 2

. (7)

We define the interpolation threshold as the model com-
plexity (number of fit parameters Np) at which the train-
ing error becomes exactly zero (in the ridge-less limit).
Analogously, we define the test error as the mean squared
error evaluated on a test data set, D′ = {(y′a, ~x′a)}M ′a=1,
composed of M ′ new data points drawn independently
from the same data distribution as the training set,

Etest =
1

M ′
‖∆~y′‖ 2

, (8)

where ∆~y′ = ~y′−ŷ′ is a length-M ′ vector of residual label
errors between the vector of test labels ~y′ and their pre-
dicted values ŷ′. Furthermore, we define the ensemble-
averaged training and test errors, 〈Etrain〉 and 〈Etest〉, re-
spectively, by taking averages of the above definitions

with respect to all sources of randomness (e.g., X, ~ε, ~β,
etc.).

E. Bias-Variance Decomposition

The bias-variance decomposition separates test error
into components stemming from three distinct sources:
bias, variance, and noise. Here, we utilize the standard
definitions of bias and variance [1, 2],

Bias[ŷ(~x)] = ED[ŷ(~x)]− y∗(~x) (9)

Var[ŷ(~x)] = ED
[
ŷ2(~x)

]
− ED[ŷ(~x)]

2
, (10)

where ~x is an arbitrary test data point and the subscript
D denotes the sampling average with respect to the train-
ing set (i.e., with respect to the input features X and

label noise ~ε, but not the ground truth parameters ~β).

In order to incorporate other sources of randomness

(e.g., ~β and W ), we define the more general ensemble-
averaged squared bias and variance, respectively, as

〈Bias2[ŷ]〉 = E~β,W,~x
[
Bias[ŷ(~x)]2

]
(11)

〈Var[ŷ]〉 = E~β,W,~x[Var[ŷ(~x)]]. (12)

Using these definitions, we define the ensemble-averaged
bias-variance decomposition of the test error,

〈Etest〉 = 〈Bias2[ŷ]〉+ 〈Var[ŷ]〉+ σ2
ε , (13)

which we utilize throughout this work.

F. Derivation of Closed-Form Solutions

Following the derivations in Ref. 35, we utilize the zero-
temperature cavity method to derive closed-form expres-
sions for the training error, test error, bias, and variance.
In this derivation, we work in the thermodynamic limit,
where Nf ,M,Np → ∞, but their ratios, αf = Nf/M
and αp = Np/M , remain finite. Our results are exact
in this limit. Furthermore, we utilize the procedure de-
scribed in Ref. 37 to reproduce the closed-form solution
for the eigenvalues spectrum of the Hessian matrix for
this model. We refer the reader to the Appendix for fur-
ther details on these calculations.

III. ANALYTIC EXPRESSIONS

We find that the closed-form solutions for the ran-
dom linear features model are characterized by three
distinct regimes, each defined by which of the follow-
ing three quantities is the smallest: the number of input
features Nf , the number of fit parameters (hidden fea-
tures) Np, or the size of the training set M . In terms
of αf = Nf/M and αp = Np/M , the expressions for the
ensemble-averaged training error, test error, bias, and
variance are



4

10−1 100 101

Parameters/Data αp

0.0

0.5

1.0

1.5
E

rr
or
/σ

2 y

Minimal Bias
Threshold

(a) Features < Data
(αf < 1)

Training Error 〈Etrain〉
Test Error 〈Etest〉
Bias 〈Bias2[ŷ]〉
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FIG. 1. Random Linear Features Model (Two-layer Linear Neural Network). Analytic solutions plotted as a
function of αp = Np/M with fixed αf = Nf/M for (a) less input features than training data points (αf = 1/2) and (b) more
input features than training data points (αf = 4). Shown are the ensemble-averaged training error (blue squares), test error
(black circles), squared bias (green triangles), and variance (red diamonds). Analytic solutions are indicated as dashed lines
with numerical results shown as points. In (a), a black dashed vertical line marks the boundary between the large bias and
minimal bias underparameterized regimes at αp = αf , while in (b), a similar line marks the boundary between the under-
and overparameterized regimes at αp = 1. Analytic solutions as a function of αp and αf are also shown for the the ensemble-
averaged (c) training error, (d) test error, (e) squared bias, and (f) variance. Results are shown for a linear teacher model

y(~x) = ~x · ~β + ε, a signal-to-noise ratio of σ2
βσ

2
X/σ

2
ε = 10, and have been scaled by the variance of the training set labels

σ2
y = σ2

βσ
2
X + ε2. In each panel, black dashed lines indicate boundaries between different regimes of the solutions depending on

which is the smallest of the quantities M , Nf , or Np. See Appendix for additional numerical details.

〈Etrain〉 =


(σ2
ε + σ2

δy∗)(1− αf )

σ2
βσ

2
X

(1−αp)(αf−αp)
αf

+ (σ2
ε + σ2

δy∗)(1− αp)
0

if Nf < Np,M
if Np < Nf ,M
if M < Nf , Np

(14)

〈Etest〉 =


(σ2
ε + σ2

δy∗)
1

(1−αf )

σ2
βσ

2
X

(αf−αp)
αf (1−αp) + (σ2

ε + σ2
δy∗)

1
(1−αp)

σ2
βσ

2
X
αp(αf−1)
αf (αp−1) + (σ2

ε + σ2
δy∗)

(αfαp−1)
(αf−1)(αp−1)

if Nf < Np,M
if Np < Nf ,M
if M < Nf , Np

(15)

〈Bias2[ŷ]〉 =


σ2
δy∗

σ2
βσ

2
X

(αf−αp)
αf

+ σ2
δy∗

σ2
βσ

2
X

αp(αf−1)2

αf (αfαp−1) + σ2
δy∗

if Nf < Np,M
if Np < Nf ,M
if M < Nf , Np

(16)

〈Var[ŷ]〉 =


(σ2
ε + σ2

δy∗)
αf

(1−αf )

σ2
βσ

2
X
αp(αf−αp)
αf (1−αp) + (σ2

ε + σ2
δy∗)

αp
(1−αp)

σ2
βσ

2
X
αp(αf−1)(αf−1+αp−1)
αf (αp−1)(αfαp−1) + (σ2

ε + σ2
δy∗)

(αf−1+αp−1)
(αf−1)(αp−1)

if Nf < Np,M
if Np < Nf ,M
if M < Nf , Np,

(17)

where we have taken the limit λ→ 0 (with leading order
terms of order λ2 reported in the Appendix for quan-

tities reported here as zero). The quantity σ2
δy∗ is the
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statistical variance of the nonlinear components of the
true labels, measured via their deviation from a linear

teacher model, σ2
δy∗ = E~x[(y∗(~x) − ~x · ~β)2]. In the ther-

modynamic limit, we find that this quantity evaluates
to

σ2
δy∗ = σ2

βσ
2
X∆f, ∆f =

〈f2〉 − 〈f ′〉2

〈f ′〉2

〈f2〉 =
1√
2π

∞∫
−∞

dhe−
1
2h

2

f2(h)

〈f ′〉 =
1√
2π

∞∫
−∞

dhe−
1
2h

2

f ′(h).

(18)

In Figs. 1(a) and (b), we plot the training error, test
error, bias, and variance as a function of αp = Np/M for
fixed αf = Nf/M for the two cases αf < 1 and αf > 1,
respectively. To gain a better grasp of the full set of so-
lutions, we also plot all quantities in Eqs. (14)-(17) as a
function of both αp and αf in Figs. 1(c)-(f). All solu-

tions are shown for a linear teacher model y∗(~x) = ~x · ~β
(σ2
δy∗ = 0).
The three regimes we observe in the closed-form solu-

tions are separated by three distinct phase transitions.
Examining the training error in Fig. 1(c), we find that
it goes to zero at two of the transitions, αp = 1 with
αf ≥ 1 and αf = 1 with αp ≥ 1, giving rise to an inter-
polation boundary. On one side of this boundary, where
αp < 1 or αf < 1 (there are less data points M than fit
parameters Np or input features Nf ), the model is un-
derparameterized, while beyond this boundary the model
is overparameterized and in the “interpolation” regime.
We note that the interpolation transition for this model
is markedly different from that of the random nonlinear
features model (nonlinear activation function) where the
interpolation threshold occurs at αp = 1 independently
of αf (see Sec. V and Ref. 35).

We find that the test error and variance diverge along
the entire interpolation boundary, while the bias remains
finite. This is in contrast with previous studies which
employed non-standard definitions of bias and variance
and found that both variance and bias diverge at the
interpolation threshold [9]. Examining Figs. 1(a) and
(b), we find that the test error (and similarly, the vari-
ance) exhibits very different behavior as a function of αp,
depending on whether αf < 1 (less input features than
training data points Nf < M) or αf > 1 (more input fea-
tures than training data points Nf > M). When αf > 1,
the test error diverges at αp = 1 and decreases mono-
tonically in the overparameterized regime. In contrast,
when αf < 1, the test error monotonically decreases to a
small, constant value at αp ≥ αf . Although this model
does not display the full canonical double-descent behav-
ior in either case, the test error in the overparameterized
regime is always at least as small as – if not smaller than
– that of the underparameterized regime for fixed αf .

Examining the bias in Fig 1(c) reveals that there is
an additional phase transition in the underparameterized
regime located at the boundary αf = αp for αp ≤ 1 and
αf ≤ 1 (i.e., when the number of input featuresNf equals
the number of hidden features Np, with both Nf and Np
less than the number of data points M). This transition
divides the non-interpolation solutions into two pieces.
When αp < αf (less fit parameters than input features
Np < Nf ), the model exhibits a large bias because there
are not enough fit parameters (or hidden features) to fully
express the input features in the data [see Eq. (16)]. In
contrast, when αp > αf (more fit parameters than input
features Np > Nf ), the only contribution to the bias
is a small constant σ2

δy∗ stemming from the nonlinear
components of the labels. For the special case of a linear
teacher model shown in the figures, the bias is identically
zero in this regime.

Interestingly, we also observe that σ2
δy∗ appears as an

additive component to the label noise σ2
ε in the training

error, test error, and variance, indicating that the model
interprets the nonlinear components of the labels as ef-
fective noise [35].

IV. PHASE TRANSITIONS, SUSCEPTIBLITIES,
AND EIGENVALUE SPECTRA

In the previous section, we found that the analytic so-
lutions for the random linear features model are charac-
terized by three distinct regimes separated by three dif-
ferent phase transitions. As a natural byproduct of our
cavity derivations, we find that each of these phase tran-
sitions is marked by a diverging susceptibility. In partic-
ular, setting the gradient of the loss function in Eq. (5)
equal to a small nonzero field ~η, such that ∂L/∂ŵ = ~η,
we define the susceptibility matrix ∂ŵ/∂~η . This quan-
tity measures the sensitivity of the fit parameters to small
perturbation in the gradient and can be shown to be
equivalent to the inverse Hessian of the loss function.
Taking the trace of this matrix, we define the scalar sus-
ceptibility

ν =
1

Np
Tr

∂ŵ

∂~η

∣∣∣∣
~η=0

=
1

Np
Tr
[
λINp + ZTZ

]−1
. (19)

In the small λ limit, we make the approximation
ν ≈ λ−1ν−1 + ν0. In exact matrix form, we find that the
two coefficients are

ν−1 = 1− 1

Np
rank(ZTZ), ν0 =

1

Np
Tr
[
ZTZ

]+
, (20)

where + denotes a Moore-Penrose pseudoinverse.
In Figs. 2(a) and (b), we plot the analytic closed-form

expressions for these two quantities in the thermody-
namic limit as a function of αf and αp (see Appendix
for expressions). We find that the first coefficient ν−1

counts the fraction of fit parameters that go beyond the
minimum needed to attain minimal training error. In



6

10−1 100 101

Parameters/Data αp

10−1

100

101

F
ea

tu
re

s/
D

at
a
α
f

(a)

ν−1

0 5 10 15

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Underparameterized
Large Bias
Np < Nf ,M

(i)

0 2 4

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Interpolation Threshold
Np = M < Nf

(ii)

0 1 2

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Overparamterized
M < Nf , Np

(iii)

10−1 100 101

Parameters/Data αp

10−1

100

101

F
ea

tu
re

s/
D

at
a
α
f

(b)

ν0

0 10 20

Eigenvalue σ2

10−4

10−2

100

102
P

ro
ba

bi
lit

y
D

en
si

ty
Underparameterized

Large Bias
Np < Nf ,M

(iv)

0.0 2.5 5.0

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Interpolation Threshold
Np = Nf = M

(v)

0 2 4

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Interpolation Threshold
Nf = M < Np

(vi)

10−1 100 101

Parameters/Data αp

10−1

100

101

F
ea

tu
re

s/
D

at
a
α
f

(vii) (viii) (ix)

(iv) (v) (vi)

(i) (ii) (iii)
(c)

Min Eigenvalue σ2
min

0 20

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Minimal Bias Threshold
Np = Nf < M

(vii)

0 10 20

Eigenvalue σ2

10−4

10−2

100

102
P

ro
ba

bi
lit

y
D

en
si

ty
Underparameterized

Minimal Bias
Nf < Np,M

(viii)

0 5 10 15

Eigenvalue σ2

10−4

10−2

100

102

P
ro

ba
bi

lit
y

D
en

si
ty

Underparameterized
Minimal Bias
Nf < Np,M

(ix)

10−2 100 102

Susceptibility
10−5 10−4 10−3 10−2 10−1 100 101

σ2
min/σ

2
Wσ

2
X

FIG. 2. Susceptibilities and Eigenvalue Spectra (a)-(b) Analytic solutions for the susceptibility ν which measures the
sensitivity of the fit parameters to small perturbations in the gradient. In the small λ limit, ν ≈ λ−1ν−1 + ν0. (a) The coefficient
ν−1 counts the fraction of unutilized fit parameters, or the fraction of parameters beyond that needed to attain minimal training
error. (b) The coefficient ν0 diverges at each phase transition when ZTZ has a small eigenvalue. (c) Analytic solution for the
minimum nonzero eigenvalue σ2

min of the Hessian matrix ZTZ. (i)-(ix) Examples of the full eigenvalue spectrum are shown
for each of the corresponding points in (c). See Appendix for additional simulation details.

contrast, the second coefficient ν0 diverges along each
phase boundary. Based on the exact matrix form of ν0

in Eq. (20), we infer that these divergences can be at-
tributed to small eigenvalues in the Hessian matrix ZTZ.

To illustrate this connection between the eigenvalues
of the Hessian and the susceptibility ν, we note that
for this problem, the inverse Hessian is equivalent to the
Green’s function and can be used to extract the eigen-
value spectrum [37] (see Appendix for derivation). In
Fig. 2(c), we show the analytic solution for the minimum
nonzero eigenvalue σ2

min of ZTZ. Consistent with ν0,
we find that σ2

min goes to zero along each phase transi-
tion. In Figs. 2(i)-(ix), we also plot the eigenvalue dis-
tributions for the points indicated in Fig. 2(c). While

ν0 captures the distribution of nonzero eigenvalues, ν−1

captures the weight of the delta function at zero in the
overparameterized and minimal bias regimes. In each
regime and along each phase boundary, these distribu-
tions are qualitatively similar to the Marchenko-Pastur
distribution [38]. Along each phase transition, the gap in
the distribution goes to zero, while the gap is finite away
from each boundary. The presence of this eigenvalue gap
was previously shown to be the root cause of the decrease
in variance in the overparameterized regime [35].

To understand the source of these small eigenvalue
gaps, we note that the types of random matrices we con-
sider in this work typically exhibit infinitesimally small
eigenvalues in the thermodynamic limit if they contain an
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equal number of rows and columns. This fact allows us
to identify which matrix is the root cause of each transi-
tion. Since Z is a product of X and W , this phenomenon
arises in two forms. First, Z can exhibit a small eigen-
value if either X or W is square and the expression of
its input feature space is not limited by its product with
the other matrix (e.g., if X is square and Np ≥ Nf = M
or W is square and M ≥ Nf = Np). This behavior ex-
plains the interpolation transition at αf = 1 which arises
due to small eigenvalues in X, but does not extend below
αp = 1 when the rank of W becomes too low to preserve
every direction in the space of input features encoded in
X. Similarly, the minimal bias transition at αf = αp oc-
curs due to small eigenvalues in W , disappearing above
αf = 1 when the rank of X is too low to fully express
the input feature space of W . Second, Z can exhibit a
small eigenvalue if it is square and full rank, giving rise
to the transition at αp = 1, but only when αf ≥ 1.

Interestingly, we observe that the test error only di-
verges at the two phase transitions to the interpolation
regime, but not at the minimal bias transition, despite
σ2

min going to zero in all three cases. This lack of di-
vergence is explained by the fact that the minimal bias
transition arises due to small eigenvalues in W , which is
used to transform both the training data and the test
data. Since both data sets are transformed in the same
way, predictions by the model for the test set based on
the training set will not be limited by small eigenvalues in
W , and the test error will not diverge when W is square
(Nf = Np).

Finally, we wish to emphasize that the two coefficients
of ν each capture a different aspect of learning. The first
coefficient ν−1 captures overparameterization, counting
the fraction of fit parameters in excess of that needed to
achieve zero training error. Meanwhile, ν0 characterizes
phase transitions, diverging at the interpolation thresh-
old in concert with the variance and at the minimal bias
transition. We refer the reader to Ref. 35 for a thorough
discussion of the physical interpretations of these suscep-
tibilities for a general nonlinear model, along with the
other susceptibilities of note that appear in our deriva-
tions.

V. COMPARISON TO LINEAR REGRESSION
AND THE RANDOM NONLINEAR FEATURES

MODEL

One of the more surprising results of our analysis is
that the phase diagram for the random linear features
model is qualitatively different from the random nonlin-
ear features model. On other hand, we find that the
random linear feature model is qualitatively similar to
ordinary ridge-less regression when the number of hid-
den features matches the input features. To better un-
derstand the similarities and differences, we have repro-
duced the phase diagrams for all three models in Fig. 3
(see Ref. [35] for a detailed analysis of ridge regression

and the random nonlinear features model).
First, we compare the random linear features model to

linear regression in which the number of hidden features
matches the input features,

~z(~x) = ~x. (21)

Fig. 3(a) shows the training error, test error, bias, and
variance for linear regression. Since linear regression
lacks basis functions, in Fig. 3(b), we plot the same quan-
tities for the random linear features model for the special
case where the number of input features equals the num-
ber of hidden features (αf = αp).

We observe that along this cut of the phase diagram,
the random linear features model behaves qualitatively
similar to linear regression, with variance first increasing
as one approaches the interpolation threshold (αp = 1)
and then decreasing monotonically beyond the thresh-
old. Meanwhile, the bias is zero below the interpolation
threshold and then increases once one crosses the inter-
polation threshold. As discussed in detail in Ref. [35],
the underlying reason for the increase in bias for αp > 1
is that in this regime, the model does not have enough
training data points to sample the entire input feature
space. Therefore, any predictions made about these un-
sampled directions represent implicit assumptions of the
model.

Next, we compare to the random nonlinear features
model in which the hidden features take the form

~z(~x) =
1

〈ϕ′〉
σWσX√
Np

ϕ

( √
Np

σWσX
WT~x

)
(22)

where ϕ is a nonlinear activation function that
acts separately on each element of its input and

〈ϕ′〉 = 1√
2π

∞∫
−∞

dhe−
h2

2 ϕ′(h) is a normalization constant.

Figs. 2(c)-(f) show the training error, test error, bias,
and variance for this model for the case of ReLU activa-
tion, ϕ(h) = max(0, h), as a function of both αp and αf ,
while Figs. 2(g)-(j) depict the same for the random linear
features model.

We observe that while the interpolation transition
boundary at αp = 1 for αf ≥ 1 remains the same, the
addition of a nonlinear activation function suppresses the
interpolation transition at αf = 1 for αp > 1, along with
the transition to a minimal bias regime at αf = αp for
αp < 1. At the same time, the interpolation transition
at αp = 1 is extended to all values of αf .

The two changes to the shape of the interpolation
boundary can be attributed to the behavior of small
eigenvalues in the Hessian. Upon the introduction of
a nonlinear activation, the interpolation transition at
αp = 1 for αf < 1 arises due to the creation of new small
eigenvalues in Z. The nonlinear transformation promotes
Z to full rank when it is square (Np = M), even if the
product XW is not full rank. As a result, Z exhibits
small eigenvalues at this transition whether or not XW
has a small eigenvalue, translating to small eigenvalues
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100

Parameters/Data αp

10−1

100

101

F
ea

tu
re

s/
D

at
a
α
f

(j)

Variance 〈Var[ŷ]〉
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FIG. 3. Comparison of the Random Linear Features Model to Linear Regression (No Basis Functions) and
the Random Nonlinear Features Model. (a) The training error, test error, bias, and variance as a function of αp (or
equivalently, αf ) for linear regression (no basis functions) , and (b) the same quantities for the random linear features model
for the special case αf = αp. The training error, test error, bias, and variance as a function of αp and αf for (c)-(f) the
random nonlinear features model with ReLU activation, ϕ(h) = max(0, h), and (g)-(j) the random linear features model. In
all panels, black dashed lines indicate phase transitions. Results for linear regression and the random nonlinear features model
are reproduced from Ref. 35.

in the Hessian and a divergence in the test error. In con-
trast, our random matrix theory analysis suggests that
the presence of a nonlinear activation function suppresses
the transition at αf = 1 with αp > 1 by serving as an
implicit regularizer of small eigenvalues in the Hessian
(this behavior was previously observed in Ref. 15). In
particular, the use of nonlinear basis functions masks di-
vergences arising from small eigenvalues that arise when
the design matrix X is square (Nf = M).

Finally, to account for the removal of the minimal bias
transition when αf = αp with αp < 1, we note that
the training data is generated using a teacher model that

depends directly on the input features, while the nonlin-
ear model first applies a nonlinear transformation. This
nonlinear basis masks properties of the underlying input
feature space like its dimension, introducing additional
bias. Therefore, the bias does not approach a minimal
value at αp = αf , even if there are in principle enough
hidden features to fully encode the full space of input
features. Instead, we observe that the bias only reaches
a minimum in the limit αp →∞ for fixed αf .
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VI. CONCLUSIONS

A central question in machine learning is understand-
ing why complicated models with many more parameters
than training data points can still make accurate predic-
tions. Here, we have tackled this problem by analyzing
one of the simplest examples of non-trivial supervised
learning: regression with random linear features. De-
spite the simplicity of the model, it exhibits remarkably
rich behavior with multiple phase transitions.

We found that the phase diagram of the model has
three distinct phases: (i) an underparameterized regime
with finite training error and large bias, (ii) a second
underparameterized regime with minimal bias, and (iii)
an overparameterized, or interpolation, regime with zero
training error. We also showed that at the transition to
the interpolation regime, the variance but not the bias
diverges. For this reason, while the classical bias-variance
trade-off captures much of the behavior of the model in
the underparameterized regime, it fails to describe the
interpolation regime where the variance decreases with
increasing model complexity.

We showed that the divergence of the variance is due to
the presence of small eigenvalues in the Hessian matrix.
This is consistent with the general picture advocated in

Refs. 8 and 35 that large test errors are associated with
the closing of a spectral gap near the interpolation tran-
sition. On both sides of the transition, when the spectral
gap is large, it is easy to distinguish noise from poorly
sampled directions in feature space. However, when the
gap closes this is no longer possible, accounting for the
large variance.

Our work suggests that many of the fundamental fea-
tures of double-descent can be understood even when
considering simple convex models. An important ques-
tion is how to generalize the intuitions developed here
to more complex settings. In contrast with the random
linear features model, modern deep learning methods are
often non-convex and attempt to learn meaningful fea-
tures directly from data. In the future, it will be inter-
esting to see how this changes the understanding of the
bias-variance trade-off developed here [39–41].
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Appendix A: Cavity Derivations

In this section, we provide detailed derivations of all closed-form solutions for the random linear features model.
These calculations follow the general procedure laid out in Ref. 35.
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1. Notational Conventions

• We define M as the number of points in the training data set, Nf as the number of input features, and Np as
the number of fit parameters/hidden features. We define the ratios αf = Nf/M and αp = Np/M .

• Unless otherwise specified, the type of symbol used for an index label (e.g., ∆ya) or as a summation index (e.g.,∑
a) implies its range. The symbols a, b, or c imply ranges over the training data points from 1 to M , the

symbols j, k, or l imply ranges over the input features from 1 to Nf , and the symbols J , K, or L imply ranges
over the fit parameters/hidden features from 1 to Np.

• The notation Ex[·], Varx[·] and Covx[·, ·] represent the mean, variance, and covariance, respectively, with respect
to one or more random variables x. A lack of subscript implies averages taken with respect to the total ensemble
distribution, i.e., taken over all possible sources of randomness. A subscript 0 implies averages taken with
respect to random variables containing one or more 0-valued indices (e.g., Xa0, X0j , W0J , or Wj0).

2. Nonlinear Label Decomposition

In order to calculate the statistical properties of the nonlinear teacher model, we first decompose the labels into
their linear and nonlinear components as follows:

y(~x) = ~x · ~β + δy∗NL(~x) + ε, ~β ≡ Σ−1
~x Cov~x[~x, y∗(~x)]. (A1)

The first term in this decomposition captures the linear correlations between the labels y∗ and the input features ~x

via the ground truth parameters ~β. The second term, defined as δy∗NL(~x) ≡ y∗(~x)− ~x · ~β, represents the remaining
nonlinear component of the labels. By defining the ground truth parameters as shown above, where Σ~x = Cov~x[~x, ~xT ]
is the covariance matrix of the input features (assumed to be invertible), it can be proven that the linear and nonlinear
components are statistically independent. Using the definition of the nonlinear component of the labels δy∗NL(~x), it is
straightforward to show that their mean and covariance in the thermodynamic limit evaluate to

E[δy∗NL(~xa)] = 0, Cov[δy∗NL(~xa), δy∗NL(~xb)] = σ2
δy∗δab, (A2)

where ~xa and ~xb are to independent data points and we have defined the variance σ2
δy∗ of the nonlinear components

as

σ2
δy∗ = σ2

βσ
2
X∆f, ∆f =

〈f2〉 − 〈f ′〉2

〈f ′〉2

〈f2〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 f2(h), 〈f ′〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 f ′(h).

(A3)

The decomposition in Eq. (A1) and its statistical properties are derived in detail in Ref. 35.

3. General Solutions

Next, we derive some useful formulas for the ensemble-averaged quantities we wish to calculate. First, we express
the ensemble-averaged training error as

〈Etrain〉 = 〈∆y2〉 , 〈∆y2〉 = E

[
1

M

∑
b

∆y2
b

]
(A4)

where we have defined 〈∆y2〉 as the mean squared label error for the training data.
Next, we evaluate the average over the test data set in the ensemble average of the test error,

〈Etest〉 = σ2
X 〈∆β2〉+ σ2

δy∗ + σ2
ε . (A5)
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To obtain this expression, we have defined the set of ground truth parameters estimated by the model as β̂ ≡ W ŵ

and the corresponding residual parameter error ∆~β ≡ ~β− β̂. The quantity 〈∆β2〉 is then the mean squared residual
parameter error,

〈∆β2〉 = E

[
1

Nf

∑
k

∆β2
k

]
. (A6)

To correctly calculate the ensemble average of the squared bias, we make use of the following trick: we reinterpret
the square of the average over D as two separate averages over uncorrelated training data sets,

Bias2[ŷ(~x)] = (ED[ŷ(~x)]− y∗(~x))2

= ED1,D2
[(y(~x)− ŷ1(~x))(y(~x)− ŷ2(~x))].

(A7)

Now, instead of a single regression problem trained on a single data set D, we consider two separate regression
problems each trained independently on different training sets, D1 and D2, drawn from the same distribution with

the same ground truth parameters ~β. These regression problems will also share all other random variables including
the test data point (y, ~x), W , etc.

Next, we apply the ensemble average and explicitly average over the test data point ~x to obtain

〈Bias2[ŷ(~x)]〉 = σ2
X 〈∆β1∆β2〉 , 〈∆β1∆β2〉 = E

[
1

Nf

∑
k

∆β1,k∆2,k

]
(A8)

where we have defined 〈∆β1∆β2〉 as the covariance of the residual label errors between the two models trained on
data sets D1 and D2.

Finally, we find an expression for the variance by subtracting the bias and noise (σ2
ε) from the test error,

〈Var[ŷ(~x)]〉 = σ2
X

(
〈∆β2〉 − 〈∆β1∆β2〉

)
. (A9)

Based on these expressions, we find that the training error, test error, bias, and variance depend on three key
ensemble-averaged quantities: 〈∆y2〉, 〈∆β2〉, and 〈∆β1∆β2〉. We aim to calculate these quantities in the remainder
of this derivation.

4. Linear System of Equations

In this section, we derive a linear system of equations to which we will apply the cavity method. To do this, we
first evaluate the gradient of the loss function in Eq. (5) with respect to the fit parameters,

0 =
∂L(ŵ)

∂ŵJ
= −

∑
b

∆ybZbJ + λŵJ . (A10)

In addition to this gradient equation, we will also need the equations for the residual label errors for the training set,

∆ya = y∗(~xa) + εa −
∑
K

ŵKZaJ . (A11)

Next, we decompose these two sets of equations such that they are linear in the random matrices W and X, resulting
in four different sets of equations,

λŵJ =
∑
k

ûkWkJ + ηJ

ûj =
∑
b

∆ybXbj + ψj

∆ya =
∑
k

∆βkXak + δy∗NL(~xa) + εa + ξa

∆βj = βj −
∑
K

ŵKWjK + ζj ,

(A12)

where we have also utilized Eq. (A1) to decompose the training labels into their linear and nonlinear components.
We have also added a small auxiliary field, ηJ , ψj , ξa, or ζj , to each equation. We will use these extra fields to define
perturbations about the solutions to these equations with the intent of setting the fields to zero at the end of the
derivation. The quantities ûj can be interpreted as representations of the fit parameters in the space of input features.
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5. Cavity Expansion

Next, we add an additional variable of each type, resulting in a total of M + 1 data points, Nf + 1 input features
and Np + 1 fit parameters. Each additional variable is represented using an index value of 0, written as ŵ0, û0, ∆y0,
and ∆β0. After including these new unknown quantities, the four equations become

λŵJ =
∑
k

ûkWkJ + ηJ + û0W0J

ûj =
∑
b

∆ybXbj + ψj + ∆y0X0j

∆ya =
∑
k

∆βkXak + δy∗NL(~xa) + εa + ξa +Xa0∆β0

∆βj = βj −
∑
K

ŵKWjK + ζj − ŵ0Wj0,

(A13)

with each new variable described by a new equation,

λŵ0 =
∑
k

ûkWk0 + η0 + û0W00

û0 =
∑
b

∆ybXb0 + ψ0 + ∆y0X00

∆y0 =
∑
k

∆βkX0k + δy∗NL(~x0) + ε0 + ξ0 + ∆β0X00

∆β0 = β0 −
∑
K

ŵKW0K + ζ0 − ŵ0W00.

(A14)

Now we take the thermodynamic limit in which M , Nf , and Np tend towards infinity, but their ratios, αf = Nf/M
and αp = Np/M , remain fixed. We interpret the extra terms in Eq. (A13) as small perturbations to the auxiliary
fields,

δηJ = û0W0J , δψj = ∆y0X0j , δξa = ∆β0Xa0, δζj = −ŵ0Wj0, (A15)

allowing us to expand each unknown quantity about its solution in the absence of the 0-indexed variables (i.e., the
solutions for M data points, Nf input features, and Np fit parameters),

ŵJ ≈ ŵJ\0 +
∑
K

νŵJKδηK +
∑
k

φŵJkδψk +
∑
b

χŵJbδξb +
∑
k

ωŵJkδζk

ûj ≈ ûj\0 +
∑
K

νûjKδηK +
∑
k

φûjkδψk +
∑
b

χûjbδξb +
∑
k

ωûjkδζk

∆ya ≈ ∆ya\0 +
∑
K

ν∆y
aKδηK +

∑
k

φ∆y
ak δψk +

∑
b

χ∆y
ab δξb +

∑
k

ω∆y
ak δζk

∆βj ≈ ∆βj\0 +
∑
K

ν∆β
jK δηK +

∑
k

φ∆β
jk δψk +

∑
b

χ∆β
jb δξb +

∑
k

ω∆β
jk δζk.

(A16)

We define each of the susceptibility matrices as a derivative of a variable with respect to an auxiliary field,

νŵJK =
∂ŵJ
∂ηK

, φŵJk =
∂ŵJ
∂ψk

, χŵJb =
∂ŵJ
∂ξb

, ωŵJk =
∂ŵJ
∂ζk

,

νûjK =
∂ûj
∂ηK

, φûjk =
∂ûj
∂ψk

, χûjb =
∂ûj
∂ξb

, ωûjk =
∂ûj
∂ζk

,

ν∆y
aK =

∂∆ya
∂ηK

, φ∆y
ak =

∂∆ya
∂ψk

, χ∆y
ab =

∂∆ya
∂ξb

, ω∆y
ak =

∂∆ya
∂ζk

,

ν∆β
jK =

∂∆βj
∂ηK

, φ∆β
jk =

∂∆βj
∂ψk

, χ∆β
jb =

∂∆βj
∂ξb

, ω∆β
jk =

∂∆βj
∂ζk

.

(A17)
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a. Central Limit Theorem

Substituting the expansions in Eq. (A16) into the 0-indexed equations in Eq. (A14), we find that each of the
resulting sums contains a thermodynamically large number of statistically uncorrelated terms. This means that each
sum satisfies the conditions necessary to apply the central limit theorem, allowing us to express each in terms of a
single normally-distributed random variable described by just its mean and its variance.

First, we approximate each of the sums containing one of the unperturbed quantities, ŵJ\0, ûj\0, ∆ya\0, or ∆βj\0.
The unperturbed quantities in each of these sums are statistically independent of all elements of both X and W with
a 0-valued index. Using this fact, we find∑

k

ûk\0Wk0 ≈ σŵzŵ, σ2
ŵ = σ2

W

αf
αp
〈û2〉 , 〈û2〉 =

1

Nf

∑
k

û2
k\0∑

b

∆yb\0Xb0 ≈ σûzû, σ2
û = σ2

Xα
−1
f 〈∆y2〉 , 〈∆y2〉 =

1

M

∑
b

∆y2
b\0∑

k

∆βk\0X0k ≈ σ∆yz∆y, σ2
∆y = σ2

X 〈∆β2〉 , 〈∆β2〉 =
1

Nf

∑
k

∆β2
k\0∑

K

ŵK\0W0K ≈ σ∆βz∆β , σ2
∆β = σ2

W 〈ŵ2〉 , 〈ŵ2〉 =
1

Np

∑
K

ŵ2
K\0,

(A18)

where zŵ, zû, z∆y, and z∆β are all random variables with zero mean and unit variance and can easily be shown to be
statistically independent from one another.

Note that we have used the same notation, 〈∆y2〉 and 〈∆β2〉, for the two averages defined previously in Sec. A 3
even though they each lack an ensemble average. In doing so, we have employed the ansatz that these sums will
converge to their ensemble averages in the thermodynamic limit. This assumption is typical of the cavity method.

Next, we approximate each of the sums containing one of the square susceptibility matrices. Using the fact that
all of the susceptibility matrices are statistically independent of all elements of both X and W with a 0-valued index,
we find that each of these sums is dominated by its mean with its variance going to zero in the thermodynamic limit,∑

jk

ωûjkWj0Wk0 ≈ σ2
W

αf
αp
ω, ω =

1

Nf

∑
k

ωûkk

∑
ab

χ∆y
ab Xa0Xb0 ≈ σ2

Xα
−1
f χ, χ =

1

M

∑
b

χ∆y
bb∑

jk

φ∆β
jk X0jX0k ≈ σ2

Xφ, φ =
1

Nf

∑
k

φ∆β
kk

∑
JK

νŵJKW0JW0K ≈ σ2
W ν, ν =

1

Np

∑
K

νŵKK

(A19)

where ω, χ, φ, and ν can be interpreted as a set of scalar susceptibilities.
Finally, it is straightforward to show that both the mean and variance each of the sums containing a rectangular

susceptibility matrix goes to zero in the thermodynamic limit and can therefore be neglected.

b. Self-consistency Equations

Applying the approximations from the previous section, we find a set of self-consistent equations for ŵ0, û0, ∆y0,
and ∆β0,

λŵ0 ≈ σŵzŵ − ŵ0σ
2
W

αf
αp
ω + η0

û0 ≈ σûzû + ∆β0σ
2
Xα
−1
f χ+ ψ0

∆y0 ≈ σ∆yz∆y + ∆y0σ
2
Xφ+ δy∗NL(~x0) + ε0 + ξ0

∆β0 ≈ β0 − σ∆βz∆β − û0σ
2
W ν + ζ0,

(A20)
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where have also made use of the fact that the terms including X00 or W00 are infinitesimally small in the thermo-
dynamic limit with zero mean and variances of O(1/Nf ) and O(1/Np), respectively. Solving these equations for the
0-indexed variables, we find

ŵ0 =
σŵzŵ + η0

λ+ σ2
W
αf
αp
ω

û0 =
σûzû + ψ0 + σ2

Xα
−1
f χ(β0 − σ∆βz∆β + ζ0)

1 + σ2
Wσ

2
Xα
−1
f χν

∆y0 =
σ∆yz∆y + δy∗NL(~x0) + ε0 + ξ0

1− σ2
Xφ

∆β0 =
β0 − σ∆βz∆β + ζ0 − σ2

W ν
2(σûzû + ψ0)

1 + σ2
Wσ

2
Xα
−1
f χν

.

(A21)

Next, we derive a set of self-consistent equations for the scalar susceptibilities by taking appropriate derivatives of
these variables with respect to the auxiliary fields,

ν =
1

Np

∑
K

νŵKK ≈ E
[
νŵ00

]
= E

[
∂ŵ0

∂η0

]
=

1

λ+ σ2
W
αf
αp
ω

ω =
1

Nf

∑
k

ωûkk ≈ E
[
ωû00

]
= E

[
∂û0

∂ζ0

]
=

σ2
Xα
−1
f χ

1 + σ2
Wσ

2
Xα
−1
f χν

χ =
1

M

∑
b

χ∆y
bb ≈ E

[
χ∆y

00

]
= E

[
∂∆y0

∂ξ0

]
=

1

1− σ2
Xφ

φ =
1

Nf

∑
k

φ∆β
kk ≈ E

[
φ∆β

00

]
= E

[
∂∆β0

∂ψ0

]
= − σ2

W ν

1 + σ2
Wσ

2
Xα
−1
f χν

.

(A22)

Furthermore, we note that there are two additional derivatives that have not yet appeared in the calculation up to
this point, ∂ûj/∂ψj and ∂∆βj/∂ζj . It is clear to see from the equations for û0 and ∆β0 that these two additional
derivatives are equivalent. Evaluating these derivatives, we define a fifth scalar susceptibility,

κ =
1

Nf

∑
k

φûkk =
1

Nf

∑
k

ω∆β
kk ≈ E

[
∂û0

∂ψ0

]
= E

[
∂∆β0

∂ζ0

]
=

1

1 + σ2
Wσ

2
Xα
−1
f χν

. (A23)

Using this formula for κ, we re-express the four other susceptibilities as

ω = σ2
Xα
−1
f χκ, φ = −σ2

W νκ, χ =
1

1 + σ2
Wσ

2
Xνκ

, ν =
1

λ+ σ2
Wσ

2
Xα
−1
p χκ

. (A24)

Finally, we square and average each of the expressions in Eq. (A21) to find self-consistent equations for the four mean
squared averages (setting the auxiliary fields to zero),

〈ŵ2〉 =
1

Np

∑
K

ŵ2
K\0 ≈ E

[
ŵ2

0

]
= ν2σ2

W

αf
αp
〈û2〉

〈û2〉 =
1

Nf

∑
k

û2
k\0 ≈ E

[
û2

0

]
= κ2σ2

Xα
−1
f 〈∆y2〉+ ω2

(
σ2
β + σ2

W 〈ŵ2〉
)

〈∆y2〉 =
1

M

∑
b

∆y2
b\0 ≈ E

[
∆y2

0

]
= χ2

(
σ2
X 〈∆β2〉+ σ2

δy∗ + σ2
ε

)
〈∆β2〉 =

1

Nf

∑
k

∆β2
k\0 ≈ E

[
∆β2

0

]
= κ2

(
σ2
β + σ2

W 〈ŵ2〉
)

+ φ2σ2
Xα
−1
f 〈∆y2〉 .

(A25)

c. Solution with Finite Regularization (λ ∼ 1)

Next, we derive the solutions when the regularization parameter λ is finite. To do this, we combine the self-
consistency equations for the susceptibilities in Eqs. (A23) and (A24) to derive a cubic equation for χ,

0 = χ3 + (αf + αp − 2)χ2 +
[
(αf − 1)(αp − 1) + αfαpλ̄

]
χ− αfαpλ̄, (A26)
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where we have defined the dimensionless regularization parameter

λ̄ =
λ

σ2
Wσ

2
X

. (A27)

This cubic equation indicates that we should expect three different solutions for χ. Using these solutions, we can
derive the associated solutions for the rest of the susceptibilities. Furthermore, we solve Eq. (A25) to find

 〈ŵ
2〉

〈û2〉
〈∆y2〉
〈∆β2〉

 =


1 −σ2

W
αf
αp
ν2 0 0

−σ2
Wω

2 1 −σ2
Xα
−1
f κ2 0

0 0 1 −σ2
Xχ

2

−σ2
Wκ

2 0 −σ2
Xα
−1
f φ2 1


−1

0
σ2
βω

2

(σ2
ε + σ2

δy∗)χ
2

σ2
βκ

2

. (A28)

In combination with the solutions for the five scalar susceptibilities, these solutions are exact in the thermodynamic
limit.

d. Solutions in Ridge-less Limit (λ→ 0)

Next, we take the ridge-less limit in which λ → 0. Based on the cubic equation for χ in Eq. (A26), we make the
ansatz that the lowest order contribution to χ is O(1) in small λ̄,

χ ≈ χ0 + λ̄χ1. (A29)

We then expand Eq. (A26) in orders of λ to find solutions for χ0 and χ1. Using these solutions, we solve for the
following coefficients for the remaining susceptibilities.

ν ≈ 1

λ̄
ν−1 + ν0

κ ≈ κ0 + λ̄κ1

φ ≈ 1

λ̄
φ−1 + φ0

ω ≈ ω0 + λ̄ω1,

(A30)

Finally, we expand the mean squared averages in small λ as

〈ŵ2〉 ≈ 〈ŵ2〉0 + λ̄2 〈ŵ2〉2
〈û2〉 ≈ 〈û2〉0 + λ̄2 〈û2〉2
〈∆y2〉 ≈ 〈∆y2〉0 + λ̄2 〈∆y2〉2
〈∆β2〉 ≈ 〈∆β2〉0 + λ̄2 〈∆β2〉2 ,

(A31)

and then use the solutions for the susceptibilities to solve Eq. (A25) for these coefficients.
We find three sets of solutions for all quantities, corresponding to the three regimes of the random linear features

model. To determine when each solution applies, we use the fact that each of the ensemble-averaged quantities 〈ŵ2〉,
〈û2〉, 〈∆y2〉, and 〈∆β2〉 must be positive. All together, we find the solutions for the ensemble-averaged squared
quantities in the λ→ 0 limit to be

〈ŵ2〉 =


σ2
β

σ2
W

αf
(αp−αf ) +

(σ2
ε+σ2

δy∗ )

σ2
Wσ

2
X

α2
f

(1−αf )(αp−αf ) if Nf < Np,M
σ2
β

σ2
W

(1−αp+αf−αp)
(1−αp)(αf−αp) +

(σ2
ε+σ2

δy∗ )

σ2
Wσ

2
X

αfαp
(1−αp)(αf−αp) if Np < Nf ,M

σ2
β

σ2
W

1
(αp−1) +

(σ2
ε+σ2

δy∗ )

σ2
Wσ

2
X

αf
(αf−1)(αp−1) if M < Nf , Np

(A32)

〈û2〉 =


λ2

σ4
Xσ

4
W

[
σ2
βσ

4
X

α3
p

(αp−αf )3 + σ2
X(σ2

ε + σ2
δy∗)

αfα
3
p

(1−αf )(αp−αf )3

]
if Nf < Np,M

σ2
βσ

4
X

(1−αp)(αf−αp)(1−αp+αf−αp)

α3
f

+ σ2
X(σ2

ε + σ2
δy∗)

(1−αp)(αf−αp)

α2
f

if Np < Nf ,M

λ2

σ4
Xσ

4
W

[
σ2
βσ

4
X

α3
p

αf (αp−1)3 + σ2
X(σ2

ε + σ2
δy∗)

α3
p

(αf−1)(αp−1)3

]
if M < Nf , Np

(A33)
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〈∆y2〉 =


(σ2
ε + σ2

δy∗)(1− αf ) if Nf < Np,M

σ2
βσ

2
X

(1−αp)(αf−αp)
αf

+ (σ2
ε + σ2

δy∗)(1− αp) if Np < Nf ,M

λ2

σ4
Xσ

4
W

[
σ2
βσ

2
X

αfα
3
p

(αf−1)(αp−1)3 + (σ2
ε + σ2

δy∗)
α2
fα

2
p(αf−1+αp−1)

(αf−1)3(αp−1)3

]
if M < Nf , Np

(A34)

〈∆β2〉 =


(σ2
ε+σ2

δy∗ )

σ2
X

αf
(1−αf ) if Nf < Np,M

σ2
β

(αf−αp)
αf (1−αp) +

(σ2
ε+σ2

δy∗ )

σ2
X

αp
(1−αp) if Np < Nf ,M

σ2
β
αp(αf−1)
αf (αp−1) +

(σ2
ε+σ2

δy∗ )

σ2
X

(αf−1+αp−1)
(αf−1)(αp−1) if M < Nf , Np.

(A35)

In addition, to lowest order in small λ, the five scalar susceptibilities are

χ =


1− αf if Nf < Np,M
1− αp if Np < Nf ,M

λ
σ2
Wσ

2
X

αfαp
(1−αf )(1−αp) if M < Nf , Np

(A36)

ν =


1
λ

(αp−αf )
αp

+ 1
σ2
Wσ

2
X

α2
f

(1−αf )(αp−αf ) if Nf < Np,M
1

σ2
Wσ

2
X

αfαp
(1−αp)(αf−αp) if Np < Nf ,M

1
λ

(αp−1)
αp

+ 1
σ2
Wσ

2
X

αf
(αf−1)(αp−1) if M < Nf , Np

(A37)

κ =


λ

σ2
Wσ

2
X

αfαp
(1−αf )(αp−αf ) if Nf < Np,M
(αf−αp)

αf
if Np < Nf ,M

(αf−1)
αf

if M < Nf , Np

(A38)

ω =


λ
σ2
W

αp
(αp−αf ) if Nf < Np,M

σ2
X

(1−αp)(αf−αp)

α2
f

if Np < Nf ,M
λ
σ2
W

αp
αf (αp−1) if M < Nf , Np

(A39)

φ =


− 1
σ2
X

αf
(1−αf ) if Nf < Np,M

− 1
σ2
X

αp
(1−αp) if Np < Nf ,M

−σ
2
W

λ
(αf−1)(αp−1)

αfαp
if M < Nf , Np.

(A40)

We use the quantities 〈∆y2〉 and 〈∆β2〉 above in combination with formulas for the training and test error in
Sec. A 3 to obtain the expressions in Eqs. (14) and (15).

e. Bias-Variance Decomposition

Next, we derive the bias and variance. According to the general solutions in Eqs. (A8) and (A9), we require
the quantity 〈∆β1∆β2〉. To calculate 〈∆β1∆β2〉, we apply the self-consistent equations, Eq. (A21), to two models
each trained separately on one of two independent training sets, with all other random variables held in common.
We specify which quantities depend on each of the training sets using a subscript 1 or 2 for data sets D1 and D2,
respectively. For training set D1, these equations are

ŵ1,0 = νσŵzŵ1

û1,0 = κσûzû1
+ ω(β0 − σ∆βz∆β1

)

∆y1,0 = χ(σ∆yz∆y1 + δy∗NL(~x1,0) + ε1,0)

∆β1,0 = κ(β0 − σ∆βz∆β1
) + φσûzû1

,

(A41)

while for training set D2, they are

ŵ2,0 = νσŵzŵ2

û2,0 = κσûzû2
+ ω(β0 − σ∆βz∆β2

)

∆y2,0 = χ(σ∆yz∆y2 + δy∗NL(~x2,0) + ε2,0)

∆β2,0 = κ(β0 − σ∆βz∆β2
) + φσûzû2

.

(A42)
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Multiplying these equations and making the self-averaging approximation, we find equations for the covariance of
each of the unknown variables,

〈ŵ1ŵ2〉 =
1

Np

∑
K

ŵ1,Kŵ2,K ≈ E[ŵ1,0ŵ2,0] = ν2E
[
σ2
ŵzŵ1

zŵ2

]
〈û1û2〉 =

1

Nf

∑
k

û1,kû2,k ≈ E[û1,0û2,0] = κ2E
[
σ2
ûzû1zû2

]
+ ω2

(
σ2
β + E

[
σ2

∆βz∆β1
z∆β2

])
〈∆y1∆y2〉 =

1

M

∑
b

∆y1,b∆y2,b ≈ E[∆y1,0∆y2,0] = χ2E
[
σ2

∆yz∆y1z∆y2

]
〈∆β1∆β2〉 =

1

Nf

∑
k

∆β1,k∆β2,k ≈ E[∆β1,0∆β2,0] = κ2
(
σ2
β + E

[
σ2

∆βz∆β1z∆β2

])
+ φ2E

[
σ2
ûzû1zû2

]
.

(A43)

Next, we calculate each of the four resulting expectation values of products of random variables. Converting each
of the random variables zŵ1 , z∆β1 , etc., back into their forms as sums, we use the independence of elements of the
random matrices and the other variables to find

E
[
σ2
ŵzŵ1

zŵ2

]
≈ E

∑
jk

û1,j\0û2,k\0Wj0Wk0

 = σ2
W

αf
αp
〈û1û2〉

E
[
σ2

∆βz∆β1
z∆β2

]
≈ E

[∑
JK

ŵ1,J\0ŵ2,K\0W0JW0K

]
= σ2

W 〈ŵ1ŵ2〉

E
[
σ2
ûzû1zû2

]
≈ E

[∑
ab

∆y1,a\0∆y2,b\0X1,a0X2,b0

]
= 0

E
[
σ2

∆yz∆y1z∆y2

]
≈ E

∑
jk

∆β1,j\0∆β2,k\0X1,0jX2,0k

 = 0.

(A44)

Substituting these results back into Eq. (A43), we find the self-consistent equations

〈ŵ1ŵ2〉 = ν2σ2
W

αf
αp
〈û1û2〉

〈û1û2〉 = ω2
(
σ2
β + σ2

W 〈ŵ1ŵ2〉
)

〈∆y1∆y2〉 = 0

〈∆β1∆β2〉 = κ2
(
σ2
β + σ2

W 〈ŵ1ŵ2〉
)
.

(A45)

Next, we make the ansatz that the ensemble-averaged covariances are O(1) in small λ̄ with the next order terms at
O
(
λ̄2
)
,

〈ŵ1ŵ2〉 ≈ 〈ŵ1ŵ2〉0 + λ̄2 〈ŵ1ŵ2〉2
〈û1û2〉 ≈ 〈û1û2〉0 + λ̄2 〈û1û2〉2

〈∆β1∆β2〉 ≈ 〈∆β1∆β2〉0 + λ̄2 〈∆β1∆β2〉2 .
(A46)

All together, the covariances in the limit λ→ 0 are

〈ŵ1ŵ2〉 =


σ2
β

σ2
W

αf
(αp−αf ) if Nf < Np,M

σ2
β

σ2
W

αp
(αf−αp) if Np < Nf ,M

σ2
β

σ2
W

1
(αfαp−1) if M < Nf , Np

(A47)

〈û1û2〉 =


λ2

σ4
Xσ

4
W
σ2
βσ

4
X

α3
p

(αp−αf )3 if Nf < Np,M

σ2
βσ

4
X

(1−αp)2(αf−αp)

α3
f

if Np < Nf ,M

λ2

σ4
Xσ

4
W
σ2
βσ

4
X

α3
p

αf (αp−1)2(αfαp−1) if M < Nf , Np

(A48)
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〈∆y1∆y2〉 = 0 (A49)

〈∆β1∆β2〉 =


λ2

σ4
Xσ

4
W
σ2
β

α2
fα

3
p

(1−αf )2(αp−αf )3 if Nf < Np,M

σ2
β

(αf−αp)
αf

if Np < Nf ,M

σ2
β
αp(αf−1)2

αf (αfαp−1) if M < Nf , Np.

(A50)

Finally, we use the solution for 〈∆β1∆β2〉 to find the bias and variance according to Eqs. (A8) and (A9), resulting in
Eqs. (16) and (17).

Appendix B: Spectral Densities of Kernel Matrices

Here, we derive the spectral densities for the kernel matrix ZTZ using the technique laid out in Ref. 37. According
to this formalism, the spectral density of the kernel can be written in terms of the scalar susceptibility ν, defined in
the previous section, using the formula

ρ(x) = − 1

π
lim
ε→0+

Im ν(−x+ iε). (B1)

In addition, we expect there to be delta function of eigenvalues located at zero. Although the above formula can in
principle be used to obtain the fraction of eigenvalues at zero, for convenience, we instead use the scalar susceptibility
χ, which can be shown to be exactly

χ =
1

M
Tr

∂∆~y

∂~ξ
=

1

M
Tr
[
IM − ZZ+

]
= 1− 1

M
rank(ZTZ). (B2)

The fraction of eigenvalues at zero is then

fzero = 1− 1

Np
rank(ZTZ) =

χ+ αp − 1

αp
. (B3)

Next, we define dimensional versions of ν and λ,

ν̄ = σ2
Wσ

2
Xν, λ̄ =

λ

σ2
Wσ

2
X

. (B4)

Using the self-consistent equations for the scalar susceptibilities in Eqs. (A23) and (A24), we find a cubic equation
for ν̄,

0 = (αpλ̄ν̄)3 + [1− αp + αf − αp] (αpλ̄ν̄)
2

+
[
(1− αp)(αf − αp) + αfαpλ̄

]
(αpλ̄ν̄)− αfα2

pλ̄. (B5)

Solving this cubic equation analytically is very involved, so we refer to the solution in Ref. 36. Instead, we solve this
equation numerically for the negative imaginary roots of ν(λ) with λ = −x, according to Eq. (B1). However, we also
need to find the interval over which the eigenvalue spectrum is positive. To do this, we rewrite the equation in general
form for αpλ̄ν̄,

(αpλ̄ν̄)3 + a2(αpλ̄ν̄)2 + a1(αpλ̄ν̄) + a0 = 0, (B6)

where the coefficients are

a0 = −αfα2
pλ̄

a1 = (1− αp)(αf − αp) + αfαpλ̄

a2 = 1− αp + αf − αp.
(B7)

The discriminant for a cubic equation is expressed in terms of these coefficients as

D(λ) = R2 −Q3 (B8)

with

Q =
1

9

(
a2

2 − 3a1

)
R =

1

54

(
9a2a1 − 27a0 − 2a3

2

)
.

(B9)
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To find the limiting eigenvalues, we then solve the equation D(λ) = 0 (with λ = −x) numerically for the largest and
smallest non-negative real roots.

To find the weight of the delta function component at zero, we use the solution for χ that we found previously,
giving us

fzero =


1− αf

αp
if Nf < Np,M

0 if Np < Nf ,M
1− α−1

p if M < Nf , Np

= max

(
0, 1− αf

αp
, 1− α−1

p

)
. (B10)

Appendix C: Numerical Simulation Details

In this section, we explain our procedures for generating numerical results. Fig. 4 provides comparisons to numerical
results for the training error, test error, bias, and variance.

1. General Details

In all plots of training error, test error, bias, and variance, each point (or pixel for 2d plots) is averaged over 1000
independent simulations, unless located exactly at a phase transition, in which case, each point is averaged over
150000 simulations. Small error bars are shown each plot, representing the error on the mean. We also scale the error
in each plot by the variance of the labels σ2

y = σ2
βσ

2
X + σ2

δy∗ + σ2
ε . In all simulations, we use training and test sets of

size M = M ′ = 512, a signal-to-noise ratio of (σ2
βσ

2
X + σ2

δy∗)/σ
2
ε = 10, and a regularization parameter of λ = 10−6.

We use a linear teacher model y∗(~x) = ~x · ~β (σ2
δy∗ = 0) for all plots.

To find the solution for a particular regression problem, we solve a different (but equivalent) system of equations
depending on whether Np < M or Np > M , allowing us to reduce the size of the linear system we need to solve. If
Np < M , we solve the system of Np equations[

λINp + ZTZ
]
ŵ = ZT~y (C1)

for the Np unknown fit parameters ŵ where INp is the Np ×Np identity matrix. This equation is identical to that in
Eq. (6) in the main text.

Alternatively, if Np > M we solve a system of M equations,[
λIM + ZZT

]
â = ~y, (C2)

for the M unknowns â where IM is the M ×M identity matrix. We then convert to fit parameters via the formula
ŵ = ZT â.

2. Bias-Variance Decompositions

To efficiently calculate the ensemble-averaged bias and variance, we take inspiration from Eq. (A7). During each
simulation, we independently generate two training data sets D1 and D2. Using the results from the first training
set, we calculate the training and test error. To calculate the bias, we also calculate the label predictions for both
training sets for an identical test set, ŷ1 and ŷ2, and record the residual label errors between these predictions and
the true labels of the test set ~y∗′ We then record the dot product (ŷ1 − ~y∗′) · (ŷ2 − ~y∗′). When averaged over many
simulations, this quantity approximates the bias. We can then subtract this quantity from the average test error to
find the variance.

3. Eigenvalue Decompositions of Kernel Matrices

For each of the numerical eigenvalue distributions for the kernel matrices presented in the main text, we choose
M = 4096. We then average over the distributions for 10 independently sampled matrices when αp = 1 or αp = 8 and
over 80 matrices when αp = 1/8. In this way, we ensure that the same number of non-zero eigenvalues is present in
the part of the histograms corresponding to the bulk of the distributions (the distribution excluding the delta function
at zero). For M < Np we calculate the eigenvalues of ZTZ, while for M > Np we instead calculate the eigenvalues
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of ZZT since this matrix is smaller and contains the same non-zero eigenvalues. In the later case, we then manally
append an additional Np −M zero-valued eigenvalues to the distribution.
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FIG. 4. Comparison of analytic and numerical results for the random linear features model: Training error and
bias-variance decomposition. (Top Row) Analytic solutions and (Bottom Row) numerical results are shown as a function
of αp = Np/M and αf = Nf/M . Plotted are the ensemble-averaged (a) training error, (b) test error, (c) squared bias, and
(d) variance. In each panel, black dashed lines show boundaries between different regimes of solutions depending on which
is smallest of the quantities M , Nf , or Np. The vertical and horizontal lines bound the interpolation, or overparameterized,
regime, located at αp > 1 and αf > 1, while the diagonal line marks the boundary between the large bias and minimal bias
underparameterized regimes for a linear teacher model. All solutions have been scaled by the variance of the training set labels
σ2
y = σ2

βσ
2
X + σ2

ε .


	Bias-variance decomposition of overparameterized regression with random linear features
	Abstract
	Introduction
	Summary of Major Results

	Theoretical Setup
	Data Distribution (Teacher Model)
	Model Architectures (Student Models)
	Fitting Procedure
	Model Evaluation
	Bias-Variance Decomposition
	Derivation of Closed-Form Solutions

	Analytic Expressions
	Phase transitions, susceptiblities, and eigenvalue spectra
	Comparison to Linear Regression and the Random Nonlinear Features Model
	Conclusions
	Acknowledgments
	References
	Cavity Derivations
	Notational Conventions
	Nonlinear Label Decomposition
	General Solutions
	Linear System of Equations
	Cavity Expansion
	Central Limit Theorem
	Self-consistency Equations
	Solution with Finite Regularization (1)
	Solutions in Ridge-less Limit (0)
	Bias-Variance Decomposition


	Spectral Densities of Kernel Matrices
	Numerical Simulation Details
	General Details
	Bias-Variance Decompositions
	Eigenvalue Decompositions of Kernel Matrices



