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High-fidelity large-eddy simulation (LES) is performed of Rayleigh-Taylor (RT) mixing in three
different configurations involving gravity reversal. In each configuration, LES results are compared
with one-dimensional Reynolds-Averaged Navier-Stokes (RANS) results, and a deficiency in a com-
monly used transport equation for the mass-flux velocity, aj , is identified. In the first configuration,
a classical two-component RT mixing layer is allowed to develop before it is subjected to rapid
acceleration reversal. In the second configuration, a three-component RT mixing layer with an
intermediate density layer is allowed to develop before being subjected to rapid acceleration re-
versal. Finally, in the third configuration, a light layer is interposed between two heavy layers; in
this configuration, only one interface is RT-unstable at a time as it undergoes rapid acceleration
reversal. In all cases, a commonly used buoyancy production closure in the aj transport equation
is shown to lead to significant over-prediction of mixing layer growth after gravity reversal. An
alternative formulation for this closure is then presented which is shown to more accurately capture
the stabilization effect of gravity reversal.

I. INTRODUCTION

Classical Rayleigh-Taylor (RT) instability occurs when
two fluids of differing densities are subjected to an accel-
eration directed from the heavy fluid toward the light
fluid. In such a configuration, perturbations at the inter-
face between the two fluids grow, interact, and eventually
transition to turbulence. RT-driven mixing occurs in a
number of applications from astrophysical phenomenon
to inertial confinement fusion (ICF) [1, 2].
In ICF, RT instability often occurs at the gas-ablator

interface, and turbulent mixing of these materials can
contribute to degradation of target performance [3, 4].
However in ICF applications, capsules are frequently sub-
jected to complex acceleration histories, often leading to
time periods with acceleration favorable to RT growth
alternating with time periods of deceleration and par-
tial interfacial stabilization [5]. For this reason, two-fluid
RT instability with time-varying acceleration has been
studied both experimentally and computationally by a
number of previous researchers [6–12].
Since Reynolds-averaged Navier-Stokes (RANS) mod-

eling approaches remain common within the ICF com-
munity, it is important that RANS models are capa-
ble of providing accurate prediction of RT mixing for
complex accelerations. Recently, Braun and Gore [13]
have presented a new approach for the Besnard-Harlow-
Rauenzahn (BHR) family of RANS models [14–16] with
the intent to better capture the behavior of RT mixing
following acceleration reversal. Under this new approach,
which Braun and Gore call the BHR-4 model, a gradient
diffusion approximation is not used to close the turbulent
species mass flux; instead, additional model transport
equations are solved for each species mass flux. While
this approach is shown to provide better agreement for
RT flow with gravity reversal, it also adds significant
complexity to the model.
As the present work will show, the inability of many

RANS models to correctly capture mixing layer stabiliza-
tion after gravity reversal seems to derive from treatment
of the buoyancy production term in the mass-flux veloc-
ity (aj) equation. Indeed, the k-L model [17, 18] is a
simple two-equation model which uses an algebraic clo-
sure for aj . Later in Section III, it will be shown that
the k-L model does not suffer from the same deficiency
as subsequent extensions [19–24] in predicting the mixing
width stabilization of two-fluid RT following gravity re-
versal. Of course, in more complicated flows such as those
involving shocks, the more advanced models are still pre-
ferred. Therefore, a need exists to correct the observed
deficiency in models that utilize a transport equation for
aj . Table I provides a brief summary of RANS models
considered in the present work.

It is therefore with a motivation towards RANS model
assessment and improvement that the present work ex-
amines the problem of RT mixing under gravity rever-
sal. In particular, large-eddy simulation (LES) using a
tenth-order accurate compact difference scheme is uti-
lized to simulate three different configurations. In each
case, LES results are compared with RANS results in or-
der to assess and improve the capacity of RANS models
to capture the effect of gravity reversal. In the first con-
figuration, a classical two-component RT mixing layer is
allowed to develop to turbulence before it is subjected
to a rapid acceleration reversal. In the second configu-
ration, a three-component RT mixing layer with an in-
termediate density layer (similar to the three-component
configuration studied in [24]) is considered, which allows
two unstable interfaces to develop before being subject
to rapid acceleration reversal. Finally, in the third con-
figuration, a light fluid is interposed between two heavy
layers, creating a situation in which one interface is ini-
tially stable and the other interface is initially unstable,
before the system is subjected to a rapid acceleration re-
versal. Figure 1 schematically depicts the three cases in
terms of the heavy density ρH , the light density ρL, and



TABLE I. Summary of RANS models considered.

Model Description Capabilities Limitations

k-L [17] two-equation Boussinesq
model

• self-similar growth for RT mixing
• captures RT mixing layer stabiliza-

tion following gravity reversal

• typically requires shock-detection
for Richtmyer-Meshkov (RM)
growth at RT-stable interfaces

• low-order approximation of spatial
profiles

• does not capture Reynolds stress
anisotropy

k-L-a [19] three-equation extension
of the k-L model, in-
cludes transport of mass-
flux velocity ai

• self-similar growth for RT mixing
• does not require shock-detection for

RM growth at RT-stable interfaces

• fails to capture RT mixing layer sta-
bilization following gravity reversal

• low-order approximation of spatial
profiles

• does not capture Reynolds stress
anisotropy

k-L-a-C [21, 24] four-equation extension
of the k-L-a model, in-
cludes transport of mass
fraction covariances for
reacting flows

• self-similar growth for RT mixing
• does not require shock-detection for

RM growth at RT-stable interfaces
• used to model heterogeneity of mix-

ing (i.e., “mixedness”)

• fails to capture RT mixing layer sta-
bilization following gravity reversal

• low-order approximation of spatial
profiles

• does not capture Reynolds stress
anisotropy

k-φ-L-a-C [23, 24] five-equation extension
of the k-L-a-C model,
developed for prediction
of high-order spatial
profiles while maintain-
ing self-similar model
calibration

• self-similar growth for RT mixing
• does not require shock-detection for

RM growth at RT-stable interfaces
• used to model heterogeneity of mix-

ing (i.e., “mixedness”)
• high-order spatial profiles

• fails to capture RT mixing layer sta-
bilization following gravity reversal

• does not capture Reynolds stress
anisotropy

BHR-3.1 [16] five-equation Reynolds-
stress transport model,
includes transport
equations for mass-flux
velocity, density-specific-
volume covariance b,
transport and dissipa-
tion length scales

• reproduces expected RT and RM
growth rates

• captures Reynolds stress anisotropy
in RT mixing

• does not require shock-detection for
RM growth at RT-stable interfaces

• fails to capture RT mixing layer sta-
bilization following gravity reversal

• low-order approximation of spatial
profiles

BHR-4 [13] multispecies extension
of BHR-3.1, includes
transport equations for
turbulent mass flux and
density-mass-fraction
covariance for each
species

• reproduces expected RT and RM
growth rates

• captures Reynolds stress anisotropy
in RT mixing

• does not require shock-detection for
RM growth at RT-stable interfaces

• captures RT mixing layer stabiliza-
tion following gravity reversal

• low-order approximation of spatial
profiles

• significant increase in model cost
and complexity

• non-trivial methods required to
maintain mass fraction realizability

the intermediate density ρI .

The remainder of this paper is laid out as follows. First
in Sec. II, descriptions are given of the numerical models
utilized in the present work. Descriptions of the gov-
erning equations, computational codes utilized, and the
RANS models considered are given in Secs. II A, II B,
and II C. Problem setup and initial conditions are dis-
cussed in Secs. II D and II E. Then, in Sec. III, results of
LES and RANS simulations of the three configurations
under consideration are presented and discussed. Finally
in Sec. IV, conclusions are drawn, and recommendations
are made concerning the direction of future research.

II. NUMERICAL MODELS

A. The Miranda Code

Three-dimensional LES calculations in the present
work utilize the Miranda code to solve the compressible
Navier-Stokes equations for a non-reacting, multicompo-
nent mixture:

∂ρ

∂t
+

∂ (ρui)

∂xi
= 0 , (1)
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FIG. 1. Schematic representation of the three RT mixing
configurations considered. The direction of the initial gravity
vector is indicated as g0.

∂ (ρYα)

∂t
+

∂ (ρYαui)

∂xi
= −∂Jα,i

∂xi
, (2)

∂ (ρuj)

∂t
+

∂ (ρuiuj)

∂xi
= − ∂p

∂xj
+

∂σij

∂xi
+ ρgj , (3)

∂E

∂t
+

∂ [(E + p)ui]

∂xi
=

∂ (σijui)

∂xj
− ∂qi

∂xi
+ ρgiui . (4)

In Eqs. (1) through (4), ρ is density, t is time, ui is the
velocity vector, xi is the spatial coordinate vector, Yα is
the mass fraction of species α, Jα,i is the diffusive mass
flux of species α, p is pressure, σij is the viscous stress
tensor, gj is a gravitational body force vector, E is the
total energy, and qi is the heat flux vector. The diffusive
mass flux is given in terms of effective binary diffusion
coefficients Dα as

Jα,i = −ρ



Dα
∂Yα

∂xi
− Yα

N∑

β=1

Dβ
∂Yβ

∂xi



 , (5)

for k=1, 2, . . . , N total species. The viscous stress tensor
is given by

σij = 2µSij +

(
β − 2

3
µ

)
∂ui

∂xi
δij , (6)

where µ is the shear viscosity, β is the bulk viscosity, δij
is the Kronecker delta, and Sij is the strain rate tensor,

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (7)

The heat flux vector is given in terms of the thermal
conductivity κ, the temperature T , and species enthalpy
hα,

qi = −κ
∂T

∂xi
+

N∑

α=1

hαJα,i . (8)

Component temperature, enthalpy, and pressure are ob-
tained through an ideal gas equation-of-state according
to,

pα = (γα − 1) ραeα (9a)

Tα =
eα
cv,α

, (9b)

hα = γαeα , (9c)

where cv,α is the specific-heat coefficient at constant vol-
ume for component α, and γα is the ratio of specific heats
coefficients. Using an assumption of pressure and tem-
perature equilibrium, an iterative process is used to solve
for component volume fractions, vα, which allows the de-
termination of partial densities and energies according
to

ρα =
Yαρ

vα
, (10)

and

e =
E

ρ
− 1

2
uiui =

N∑

α=1

Yαeα . (11)

Total pressure is then determined according to the mix-
ture relationship

p =

N∑

α=1

vαpα . (12)

The governing equations above are solved with a tenth-
order compact differencing scheme for spatial discretiza-
tion and a fourth-order explicit Runge-Kutta scheme for
temporal integration. Miranda has been utilized exten-
sively in previous studies of compressible turbulent mix-
ing [21, 24–32]. To model the subgrid scale transfer of en-
ergy, Miranda utilizes an artificial fluid LES approach in
which artificial transport terms are added to the fluid vis-
cosity, the bulk viscosity, the thermal conductivity, and
the molecular diffusivity [33, 34] according to

µ = µf + µ∗ , (13a)
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β = βf + β∗ , (13b)

κ = κf + κ∗ , (13c)

Dα = Df,α +D∗

α , (13d)

where the subscript f denotes the fluid, or physical, con-
tribution to the molecular transport property, and an
asterisk superscript denotes the artificial contribution.
The form of the artificial contributions utilized in the
present work is the same as that utilized in earlier work
by Morgan et al. [21, 35]. Since the present study is fo-
cused on the high-Reynolds-number regime in which vis-
cous length scales are significantly smaller than energy-
containing structures, the approach of Olson et al. [28]
is adopted, and fluid contributions to dynamic viscosity,
bulk viscosity, thermal conductivity, and molecular diffu-
sivity are taken to be zero (i.e., µf = βf = κf = Df,α =
0).

B. The Ares code

One-dimensional (1D) RANS calculations in the
present work utilize the Ares code to solve the compress-
ible RANS equations for a non-reacting, multicomponent
mixture. For the majority of RANS models considered in
the present work, gradient diffusion closures are utilized
to close turbulent transport terms in the transport equa-
tions for species mass and internal energy, which results
in a set of governing equations of the following form:

Dρ

Dt
= −ρ

∂ũi

∂xi
, (14)

ρ
DỸα

Dt
=

∂

∂xi

(
µt

NY

∂Ỹα

∂xi

)
, (15)

ρ
Dũj

Dt
= ρgj −

∂p

∂xj
+

∂

∂xi
(ρτij) , (16)

ρ
Dẽ

Dt
=− p

∂ũi

∂xi
− Esrc +

∂

∂xi

(
µt

Ne

∂ẽ

∂xi

)
, (17)

where

D

Dt
≡ ∂

∂t
+ ũi

∂

∂xi
. (18)

In Eqs. 14 through 17, µt is the eddy viscosity, NY and
Ne are model-specific closure coefficients, Esrc is a turbu-
lent source that represents a transfer of energy between
turbulence kinetic energy (TKE) and internal energy, and

ρτij ≡ −ρu′′

i u
′′

j is the Reynolds stress tensor. An overbar
denotes Reynolds averaging, and a tilde denotes mass-
weighted (Favre) averaging. An arbitrary scalar, f , is
decomposed as

f = f + f ′ = f̃ + f ′′ , (19)

where the Favre average is related to the Reynolds aver-
age according to

f̃ =
ρf

ρ
. (20)

For simulations in the present work, an ideal gas
equation-of-state is used as described previously in Eqs. 9
through 12.
The Ares code solves the governing equations using

an arbitrary Lagrangian/Eulerian (ALE) method with
a second-order remap [36]. Explicit time integration
is accomplished with a second-order predictor-corrector
scheme [37], and spatial differences are computed with
a non-dissipative second-order finite element approach.
A tensor artificial viscosity [38] is applied for the cap-
turing of shocks and material discontinuities. Although
Ares also boasts an adaptive mesh refinement (AMR) ca-
pability [39, 40], it is not utilized in the present study.
Ares has been applied previously in studies of canonical
Richtmyer-Meshkov instability in both planar [30] and
cylindrical [18] configurations. It has also been utilized
extensively in multidimensional simulation of ICF targets
and experiments [3, 41–47] as well as in 1D simulations
of turbulent mixing using RANS [19–24].

C. RANS models

Although the details may vary, a frequent approach to
RANS modeling of turbulent mixing is to utilize trans-
port equations for the TKE, k, and a turbulence length
scale L [14, 17, 19–21, 23, 24, 48–54]. The following equa-
tions represent a commonly encountered form of these
transport equations

ρ
Dk

Dt
=ρτij

∂ũi

∂xj
+ ai

∂p

∂xi
− CD

ρ (2k)3/2

L

+
∂

∂xi

(
µt

Nk

∂k

∂xi

)
, (21)

ρ
DL

Dt
=CL1ρ

√
2k + CL2ρL

∂ũi

∂xi

+ CL3ρτij
L

k

∂ũi

∂xj
+

∂

∂xi

(
µt

NL

∂L

∂xi

)
, (22)

where ai ≡ −u′′

i must be closed and is a model variable
representing the mass-flux velocity, and CD, CL1, CL2,
CL3, Nk, and NL are model-specific coefficients.
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1. Algebraic closure for mass-flux velocity

Models such as the k-L model of Dimonte and Tip-
ton [17] utilize a gradient-diffusion approach to write the
following algebraic closure for the mass-flux velocity,

ai ≈ −CB
µt

ρ2
∂ρ

∂xi
, (23)

where CB is another model-specific coefficient. This form
of closure can be well-suited for capturing integral behav-
ior of RT mixing such as the steady-state growth rate.
However, it has been shown to have deficiencies in cap-
turing counter-gradient mass flux in two-dimensional RT
configurations such as the so-called “tilted-rocket rig”
[49].

2. Transport equation for mass-flux velocity

An alternative approach for closing ai is to solve a
model transport equation such as the following

ρ
Daj
Dt

=Baj
− CAρaj

√
2k

L
− τij

∂ρ

∂xi

+
∂

∂xi

(
µt

Na

∂aj
∂xi

)
, (24)

where Baj
is a buoyancy production term typically writ-

ten in the following way

Baj
≈ CB1b

∂p

∂xj
. (25)

In Eq. 25, b ≡ −ρ′
(

1

ρ

)
′

is the unitless density-specific-

volume covariance requiring closure, and CB1 is a model
coefficient. In three-equation models such as the k-L-a
model [19] or the BHR-1 model [48], b is closed using
an algebraic expression involving partial densities and
volume fractions. In models such as the BHR-2 model
[49] or the BHR-3 model [15, 16], an additional transport
equation is solved for b. Similarly, in models such as the
k-L-a-V model [21] and the k-φ-L-a-V model [23], b is
closed through relationship to the scalar variance, which
is solved with a transport equation. Regardless of how b
is closed, however, it is a strictly non-negative quantity.
Now consider the case of a hydrostatic RT mixing layer

in which ∇p = −ρgj . Since b is non-negative, when us-
ing Eq. 25, Baj

will take the same sign as the pressure
gradient, and as a result aj will also take the same sign
as the pressure gradient, making the buoyancy produc-
tion term in the k equation, ai · ∇p, positive as expected
for unstable RT mixing. In the case of a rapid reversal
of gravity, however, consider that the sign of Eq. 25 will
also rapidly change. If this rapid change in the sign of

Baj
also results in a change in the sign of aj , then ai ·∇p

will continue to be positive. In most cases, continued
growth of k after gravity reversal would be non-physical.
Yet, it can be expected that models utilizing Eq. 25 will
predict this behavior if they do not have a mechanism
for rapidly dissipating b upon gravity reversal. For those
three-equation models utilizing algebraic closures for b,
it is clear that no such mechanism exists.

3. Alternative buoyancy production for aj

Given the possibility of non-physical behavior for mod-
els relying on Eq. 25, it is desirable to construct an al-
ternative approach which would appropriately allow aj
to go to zero upon gravity reversal. With this prop-
erty in mind, the following alternative approach is pro-
posed, which follows a similar form to buoyancy produc-
tion terms appearing in other model turbulence equa-
tions such as the ε equation for dissipation rate [55] or
the scalar variance equation [24].

Baj
≈ CB2aj

ai
2k

∂p

∂xi
. (26)

Notice that use of Eq. 26 effectively decouples b from the
model. While this approach might seem counterintuitive,
similarity analysis of the modified model can be used to
illustrate how the effect of density variance is still cap-
tured in Eq. 26. As discussed by Morgan and Wickett for
the k-L-a model [19], in the low-Atwood number limit,
the self-similar form of aj for a 1D RT mixing layer is
given by

a = −A
√
2CB1K0f , (27)

where A is the conventional Atwood number, K0 is the
time-dependent self-similar TKE such that k = K0f , and
f (χ) = 1− χ2 is the self-similar spatial function defined
in terms of the self-similarity variable χ. The self-similar
form of the algebraic b closure utilized by the k-L-amodel
is then given by

b = A2f . (28)

Plugging back into Eqs. 25 and 26, it is straightforward
to see that both will result in the same self-similar value

Baj
= −CB1A

2ρgf , (29)

as long as CB2 = 1. Viewed through this lens, it is
perhaps easier to see how in Eq. 26, ajai/2k ∼ b. Indeed,
the following realizability constraint [14] is expected and
often explicitly enforced,

|ai|2
2k

≤ b . (30)
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TABLE II. Summary of problem configurations. Densities in
units of mg/cm3.

Case A32 A21 A31 ρ3 ρ2 ρ1

1 – – 0.500 10.0 – 3.33

2 0.268 0.268 0.500 10.0 5.77 3.33

3 0.500 -0.500 0.000 10.0 3.33 10.0

Thus, while the model variable b does not explicitly ap-
pear in Eq. 26, the scaling represented by b is still cap-
tured. Additional self-similarity analysis for the k-φ-L-
a-C model [23, 24] when using Eq. 26 is presented in
Appendix A.

D. LES problem setup and initial conditions

LES calculations are conducted on a computational
mesh of dimension 2π × 2π × 4π cm3 with the initial
gravitational acceleration vector oriented in the negative
z dimension. For configuration 1, the nominal fluid inter-
face is located at z = 0 such that ρ = ρL for −2π ≤ z < 0,
and ρ = ρH for 0 ≤ z ≤ 2π. Fluid densities are cho-
sen such that ρH = 0.01 g/cm3 and A = 0.50. For
configuration 2, the initial thickness of the intermediate-
density material is taken to be 1/8 of the domain size
in z, such that the light material is initialized with ρL
from −2π ≤ z < −π/4, the intermediate-density mate-
rial is initialized with ρI from −π/4 ≤ z < π/4, and the
heavy material is initialized with ρH from π/4 ≤ z ≤ 2π.
Fluid densities in configuration 2 are chosen such that
ρH = 0.01 g/cm3, the Atwood number between heavy
and light components is 0.50, and the Atwood number at
the heavy-intermediate interface is equal to the Atwood
number at the intermediate-light interface. For config-
uration 3, the initial thickness of the light material in
between two layers of heavy material is also taken to be
1/8 of the domain size in z, such that heavy material
is initialized with ρH from −2π ≤ z < −π/4, the light
material is initialized with ρL from −π/4 ≤ z < π/4,
and additional heavy material is initialized with ρH from
π/4 ≤ z ≤ 2π. Densities in this configuration are taken
such that ρH = 0.01 g/cm3, and Atwood numbers at the
unstable and stable interfaces are taken to be 0.50 and
-0.50, respectively. Table II summarizes the three cases
in terms of the generalized Atwood number Aij , where
an intermediate layer (if one exists) is assigned as com-
ponent 2, and components 3 and 1 are those components
surrounding the intermediate component to the top and
bottom, respectively.

Aij ≡
ρi − ρj
ρi + ρj

. (31)

Periodic boundary conditions are imposed in the x and
y dimensions, and non-penetrating wall boundaries are

set at z = −2π and z = 2π. A hydrostatic pressure field
is specified such that the mixing layer remains nominally
centered around z = 0. Constant mesh spacing is utilized
in all dimensions, such that the number of grid points in
the z dimension, Nz, is equal to twice the number of
grid points in the x and y dimensions; in other words,
Nz = 2Ny = 2Nx. For these simulations, Nz = 1152 for
a total of about 382 million computational elements.
An initial perturbation is specified at each interface

in Fourier space as a function of maximal and minimal
wavenumbers κmax and κmin according to

ξ (x, y) =

κmax∑

j=κmin

κmax∑

k=κmin

∆

κmax − κmin + 1
cos (jx+ θx,j)

× sin (ky + θy,k) , (32)

where ∆ indicates the mesh spacing and the phase shift
vectors θx,j and θy,k are drawn from uniformly dis-
tributed random numbers between 0 and 2π. The mix-
ture density at each interface at time t = 0 is then given
by

ρ (x, y, z) = ρi +
ρi+1 − ρi

2

[
1 + tanh

(
z − ξ (x, y)

4∆

)]
.

(33)
where the ρi indicates the density of the lower component
at the interface, as summarized by Table II. A broadband
initial perturbation spectrum is specified such that κmin

= 6, and κmax = 96.
For each configuration, a rapid acceleration reversal is

specified according to

gz = g0 tanh

(
t− trev
∆rev

)
, (34)

where g0 is the magnitude of gravitational acceleration,
equal to 981 m/s2 (approximately 100 times Earth grav-
ity), trev is a reversal time dynamically chosen for each
simulation based on the mixing layer width, and ∆rev is
the time scale over which the reversal occurs. In each
case, trev is determined when the mixing layer width h99,
defined as the distance between the 99% average mass
fraction contours of material 1 and material 3, exceeds a
pre-defined threshold hthresh. At the time tthresh at which
h99 first exceeds hthresh, the reversal time trev is defined
as tthresh + 3∆rev, and ∆rev is defined as 1600 times the
computational time step. Figure 2 illustrates this process
in the context of case 1, and Table III summarizes the
relevant reversal parameters for each case. For cases 1
and 2, the simulation is run out to 100 ms, and in case
3, the simulation is allowed to run until h99 exceeds 2π.

E. RANS problem setup and initial conditions

RANS simulations are conducted utilizing several dif-
ferent RANS models in Ares. Simulations are performed
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TABLE III. Summary of parameters governing gravity rever-
sal for each case.

Case hthresh (cm) tthresh (ms) trev (ms) ∆rev (ms)

1 4π

3
32.378 35.737 1.112

2 4π

3
34.357 37.810 1.151

3 11π

12
26.078 26.935 0.286
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FIG. 2. Mixing layer width as a function of time (in blue)
over-plotted with gravity as a function of time (in green) for
configuration 1.

on a 1D mesh with 576 uniformly spaced computational
zones extending from z = −2π to z = 2π with non-
penetrating walls at the boundaries. Problems are set
to match the LES as closely as possible with the same
material densities and compositions as described in the
previous section. As in the LES problem, an initial grav-
itational acceleration in the negative z dimension is bal-
anced by a hydrostatic pressure gradient such that the
mixing layer remains nominally centered about z = 0.
An initial linear mass fraction profile is specified to ap-
proximately match the initial average LES mass frac-
tion profile at each interface with an initial half-width of
h0 = 4∆. Then, at each interface at location z = zint, we
define a similarity coordinate χ ≡ (z − zint) /h0, which
is used to specify functional distributions for the initial
turbulence length scale Lt=0, the initial TKE kt=0, the
initial mass flux velocity az,t=0, and the initial turbulence
velocity φt=0.

Lt=0 =

{
L0

√
1− χ2, −1 ≤ χ ≤ 1

0, otherwise
, (35a)

kt=0 =

{
k0
(
1− χ2

)
, −1 ≤ χ ≤ 1

0, otherwise
, (35b)

az,t=0 =

{
−CB1A31

√
2k0

(
1− χ2

)
, −1 ≤ χ ≤ 1

0, otherwise
,

(35c)

φt=0 =
1

2

√
kt=0 . (35d)

In Eqs. 35a and 35b, L0 = 0.004 cm, and k0 = 1.0×10−10

cm2/µs2. The initial turbulence velocity is only initial-
ized using Eq. 35d in the present work when utilizing
the k-φ-L-a-C model. This choice for L0 ≈ h0/5 is in-
formed by prior observations by Morgan et al. [56] which
found the integral length scale of turbulence to be ap-
proximately 20% of the mixing layer width for self-similar
RT mixing. The choice for k0 is roughly consistent with
peak TKE in the comparison LES at early time (0.2 ms),
and the expressions for az,t=0 and φt=0 come from self-
similarity analysis [19, 23]. Note that initialization of az
with Eq. 35c is necessary for an accurate match to early
time mixing layer growth and reduces sensitivity to the
choice of k0. Appendix B explores some initialization
sensitivities using Eq. 26 for az,t=0 = 0.
Gravity reversal in the RANS calculations follows a

similar procedure as used for the LES calculations, as
outlined in the previous section. That is, once the mix-
ing layer width h99 exceeds the threshold given in Table
III, gravitational acceleration is reversed as described by
Eq. 34. For each RANS simulation trev is determined dy-
namically, but ∆rev is set to match the value used in the
comparison LES as specified in Table III. As with the
LES calculations, for cases 1 and 2, RANS simulations
are run out to 100 ms, and for case 3, simulations are
allowed to run until h99 exceeds 2π.

III. RESULTS AND DISCUSSION

A. Configuration 1

Figure 3 provides a qualitative overview of the mixing
layer evolution in configuration 1 by plotting contours
of density from LES at several time instants. Referring
back to Fig. 2, we see that Figs. 3(a) and 3(b) illustrating
contours at times t = 10 ms and t = 30 ms, respectively,
are from times prior to gravity reversal, while Fig. 3(c)
at t = 70ms is taken after reversal. Together, these im-
ages illustrate how the mixing layer grows and develops
into turbulence before growth is stabilized and mixing be-
comes more diffusive following gravity reversal. In par-
ticular, comparing Figs. 3(b) and 3(c), it is clear that
following gravity reversal large turbulent structures be-
gin to dissipate rapidly, resulting in a stable stratification
and a mixing layer that is decaying towards laminariza-
tion.
Mixing layer width as a function of time is plotted for

LES as well as for several RANS models in Fig. 4. Similar
to observations in prior works [8, 10, 12], the LES mixing
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FIG. 3. Contours of density (mg/cm3) in the y = π plane for LES of configuration 1 at three different time instants: (a) t =
10 ms, (b) t = 30 ms, and (c) t = 70 ms.
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FIG. 4. Comparison between LES and RANS of mixing layer
width h99 versus time for configuration 1.

layer width appears to decrease by approximately 15%
following gravity reversal. While this effect is sometimes
referred to as “de-mixing,” the decrease in observed mix-
ing layer width is actually the result of the breakup and
dissipation of entrained regions of non-diffusively mixed
fluid [13]. By comparing LES mixing layer width against
RANS, however, it is clear that the k-L-a [19] results
using Eq. 25 as well as the BHR-3.1 [16] results both
fail to capture the stabilizing effect of gravity reversal.
By contrast, the BHR-4 [13] results do a better job than
BHR-3.1 at capturing stabilization after gravity reversal.
However, the much simpler k-L model [17] does as well,
albeit without capturing any of the post-reversal reduc-
tion in h99. Results with the k-L-a and k-φ-L-a-C [24]
models are observed to behave similar to k-L when the
alternative buoyancy production closure given by Eq. 26

is used.

Plots in Fig. 5 provide additional insight into the dis-
sipation of TKE and mechanisms of failure of Eq. 25 by
plotting time histories of the peak TKE, k, and mass-flux
velocity, az, across the mixing layer. First in Fig. 5(a),
time evolution of k is compared between LES and RANS.
It is observed in the LES that k rapidly decreases by
about 80% following acceleration reversal. While all of
the RANS models predict a rapid decrease in k, when
Eq. 25 is utilized with the k-L-a model, TKE rapidly
increases in a non-physical manner shortly thereafter.
When Eq. 26 is used, however, the TKE drops to zero
following gravity reversal and does not grow again. The
BHR models both follow a similar trajectory in their pre-
diction of TKE which qualitatively agrees more closely
with LES by remaining non-zero and decaying slowly af-
ter the initial drop following gravity reversal. Similarly,
in Fig. 5(b), the time evolution of az is compared be-
tween LES and RANS. In the LES, az is observed to
briefly change sign from negative to positive following
gravity reversal before decaying approximately to zero.
This behavior seems to be the cause of failure in the k-
L-a model with Eq. 25; with Eq. 25 when az changes
sign, buoyancy production in the k equation (ai·∇p) be-
comes positive again, causing both k and az to continue
growing. When Eq. 26 is used, however, as az decreases,
so too does the magnitude of Baj

, which causes az to
go to zero without changing sign and thus avoids sub-
sequent non-physical mixing layer growth. Additionally,
results utilizing the k-L-a model with Eq. 26 in Fig. 5 are
exactly representative of results that would be obtained
using the k-L-a-C model [24] since the Cij equation be-
comes a passive auxiliary equation when Eq. 26 is used
with the k-L-a-C model. It is also worth noting that the
k-φ-L-a-C model more accurately predicts the peak mag-
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FIG. 5. Comparison between LES and RANS of time history of two turbulence variables for configuration 1: (a) maximum
TKE, k, and (b) maximum mass-flux velocity, az.
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FIG. 6. Comparison between LES and RANS of mixedness
Θ13 versus time for configuration 1.

nitude of az just prior to gravity reversal than the k-L-a
(or k-L-a–C) model. Finally, it is worth commenting that
while the BHR models are the only RANS results to cor-
rectly capture a brief change in sign of az, the BHR-3.1
model is unable to capture stabilization of the mixing
layer width, and the BHR-4 model involves significantly
greater increase in model complexity than what is repre-
sented by the change from Eq. 25 to Eq. 26.
The proportion of diffusively mixed fluid to entrained

fluid is often represented by the so-called mixedness pa-
rameter defined as

Θij ≡ 1−
∫ 2π

−2π
Ỹ ′′

i Y ′′

j dz
∫ 2π

−2π ỸiỸjdz
= 1 +

∫ 2π

−2π
Cijdz

∫ 2π

−2π ỸiỸjdz
. (36)

Figure 6 plots the evolution of mixedness for configura-
tion 1 with both LES and RANS. The RANS models
considered in Fig. 6 are the k-L-a-C and the k-φ-L-a-C

models, which both solve a transport equation for the
scalar mass fraction covariances Cij . When Eq. 26 is
used with these models, the mixedness more-or-less fol-
lows the trajectory of the LES. Prior to gravity reversal,
the LES and RANS results both approach the expected
steady-state value of about 0.8 for RT mixing. Follow-
ing gravity reversal, the RANS mixedness rapidly goes
to 1, indicating near-complete dissipation of C13, while
the LES results decay somewhat more slowly and oscil-
late around a value of about 0.98. The rapid increase
in mixedness that occurs after gravity reversal, however,
is consistent with previous observations in the context
of Fig. 3 of the breakdown of large, entrained structures
and the realization of a more diffusively mixed layer.

B. Configuration 2

Figure 7 gives a qualitative overview of the evolution
of mixing in configuration 2. In this case, instabilities de-
velop at both interfaces simultaneously, which eventually
grow large enough to interact with each other and de-
velop into a three-component mixing layer. Figures 7(a)
and 7(b) illustrate density contours at two time instants
prior to gravity reversal (10 ms and 30 ms, respectively),
while Fig. 7(c) illustrates contours after gravity rever-
sal at 70 ms. Similar to behavior observed previously
in configuration 1, large coherent structures appear to
break up rapidly following gravity reversal, resulting in
a mixing layer decaying towards laminarization. Addi-
tionally, comparing Fig. 3(c) with Fig. 7(c), by observing
density contours alone, it is difficult to distinguish the
three-component mixing layer from the two-component
mixing layer after it has become well-mixed.
The ability of RANS models to capture mixing layer

width in configuration 2 is considered in Fig. 8. Again,
compared with configuration 1, the LES result in Fig. 8
follows a similar trajectory to the LES result in Fig. 4.
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FIG. 7. Contours of density (mg/cm3) in the y = π plane for LES of configuration 2 at three different time instants: (a) t =
10 ms, (b) t = 30 ms, and (c) t = 70 ms.
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FIG. 8. Comparison between LES and RANS of mixing layer
width h99 versus time for configuration 2.

Specifically in LES results, the mixing layer width is ob-
served to initially decrease following gravity reversal be-
fore stabilizing at a near-constant value. As with the two-
component mixing layer, k-L-a results utilizing Eq. 25
and BHR-3.1 results in Fig. 8 both fail to capture mix-
ing layer stabilization following gravity reversal. RANS
results with the k-L model, the k-L-a model with Eq. 26,
and the k-φ-L-a-C with Eq. 26 do all capture stabiliza-
tion; although, these RANS results do not capture the
expected decrease in mixing layer width.
Finally, Fig. 9 plots the evolution of mixedness quanti-

ties Θ12 and Θ13 for configuration 2 with both LES and
RANS. (Due to Atwood-number symmetry of the two in-
terfaces in configuration 2, the Θ23 mixedness follows a
nearly identical trajectory to Θ12.) Note that, due to
decoupling of the b variable from the RANS model when

using Eq. 26, k-L-a-C results in Fig. 9 follow exactly the
same evolution of mixing layer width as the k-L-a re-
sults with Eq. 26 shown in Fig. 8. Overall, RANS results
in Fig. 9 qualitatively follow a similar trend as LES. For
Θ12, LES mixedness initially drops to a value of about 0.8
prior to gravity reversal before rapidly increasing to reach
a steady state of about 0.98. While the RANS results in
Fig. 9(a) do not capture the pre-transition evolution of
mixedness and predict a more rapid increase in mixed-
ness following gravity reversal, they more-or-less capture
the qualitative behavior of the system. In Fig. 9(b), the
RANS results predict a later initial drop in Θ13, suggest-
ing that spikes of material 3 are reaching into material
1 earlier in the LES than predicted by RANS. However,
the magnitude of the initial drop and the subsequent rise
in mixedness following gravity reversal both qualitatively
agree with behavior observed in the LES.

C. Configuration 3

A qualitative overview of configuration 3 is given in
Fig. 10, which again plots density contours from LES
at three time instants. In this configuration, the up-
per interface is unstable prior to gravity reversal, while
the lower interface becomes unstable following gravity
reversal. This leads to a situation in which one inter-
face is growing and the other is stabilizing at all times.
Figure 10(a) illustrates the state of the layer prior to
gravity reversal at 20 ms, while Figs. 10(b) and 10(c)
both illustrate the layer at times following gravity rever-
sal, at 40 ms and at 60 ms respectively. As expected,
Fig. 10(a) illustrates the mixing layer developing at the
upper interface only, while the lower interface remains
stable. In Fig. 10(b), growth at the upper interface ap-
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FIG. 9. Comparison between LES and RANS of mixedness versus time for configuration 2: (a) Θ12 and (b) Θ13.

FIG. 10. Contours of density (mg/cm3) in the y = π plane for LES of configuration 3 at three different time instants: (a) t =
20 ms, (b) t = 40 ms, and (c) t = 60 ms.

pears to be stabilizing, with larger coherent structures
breaking down into more diffusive mixing, and mixing at
the lower interface appears to be accelerating. As illus-
trated in Fig. 10(c), the mixing layer continues to grow at
the lower interface until the simulation is ended, unlike
in previous simulations which stabilized following gravity
reversal.

Figure 11 plots the time evolution of mixing layer
width for configuration 3 with both LES and several
RANS models. Using LES, the mixing layer appears to
grow at a nearly constant rate, with only minor inflec-
tion indicating the time of gravity reversal. For RANS
results using Eq. 25, growth generally matches LES until
gravity reversal, but growth is over-predicted following
gravity reversal because use of Eq. 25 fails to capture
stabilization at the upper interface. Interestingly, use of
Eq. 26 results in different behavior between the k-L-a-C

and the k-φ-L-a-C models. Specifically, k-L-a-C results
with Eq. 26 predict a non-physically long recovery time
following gravity reversal during which the upper inter-
face rapidly stabilizes and the lower interface slowly de-
velops. By contrast, k-φ-L-a-C results using Eq. 26 follow
the LES quite closely.

The principal difference between the two RANS mod-
els considered in Fig. 11 is in the spatial profiles of tur-
bulence quantities that are realized by the two models.
Similarity analysis [19, 21, 23, 24] predicts that the k-L-
a-C model should give a nearly linear mass fraction profile
and quadratic profiles for turbulence quantities such as
k, Cij , and b. The k-φ-L-a-C model, on the other hand,
is expected to give higher-order profiles which agree bet-
ter with LES, as illustrated in Fig. 12. Figure 12 plots
spatial profiles of the average mass fraction of light ma-

terial, ỸL, and the density-specific-volume covariance b
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FIG. 11. Comparison between LES and RANS of mixing layer
width h99 versus time for configuration 3.

at t = tthresh just before gravity reversal. From this com-
parison, it is clear that the higher-order spatial profiles
of the k-φ-L-a-C model agree better with LES, although
the peak magnitude of b is somewhat over-estimated. It
is expected that accurate treatment of turbulence quan-
tities in profile tails should be necessary for accurately
matching the state of turbulence at the lower interface
at the time of gravity reversal. That is, since gravity
reversal occurs just after the mixing layer mixes all the
way through (recall Fig. 12(a)), the state of turbulence
at the lower interface at t = trev is being determined by
behavior in the profiles tails. Since the k-φ-L-a-C model
agrees better with LES in these tails, the effective initial
conditions for growth upon gravity reversal matches bet-
ter as well, leading to an overall improved agreement in
behavior post-reversal.

The difference in behavior between the k-L-a-C and
k-φ-L-a-C models is further clarified by Fig. 13. Figure
13 plots time histories of k and az at the lower interface
(z = −π/4) for LES and the two RANS models. With
the k-L-a-C model, k and az are observed to grow slightly
at the lower interface just prior to t = trev. Since this
growth occurs prior to gravity reversal, it is not due to
buoyancy production at the interface; it is actually due
to turbulent diffusion of k and az away from the upper
interface. As observed previously in Fig. 12, the profile
tails are wider with the k-L-a-C model, and as a result
turbulence quantities transported through diffusion from
the upper interface are observed to arrive at the lower
interface earlier than with the k-φ-L-a-C model. A con-
sequence of this behavior is that the magnitude of Baj

at
the time of gravity reversal is greater with the k-L-a-C
model than with the k-φ-L-a-C model, and it acts as a
sink term immediately following gravity reversal. As a
result, the k-L-a-C is observed to take a longer period of
time to redevelop turbulence at the lower interface and
resume growing the mixing layer.

IV. SUMMARY AND CONCLUSIONS

The present work has examined the behavior of
Rayleigh-Taylor mixing following sudden acceleration re-
versal in three geometrical configurations. In each con-
figuration, high-fidelity LES results have been compared
against 1D RANS simulations as a means to evaluate the
capacity of particular RANS formulations to capture the
dynamics of mixing under complex acceleration history.
In the first configuration, a canonical, two-component RT
mixing layer is subjected to a sudden reversal of gravity,
which results in a stabilization of the mixing layer and a
decay of entrained turbulent structures to more diffusive
mixing. In the second configuration, a three-component
RT mixing layer with two unstable interfaces develops
until there is significant three-component mixing before it
is subjected to a reversal of gravity, resulting in a similar
stabilization and decay towards diffusive mixing. Finally
in the third configuration, a light layer is interposed be-
tween two heavy layers, resulting in a situation in which
only the top interface is initially unstable, but follow-
ing gravity reversal the top interface stabilizes while the
bottom interface grows unstably.
In studying the first configuration, it was found that

while the older k-L model was capable of capturing the
mixing layer stabilization effect of gravity reversal, the
newer k-L-a model continued to grow the mixing layer
in a non-physical way. The cause of this non-physical
behavior with the k-L-a model was determined to have
been the buoyancy production term in the aj equation
(Eq. 25), which can lead to a change in the sign of az and
a non-physical continuation of mixing layer growth post-
reversal. An alternative closure for buoyancy production
was suggested (Eq. 26) which was shown to recover the
expected stabilization when used with the k-L-a model.
When used with the k-L-a-C and k-φ-L-a-C models, the
alternative closure allowed the models to approximately
capture time history of the mixedness as well.
Consideration of the second configuration enabled as-

sessment of RANS model behavior under the conditions
of three-component mixing. Generally speaking, the
three-component mixing layer was observed to evolve in
a manner similar to the two-component mixing layer. As
before, the k-L-a model with Eq. 25 was found to pre-
dict significant non-physical growth following gravity re-
versal, while the k-L model and models utilizing Eq. 26
were found to stabilize mixing layer growth. Despite a
later initial drop in Θ13 observed by RANS models, sug-
gesting a discrepancy in the onset of three-component
mixing, reasonable qualitative agreement with LES was
observed in Θ12 and Θ13 mixedness histories for the k-
L-a-C and k-φ-L-a-C models when used with Eq. 26.

The third configuration proved to be most challenging
and perhaps the best discriminator amongst RANS mod-
els. In this case, RANS simulation with Eq. 25 resulted
in a similar over-prediction of growth following gravity
reversal with both the k-L-a-C and k-φ-L-a-C models.
However, when Eq. 26 was used with these models, only
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FIG. 12. Comparison between LES and RANS of spatial profiles at t = tthresh in configuration 3: (a) average mass fraction of

light material, ỸL and (b) the density-specific-volume covariance b.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−8

time (ms)

tk
e
 a

t 
lo

w
e
r 

in
te

rf
a
c
e
 (

c
m

2
/µ

s
s
)

 

 

LES

k−L−a−C (Eq. 26)

k−φ−L−a−C (Eq.26)
t = t

rev

0 20 40 60 80
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

time (ms)

a
z
 a

t 
lo

w
e
r 

in
te

rf
a
c
e
 (

c
m

/µ
s

s
)

 

 
LES

k−L−a−C (Eq. 26)

k−φ−L−a−C (Eq.26)
t = t

rev

(a) (b)

FIG. 13. Comparison between LES and RANS of time history of two turbulence variables in configuration 3 at the lower
interface (z = −π/4): (a) TKE, k, and (b) mass-flux velocity, az. Reversal time trev is indicated for reference with a dashed
black line.

the k-φ-L-a-C model agreed well with LES. When Eq. 26
was used with the k-L-a-C model in configuration 3, a
non-physically long recovery period was required before
the RANS result recovered the expected growth rate.
The ability of the RANS model to match profiles of tur-
bulence quantities in the tails is believed to be important
to matching conditions at the lower interface at the time
of gravity reversal. The high-order spatial profiles of the
k-φ-L-a-C model, which were shown to agree more closely
with LES than the k-L-a-C model, are therefore believed
to have contributed to a more-accurate prediction in mix-
ing layer width versus time.

The present work has not spent too much time dis-
cussing the BHR-4 model [13], other than to show that
it more-or-less behaves as expected for configuration 1
and represents an alternative approach to capturing mix-
ing layer stabilization following gravity reversal. Indeed,
the BHR models gave the best prediction of any consid-

ered in terms of the ability of these models to capture
physical sign change of az and a more realistic decay
of TKE following gravity reversal. These qualities must
be attributed at least partially to dissipation of b in the
BHR models preventing Eq. 25 from growing unbounded.
While the BHR-4 model is able to capture mixing layer
stabilization following gravity reversal more successfully
than the BHR-3.1 model, it does so with significant in-
crease in model complexity. Changing buoyancy produc-
tion in the a equation from Eq. 25 to Eq. 26 is a much
more modest change that can be done to capture the
most significant impact of gravity reversal, which is the
stabilization of mixing layer width.

Overall, this work has shown that RANS models rely-
ing on a commonly used transport equation for mass-flux
velocity may behave non-physically for turbulent mixing
involving rapid acceleration reversals. Since ICF appli-
cations frequently involve complex acceleration histories,
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the present results suggest close scrutiny is warranted,
as some commonly used RANS models may be prone
to over-predicting the impact of turbulent mixing. An
alternative formulation for buoyancy production in the
mass-flux velocity equation was proposed, and models
using this formulation were demonstrated to more accu-
rately capture mixing layer stabilization following grav-
ity reversal. When used with the k-φ-L-a-C model, this
new formulation best matched LES for all three config-
urations considered. Of course, more work remains to
be done. The behavior of Eq. 26 should be evaluated in
simulations of actual experiments such as those by Di-
monte, Ramaphrabhu, and Andrews [7], and it should
be evaluated in mixing applications driven primarily by
Richtmyer-Meshkov instability. In RT-stable configura-
tions such as a shock passing from a heavy fluid into light
fluid, use of Eq. 26 should lead to a dissipation of k and
aj where use of Eq. 25 will not. Therefore, some mea-
sure of shock detection is likely required to keep buoy-
ancy production of k positive within shocks when using
Eq. 26, as is often done with other models such as the k-L
model [17]. Similarly, the alternative formulation given
by Eq. 26 should be evaluated in more realistic ICF simu-
lations and in configurations involving more complex ac-
celeration histories such as “accel-decel-accel.” Improve-
ments to better capture the reduction in mixing layer
width (i.e. “de-mixing”) and the physical change in sign
of az following gravity reversal should be pursued as well.
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Appendix A: Additional self-similarity analysis for

the k-φ-L-a-C model

When Eq. 26 is utilized to close buoyancy production
in k-L-a-based models (such as k-L-a, k-2L-a, k-L-a-V ,
etc.), no additional impact is realized to previously de-
rived self-similarity constraints for model coefficients as
long as CB2 = 1. In newer models such as the k-φ-L-a-V
[23] and k-φ-L-a-C [24] models, in which an additional
transport equation for the turbulence velocity φ is uti-
lized, a more complicated constraint on CB2 is derived.

Following the same approach to self-similarity analysis
described in detail in previous work [23], the reduced a-
equation when utilizing Eq. 26 becomes

Ȧ0 = −
(
CA +

4Aβ

3γV
3/8
0

K0

A0P0

+
CL1

2

)
A0P0

L0

−CB2

A2
0

K0

g .

(A1)
In Eq. A1, the dot notation has been used to indicate
differentiation with respect to time, and γ is a normal-
ization constant given by

γ =
√
π
Γ
(
5

2

)

Γ (3)
≈ 1.178 . (A2)

A0, V0, P0, L0, and K0 are the time-dependent self-
similar functions defined by the separability ansatz

k (χ, t) = K0 (t) f
5/2(χ) , (A3a)

φ (χ, t) = P0 (t) f
1/2(χ) , (A3b)

L (χ, t) = L0 (t) f
1/2(χ) , (A3c)

a (χ, t) = A0 (t) f
5/2(χ) , (A3d)

C12 (χ, t) = −V0 (t) f
4(χ) . (A3e)

Finally, β in Eq. A1 is the proportionality constant relat-
ing the turbulence length scale to the mixing layer width
h such that L0 = βh. To derive a constraint on the co-
efficient CB2, it is assumed that A0 and P0 should be
related through an additional proportionality constant
such that A0 = CaP0. From prior work [23], the reduced
φ equation is then derived as

Ṗ0 =

(
Cp1 −

CL1

2

)
P 2
0

L0

− Cp3
A0

P0V
3/8
0

g , (A4)

where Cp1 and Cp3 are additional model coefficients ap-
pearing in the φ equation. In order to satisfy the assumed
proportionality between A0 and P0, Eqs. A1 and A4 must
reduce to the same form. Thus, the following constraint
can be derived

CB2 =
Cp3

V
3/8
0

K0

P 2
0

. (A5)

Following the same approach as in previous work [23],
an ansatz of self-similar RT growth can be invoked such
that h = αAgt2 for the RT growth parameter α. Then
for Ca = −2A

√
CB1, the following expression is obtained

for α

α =
Cp3CL1

10V
3/8
0 γNL

(
3− 4

Cp1

CL1

) . (A6)

Utilizing Eq. A6 and following the same procedure laid
out in section III.A.5 of the previous work [23], it is pos-
sible to derive

LLNL-JRNL-835181-DRAFT 14 Submitted to Physical Review E



K0

P 2
0

=
V

3/8
0

(
3− 4

Cp1

CL1

)

4Cp3

(
CD

CL1

+ 1
) . (A7)

Finally, by substituting Eq. A7 back into Eq. A5, a com-
plete constraint is derived for CB2.

CB2 =

(
3− 4

Cp1

CL1

)

4
(

CD

CL1

+ 1
) . (A8)

Note that in this case in which Eq. 26 is used with the
k-φ-L-a-C model, CB2 will not necessarily equal unity,
but Cp3 becomes a free parameter controlling the ratio
between

√
K0 and P0 for buoyancy-driven flow.

Appendix B: Initialization sensitivity

Figure 14 explores RANS sensitivity to choice of initial
k and az in configuration 1. In Fig. 14(a), k0 is varied
by two orders of magnitude under two different initial-
ization approaches for az when using the k-L-a model
with Eq. 26. When az is initialized according to Eq. 35c
(solid lines in Fig. 14(a)), the predicted mixing layer
width shows little sensitivity to k0 and agrees well with
LES. On the other hand, when az,t=0 = 0 (dashed lines
in Fig. 14(a)), the result shows increased sensitivity to
the choice of k0, and early-time agreement with LES is
poor; although, the rate of growth appears to be recov-
ered at later time. In contrast, Fig. 14(b) illustrates mix-
ing layer width predicted using Eq. 25 for several choices
of k0 when az,t=0 = 0. With Eq. 25, the solution is less
sensitive to choice of k0 for az,t=0 = 0.
In the case of Eq. 26 when az,t=0 = 0, early-time

growth of aj is driven by the shear production term in
Eq. 24 rather than the buoyancy production term. When
az is initialized with Eq. 35c, however, the buoyancy pro-
duction term drives growth at early time, and sensitivity
to k0 is reduced. When Eq. 25 is used, early-time growth
of aj is always driven by the buoyancy production term
even when az,t=0 = 0. Therefore one must be careful to
consider initial conditions for az when using Eq. 26, as
use of this form may lead to increased solution sensitivity
compared with Eq. 25, particularly when aj = 0.
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FIG. 14. Exploration of RANS solution sensitivity to initialization of k and az in configuration 1: (a) Mixing layer width h99

versus time for k-L-a model using Eq. 26 with several choices for k0 when az,t=0 is given by Eq. 35c (solid lines) and when
az,t=0 = 0 (dashed lines). (b) Mixing layer width h99 versus time for k-L-a model using Eq. 25 with several choices for k0 when
az,t=0 = 0.
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