aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Defect absorption and emission for math
xmins="http://www.w3.0rg/1998/Math/MathML">mi>p/mi>
/math>-atic liquid crystals on cones
Farzan Vafa, Grace H. Zhang, and David R. Nelson
Phys. Rev. E 106, 024704 — Published 12 August 2022
DOI: 10.1103/PhysRevE.106.024704


https://dx.doi.org/10.1103/PhysRevE.106.024704

Defect absorption and emission for p-atic liquid crystals on cones

Farzan Vafa,! Grace H. Zhang,2 and David R. Nelson?

L Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
2Department of Physics, Harvard University, Cambridge, MA 02138, USA
(Dated: July 19, 2022)

We investigate the ground state configurations of two-dimensional liquid crystals with p-fold
rotational symmetry (p-atics) on fixed curved surfaces. We focus on the intrinsic geometry and
show that isothermal coordinates are particularly convenient as they explicitly encode a geometric
contribution to the elastic potential. In the special case of a cone with half-angle 3, the apex
develops an effective topological charge of —y, where 27y = 27(1 — sin3) is the deficit angle of
the cone, and a topological defect of charge o behaves as if it had an effective topological charge
Qest = (0 — 0?/2) when interacting with the apex. The effective charge of the apex leads to defect
absorption and emission at the cone apex as the deficit angle of the cone is varied.

For total topological defect charge 1, e.g. imposed by tangential boundary conditions at the edge,
we find that for a disk the ground state configuration consists of p defects each of charge +1/p lying

equally spaced on a concentric ring of radius d = (3’;__1 )ﬁR, where R is the radius of the disk. In
the case of a cone with tangential boundary conditions at the base, we find three types of ground
state configurations as a function of cone angle: (1) for sharp cones, all of the +1/p defects are
absorbed by the apex; (2) at intermediate cone angles, some of the +1/p defects are absorbed by
the apex and the rest lie equally spaced along a concentric ring on the flank; and (3) for nearly flat
cones, all of the +1/p defects lie equally spaced along a concentric ring on the flank. Here the defect
positions and the absorption transitions depend intricately on p and the deficit angle which we

analytically compute. We check these results with numerical simulations for a set of commensurate

cone angles and find excellent agreement.

I. INTRODUCTION

Two-dimensional liquid crystals with p-fold rotational
symmetry, denoted “p-atics”, are ubiquitous in nature. One
well-studied example is the hexatic (p = 6) phase, an
intermediate phase that can appear when isotropic two-
dimensional liquids freeze into 2d crystals [Il 2] within the
KTHNY defect-mediated melting scenario [3H5]. Hexatics
may be of some biological importance, because they have
appeared in recent computational models of epithelial mono-
layers [6] and because they arise as an intermediate phase of
lipid bilayers (see Ref. [7] and references therein). Contin-
uous hexatic-to-crystal transitions, as found in experiments
for lipid vesicles in Ref. [§], may be especially important, as
they are accompanied by a tunable, continuously diverging
2d shear viscosity [2]. Another well-studied example is ther-
motropic liquid crystals, where frequently a nematic (p = 2)
phase appears [9]. Liquid crystalline p-atics have also been
realized in colloidal systems, including monolayers of sedi-
mented colloidal hard spheres in the hexatic phase [10], tri-
atic (p = 3) colloidal platelets [11], and possibly tetratic
(p = 4) suspensions of colloidal cubes [12]. Although one
might expect that steric repulsions could produce local an-
tiferromagnetic order for hard triangles and pentagons [13],
longer range interactions could induce these objects to align
ferromagnetically, which is what we assume for p = 3 and
p = 5 in this paper.

Order characteristic of p-atics has also been studied in the
context of active matter [I4]. Examples of active polar flu-
ids (p = 1), also known as Toner-Tu fluids [I5HIS], include
bacterial suspensions [I9], groups of animals such as bird
flocks [I6], and Quincke rotors [20]; examples of active ne-
matics (p = 2) [21}22] include cell sheets [23H26], suspensions
of cytoskeletal filaments and associated motor proteins [27-
29], bacteria collectives [30H32], vibrated granular rods [33],
and developing organisms [34]; finally, the tissue of the brine

shrimp Parhyale hawaiensis during development provides an
example of a tetratic (p = 4) order [35].

An elastic description of p-atics was employed for p = 6
hexatics on fluctuating surfaces in [36] and later refined
in [37, B8]. Much work on curved surfaces has focused on
effects of extrinsic geometry, such as how the surface is em-
bedded in three dimensions, and effects due to the mean cur-
vature [39]. Here, we find it convenient to focus on simpler,
but still quite challenging effects of intrinsic geometry, and
use isothermal coordinates, as recently done in the context
of morphogenesis of an active nematic [40]. (See Ref. [41]
for a brief discussion of the crystal field like effect of extrin-
sic curvature for cones with free boundary conditions at the
base.) We are interested in the ground state configurations
of liquid crystals on curved surfaces, in particular a cone,
given constraints on the total topological charge of the de-
fects. Ground state defect configurations for the cases of
flat plane, hollow cylinder, sphere, and torus were derived in
Ref. [37]. These geometries, however, are smooth and lack
curvature singularities such as sharp points or ridges, char-
acteristic of imperfect surfaces. In contrast, we study cones,
the simplest example of a curvature singularity. The inter-
action between p-atic order and curved substrates has been
studied in [38],[42] and it has been shown that curvature gives
rise to an effective topological charge densityﬂ In the special
case of a cone, this would correspond to negative topological
charge concentrated at the apex, and a simple argument was
recently presented in [41] for the case of free boundary condi-
tions. We re-derive this induced charge result of Vitelli and
Turner [42] and use it to determine the ground state defect
configuration with a fixed number of +1/p defects, which
appear naturally when tangential boundary conditions are

I Related effects have been noted in quantum Hall states for electrons
on cones [43] 44] and superfluid 3He on cones [45].



imposed at the cone base. In the ground state, we find that
the cone apex absorbs defects until the net topological charge
at the apex becomes positive, and the remaining defects lie
equally spaced on a ring optimally positioned, as a function
of the cone angle, between the apex and the boundary. We
derive both these transitions and the flank defect positions,
which depend intricately on the deficit angle and the charges
of the defects, and find excellent agreement with numerical
simulations for a set of commensurate cone angles.

This paper is organized as follows. We begin in Sec. [[I]
with a review of isothermal coordinates, essential for our
formalism. Although we focus on cones, spheres and tori are
mentioned briefly to provide context. In Sec. [[II} we review
the formalism of p-atics on curved surfaces using isothermal
coordinates and set up the computation of the free energy.
By evaluating the free energy in Sec[[V] in analogy to electro-
statics, we show that topological defects interact with each
other via a two-dimensional Coulombic interaction, and that
there is a geometric contribution to the potential. In partic-
ular, the cone apex develops an effective negative topological
charge of —x where x = 1 —sin 3, with § being the half cone
angle (see Fig. )7 and 2wy is the deficit angle of the cone.
Moreover, a topological defect of charge o, when interacting
with the apex, develops an effective charge Q. = o — 02/2,
as originally found in Ref. [42]. In Sec.|V| we describe defect
absorption and emission at the cone apex, with transitions
and flank defect positions depending intricately on the deficit
angle of the cone and the defect charges, and find excellent
agreement between these analytical results and numerical en-
ergy minimizations of lattice models laid down on cones with
special commensurate curvatures that allow precise compu-
tations [41]. We conclude in Sec. by reviewing our re-
sults and suggesting future directions of research, including
dynamics of active topological defects on curved surfaces,
alternative boundary conditions, and analogous phenomena
involving grain boundaries on cones. Some of the technical
details are relegated to Appendices

II. ISOTHERMAL COORDINATES PRIMER

Since our formulation is based on isothermal coordinates,
we introduce them from the outset. From work dating back
to Gauss [46], we know that in two dimensions it is always
possible to choose local complex coordinates z and z, known
as isothermal (or conformal) coordinates, such that the met-
ric can be written as,

ds? = g.zdzdz + gz,dzdz = 2g.:|dz|* = e |dz|?. (1)

Note that in these coordinates, g** and g** can be read off
from the off-diagonal components of the inverse metric

1 0 2 ¢
g - <2€—Lp(z,z) 0 : (2)

Upon writing z = x + iy, Z = © — iy, we also have
ds? = e?@Y) (dz? + dy?). (3)

Thus, the metric is conformally flat, i.e. proportional to
the identity matrix, where e¥, known as the conformal fac-
tor, represents a position-dependent isotropic stretching. We

(o) .

(b)

FIG. 1. Schematic of the three coordinate systems for cone used
in this paper: (a) Our preferred isothermal coordinates z = re®,
which can be viewed as the result of squashing a cone into a plane,
in a way that preserves the azimuthal angle ¢, 0 < ¢ < 27. Here
R is the maximum radius down the cone flanks in our isothermal
coordinate system. (b) The also useful Z coordinates, the result
of isometrically cutting open and unrolling a cone into a plane,
so that the resulting azimuthal angle is ¢, 0 < ¢ < 27(1 — x). (c)
Three-dimensional Cartesian coordinates x;, where (3 is the cone
half-angle.

show in Sec.[[V]that we can interpret —¢ as a geometric con-
tribution to the defect potential, and thus call ¢ the geomet-
ric potential. For a more detailed presentation of isothermal
coordinates, see, for example, Refs [47] and [4§].

In complex conformal coordinates, the only nonzero
Christoffel symbols are

Fiz = Oy, ng = 5@7 (4)

where the holomorphic partial derivatives are denoted as
_ _1(8 _ ;9 5 — _1(8 4 ;0
8:82—5(%—1@) and8:85—§(7+za—y). The

Laplacian V2 acting on a scalar f is given by
V2f = g700f 4+ g**00f = 2g°700f = 4e=¥00f  (5)

As an aside, we note that in analogy to the heat equation,
coordinates z and Z are harmonic, i.e., they satisfy V2z =
V2% = 0, and so constant coordinate lines are “isotherms”,
hence the name “isothermal”. Note also that the Gaussian
curvature K is given in terms of ¢ by

K= —%v% = —2e"%00¢p. (6)

Note finally the property of holomorphic derivatives that
0.f(z) = 0:f(z) = 0. We now provide a few examples.

A. Cone

On the surface of a cone, the geometric potential ¢ and
the metric are given by,

p=-xIn(22),  ds*=|2|7¥|dz?, (7)



where we will show that 27y is the deficit angle. To do so,
we first go to a new coordinate system 7 = 7e'® (see Fig. ),
where the metric can be made flat with no stretching via the
change of coordinates

21=x
S 8
=i (3)
which leads to
= |dz|*. (9)

This is a flat metric except at the origin, where Z is not well-
defined. To understand the geometry near the origin, note
that Eq. ( . ) gives the angle d) corresponding to Z = re’¢, in
terms of the original complex conformal coordinate z = re??,
as

¢=(1-x)9. (10)

Thus, the range of polar angle 6 in % coordinates is 0 < (]B <
27(1 — x), so this geometry has a conical singularity with
deficit angle 2my.

We now show that in terms of the cone half-angle g,
x = 1 —sinfB. To show this relation, we go to one final
coordinate system z; (see Fig. k), which embeds the cone
in three dimensions, & = Z(r, ¢), with

z1 =7r'"Xcos ¢ (11)
zy = r' " Xsin¢ (12)
1- (1 - X)2 1-x
=_Y- = A/ : 13
x3 - r (13)

With this change of coordinates, the metric can be expressed
as

ds® = |2|7*X|dz|? = dx? + dx3 + dx3. (14)
Notice that since
\/1 —(1-
T3 = 2?2 4+ 23 = —cot /22 + 23, (15)

where [ is the cone half angle, it follows that
X =1—sinp, (16)

thus relating the deficit angle 27y to the cone half angle 3.

B. Sphere

For the surface of a unit sphere, ¢ is

2

which is equivalent to the stereographic projection, and can
be viewed as the mapping of the complex plane z onto the

points (71, T2, x3) on the surface of the unit sphere in R?, via

=i (18)
xTg = %% (19)
2 = |1Z|j [Z‘i (20)
Hence the metric is
ds* = dei+dr3+das = mwzﬁ = e¥(®9)|dz|? (21)

and, using Eq. @, the Gaussian curvature is computed to
be K = 1.

C. Torus

As the last example, we consider the standard torus 7?2 in
R3, parametrized by:

21 = (Ry + Ry cos 63) cos 0, (22)
29 = (Ry + Ry cos ) sin 6y (23)
I3 = R2 Sil’l 92, (24)

where 6; (0 < 6; < 27) is the periodic angular variable of
circle of radius R;, with Ry > Ro. Following Ref. [49], we now
express T2 in isothermal coordinates. Let r = Ry /Rs. Then,
on making the following complex change of coordinates

2’:1((2514- !

i (01 =2 ). (25)

where ¢, and ¢, are given by

¢1 =106, (26)
rcos gy — 1
IVPP2 ™ © _ cos 9
E——— cos B, (27)
the metric becomes
ds* = e?|dz|?, (28)

where

21n(27Ry) + 21 !
=2In n|——
4 T 7 — COS (o

re—1
=2In(27R;) + 21n '
( )+ (r—cos [17“/7“27—1(2_2)])

(29)

. . i . . .. _
In terms of 7 = Nt the isothermal coordinate z is iden

tified with its shifts by 1 and 7 (forming a parallelogram
on the complex plane), i.e., z ~ 2+ 1 ~ z + 7. Here 7T is
known as the parameter specifying the “complex structure”
of the torus [50]. Using Eq. (6), the Gaussian curvature is



computed to be (with, again, r = Ry /R3)

1 rcosgy—1 1 reos[zmviri—1(z—2)] —1

r2 —1 _Rig r2 —1

K =
B3
(30)

III. MINIMAL MODEL

For recent discussions of p-atic tensor order parameters in
2d flat space, see Refs. [51,[52]. Theories of p-atics on curved
surfaces were previously formulated in Ref. [38]. For this
work to be self-contained, we review the formalism and re-
cast it in terms of isothermal coordinates, which will prove to
be a powerful method. Following the presentation in Ref. [40]
and as described in Sec. [T} we work with complex isothermal
coordinates z and z. Let Q be the p-atic tensor, a traceless
real symmetrized rank-p tensor. Since Q is traceless (con-
traction of any pair of indices vanishes), Q has only two
non-zero components @ = Q%* and Q = Q% %, where here
ellipses denote p copies. Also, by reality, @ = (Q)*. For
ease of notation, let V = V, denote the covariant derivative
with respect to z and V = V3 denote the covariant deriva-
tive with respect to zZ. Explicitly, covariant derivatives of the
p-atic tensor are

VQ=09Q +p(09)Q,  VQ=0Q. (31)

Results for a cone with half-angle 5 follow from substituting
¢ = —(1—sinf)In(z2) in Eq. (31).

To provide an intuitive explanation for the asymmet-
ric form of the two covariant derivatives written above in
Eq. , note that Eq. looks like @ carries charge p
under a U(1) vector potential,

A, = id. (32)

Indeed, the rotation group in two dimensions is SO(2), and
is gauged by a geometric field corresponding to curved ge-
ometry (known as the spin connection) [47], which in holo-
morphic coordinates splits into two U(1) gauge fields,

(Aza AE) = (Zagpa 725‘)0) (33)

The charge of the fields depend on the number of z and z
indices. In particular, Q*# carries charge (p,0) (because it
has p z-indices and no z-indices), and similarly Q% -* carries
charge (0,p). This explains that in Eq. (31), since Q**
does not carry any z charge, it does not couple to Az, thus
explaining the asymmetry in the above formulae (Eq. )
Note that the field strength of this U(1) gauge field, defined
as

(aAg — éAZ) = 78590 = Rzg, (34)

is nothing but the Ricci curvature [50].

To keep the model simple, in a way that corresponds to
the one Frank constant approximation in nematic liquid crys-
tals [9], and to the Maier-Saupe lattice model used in our nu-
merical calculations, we decouple the rotation symmetry of
the p-atic degrees of freedom from the local rotational invari-
ance in space. The only elastic terms are then g7 'vQvQ

and ¢?Z'VQVQ, where we recall that g,z = gz, = %e“"(z*i)

and ¢g., = gzz = 0. Then, our simplified free energy can be
written as

F oot /sz\/g[K\VQP L KVQIE 4+ 21— Q).

(35)
where

IVQ|* = ¢?-'VQVQ
IVQI? = ¢ 'VQVQ
QI = ¢2.QQ. (36)

Here K, K’ > 0 are elastic terms in the spirit of the one-
Frank-constant approximation (the K and K’ terms are
equivalent in flat space), and the last term governs the am-
plitude of the p-atic order parameter, with € controlling the
microscopic p-atic correlation length. We take ¢ = 2P, a
normalization we choose without loss of generality.

We now determine ) by minimizing the free energy. Deep
in the ordered limit (e < 1), we have

2|Q = 1. (37)

The substitution Q%% = §%%e'¥ = Se?¥, which endows our
tensor order parameter with a phase v = pf, where 6 is the
angle the p-atic molecule makes with a local reference axis,
then leads to

e

S = (2g.:)7P/? = e %%, (38)

Upon inserting ¢ = —xIn(zZ) into Eq. , we see that
the p-atic order parameter amplitude S, in isothermal co-
ordinates, vanishes like a power law near the cone apex,
S ~ |z|PX, as if near a defect core in flat space. However,
the contribution of the polynomial part of the free energy
vanishes away from the core apex and any defect cores, so
the free energy simplifies td?]

Fo 2P—1/d22¢§[K|VQ|2 FRIVOR. (39)

By integration by parts, it is easy to show that the K and
K’ terms differ only by a term proportional to R|Q|* [40],
where R is the scalar curvature. Near the minimum of the
potential, where |Q|? = 1, this difference becomes a Gauss-
Bonnet term which is a a total derivative and thus topolog-
ical. Thus, the K and K’ terms are equivalent deep in the
ordered limit that we consider in this paper.

Upon substitution of Q (with the amplitude S given by
Eq. ) into Eq. , the free energy F reduces to

F=(K+K') /d% ((5) o +ion) (%) de—i0n)

_ J/d2z ‘8’)/ i (g) 3@’2, (40)

2 Provided we introduce a phenomenological defect core energy E., we
could have instead started with Eq. (39) in combination with the
constraint Eq. (38) .



where we have used

ves = (Lop+ion) @ (41)

VQEE = (—gécp + i5‘7> Q (42)

and where J = K + K’. Note that Eq. is much sim-
pler than Eq. . The only dependence of the free energy
on the geometry is through dp: there are no factors such as
e¥ or /g, which in two dimensions cancel due to conformal
symmetry. The transparency and simplicity of Eq. re-
flect the power of isothermal coordinates in two dimensions:
the free energy looks as if the theory is formulated on flat
space, with the curved geometry entering as an azimuthal
vector potential a, = i§0¢p. In the case of a cone, this term
corresponds to a magnetic monopole at the apex.

It is convenient to define a real valued dual variable ® to
the phase-field v of @ such that

(43a)
(43b)
in terms of which the free energy (Eq. ) becomes

f:%J/dQZ\a@—@)F. (44)

Note that in this paper, we freeze the geometry, which fixes
the geometric potential ¢. The geometry then determines
the ground state configuration of ~y, or equivalently, its dual
®. Upon suppressing the frozen ¢ dependent part, we write
F as

F =F1+ Fo, (45)
where
p2
F = ZJ/d2,z|a<1>|2 (46)
. [ 5
Fo=—J / (0pdP + DpdP). (47)

Here, 77 is the elastic energy and F5 is the interaction en-
ergy between the p-atic texture and the geometry. We will
see shortly that in analogy to electrostatics, ® can be viewed
as the electrostatic potential, sourced by topological defects.
Using this idea, we show that 7 can be computed using the
standard Green’s function techniques, and F5 can be com-
puted exactly through integration by parts via evaluating ¢
at the topological defects, multiplied by the topological de-
fect charges. Although it appears that F; does not depend
on ¢, we show in Sec. [[V] that there is a subtle dependence
on  coming from the short distance physics embodied in the
defect core energies.

Before we evaluate F, we first review the description of
topological defects using isothermal coordinates and then
compute ® in the presence of these singularities. For a p-
atic, for a closed loop around a topological defect of charge
o € Z/p, v will wind by 27po. Moreover, by minimization

of the free energy, v satisfies (away from the defects)
- 1/ 62 02
00 4(6352—’—81/2)7 0 (48)

Note that in Eq. , there continues to be no ¢ dependence—
thus, the local physics is as if we are in flat space.

Near a defect at z;, we have

YR ——o0jln ——=, (49)

which manifestly solves Eq. and has the correct wind-
ing number. It follows that the dual variable ® (defined by

Eq. ([43)) satisfies
00® = —7 Z 002 (2 — z;), (50)

where defect ¢ is at position z; with charge ;. In other
words, topological defects can be viewed as sources for &,
which, in analogy to electrostatics, behaves as the electric
potential. In particular, as expected, the standard Green’s
function G(z1,22) is given by ®(z1; 22), where the charge o
is placed at zo, i.e.,

G(z1,292) = —%@(zgzz). (51)

To

Note that F3, upon integration by parts, can be written
as

P’ 5 P
Fo= ZJ/d%ma&p = —?J/dQZCI’Rzz, (52)

where R,z = —00¢ is the Ricci curvature. This implies that
curvature gives rise to an effective two-dimensional charge
density p, given by

p=——= (53)

21
Thus, in general, regions of positive (negative) curvature give
rise to negative (positive) charge density [38] [39].

Now, to completely solve Eq. 7 we must specify bound-
ary conditions. We consider two different geometries: one
without a boundary, such as the infinite plane or sphere,
and the other with a boundary, such as the disk or cone.

A. Plane/sphere

To set the stage for disks and cones, we first consider planes
and spheres. Taking into account the winding due to topolog-
ical defects, the multi-defect solution to Eq. that gives
real values of v = pf is given by (see for example Ref. [53])

v =ph = —% Zpai[ln(z —z)—In(z — z;)], (54)



where z; is the position of defect ¢ and o; € Z/p is its charge.
Thus, Q, ®, and G(z1, 22) are given by

i

@:—Zailn|z—zi\2 (56)

1
G(z1,22) = Eln|zl — 22 (57)

Note that although the geometric potential ¢ that enters
Q differs for planes and spheres, the expression for G(z1, 22)
is the same for the plane and the sphere, independent of (.

B. Disk/cone

We next consider the case of a geometry with a boundary,
in particular a flat disk. We now must specify a boundary
condition. In Ref. [4]], free boundary conditions were im-
posed. Here, we consider tangential boundary conditions, by
which we mean that V~ (the gradient of the order parameter
phase) is tangential to the circumference of the base of the
cone. We will assume that the total winding is 27, i.e., the
total charge of the topological defects inside the cone is 1.
For elementary defects, the solution to Eq. with tangen-
tial boundary conditions for p defects each with charge +1/p
at z; is

. P ~

(3 zZ— Zj zZ— Zj

= :_72: 1 J 1 .k
e 2j—1pgj[n(zzj)+n(_ ~)]7 (%)

zZ— Z;

where the Z; = R?/Z; are the positions of (like-signed) image
charges needed to impose the tangential boundary condition
at z = Re'®, with ¢ being the azimuthal angle and R being
the maximum radius in our isothermal coordinate system.
(Recall that we encode the curved geometry through the ge-
ometric potential ¢ and denote the azimuthal angle by ¢).
As shown in Appendix [A] like-signed image charges leads
from Eq. to a phase angle v(z) that is equal to the az-
imuthal angle ¢(z) when r = R, independent of the location
of the defect charges. The dual variable ®, (by a suitable
choice of the integration constant), using equations and

, is given by
2
Z ]

p 2
2 — 7|

- |z = 2 7% |’
j=1
and hence the Green’s function is
1 |21 — Zz|2 27|
G(Zl, 2'2) = E In T + In|(l— R2 (60)

We would like to emphasize that the metric does not ap-
pear here so that G(z1, z2) is the same for the disk and cone
with tangential boundary conditions, although it does ap-

pear in 7> (Eq. (d7)).

IV. EVALUATION OF F

We are now ready to evaluate the free energy F. Integrat-

ing Eq. by parts and using equations and lead

to

Fi==(mp)*] > 0monG(2m, ) (61)
p2 mn
Fo = —QWZJ%:UWLQO(ZW). (62)

In analogy to electrostatics, we learn from JF5 that ¢ behaves
as an additional contribution to the electrostatic potential
due to the surface geometry. In particular, upon substitu-
tion of ¢ = —x1n(zZz) into F3, there is clearly an attraction
(repulsion) of the positive (negative) defects to (from) the
cone apex that is linear in the charge o;.

Naively, it appears that there is no ¢ dependence in Fj.
However, there is a subtlety in evaluating Eq. due to the
self-energy term coming from the m = n terms in the double
sum, pointed out in Ref. [42], which we now examine.

A. Self-energy

The self-energy is formally infinite, but this ignores the
defect core size §, which sets a natural UV cut-off. Therefore,
what we really mean by G (2, 2im) is

G(zm, zm) a lim) 5
Zm yZn )"

G(2n, 2m)s (63)
where d(zm, 2,) is the distance between z,, and z, and §
is the minimum distance determined by hard core repulsion
between liquid crystal molecules. By definition of the metric,

d(2m, 20) = €22 2 — 2| = 6 (64)
and thus
|2m — 2n| = de#(Em)/2, (65)

Now, using the fact that for small point separation z,, and
Zn, the singular part of G(z.,, zn) ~ ﬁ In |2, — 2,|?, we can
write

1 N
G(2my 2n) ~ o In |z, — zn|2 + G(2m, 2m), (66)

where @(zm,zm) is non-singular at short distances. Upon
substitution of Eq. into Eq. (66]), we get

Com, 2m) = % (—p(m) +1062) + Clzms2m). (67)

For example, for the plane or sphere, Eq. gives

~

G(2m,2m) = 0. For a flat plane, p = 0 as well, but for the
unit sphere, ¢ = 2In ﬁ, thus contributing to Eq. .
For the disk/cone geometry Eq. gives

2

~

1 2
G(2m,2m) = = In ‘1 _ Lzl

47 R? (68)




FIG. 2. Schematic of Z geometry for sinf = 1/n, for n = 10.
The conical singularity is represented by the star at the origin,
the topological defect is represented by the black dot in the black
wedge, and n — 1 image charges are represented by white circles
in the dashed wedges.

Thus, F (after dropping the constant term involving § in Fi)
becomes

F = —(’/Tp)QJZO'mUnG(Zm,Zn)

mn

o7\, |zl
—XZ 7= 5 In R ( (70)

where we are now denoting é(zm, Zm) as G(zm, zm) in the
double sum. The first equality holds in general, and the
second equality is specialized to the case of a cone with deficit
angle 2my.

In other words, the self-energy term gives rise to o2,¢/2,
which represents an additional contribution to the geometric
interaction, and depends quadratically on the defect charge
Om, in agreement with the general results of Refs [38] and
[42]. We now provide some intuition for the o2, term by
deriving the self-energy term explicitly in the context of a
cone.

1. Self-energy on a cone

Here we first explain the quadratic dependence of the self-
energy on the defect charge and see intuitively why it is re-
pulsive for a cone. Let’s consider a cone with special com-
mensurate half-angle 8 such that sinf = 1/n for a given
integer n. As shown in Fig. 2] such a cone is equivalent to

R?/Z,. What this means is that if we have a topological
defect, then because of the Z,, it is as if there are 1 physical
and n—1 image charges, a charge in each of the n wedges (see
Fig. 2| for a schematic). Then, it’s clear that the interaction
between a defect and the geometric defect charge of the cone
is quadratic in the topological charge and also repulsive.

We’ll now make this argument more quantitative. Let ¢
denote the distance between any defect and the origin, and
let r and s denote defects, where r,s = 0,...,n — 1. Then
the interaction energy between a pair of defects r and s on
a plane, (upon substituting Eq. into Eq. ), is F1 =
fwéJafn Ind?,, where d,, = £|e2™("/m) — ¢27i(s/7)| is the
distance between the defects. Since d,.s x £ for all pairs, the
total elastic energy is given by

2
E= 77rp—Jl <n> o2 In/? + const.
2 n\2 )
P2
= fﬂZJafn(n —1)In 2 + const. (71)

The factor of 1/n is due to the fact that the physical space
is one of these n wedges, and the binomial factor (72’) counts
all of the pair-wise interactions. Now, on using the following

coordinate transformation (Eq. ()

1-x
P (72)
=X
the energy is, up to a constant,
»?
E= fWZJ(n —1)(1 = x)o2 In |z, (73)

Using 1 — x = 1/n (for the special case sinf = 1/n) then
leads to

v? p?
E = —WZJafnxln |2m|? = WZJafngp(zm), (74)

recovering for a cone the quadratic term in Eq. .

V. GROUND STATES OF DEFECTS ON DISK
AND CONE

Here we compute the ground state defect configuration
for the disk and cone with tangential boundary conditions.
Tangential boundary conditions provide a much richer arena
than the free boundary conditions of Ref. [41], because de-
fects on the cone flanks can be an intrinsic part of the ground
state. For a cone, substituting ¢ = —x1n 2z and Eq. into

Eq. immediately gives (with y =1 — sin 3)

We interpret each term in turn. The first term (the double
sum) is the usual elastic interaction between pairs of defects,



including image charges. The second term is the self-energy,
which would need to be added to any microscopic defect core
energy F.. The final term represents the interaction between
a topological defect and the geometry [42], specialized to the
cone. Note that the cone apex develops an effective topolog-
ical charge of —x. This is also compatible with the recent
results of [4I] in finding the ground state configuration of a
p-atic liquid crystal on a cone with free boundary conditions,
which is equivalent to minimizing the magnitude of the ef-
fective charge at the cone apex. In particular, the minimum
energy configuration considered in [4I] can have some num-
ber sg of charge +1/p defects at the cone apex absorbed from
the free outer rim. On keeping the |0p|? term in Eq. 40} and
converting to physical coordinates using Eq. BL we obtain a
ground state free energy of (7.Jp?/2(1 — x))¢3 In R/a, where
ga = —X + so/p is the effective charge at the cone apex,
so = argmin| — x + $/p| is the number of defect charges that
S

optimally screens out the geometric contribution —y, and R
the longitudinal length of the cone along the flanks. The
result is consistent with Ref. [41].

Moreover, a topological defect of charge o;, when inter-
acting with the cone apex, behaves as if it had an effective
charge

Qest = o —JJQ-/Z

Hence an elementary positive (negative) defect with charge
o; = £1/p will be attracted to (repelled from) the cone tip.
(We note in passing that these attractions and repulsions will
be reversed for hyperbolic cones, e.g., the surfaces formed
when negative disclinations are allowed to relax into the third
dimension [54].)

The general strategy for constructing ground states is that
topological defects (including possible image charges) inter-
act with each other via a 2d logarithmic Coulombic inter-
action, i.e., same-sign defects want to be as far away from
each other as possible. Since the cone apex has a negative
effective topological charge, depending on the deficit angle,
it will absorb as many positive defects it can until the net
charge at the apex becomes positive, in which case no addi-
tional defects will be absorbed. The remaining defects will
then be as far away as possible from the cone apex. It seems
plausible that they would lie equally spaced on a ring, a con-
jecture confirmed by our numerical simulations. We will now
describe this picture more quantitatively.

(76)

A. Disk

To set the stage for a cone, we first consider p-atics on disks
with tangential boundary conditions. In this case, setting
x = 0 in Eq. reduces to

> zn|” 2 |
]: _7-‘-7 m<n0'm0'n ln R +h’l’1 — F
|ZJ|2
+ E o; ?In (77)

We have suppressed a contribution to the core energy of
the defects, usually modeled by a term FE. Z 0 . This term

prefers elementary defects of minimal charge o = +1/p, since
1/p? + 1/p? < (2/p)?, which motivates us to consider only
elementary defects in this paper.

For p defects each of charge o; = +1/p equally spaced
on a concentric ring of radius d = xR in the isothermal
coordinates, i.e., z; = de?™i0/p) = 0,...,p— 1, the free
energy is computed to be

p

1 —1
y — pQJ[ p(p - )lnx2—|——ln(1—x2p) + const..

(78)
In deriving Eq. , we used the fact that for o; = +1/p
and z; = de?™i/P) e have

2 p?

2 2
ZmZn 2 %]
> oalnlL - +Zgj1n<1_ o) )
m<n J
p—1 1
=py_ 5 In (1 a2em0/m)
i=oP
p—1
£ In ( 262m‘<j/p>>
p? =0
= P (1-a2%). (79)

Minimizing Eq. over the dimensionless flank distance x
gives

(80)

B. Cone

We now return to the generalized case of the cone and
consider the following defect configuration: k& defects of
charge +1/p equally spaced on a ring at a distance d = zR
on the cone flank, i.e., for these defects, z; = de?™i(i/p)
j=0,...,k—1, and the remaining p — k defects at the cone
apex. Then the free energy becomes (up to a constant)

(1 — a:%)

]-":—WZ;JF Fk=D) 2y Foy

X’ 2
s — +k'* IHJL'
2 p? P

(81)
where

(82)

The x’ term determines whether a defect is absorbed by the
core. These transitions happen at critical cone angles such
that

_ _2(p—k)
X 0 = xe w1 (83)
and F here is minimized when
1
k—1+42py \2*
T = k-1l+2px ) (84)
3k — 1+ 2px’



On using Egs. and , the fractional distance Z along
the flank (for the unrolled coordinates in Fig.[Ib) is

sin 3
k—1+2pY \ %
F = moLFepx ) (85)
3k — 14 2py/
Note that here k is chosen such that
X' —1/p<0<y, (86)
or equivalently,
20p—k—1 2(p—k
2p—1 2p—1

In other words, there are three general cases for ground
state configurations:

1. % < x: the ground state consists of p defects of
charge +1/p that have been swallowed up by the cone
apex.

2. % <x< %: the ground state consists of p—

k defects of charge 1/p at the apex and k defects at z; =
de?*™U/%) 5 =0,1,...,k —1 (d = 2R is determined in
Eq. by minimizing the free energy).

3. x < 0: the ground state consists of p defects of charge
1/p at z; = de?™/P) j = 0,....,p—1 (d = zR is
determined in Eq. with & = p by minimizing the
free energy).

To summarize, we expect that the ground state of a p-atic
on a flat disk with tangential boundary conditions at r = R
has p defects of charge +1/p spaced out evenly on a concen-
tric ring at distance d = zR (Eq. (80)) from the disk center
(see Fig. [3h for p = 6). As the cone angle increases (the sur-
face deviates more from flatness), the cone apex absorbs the
+1/p defects one by one at certain values of x, while the rest
of the defects lie equally spaced along a ring at some distance
d(x) that depends on the cone angle (see Eq. (84)) from the
apex (see Fig. , which illustrates p = 6 and xy = 1/3.).

C. Maier-Saupe model and numerics

We now check our continuum results above with ground
state energy minimizations on lattices. The discrete Hamil-
tonian follows from the Maier-Saupe model for a two-
dimensional system of p-atic liquid crystals on curved sur-
faces, with interactions that align nearest neighbors [55],

H = —J"Y [T, (i - ;)]
(ig)
= —J"> [eos(p(0; — 0; + Aij)) — 1], (88)
(ig)

where i, j are site indices, (ij) indicates nearest neighbors,
mm; is an orientational unit vector attached to a liquid crystal
molecule at site i, 6; is the orientation angle of molecule 7 in
the local frame of site 4, and A;; is the rotation angle induced
by parallel transport between site ¢ and j. T),(x) is the p-th

(a) (b)

FIG. 3. Schematic illustration of ground state defect configura-
tions on a disk and a cone. The positive Gaussian curvature at
the cone apex gives rise to a geometrical background charge that
attracts like-signed defects in the p-atic liquid crystal. (a): A hex-
atic (p = 6) liquid crystal on a flat disk has six defects with charge
+1/6 distributed evenly along the angular direction at positions
given by Eq. with p = 6. (b): A cone with angle sin 3 = 4/6
absorbs two of those defects onto the apex, leaving four defects on
the flanks, again evenly distributed along the azimuthal direction.
Defects are depicted by black dots.

Chebychev polynomial [56], and J’ is the microscopic Maier-
Saupe coupling strength between molecules at neighboring
sites. As shown in Appendix J' maps onto the coarse-
grained parameters in our free energy as J' = J/4 for a
square lattice and J' = .J/4+/3 for a triangular lattice. On
the surface of a cone, the vectors describing the orientation
of p-fold symmetric molecules need to be parallel transported
to the local frame of its neighbor before their dot product is
taken. As shown in Eq. , the interaction energy between
two neighboring molecules at sites 7 and j is hence modified
by a rotation angle A;; that the molecule undergoes during
the parallel transport.

Using the interaction energy in Eq. and fixing the
orientation vectors m; at the base of the cone to obey tan-
gential boundary conditions, we simulate p-atic liquid crys-
tals on lattices on the surfaces of cones using the Python
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [57-
60]. Our numerical energy minimizations focus on the cone
angles for which a regular triangular or square mesh is espe-
cially straightforward to generate [41]. The numerical ground
state textures for a nematic liquid crystal on a disk x = 0
and cones corresponding to x = 1/3 and 2/3 are shown in
Fig. The total apex defect charge for all commensurate
cones simulated are tabulated in Table [Il

Note that vectors at the cone apex do not have a well de-
fined orientation, since the azimuthal coordinate ¢ is unde-
fined there. We thus perform all energy minimizations with
the orientation vector at the apex removed.

Table [I] summarizes our numerical finding for the defect
content of the apex for sinf =1—x = 1/6, 1/4, 2/6, 3/6 =
2/4,4/6, 3/4 and 5/6. Fig. |5|shows excellent agreement be-
tween theory and numerics on both the total number of flank
charges and their radial position as a function of x. See Ap-
pendix [D]for a complete summary of all defect configurations
in the ground state we have explored numerically.
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FIG. 4. Ground state numerical textures for a nematic (p = 2) liquid crystal with tangential boundary conditions for various values
of x =1 —sinf, where 3 is the cone half-angle. (a) On a flat disk (x = 0), there are two +1/2 defects, labeled with green dots, at
positions given by Eq. with p = 2. (b) On the surface of a cone corresponding to x = 1/3, there is one +1/2 defect on the flank
and another at the cone apex. (c) On a cone corresponding to x = 2/3, there are two +1/2 defects at the cone apex, leaving none on
the flanks. For (b) and (c), we show both top and perspective views of the cone.
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FIG. 5. Top row: plots of number of flank charges as a function of x = 1 — sin 3, where 3 is the cone half-angle. Purple markers are
from numerical energy minimization, and blue line is theoretical prediction for defect absorption transitions (Eq. ) Bottom row:
plots of flank defect positions in the ground states of p-atics on cones as a function of x. Purple markers are from numerical energy
minimization, and blue curve is theoretical prediction (Eq. )



xlp=1llp=2|p=3|p=4|p=5|p=6
ol 1 0 0 0 0 0
I 1 1 1 1 1
6 2 3 4 5 6
1 1 1 1 2 2
7l 1 2 3 1 z g
2 1 1 2 2 2
gl 1 2 3 1 z g
3 1 2 2 3 3
gl 1 2 3 1 s s
4 2 2 3 3 4
gl 1 2 3 1 5 g
3 2 2 3 4 5
gl 1 2 3 1 5 g
5 2 3 3 4 5
gl 1 2 3 1 5 g

TABLE I. Apex defect charges extracted from numerical energy
minimizations of p-atics on commensurate cone angles.

VI. CONCLUSION

Our simplified model coupling p-atic liquid crystal order
to geometry based on isothermal coordinates reveals that
the cone apex develops an effective topological charge pro-
portional to the deficit angle of the cone. This observation
leads to a mechanism of defect absorption and emission at
the cone apex with one important conclusion about ground
state configurations: when tangential boundary conditions
are imposed at the base, compared to the defect configu-
ration on a disk, positive (negative) defects are absorbed
(emitted) by the cone apex, with transitions and positions
of the flank defects intricately depending on the deficit angle
and the charges of the defects.

To connect to biological systems, we must include non-
equilibrium effects, such as activity. Recently, a tensorial
hydrodynamic theory of p-atics was investigated on flat sur-
faces [B1) 52]. In the presence of activity, a motile nematic
+1/2 defect would interact with the cone apex depending on
its position and polarization relative to the azimuthal direc-
tion of the cone, which could lead to interesting orbits even
in the absence of noise. For example, it is conceivable that
a nematic +1/2 defect could slingshot around the cone apex
on a trajectory approximating a geodesic as if under the in-
fluence of gravity due to the negative effective charge of the
apex. It would be interesting to study the dynamics of active
topological defects on curved surfaces.

It would also be worth exploring defect configurations on
cones with both tangential and free boundary conditions at
finite temperatures. Entropic effects might cause the cone
apex to cough up some of the defects it has swallowed with
increasing temperatures.

It is also interesting to consider variants of the boundary
conditions considered here. The topological nature of the ge-
ometrical frustration associated with the cone makes it clear
that slightly truncated cones would behave in a similar fash-
ion, provided we maintain tangential boundary conditions
at the base and impose free boundary conditions at the top.
In our numerical minimizations, we removed a single site at
the cone tip, which is a limiting example of free boundary
conditions at the apex. This point is illustrated by Fig. [bh
below, which shows both perspective and rolled out views of
a p = 2 conical texture with inner rolled out radius 7jner = 3
and router = 10 lattice constants and a cone angle such that
x = 1/6. Both the texture and the position of the single
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FIG. 6. Nematic textures from numerical energy minimizations
of p = 2 liquid crystals on truncated x = 1/6 cones with an inner
truncation of rinner = 3 lattice constants and router = 10, with (a)
tangential BC at the bottom rim and free BC at the top rim (b)
tangential BC at both the top and bottom rims. Green circles
indicate o = +1/2 defects.

(b)

FIG. 7. (a) A flat two-dimensional crystal with a five-fold discli-
nation at the origin can lower its energy by forming five grain
boundaries to screen the central disclination charge. Each grain
boundary itself is a row of dislocations. (b) If allowed to buckle
into the third dimension, the crystal with the disclination can
lower its energy further without needing to form any grain bound-
aries. Adapted from Refs. [54] [61].

o = +1/2 defect on the cone flank are essentially indistin-
guishable from the defect we find with only a single apex site
removed. See Appendix [D]

On the other hand, imposing tangential boundary condi-
tions at both the top and bottom of a truncated cone does
change the ground state. As one might expect, there are
now no defects on flanks, and the frozen p-atic texture sim-
ply interpolates between the tangential boundary conditions
at the top and bottom (See Fig. [6b). The case of tangen-
tial boundary conditions at the top of a truncated cone and
free boundary conditions at the bottom is also interesting.
We leave a full understanding of this intriguing problem for
general p and arbitrary cone angles to a future investigation.



Finally, we comment briefly on the challenging problem
of determining the ground states of, say, triangular crys-
tals on cones with arbitrary opening angles. It is natural
to expect grain boundaries, like the grain boundary scars
discussed for spheres in Ref. [62], in the ground state. In
the simple disk-like example shown in Fig. [7h, there is a net
rotation of a hexatic order parameter in the crystal of 60
degrees around the rim, (somewhat similar to the 360 degree
rotation caused by tangential boundary conditions applied
to a crystal spanning an annulus, considered in Ref. [63].)
Without grain boundaries in the disk, the energy on the left
grows like Y R?, where Y is the Young’s modulus and R is
the radius. However, introducing dislocations will lower this
energy. The highly anisotropic interactions between disloca-
tions on the right leads to 5 grain boundaries with 12 degree
jumps in crystal orientation, and produces an energy which
grows linearly in R and hence is preferred, at least in flat
space [61]. In both cases, there is a five-fold disclination at
the “apex” of the disk.

However, if this disclination is put on a cone with just the
right cone angle, like this one with y = 1/6 [54], all grain
boundaries vanish (see Fig. ), and the energy will be low-
ered even more, to now depend logarithmically on the sys-
tem radius R with a coefficient proportional to the bending
energy. Less pointy cones should produce intermediate num-
bers of grain boundaries, somewhat similar to the variable
number of flank defects we have found for liquid crystal order
on cones with tangential BC on the rim. (Alternatively, the
number of grain boundary arms could remain fixed, with an
increased dislocation spacing in each arm.) We expect sim-
ilar configurations and issues when the boundary conditions
enforce a 360 degree rotation at the edge and the cone angle
is varied.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful conversations with
Paul Hanakata, Suraj Shankar, Abigail Plummer, Rudro
Biswas, and Alberto Fernandez-Nieves. This work is par-
tially supported by the Center for Mathematical Sciences and
Applications at Harvard University (F. V.). G.H.Z. acknowl-
edges support by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE1745303. This
work was also supported by the NSF through the Harvard
Materials Science and Engineering Center, via Grant No.
DMR-2011754 (D. R. N.).

Appendix A: Positive and negative image charges on
the cone

In this appendix, we illustrate the utility of isothermal co-
ordinates by exploring the boundary conditions associated
with both positive and negative image charges for a p-atic
liquid crystal on a cone with p elementary defects, each with
minimal charge o; = +1/p. The local angle of the p-atic or-
der parameter is given by a simple generalization of Eq. ,

0z 2) = V(ZZ) :7%’2:% [IHC—Z) iln<i_2)],

] (A1)

12

where an equal number of image charges with charges +1/p
are located at Z; = R?/z, and the + signs correspond to
positive and negative image charges, respectively. Note that
the denominators in the logarithms ensure that the phase
angles are real. It is straightforward to check that an isolated
defect at position z; causes 6(z,Z) to rotate by 27/p on a
small contour surrounding the defect.

We first show that positive image charges indeed reflect
the tangential boundary conditions associated with a p-atic
that rotates uniformly by 27 around the edge at z = Re'®,
where R is the radius of the base of the cone, independent
of the location of the defects. We first use

170 .0 170 .0
to evaluate the quantity
5 (7P )0(@, ) = 20,0— yd, — %(Zﬁg—zaz)ﬁ(z, 5), (A3)

where 7 = (z,y) = r(cos ¢, sin ¢) and we shall eventually set
r = R. It is straightforward to show that

z.(fxﬁ)ezzp:aj [Re(zzz) —|—Re(_ Zﬂ , (A4)

j=1 J 2T Z

where Z; = R?/%;. Upon setting z = Re'?, z; = r;e'%, and
Z; = (R?/r;)e'®i, we find that

ZTE 1+ (%) — = cos(¢; — @)
and
re( 25 ) = ULy
ZTZ) 1+ ()" — S cos(o; — @)

Upon inserting these results into Eq. we see immediately
that

2. (Fx V)0 (A7)

p
= E g, =1
J ’
r=R =

independent of coordinate ¢ on the rim of the base of the
cone and of the locations {z; = r;e’®} of p defect charges
on the cone. Thus, the orientation of the p-atic molecules,
even in the presence of defects, rotate uniformly at the rim.
For the problem considered in this paper, with p positive
defects each with charge o; = 1/p on the cone, we have

P
% ﬁg'dZZQﬂ'ZUjZQW,
r=R j=1

which is a manifestation of Gauss’ law.

(A8)

For the case of boundary conditions provided by negative
image charges, a very similar calculation shows that

_ xﬁ + 2 0
r=R o or yay

= (2(95 + Zaz)e(z7 2) 2=Rei®

o (A9)

7 Vo

r=R




FIG. 8. Electric field lines (without arrows) of two positive
charges inside a disk and their negative image charges outside
the disk.

With these negative image charge boundary conditions, the
radial component of the phase gradient vanishes, so that the
phase gradient is again tangential. However, the tangen-
tial component of the gradient now varies in a complicated
fashion as a function of the azimuthal position along the
boundary. Indeed, it is readily shown that

P 2,2
= 0| i :
r=R R? 4 1% —2r;Rcos(¢; — ¢)

(A10)
Despite this complicated azimuthal variation, one can show
that the integral of the phase gradient along the rim still
results in this simple form, identical to the first equality of

Eq.

2. (Fx V)0

(A1)

P
?f VO-dl =21 0;.
r=R j=1

We must now decide on the value of Z’;:l 0, under these
more complex negative image charge boundary conditions.
In the ground state, we expect this quantity to vanish, be-
cause any defects in the interior of the cone would be at-
tracted to and annihilate with their oppositely-signed image
charges outside the cone, as shown for a planar boundary
in Fig. A possible exception is defects at the cone apex,
which is allowed because then the image charge would then
be infinitely far away. This absence of defects in the interior
of the cone in the ground state is consistent with the results
of Ref. [4I] for free boundary conditions. In this case, the
free energy is minimized when enough defects are added at
the apex (denoted by sp in Eq. 53 of Ref. [41]) such that the
magnitude of the effective charge g4 at the apex (including
the geometric contribution) is minimal, i.e. g4 = |—Xx+$0/p
where sg = argmin|—x+s/p| (x is related to the -y in Ref. [41]
S

as x = 1 —+). It is appropriate to characterize the disks and
cones studied in Ref. [4I] as having “free boundary condi-
tions,” because the orientations of the p-atic molecules are
unconstrained at the boundary, except by their neighbors in
the tangential direction. Hence, the gradient of their phase
angle will vanish normal to the boundary. This is indeed
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the case, as shown in Eq. [A9 Note that the situation is
quite different from tangential boundaries, as defects near
boundaries are repelled by their images.

Appendix B: Relation between Maier-Saupe lattice
coupling and J

In this section, we clarify the relation between the contin-
uum free energy in isothermal coordinates and the Maier-
Saupe lattice Hamiltonian (Eq. (88)) used for simulations.

Let © denote the angle of the liquid crystal molecule on
the isothermal cone relative to the real axis of the complex
plane (see Fig. |lp and @ We can write Eq. in terms of
the angle Q. For a p-atic,  is related to v (the angle of the
p-atic tensor component Q) as (Q ~ [A®P]rg, where Mrg
indicates the traceless symmetric part of M, see for example
Ref. [51]),

P =0. (B1)
The free energy in Eq. can then be written as,
. 2
Fy = pJ / dzdz |00 — %aw , (B2)

with J = K + K’. Upon making the substitutions, which
follow from the relations r = v/2z and ¢ = - In(z/%), and

remembering that ¢(z,2) = —xIn(zZ), we have
p0="""(0.0-19,0 (B3)
2 " r?
) e x
top =& X B4
g0 =—i——", (B4)
Y
A
r
/QS
> T

FIG. 9. w denotes the angle of the director field n of the liquid
crystal molecule (blue arrow) relative to the local orthogonal axes
on the cone surface. () indicates the angle of the director field 7
on the squashed isothermal cone, relative to the real axis of the
2d complex plane.



and Eq. (B2|) becomes

2 2m R 2
_ &J/ d¢/ drr <|6TQQ+ "%Q— X‘ ) (B5)
4 0 0 T r

On using the following relations between cone coordinates

(see Eq. and Fig. [),

rdr = [(1—x)7] ™0 ~'dF, [(1—y)]> T2 0;Q2,
(B6)
we can rewrite the free energy in terms of the longitudinal

coordinate 7 of the conic surface as

2 27
p
=2 d
A 4/0 6

|3TQ|2 =

R N 5 9,02 1 17
“J d’”“‘”’“(*)’"“ [ )
(

B7)

Next, upon rewriting €2 in terms of the angle w that the
director field makes with respect to the é; axis of the local
frame,

Q=w+ 9, (B8)

we obtain

2 27 R
_p w192 o | Gew 1
Fo= 4‘]/0 d¢/0 A= <|8Tw| +‘(1—X)f+f

(B9)
Eq. is precisely the continuum version of the Maier-
Saupe lattice Hamiltonian in Eq. ., with J' = 1J for a

square lattice and J' = fJ for a triangular 1att1ce [41].
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Appendix C: Effect of truncation

Here we consider the geometry of a truncated cone. In
isothermal coordinates, without loss of generality, let the ra-
dius of the inner boundary be R; and the radius of the outer
boundary be Ry = 1, with r = R1/Ry = Ry < 1. Using the
method of images to impose free boundary conditions at the

FIG. 10. Defect configurations for a nematic liquid crystal with
cone angle x = 1/6 and inner truncation radii Tinner = 2, 4, 6.
When the truncation radius of the cone is sufficiently small, a
truncated cone with free boundary conditions on the inner rim
retains qualitatively the same distribution of defect charges on
the flank and the apex as that for the untruncated cones studied
in this paper. When the cone is truncated too sufficiently close
to the outer rim, flank defects get absorbed to the center of the
inner rim.

)
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inner boundary (z = re?) and tangential boundary condi-
tions at the outer boundary (z = €'®) leads to the following
modified Green’s function

1
G(z1,22) = 4— [ln|zl — z)?

—Z

— Z "In |r2”+221 - 22|2

"In |z1 r2nt2,, |2

—|—Z 1H|212’2—T 2"’2
- Z "1ln ’2’122 - r2"+2|2 . (C1)
In terms of the g-Pochhammer symbol,
(a;q) = ﬁ(l —aq"), (C2)
n=0

the Green’s function can be expressed as

2 2
(2r)
ln|z1—22|2—ln —— 4| —In

G(Zl, 22) =

4m (7«4272; r4> (r“—l; r4)
Z1 zZ2
2
2 r: .4
(z172:7%) (z@’r )
+1n T — 5. o +In|—% s
(2122125 1%) ( r4 '7"4)
z122”

or compactly as

2
42y, ,.4 421, ,.4 . .4 r2 4
1 (7“ Zl,r)(r Z2,r)(z1227r)(2172,r)

222. .4 221, .4 Sop2. d rt .4
(r 2 ) (r i ) (21237251 )(215,7’ )
(C4)

Note that by using (a;0) = 1 — a, it is easy to check that as
r — 0, the original Green’s function for the cone (Eq. )
is recovered.

The defect configurations we find in this work appear ro-
bust to small truncations of the cone top. Fig.[L0|shows the
numerical ground state textures of a nematic liquid crystal
on a cone with y = 1/6 and flank length R = 10. The
number of flank defects stay the same for truncation radius
To < 6 and get absorbed to the center of the inner rim when
To > 6 approaches more than half way to the outer rim. In
the latter limit, the effect of boundary condition starts to
dominate that of geometry and the cone starts to behave
more as a cylinder.

Appendix D: Ground state textures

The following pages summarize the results of our exten-
sive numerical calculations of ground state configurations of



p-atics on disks and cones with tangential boundary con-
ditions at the base edges, obtained from numerical energy
minimizations of the Hamiltonian in Eq. . The config-
urations are arranged by row according to x = 1 — sin 3,
where  is the half cone angle, and by column according to
liquid crystal symmetry parameter p. Additionally, although
x = 0/6, 3/6 are equivalent in value to x = 0/4, 2/4, the
corresponding numerical ground states are shown separately
here, where x = 0/6, 3/6 indicate simulations done on a tri-
angular lattice mesh, while y = 0/4, 2/4 indicate those done
on a square lattice mesh. Minimal defects in the ground state
of charge +1/p on the disk and the cone flanks are marked
with red circles. The defect configurations corresponding to
cone angles that admit tilings with both square and triangu-
lar lattices are essentially indistinguishable.
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