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Abstract

For a broad class of distributions of temperature, concentration, or another quantity propagating
rectilinearly, we show that temporally quasi-periodic behavior in the laboratory frame can be
rendered periodic by Galilean transformation. The approach is illustrated analytically and
numerically using as an example a closed-form model distribution generated from a one-
dimensional partial differential equation, and a detailed process is developed to determine frame
speed from more general quasi-periodic, one-dimensional, temporally- and spatially-discretized
data. The approach is extended to two- and three-dimensional rectilinear propagation, and its
application to nonrectilinear propagation, along with implications for interpreting noise-corrupted

data, are also discussed.
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I. INTRODUCTION

In many systems, spatio-temporal variation propagates through a medium. In some cases,
data are acquired as time series at fixed locations. Examples include temperature fields in moving
fluids sensed by thermocouples [1-2]; concentration distributions in moving fluids sensed
electrochemically [3]; velocity fields sensed using hot-wire, hot-film, laser-Doppler, or
electrochemical techniques [4-6]; and acoustic waves sensed by pressure or velocity microphones
[7]. In other cases, data can be acquired by moving a sensor along a line or other path [8]. Data
can also be acquired continuously or nearly continuously in space and time (frequently optically)
in systems involving flow [9-16] or involving wave propagation either in nominally motionless
chemically reacting systems [17-26] or in rings of cardiac cells [27-28].

In all of these cases, data are typically analyzed in the laboratory frame. When a preferred
direction exists (e.g., due to mean fluid flow, in situations involving rotating waves in a plane [27-
28], and in other wave propagation through a quiescent medium), the question arises as to whether
one can gain additional insight, or simplify analysis of data, by considering the data in a different
reference frame. In some cases, it is known that the answer is “yes.” Examples include use of
Galilean transformations to identify vortices and other propagating structures in shear flow
experiments and computations [29-30]. More recently, a non-Galilean transformation has been
employed to obtain a first-order ordinary differential equation used to analyze time-dependent
experimental data for motion of the rim bounding a decelerating liquid sheet resulting from drop
impact on a solid surface [31]. From the standpoint of theory, transformation to a moving frame
has been used to analyze traveling-wave phenomena in a wide range of applications [32-38].

Here we consider whether experimental data or computational results exhibiting temporal
quasi-periodicity and propagation in the laboratory frame [23-24, 39-40] can be rendered time-
periodic by a change of frame and, if so, how one identifies the frame transformation. That such
a transformation is sometimes possible is illustrated by a simple example. Consider a medium at
rest in which oscillating chemical reaction generates time-periodic concentration distributions in

the form of standing or rotating waves with temporal frequency f, .. . Now suppose that the



medium is rotated with angular velocity Q =2rx f

> with f, and f , incommensurable. To a
laboratory-frame observer, concentrations at any point will be temporally quasi-periodic [41], even
though the underlying chemical dynamics are strictly time-periodic. Transformation to a frame
rotating with the medium will clearly render the distributions time-periodic.

Can this simple result for azimuthal propagation in a plane be extended to rectilinear and
other propagation if the geometry is not periodic? For a broad class of temporally quasi-periodic
distributions (possibly after an initial transient) depending on a Cartesian coordinate 77 and time
7 through precisely two distinct linear combinations of those variables, we answer affirmatively,
by showing that Galilean transformation renders such distributions time-periodic. We show how
to determine appropriate reference frames, and that the approach is directly extendable to some
distributions propagating rectilinearly or nonrectilinearly in two and three dimensions, or
depending periodically on more linear combinations of the spatial coordinate(s) and time.

The remainder of the paper is organized as follows. In §II, we use a one-dimensional
partial differential equation (PDE) to generate model rectilinearly-propagating spatio-temporal
distributions, temporally quasi-periodic in the laboratory frame. We show how these example
distributions are rendered time-periodic in a moving frame by Galilean transformation in §IIL.A,
and that the procedure is applicable to a broad class of temporally quasi-periodic distributions in
§III.B, where we provide a theoretical foundation. In §III.C, we describe in detail how an
appropriate frame velocity can be determined for temporally- and spatially-discretized
experimental, observational, or computational data. We apply the technique to numerical data in
§III.LD, and generalize to two- and three-dimensional distributions and to nonrectilinear
propagation in §IV, followed by a discussion, including effects of noise, and conclusions in §V.
II. MODEL DISTRIBUTIONS

A. Generation of model distributions
We illustrate the process for transforming laboratory-frame quasi-periodicity to moving-

frame periodicity using example distributions generated by closed-form solution of initial

boundary-value problems for the linear PDE
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with G(17,7) = cos(2zr —2mun) , where the amplitude o and wavenumber u are positive and the
forcing frequency is unity. The linear PDE (1) arises in the limit of negligible Fickian diffusion
in a dimensionless model of high-frequency pressure-wave effects on concentration distributions
in a quiescent binary liquid solution [42]. Here, we simply use it to generate model propagating
distributions u(7,7) periodic or quasi-periodic in time.

Closed-form solutions of (1) are obtained using the method of characteristics. We restrict
consideration to an unbounded domain and ou <1, and denote the initial condition u(77,0) by

u, (7). Introducing characteristic variables « and f defined by dz(a, 8)/0 =1 and
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subject to initial conditions 7(«,0) =0 and 77(«,0) = &, we rewrite (1) and its initial condition as
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and u(e,0) = i,(«), respectively, where ii(a, ) = u(n(a,ﬂ),r(cx,ﬂ)). We define x =ou, and

= 2mousin(2rr — 2mun)u 3)

solve for 7(e, ) and n(a, ) subject to the initial conditions, obtaining 7(«, f) = f and

o tan(mua) — (1+ ) tan(zwf)
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n(a, p) = ;[,B + ;arctan[ (1- x) tan(zue) tan(zwf) + @
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where 0 <o =(1-x")"* <1, |_AJ is the largest integer not exceeding the real number A, and

1/2 , tan(zmua)=0

N o cot(mua) . &)

x(@) = , tan(mua) #0

1
—arcta
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For integer values of of + y(), i.e., when of + y(a) = \_a),B + ;((a)J , we take the argument of
arctan in (4) to be infinity. Because the right-hand side (RHS) of (4) must be continuous, the last
two terms of the second factor of the RHS constitute a piecewise-constant integer-valued function
with discontinuities at the nonremovable singularities of the argument of arctan.

Using 7(a, f) = f and (4), we solve (3) subject to its initial condition, obtaining
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For periodic initial conditions with the wavelength of G(1,7), i.e., u,(n) =u,(n+1/p), (4) and

(6) can be combined as

a)2u0 iarctan (1+ k) tan(rwt) — o tan(zr — LUN)
birl) (1-x)tan(zor) tan(zr — 7un) + @

1- K‘[COS(272'a)T) - 1]cos(27n —2mun) — k% cos(2maT) — ko sin(roT)sin(277 — 2run) .

u(n,7)=

Solutions for arbitrary initial conditions u(77,0) have closely related structure (see Supplemental
Material §A [43] for derivation). For the purpose of generating model quasi-periodic distributions,

we restrict consideration to uniform initial conditions.

B. Behavior of Model Distributions
The distribution u(77,7) has two principal attributes: oscillation and propagation.
Oscillation is evident from the structure of u(77,7) or the periodic dependence of (e, f) on [.
Propagation is evident from the “preferred direction” of the characteristics, i.e.,

n(e, B+ ApB) > n(e, p) for all sufficiently large Af . These attributes result in the 7-7 periodicity

relationships
n(a. B)=n(a, B+1/o) - (1-w)/(uo), (8a)
i(a, B)=i(a, B+1/w), (8b)
u@m,r)=u(n+1-0)/(uo),7+1/0), (8¢)

which show that, at each position and time, the value of u is translated from a smaller 7 at an
earlier time. (Recall that O<w <1.)

For irrational @, (7) shows that a uniform u,(77) gives a u(7,7) temporally quasi-periodic
at each 77, and that this u(77,7) can be written in terms of periodic functions with exactly two
specified incommensurable temporal frequencies (unity and  ; see below). (By “specified,” we
refer to the incommensurable frequencies of explicit periodic functions summed, multiplied,
divided, exponentiated, etc., to form a closed-form representation of a quasi-periodic function.)

The extrinsic frequency, unity, is the PDE’s forcing frequency, while @ is intrinsic to u(7,7),



which is time-periodic if @ is rational and quasi-periodic otherwise. For @ = /5, a fixed-7 time
series [Fig. 1(a)] shows that u(77,7) is not periodic, and a power spectrum [Fig. 1(b)] confirms
quasi-periodicity. As expected, the frequencies in Fig. 1(b) with sensible power, which we refer
to as “observed frequencies,” are linear combinations of the specified incommensurable
frequencies unity and @, with integer coefficients (see Supplemental Material §B [43] for
supporting table). In what follows, references to linear combinations of incommensurable
frequencies are understood to mean linear combinations with integer coefficients.

The 7-7 plane can be divided into temporal intervals of duration 1/, during each of which

a) 9

Frequency, f

FIG 1. (a) Time series and (b) power spectrum (arbitrary units) for quasi-periodic response
u(n=0.4,7) with an intrinsic frequency @ = 7/5 (incommensurable with the extrinsic
frequency 1), ¢£=10, and u,(n7)=1. In the power spectrum (from a time series over
0 <7 <1000 sampled uniformly with time increment 10~ ), power levels, in arbitrary

units, of 1 and 2.79x 107" at / =0 and 6, respectively, are omitted for graphical clarity.



u(n,7) is directly translatable from the preceding interval at the location 7 —(1—@)/(uw) [see
(8a-c)]. As shown in Fig. 2(a,b), each temporal interval includes a spatially-periodic set of high-

amplitude spatio-temporal “ridges.” As w increases, the ridge amplitude decreases and the angle

0.
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FIG 2. Variation of u(77,7) with =10 and u(77) =1 for two values of the intrinsic frequency:
(a) a commensurable case with @ =2/3 producing periodic response, and (b) an
incommensurable case with @ = 7/5 producing quasi-periodic response. The « = 0.2
characteristic is shown as a continuous white curve. u(77,7) has been scaled by

8.007 = max[u(n,r;w = x/5)] > max[u(n,r;w =2/3)].



of inclination in the 77-7 plane increases. From (8a-c), it is seen that periodicity obtains only if @
is rational. Otherwise, no number of temporal intervals will produce a cumulative 7 -shift that is
an integer multiple of 1/, the wavelength of u(7,7).
III. GALILEAN TRANSFORMATIONS

A. Galilean transformation of model distributions

For uniform initial conditions, (7) shows that the one-dimensional u(77,7) can be written
in closed form using time-periodic functions with two distinct arguments, @z and 7— un. The
“primary” Galilean transformation (PGT) and corresponding frame velocity

Mooy =N —VpgrTs T =7, Vegr={1-0)/p, (9a,b,c)
collapse the two frequencies of the laboratory-frame u(7,7) to the single frequency @ of the
moving-frame distribution U (7p,7") = u(pgr + Veer? -7 ) = u(n,7), where 7., is the spatial
coordinate in the moving frame. (In §III.B, we describe the underlying theory. In §III.C, we
discuss how to determine an appropriate Galilean transformation from temporally- and spatially-
discretized data when the functional form of the distribution is unknown. In §IV, we extend this
approach to additional spatial dimensions and greater spatio-temporal complexity.) Figure 3
illustrates the spatio-temporal behavior of U (7;.,,7") in the PGT frame.

Periodic dependence of 7., on S (Fig. 3) indicates that v, matches the time-averaged
propagation speed of u(7,7), making the transformed distribution U (7;;,,7") time-periodic for
any . This is consistent with the characteristics (i.e., 7,;; as a function of f for given « ) being
time-periodic with the same [ -periodicity as u(«, ) .

For @ incommensurable with unity, Fig. 4(a) shows that a “moving-frame time series,”
constructed from the continuous moving-frame distribution U (7,5;,7"), is time-periodic with
frequency w. Spectral decay with increasing f is initially approximately linear [Fig. 4(a)], and
asymptotically exponential [Fig. 4(b)].

A more general Galilean transformation replaces (9a) by n'=n-vr, where for our
example distribution it is convenient to write v=(1—y)/u with y arbitrary. Several choices of

y stand apart. For y =0 or —w, the transformed distribution is time-periodic with specified
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FIG 3. Spatio-temporal variation of U(7n;.,,7"), with intrinsic frequency @ =7/5
(incommensurable with the extrinsic frequency 1), ¢ =10, and u,(77) =1 (case shown
in Fig. 2b), with magnitude scaled by 8.007 = max[U(77;5,,7")]. In this PGT frame, the

a = 0.2 characteristic is shown as a continuous solid white curve and is time-periodic.

frequency w. For y =ko (|k| =2,3,4,...), the moving-frame distribution consists of periodic
functions with two distinct frequencies, but because one is an integer multiple of the other, the

power spectrum still consists of the fundamental frequency and its harmonics. More generally,
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FIG 4. Power spectrum (arbitrary units) of moving-frame time series (7,5, =0.35,7")
obtained from the quasi-periodic laboratory-frame distribution with incommensurable
frequencies 1 and @ = 7/5, 1 =10, and u,(77) =1, shown on (a) linear and (b) semilog
bases. In (a), power levels of 1 and 9.95x 107 at f/®=0 and 10, respectively, are

omitted for graphical clarity. In (b), asymptotic decay with frequency is exponential.



U(n',7") is time-periodic if y/@ is rational, and quasi-periodic otherwise. Unless y = @ (the
PGT), 1’ along characteristics will undergo a net (nonmonotonic) increase or decrease over each
temporal period (Fig. 2), i.e., the distribution will propagate relative to the frame, and the
transformed distribution will have temporal frequencies @ and |y|.

As shown in the next subsection, our approach applies to a broad class of distributions
having in common with the closed-form distribution (7) only the fact that they depend on two

distinct periodic functions of linear combinations of position and time.

B. Theoretical Underpinning
Let periodic functions g,(¢) and g,(¢) have periods 7, and T7,, respectively, so that
g (ar—bn) and g,(a,r —b,n) have temporal periods 7,/a,and T,/a,, respectively, with
corresponding temporal frequencies «, /7, and a,/T,. Thus, a spatio-temporal distribution g
depending on 7 and 7 through g, and g, according to
q(n.7) =S (g,(aT —bn), g,(a,r —bn)) (10)
will be temporally quasi-periodic if 7;/a, and T,/a, are incommensurable. We note that g can be
exact, or asymptotically represent long-time behavior following an initial transient.
Applying the Galilean transformation 7'=n—-vr, =7 to g gives the moving-frame
distribution
0.7y =q( +vt'.7") =S (g,[(a, ~ b’ ~b']. 8, [(a, — by)r' ~b,n']). (11)
Thus, a one-dimensional quasi-periodic distribution with spatio-temporal dependence only
through two periodic functions [i.e., of the form (10)] will have two temporal frequencies varying

with frame velocity as

fi0) =@, = by

. L0 =|a -by. (12a,b)
where @ =a, /T, and b, =b, /T, for i=1,2. The moving-frame distribution is time-periodic if
fi(v) and f,(v) are commensurable for a given v, so Q will be time-periodic if there exists a pair

of nonnegative integers m and n with m +n >0 such that

mf,(v) = nf,(v). (13)

10



If mn 0, we define r =m/n. For example, r =1 corresponds to the case in which g (a,7 —bn)
and g,(a,r —b,n7) have the same temporal frequency in the moving frame. The desired frame
velocities for this case are v =(a, —a,)/(b,—b,) and v = (G, +a,)/(b, +b,), with only one being
suitable in the singular case ‘131‘ = ‘[;2‘ .

Distributions can have multiple representations, e.g., ¢(77,7) =2sin(z +77)sin(xz + 277) is
equivalent to cos((1—-7z)7 —n)—cos((1+7)z +3n). In the first, g (a7 —bn)=sin(z+7) and
g,(a,r —b,n) =sin(zr +2n), so the frame-dependent frequencies are f,(v) =|l+v|/(27) and
L) = |7r + 2v|/(27r) ,and v=1-7 and v =—(1+ 7)/3 give moving-frame periodicity with r =1.
Using the second representation gives f,(v) =[1-z —v|/(27) and f,(v)=[1+7 +3v|/(27), with
v=—x/2 and v=—1 for r =1. As both representations describe the same distribution, a velocity
satisfying (13) for these or other representations, renders the distribution time-periodic in the
associated moving frame. For different representations, one can generate the same frame velocities
by solving (13) using different (m,n) combinations. Other sets of velocities can thus be identified
by varying r or allowing mn =0, or by using other representations with the same (m,n).

Consistent with the lack of an analytical representation in experimental and observational
data, no explicit representation of the distribution is needed. The distribution need only have the
properties associated with (10), from which it follows that fixed-location time series will have
power spectra whose observed frequencies are linear combinations of two incommensurable
frequencies. As for all quasi-periodic time series, the choice of these incommensurable
frequencies is not unique. Furthermore, in any Galilean frame with velocity v, the moving-frame
distribution Q (11) will be quasi-periodic with observed frequencies that are linear combinations
of two incommensurable frequencies, unless the Galilean transformation renders the distribution
time-periodic. We refer to any pair of incommensurable frequencies obtainable from the observed
frequencies in the power spectrum for a given frame velocity as “basis frequencies” and refer to a
particular pair determined from the observed frequencies as “extracted frequencies,” fi., and f;;.
For distributions time-periodic in a given moving frame, the pair of extracted frequencies, and any

other pair of basis frequencies, will consist of one positive frequency and either a second positive
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frequency rationally related to it, or a zero “frequency.” This approach allows for continuous
dependence of basis frequencies on frame velocity, as discussed below.

At any frame velocity, each member of each pair of basis frequencies lies on a piecewise-
linear continuous function of frame velocity (12a,b). In other words, at a given frame velocity, the
values of these piecewise-linear functions correspond to a pair of basis frequencies for that moving
frame. We refer to such piecewise-linear functions as “frequency lines,” f,(v) and f,(v). Note
that frequency lines must be paired such that at each moving-frame velocity, they correspond to a
pair of basis frequencies. Correct pairing of frequency lines can be confirmed if, at some frame
velocity, the pair coincides with a pair of incommensurable basis frequencies. If frequency-line
pairs of the form (12a,b) exist, then the moving-frame distribution Q is time-periodic in frames for
which the corresponding pair of frequencies is rationally related, i.e., satisfy (13). If such
frequency-line pairs do not exist, then g is not of the form (10). Since there is a countably infinite
number of pairs of basis frequencies for any given v, there will also be a countably infinite number
of frequency-line pairs, any of which can be used to satisfy (13). An example application of this
approach is given in §II.D. Generalization to two or three dimensions and to distributions with

more than two basis frequencies is discussed in §1V.

C. Procedure to determine frame velocity for one-dimensional experimental data

To illustrate application of our approach in the context of experimental data, we consider
discrete-time time series at discrete locations provided from a temporally quasi-periodic one-
dimensional distribution g(77,7), without knowing the functional form of the distribution itself.
At each location, one can use the laboratory-frame time series to determine the power spectrum,
consisting of a set of discrete observed frequencies, each representable as a linear combination of
the same pair of incommensurable basis frequencies, the choice of which is not unique.

We consider four cases based on different spatial and temporal resolutions relative to
spatial and temporal variation of the data, corresponding to whether accurate interpolation in space

or time is possible. In each case, we assume that the data are acquired over a domain
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Noin <1 <1, and a time period 7, <7 <7_ , with uniform spacing A7 and uniform temporal

increment Az, respectively. (If the spatial or temporal resolution is sufficient to accurately
interpolate, increments need not be uniform.) We also assume that quasi-periodic behavior has
been established by 7, possibly following an initial transient. Because the power spectrum is in
the frequency domain, 7, —7, should be large enough for the Fourier transform to provide

adequate frequency resolution. As discussed below, a large 7 is preferred, especially

max ~ Mmin
when sufficiently accurate spatial interpolation is not possible, in order to have a large range of
possible frame velocities. In each of the four cases, we construct (with minor variations depending
on resolution) discrete-time moving-frame time series analogous to the continuous moving-frame
time series obtained from the distribution U (77;,,7") discussed in §III.A and determine extracted
frequencies in the moving frames, from which we calculate frequency-line pairs.

In each of the four cases below, applicability of the approach is not restricted to temporally
quasi-periodic distributions corresponding to sums of periodic functions of their arguments. This
is made clear by reference to (7), which has a highly nonlinear dependence of u(77,7) on
trigonometric functions, and more generally by (10).

High resolution in time and space. Data at each location are often sampled at a
sufficiently high rate to allow accurate interpolation in time. For such data acquired either on a
continuous basis (e.g., with a streak camera [44]) or discretely (e.g., with a camera having finite
“shutter speed”), spatial resolution will typically be very high, allowing for spatial interpolation as
necessary. This is also usually the case for numerical simulations. Here, we deal with these cases
as if the data are or can be treated as continuous in space and time.

We process the data to mimic an observer moving through the distribution with constant
nonzero velocity v, as illustrated in Fig. 5. We construct / moving-frame time series by sampling
data along the lines 7 — 7, =v(r —7,) , beginning at 7 = 7, for / arbitrarily chosen positions 7, (not
necessarily at measurement locations) in 77, <7, <n,_ . Here, either the spatial increment A7,
(lab-frame distance between consecutive points in each moving-frame time series; see Fig. 5) or

temporal increment Az . =An /v is arbitrarily chosen, with sgn(A7n, ;) =sgn(v). The i-th

13
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FIG 5. Four moving-frame time series constructed from laboratory-frame data. Each consists
of discrete points along a line whose slope is the reciprocal of frame velocity (v = 0.5

here). Data are sampled with a time increment of Az, =An, ;/v=0.1. Intersections

mf

of the moving-frame time series with the =0 axis are at 7, =0, 7,=0.05,
n,=0.175, and 71, =0.25), with no requirement that 7, —7,_, be uniform. For v>0,

moving-frame time series with larger 7, have fewer points than those with smaller 7,.
moving-frame time series is then
0,,(t/+ jAT) = q(n, + jAn,.. 7, + jAT,), (14)
for 1<i<I and 0<j<min{(z,,, —7)/A7, .max[(7,, —7)/An, e — 1)/ A7, 1}, Where
7, =7, and A7' = A7_. . The upper bound on j accounts for the decrease in the number of elements
in the i-th time series as 7, approaches the domain boundary toward which the line in the 77-7
plane moves. Larger v values give moving-frame time series with shorter duration because the
line in the 77-7 plane reaches the domain boundary earlier, so v and 7, should be chosen to
maximize the duration of time series (which maximizes frequency resolution of power spectra).
Basis frequencies depend only on frame velocity and not on choice of time series (i.e., 7,)
within that frame, so in principle / =1 is sufficient. However, inadequate spatial or temporal

resolution can require interpolation and thus introduce interpolation error, and the spatial extent

14



and temporal duration of any particular data set will limit the duration of the moving-frame time
series, which limits the frequency resolution of the Fourier transform. These errors and resolution
limitations can be mitigated by examining additional time series for each frame velocity, each of
which will have observed frequencies that can be generated from the same basis frequencies.

For each time series and for several values of v, we generate the power spectrum and
determine a pair of extracted frequencies, f;, and f, , from which we calculate several pairs of
basis frequencies, e.g., fz, and fy, + fg. (f fi, and f;, are extracted frequencies, then f ,
and ‘ Pfeat fE‘B‘ also constitute a pair of basis frequencies for any integer p, as do f., and
‘ Seat pr’B‘ . Other choices are also possible.) We then identify a frequency-line pair f,(v) and
f,(v) for which pairs of basis frequencies depend on the absolute values of linear functions of v,
i.e., of the form (12a,b). Since for each value of v it is not known a priori which basis frequencies
correspond to which frequency lines, several values of v might be needed to make the pattern
apparent. Sufficient conditions for f,(v) and f,(v) to be a frequency-line pair are that they are of
the form (12a,b), that they pass through a pair of basis frequencies for each v considered, and that
there is at least one v for which those frequencies are incommensurable. Once the continuous,
piecewise-linear functions f,(v) and f,(v) have been determined, different rational r (and
combinations of m and n such that mn = 0) can be used in (13) to find frame velocities v such that
Galilean transformation will render the moving-frame distribution time-periodic.

This procedure is demonstrated in §III.D for spatially- and temporally-discretized data
generated from the example distribution (7).

High resolution in time, low resolution in space. This case is of interest in two distinct
classes of situations. In the first, data are taken with sensors (e.g., hot-wire anemometers,
electrodes, pyrometers and other thermal sensors) far enough apart that spatial interpolation is
problematic. In the second class, which includes several magnetic resonance velocimetry
techniques, spatial resolution is low for any instantaneous measurement, and can be improved by
temporally aggregating data sampled over long time periods [14] or at high rates [45]. Such

velocimetry techniques are well suited to steady and time-periodic flows, but can be applied to
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temporally more complex flows with trade-offs between spatial and temporal resolution [46].

The data are typically available on a uniformly-spaced grid, so the following approach or
its two- and three-dimensional generalizations (see §IV) can be followed. If the temporal sampling
rate is sufficiently high, one can freely choose v and choose An,  =xAn, with
sgn(An ) =sgn(v), as the signed distance between sensor locations, with
n =0, + - 1)|A77mf| . This will determine Az . = A7, /v, and ensure that each spatial location
n, + jAn_ . sampled coincides with a sensor location, so that spatial interpolation is unnecessary.
The moving-frame time series are then constructed as above using (14), requiring only a subset of
the / time series.

Once the moving-frame time series are constructed, we proceed as in the case of essentially
continuous temporal and spatial data. If the number of measurement locations is small, the number
of elements in the moving-frame time series will be limited to no more than the number of
measurement locations, with a consequent reduction in the accuracy with which frequency can be
determined. A trade-off exists between large-magnitude v with moving-frame time series having
many elements, and small-magnitude v with time series having greater temporal extent.

Low resolution in time, high resolution in space. This case is very similar to the case of
high temporal resolution and low spatial resolution. Assuming that the data are sampled with
constant time-step size Az, we can choose v and 7, arbitrarily and determine A7, , from
At . =At and An_, =VvAr ., and then construct the time series using (14). We proceed exactly
as in the case of essentially-continuous temporal and spatial data, with the limitation that the
number of elements in the time series cannot exceed the number of measurement times, thus
limiting the accuracy with which frequency can be determined.

Low resolution in time and space. In this case, the resolution is insufficient to support
temporal or spatial interpolation, such as for concentration measurements in rivers [47]. (This is
sometimes the case in three-dimensional imaging (e.g., particle image velocimetry [11] or “4D”
computed tomography [48]) where trade-offs are made between temporal and spatial resolution

when scanning is performed in a third dimension. These cases can be treated with the two- and
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three-dimensional generalizations of the procedure below, as discussed in §IV.) Thus, values of v
are no longer chosen at will, but rather from a finite set defined by v =1An/(l,A7) where [, is a
nonzero integer whose magnitude is less than the number of measurement locations and /, is a
positive integer no larger than the number of time steps, assuming that measurements are uniformly
distributed over 7, <n <7, with spacing A7 and that data are sampled over 7, <7 <7 __ ata
constant rate 1/Az . Here, An, . =l An and Az . =1, A7 forinteger /, and /,. Figure 6 illustrates
possible choices of v. After v is chosen, the / moving-frame time series are constructed as above
using (14), with n, + jAn . =n_. + @+ jl, —1)An, though only a subset of them need be used.
After the time series are constructed, the analysis again proceeds as with essentially
continuous temporal and spatial data. The limitation noted for high temporal resolution and low
spatial resolution applies here, with the number of elements in the moving-frame time series not

exceeding the smaller of the number of measurement locations and the number of measurement

times, thus reducing the accuracy with which frequency can be determined.

D. Example application of procedure to numerical data
To illustrate use of this procedure, a discretized spatio-temporal data set was created from

the example distribution (7) with uo(n)=1, u#=10, and w=rx/5, over the ranges

T1 * .

T’a nb
n

FIG 6. Moving frames that can be chosen beginning at a particular spatio-temporal point for a
data set with low spatial and temporal resolution. Frames indicated are nontrivial in the

sense that each passes through at least one point for 7 > 7, and has nonzero velocity.

17



~10" < <2x10* and 0< 7 <10°, sampled with increments A7 =107 and Az =10"". Here, we
demonstrate application of our procedure without using knowledge of the functional form used to
create it. To clearly demonstrate that our approach transforms a quasi-periodic distribution to one
that is time-periodic in a moving frame, with power spectra consisting of a single frequency and
its harmonics, we compute frequencies to five significant digits for a wide range of frame
velocities, which requires a number of times (10°) and number of spatial locations (3x10’) not
typical of experimental data. Two or three significant digits in the frequencies, more common in
experimental work, are achievable with realistic numbers of temporal and spatial points, and
construction and analysis of multiple time series for a given frame velocity can mitigate error
attributable either to interpolation or to use of time series with limited duration and resolution.

For frame velocities v =-0.10, —0.08, —0.06, ..., 0.18, 0.20, we construct moving-frame
time series originating at (7',7') = (0,0) with temporal increment Az_, =5x107. (The same
analysis could have been applied to data with smaller spatial extent by either varying 7, or by
using smaller values of v, both of which can be chosen arbitrarily subject to adequate spatial and
temporal interpolation.) Because interpolation errors are small and each time series covers a large
temporal range, we examine only a single time series in each frame. For each v, we Fourier
transform the time series and identify N, observed frequencies. Here, we arbitrarily take these
frequencies to be those with f <10 having peaks in the power spectrum with at least one one-
thousandth the power of the most energetic peak. (See Supplemental Material §C [43] for
supporting plots and table for four representative frame velocities. For those velocities, N, =26,
16, 4, and 25.) For each frame velocity, the observed frequencies can be formed by summing
integer multiples of at most two incommensurable frequencies, so that for each frame we determine
a pair of extracted frequencies f;, and fg;, using zero as the second extracted frequency when
the moving-frame distribution is observed to be time-periodic.

As explained above, a pair of extracted frequencies, or one extracted frequency and either
the sum or difference of the pair, constitute a pair of basis frequencies. The four frequencies f; ,,

Jep» Sea + fep, and ‘ Jea— nyB‘ are plotted in Figure 7 for each frame velocity. While it is
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Underyling Frequency Candidates

Frame Velocity, v

FIG 7. Extracted frequencies, their sum, and the absolute value of their difference (* : f;., and
Jens Vi foa+ fips O ’ Jin— fFB‘) for 16 frame velocities. The “primary frequency
lines,” i.e., basis frequencies versus frame velocity, are shown as solid lines (equations
given in text), and two additional frequency lines are shown as a dotted line and as a
dashed line (“paired equations” given in text). The two parts of each frequency line
have slopes of equal magnitude. The absence of a marker on the f(v) primary
frequency line at v =0.08 is due to our choice to plot only the four frequencies above.
At v=0.08, the basis frequency pair f;, +3 /., and f;,, with f., =0.02832 and
Ji =0.20000, lies on the primary frequency lines f,(v) and f,(v), respectively.

possible that all pairs of extracted frequencies lie on the same two frequency lines, this is extremely
unlikely, so several other basis pairs are plotted to aid in identifying frequency lines. We designate
for subsequent use “primary frequency lines” f,(v) =0.62832 and f,(v) = |1 - 10v| (shown as solid
lines in Fig. 7) which have the desired form (12a,b) and pass through a pair of basis frequencies at
each v considered. (Although in Fig. 7 we restricted the frequencies plotted to those above, at
v=0.08 the basis frequency pair f;, +3fz5 and fg, with f;, =0.02832 and f;; = 0.20000,
lies on the primary frequency lines f,(v) and f,(v), respectively.) We note that f,(v) is a five-
digit approximation to 7/5, and that for any computation with finite-precision arithmetic, the

observed frequencies (and hence the extracted frequencies and other basis frequencies) will be

rational. In this context, we say that two frequencies are incommensurable if they are not equal to
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the ratio of two “small” integers, i.e., with magnitudes much smaller than the reciprocal of the
frequency discretization of the Fourier transform.

For any rational r (and for nonnegative integers m and n with m +n > mn =0), v satisfying
(13) gives a reference frame in which the distribution is time-periodic. ~Examples are
v=(1-0.62832)/10 and v = (1+0.62832)/10 for r =1, with the corresponding spatio-temporal
distributions in these frames plotted in Fig. 8(a,c). Figures 8(b,d) show that the power spectra of
the U(n'=0,7") time series in these two frames consist of a fundamental frequency and its
harmonics, confirming that the approach has indeed identified frames in which the distribution is
time-periodic. Figures 3 and 8(a) are indistinguishable, as expected, showing that the numerical
procedure can arrive at the same Galilean transformations as did the analytical approach for the
closed-form distribution in §III.A. Additional frame velocities can be obtained by choosing other
pairs of m and n, such as v=0.1 for n>m=0. For every combination of n# 0 and m in (13),
the frame velocities v =(1£0.62832 m/n)/10, which are finite-precision equivalents of the
condition derived in §III.A, will render the distribution time-periodic.

Figure 7 also shows that the paired equations f,(v)=[2(1-10v)—0.62832| and

f,(») =[1-10v

. [i(w=|1-10v)-0.62832] and f,(v)=|1-10v

,  f,(»)=0.62832 and
f,(v) =|(1-10v) - 0.62832

, and f,(v)=[21-10v)—0.62832| and f,(v)=|(1-10v)—0.62832]
describe valid choices of frequency-line pairs. As discussed in §III.B, there is a countably infinite
set of frequency-line pairs, such as f,(v) = | p(1-10v) — 0.62832| and f,(v) = |1 - 10v| for integer
p, and each pair could be used, by solving (13) for different (m,n) combinations, to identify frames
in which the distribution is rendered time-periodic. Within the accuracy of finite-precision
arithmetic, the set of frame velocities rendering the distribution time-periodic is independent of
the choice of frequency-line pair.
IV. MULTI-DIMENSIONAL GENERALIZATION

The approach can be extended to more complex situations. We consider a distribution
q(m,7), quasi-periodic in time 7 , whose spatio-temporal variation can be represented in terms of

2< N, < periodic functions g,, each having a single argument of the form
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FIG 8. Variation of U(7',7") , with the intrinsic frequency @ = 7/5 (incommensurable with the
extrinsic frequency 1), x=10, and #,(77)=1, in the moving frames with (a)
v=(1-0.62832)/10 and (c) v=(1+0.62832)/10, with magnitude scaled by
8.007 =max[U(7',7)]. These frame velocities were determined as intersections of the
frequency-line pair f,(v)=0.62832 and f,(v)= |1 —10v
= m/ n=1. As expected, the distribution is time-periodic in both frames, as shown by
the power spectra of the U(n' =0,7") times series for (b) v =(1-0.62832)/10 and (d)
v=(1+0.62832)/10. In (b) and (d), the peak at f =0 is omitted for graphical clarity.
The symbol F denotes the value 0.62832 in each subfigure.

, 1.e., by solving (13) with
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g =ar—b,.m, I<i<N,, (15)
where 1 is an N, -dimensional position vector and for 1<i< N, g, has period T;, b, isan N, -

dimensional vector, and, without loss of generality, a, > 0. In other words, g is of the form
gn,7) = R(g,(a7 =by « ), (@7~ by eM),.... 8 (ay T=by +m)). (16)
For  Cartesian n, a Galilean transformation N =n-vr7, '=71 renders
oM7) =q(n' +v7',7")=q(n,7) time-periodic in a moving frame if there exist ¥, v, and
rational r, (1<i < N,) such that
@ -b,.v|=ry. 1<i<N (17)
where @ =a. /T, and b, =b, /T, for 1<i<N,.

Some distributions with spatial variation more complex than allowed by (16) can be treated
similarly, as discussed in Supplemental Material §D [43].

For N, > 2, there are combinations of a, and l_)[ such that (17) does not admit a solution
(v,iy,r) with the N ; elements of r rational. A simple example for N, =1 and N = 3 is
a=a,=a,=1,b=0,b,=1,and. On the other hand, it can be shown that a solution exists for
and if is rational, where is some cyclic permutation of . In general, valid solutions will exist if
or if conditions on and , such as shown above, are satisfied, except in degenerate cases, as
discussed in Supplemental Material §E [43].

The approach for determining appropriate frame velocities from experimental data,
described in §§III.B and III.C and illustrated in §IIL.D for one Cartesian dimension (N, =1) with
N, = 2, can be extended to two- and three-dimensional data (i.e., N, =2,3) with more
complicated spatio-temporal structure (i.e., N, >2). As per the discussion in §IILB, the
distribution need only have the properties associated with (16), with no analytical representation
required. If adequate moving-frame time series can be constructed from the laboratory-frame data,
the N, observed frequencies for each moving frame will consist of linear combinations of no more

than N, incommensurable frequencies, with degeneracy sometimes leading to fewer when some

of the N, basis frequencies are zero or rationally related. After calculating sets of these basis
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frequencies (whose accuracy will depend on the temporal duration of, and the number of elements
in, the moving-frame time series, as well as on interpolation error) for a sufficient number of
moving frames, one can calculate sets of N, objects

fv=la-b.v

,  1<igN, (18)

that are N,-dimensional generalizations of the N, =1 frequency lines (two nonparallel rays with
a common endpoint and equal-magnitude slopes). For N, =2, each object consists of two
nonparallel half-planes in R’ with a common edge. For N, =3, the objects consist of piecewise
hyperplanes in R*. (Further characterization is provided in Supplemental Material §F [43], which
includes Ref. [49].) As with the need to pair frequency lines in the N, =1 case, these objects must
be grouped into sets such that they constitute a set of N, basis frequencies for any frame velocity
v. That the objects have been correctly grouped into a set can be confirmed if there exists a v for
which these basis frequencies are pairwise incommensurable. If construction of such a set is not
possible, then the distribution is not of the form (16). If at a given frame velocity v, each of the
N objects corresponds to a frequency rationally related to all the others or equal to zero, then the
frame velocity v will render the distribution periodic. For each of the countably infinite number
of such sets of objects, the lab-frame distribution g will be rendered time-periodic in any frame
with velocity v satisfying (17), as discussed in §§III.B-D.

The techniques described above can be applied to some distributions exhibiting temporally
quasi-periodic behavior and nonrectilinear propagation, if the spatio-temporal variation satisfies
(16), or (S6-7) in the Supplemental Material §D [43], with | no longer required to be Cartesian.
For example, these techniques can be applied to helical propagation [50-56] if the arguments of
the periodic functions are of the form a,7 —b,z—c, ¢, where z and ¢ are the axial and azimuthal
coordinates, respectively, in a circular cylindrical system. The approach is also applicable when
various helical coordinate systems [57-58] are used and, in fact, can be applied to any distribution

having the properties associated with the form (16) regardless of coordinate system.

23



V. DISCUSSION AND CONCLUSIONS

We note that in systems with diffusion, heat conduction, viscosity, or other dissipative
effects, temporally-periodic or quasi-periodic long-time behavior typically follows an initial
transient, and depends on internal or boundary forcing or on nonlinearity. Our approach is clearly
applicable to long-time quasi-periodic behavior preceded by a transient of different type.

The approach described can be applied in the presence of noise. The Galilean
transformation applies independently to the distribution g(m,7) and a noise process w(n,7),
leaving the relationship between signal and noise effectively unchanged. Thus, a distribution with
additive noise transforms from ¢g(n,7)+w(n,7) to O(W,7)+W(n,7"), and a distribution with
multiplicative noise transforms from g(n,7)[1+w(n,7)] to Q(n,7")[1+W(x,7")]. Extraction of
basis frequencies from power spectra of time series will be unaffected by noise provided that its
amplitude is sufficiently low. Similarly, extraction of basis frequencies will be unaffected if the
power spectrum of the noise process does not significantly overlap with the power spectrum of the
distribution being examined. For somewhat higher noise amplitudes, statistical stationarity,
statistical homogeneity, and lack of spatio-temporal correlation of the noise become important in
determining whether the distribution’s moving-frame frequency content can be identified.

Because Galilean transformation has no effect on additional independent variables (i.e.,
those other than position and time), our transformation will also be applicable to situations in which
the propagating spatio-temporal quantity is a distribution function depending unrestrictedly on, for
example, particle, drop, or bubble size, particle or molecular orientation, or particle momentum.
An example of the latter is provided by a modified Fokker-Planck analysis of the distribution of
particles, depending on position, time, and momentum, in a temporally quasi-periodic flow [59].

We also note that transformation of a propagating distribution g(n,7) temporally quasi-
periodic at each point M in the laboratory frame to a distribution Q(n',7") time-periodic at each
point i’ in the moving frame is equivalent to reducing the correlation dimension [60] of the time
series. Thus, in the most common case of two incommensurable temporal frequencies in the

laboratory-frame distribution, corresponding to the time series of g at each spatial point n having
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correlation dimension two, the time series of Q at each point i in the moving frame will have
correlation dimension one.

In conclusion, a broad class of propagating distributions in one, two, or three spatial
dimensions, with temporal behavior quasi-periodic in a laboratory frame, can be rendered time-
periodic in a moving frame by Galilean transformation. Sufficient conditions for this to work, and
the resulting transformations, are discussed, and a process is established to identify such

transformations for spatially- and temporally-discretized experimental data.
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