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Abstract 

For a broad class of distributions of temperature, concentration, or another quantity propagating 

rectilinearly, we show that temporally quasi-periodic behavior in the laboratory frame can be 

rendered periodic by Galilean transformation.  The approach is illustrated analytically and 

numerically using as an example a closed-form model distribution generated from a one-

dimensional partial differential equation, and a detailed process is developed to determine frame 

speed from more general quasi-periodic, one-dimensional, temporally- and spatially-discretized 

data.  The approach is extended to two- and three-dimensional rectilinear propagation, and its 

application to nonrectilinear propagation, along with implications for interpreting noise-corrupted 

data, are also discussed. 
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I. INTRODUCTION 

 In many systems, spatio-temporal variation propagates through a medium.  In some cases, 

data are acquired as time series at fixed locations.  Examples include temperature fields in moving 

fluids sensed by thermocouples [1-2]; concentration distributions in moving fluids sensed 

electrochemically [3]; velocity fields sensed using hot-wire, hot-film, laser-Döppler, or 

electrochemical techniques [4-6]; and acoustic waves sensed by pressure or velocity microphones 

[7].  In other cases, data can be acquired by moving a sensor along a line or other path [8].  Data 

can also be acquired continuously or nearly continuously in space and time (frequently optically) 

in systems involving flow [9-16] or involving wave propagation either in nominally motionless 

chemically reacting systems [17-26] or in rings of cardiac cells [27-28]. 

 In all of these cases, data are typically analyzed in the laboratory frame.  When a preferred 

direction exists (e.g., due to mean fluid flow, in situations involving rotating waves in a plane [27-

28], and in other wave propagation through a quiescent medium), the question arises as to whether 

one can gain additional insight, or simplify analysis of data, by considering the data in a different 

reference frame.  In some cases, it is known that the answer is �yes.✁  Examples include use of 

Galilean transformations to identify vortices and other propagating structures in shear flow 

experiments and computations [29-30].  More recently, a non-Galilean transformation has been 

employed to obtain a first-order ordinary differential equation used to analyze time-dependent 

experimental data for motion of the rim bounding a decelerating liquid sheet resulting from drop 

impact on a solid surface [31].  From the standpoint of theory, transformation to a moving frame 

has been used to analyze traveling-wave phenomena in a wide range of applications [32-38]. 

 Here we consider whether experimental data or computational results exhibiting temporal 

quasi-periodicity and propagation in the laboratory frame [23-24, 39-40] can be rendered time-

periodic by a change of frame and, if so, how one identifies the frame transformation.  That such 

a transformation is sometimes possible is illustrated by a simple example.  Consider a medium at 

rest in which oscillating chemical reaction generates time-periodic concentration distributions in 

the form of standing or rotating waves with temporal frequency chemf .  Now suppose that the 
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medium is rotated with angular velocity rot2 f�✁ ✂ , with chemf  and rotf  incommensurable.  To a 

laboratory-frame observer, concentrations at any point will be temporally quasi-periodic [41], even 

though the underlying chemical dynamics are strictly time-periodic.  Transformation to a frame 

rotating with the medium will clearly render the distributions time-periodic. 

 Can this simple result for azimuthal propagation in a plane be extended to rectilinear and 

other propagation if the geometry is not periodic?  For a broad class of temporally quasi-periodic 

distributions (possibly after an initial transient) depending on a Cartesian coordinate ✄  and time 

☎  through precisely two distinct linear combinations of those variables, we answer affirmatively, 

by showing that Galilean transformation renders such distributions time-periodic.  We show how 

to determine appropriate reference frames, and that the approach is directly extendable to some 

distributions propagating rectilinearly or nonrectilinearly in two and three dimensions, or 

depending periodically on more linear combinations of the spatial coordinate(s) and time. 

 The remainder of the paper is organized as follows.  In §II, we use a one-dimensional 

partial differential equation (PDE) to generate model rectilinearly-propagating spatio-temporal 

distributions, temporally quasi-periodic in the laboratory frame.  We show how these example 

distributions are rendered time-periodic in a moving frame by Galilean transformation in §III.A, 

and that the procedure is applicable to a broad class of temporally quasi-periodic distributions in 

§III.B, where we provide a theoretical foundation.  In §III.C, we describe in detail how an 

appropriate frame velocity can be determined for temporally- and spatially-discretized 

experimental, observational, or computational data.  We apply the technique to numerical data in 

§III.D, and generalize to two- and three-dimensional distributions and to nonrectilinear 

propagation in §IV, followed by a discussion, including effects of noise, and conclusions in §V. 

II. MODEL DISTRIBUTIONS 

A.  Generation of model distributions 

 We illustrate the process for transforming laboratory-frame quasi-periodicity to moving-

frame periodicity using example distributions generated by closed-form solution of initial 

boundary-value problems for the linear PDE 
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( , )U � ✁✂ ✂  is time-periodic if ✄ ☎  is rational, and quasi-periodic otherwise.  Unless ✆ ✝✞  (the 

PGT), ✟✠  along characteristics will undergo a net (nonmonotonic) increase or decrease over each 

temporal period (Fig. 2), i.e., the distribution will propagate relative to the frame, and the 

transformed distribution will have temporal frequencies ✡  and ☛ . 

 As shown in the next subsection, our approach applies to a broad class of distributions 

having in common with the closed-form distribution (7) only the fact that they depend on two 

distinct periodic functions of linear combinations of position and time. 

B.  Theoretical Underpinning 

 Let periodic functions 1( )g ☞  and 2 ( )g ✌  have periods 1T  and 2T , respectively, so that 

1 1 1( )g a b✍ ✎✏  and 2 2 2( )g a b✑ ✒✓  have temporal periods 1 1T a and 2 2T a , respectively, with 

corresponding temporal frequencies 1 1a T  and 2 2a T .  Thus, a spatio-temporal distribution q 

depending on ✄  and ☎  through 1g  and 2g  according to 

 ✔ ✕1 1 1 2 2 2( , ) ( ), ( )q S g a b g a b✖ ✗ ✗ ✖ ✗ ✖✘ ✙ ✙  (10) 

will be temporally quasi-periodic if 1 1T a  and 2 2T a  are incommensurable.  We note that q can be 

exact, or asymptotically represent long-time behavior following an initial transient. 

 Applying the Galilean transformation v✚ ✚ ✛✜ ✢ ✣ , ✤ ✤✥ ✦  to q gives the moving-frame 

distribution 

 ✧ ★ ✧ ★✩ ✪1 1 1 1 2 2 2 2( , ) ( , ) ( ) , ( )Q q v S g a b v b g a b v b✫ ✬ ✫ ✬ ✬ ✬ ✫ ✬ ✫✭ ✭ ✭ ✭ ✭ ✭ ✭ ✭ ✭✮ ✯ ✮ ✰ ✰ ✰ ✰ . (11) 

Thus, a one-dimensional quasi-periodic distribution with spatio-temporal dependence only 

through two periodic functions [i.e., of the form (10)] will have two temporal frequencies varying 

with frame velocity as 

 1 1 1( )f v a b v✱ ✲ ,    2 2 2( )f v a b v✳ ✴ . (12a,b) 

where i i i
a a T✵  and i i i

b b T✶  for 1,2i ✷ .  The moving-frame distribution is time-periodic if 

1( )f v  and 2 ( )f v  are commensurable for a given v, so Q will be time-periodic if there exists a pair 

of nonnegative integers m and n with 0m n✸ ✹  such that 

 1 2( ) ( )mf v nf v✺ . (13) 
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If 0mn � , we define r m n✁ .  For example, 1r ✂  corresponds to the case in which 1 1 1( )g a b✍ ✎✏  

and 2 2 2( )g a b✑ ✒✓  have the same temporal frequency in the moving frame.  The desired frame 

velocities for this case are 1 2 1 2( ) ( )v a a b b✄ ☎ ☎  and 1 2 1 2( ) ( )v a a b b✄ ✆ ✆ , with only one being 

suitable in the singular case 1 2b b✝ . 

 Distributions can have multiple representations, e.g., ( , ) 2sin( )sin( 2 )q ✞ ✟ ✟ ✞ ✠✟ ✞✡ ☛ ☛  is 

equivalent to ☞ ✌ ☞ ✌cos (1 ) cos (1 ) 3✍ ✎ ✏ ✍ ✎ ✏✑ ✑ ✑ ✒ ✒ .  In the first, 1 1 1( ) sin( )g a b✓ ✔ ✓ ✔✕ ✖ ✗  and 

2 2 2( ) sin( 2 )g a b✘ ✙ ✚✘ ✙✛ ✜ ✢ , so the frame-dependent frequencies are 
1( ) 1 (2 )f v v ✣✤ ✥  and 

2( ) 2 (2 )f v v✦ ✦✧ ★ , and 1v ✩✪ ✫  and (1 ) 3v ✬✭ ✮ ✯  give moving-frame periodicity with 1r ✂ .  

Using the second representation gives 
1( ) 1 (2 )f v v✰ ✰✱ ✲ ✲  and 

2( ) 1 3 (2 )f v v✳ ✳✴ ✵ ✵ , with 

2v ✶✷ ✸  and 1v ✹ ✺  for 1r ✂ .  As both representations describe the same distribution, a velocity 

satisfying (13) for these or other representations, renders the distribution time-periodic in the 

associated moving frame.  For different representations, one can generate the same frame velocities 

by solving (13) using different ( , )m n  combinations.  Other sets of velocities can thus be identified 

by varying r or allowing 0mn ✻ , or by using other representations with the same ( , )m n . 

 Consistent with the lack of an analytical representation in experimental and observational 

data, no explicit representation of the distribution is needed.  The distribution need only have the 

properties associated with (10), from which it follows that fixed-location time series will have 

power spectra whose observed frequencies are linear combinations of two incommensurable 

frequencies.  As for all quasi-periodic time series, the choice of these incommensurable 

frequencies is not unique.  Furthermore, in any Galilean frame with velocity v, the moving-frame 

distribution Q (11) will be quasi-periodic with observed frequencies that are linear combinations 

of two incommensurable frequencies, unless the Galilean transformation renders the distribution 

time-periodic.  We refer to any pair of incommensurable frequencies obtainable from the observed 

frequencies in the power spectrum for a given ✼✽✾✿❀ ❁❀❂❃❄❅❆❇ ✾❈ �basis ✼✽❀❉❊❀❋❄❅❀❈✁ and refer to a 

●✾✽❆❅❄❊❂✾✽ ●✾❅✽ ❍❀❆❀✽✿❅❋❀❍ ✼✽❃✿ ❆■❀ ❃❏❈❀✽❁❀❍ ✼✽❀❉❊❀❋❄❅❀❈ ✾❈ �❀❑❆✽✾❄❆❀❍ ✼✽❀❉❊❀❋❄❅❀❈▲✁ E,Af  and E,Bf .  

For distributions time-periodic in a given moving frame, the pair of extracted frequencies, and any 

other pair of basis frequencies, will consist of one positive frequency and either a second positive 
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frequency rationally related to it, ❃✽ ✾ �❀✽❃ �✼✽❀❉❊❀❋❄❇.✁  This approach allows for continuous 

dependence of basis frequencies on frame velocity, as discussed below. 

 At any frame velocity, each member of each pair of basis frequencies lies on a piecewise-

linear continuous function of frame velocity (12a,b).  In other words, at a given frame velocity, the 

values of these piecewise-linear functions correspond to a pair of basis frequencies for that moving 

frame.  We refer to such piecewise-linear ✼❊❋❄❆❅❃❋❈ ✾❈ �✼✽❀❉❊❀❋❄❇ ❂❅❋❀❈,✁ 1( )f v  and 2 ( )f v .  Note 

that frequency lines must be paired such that at each moving-frame velocity, they correspond to a 

pair of basis frequencies.  Correct pairing of frequency lines can be confirmed if, at some frame 

velocity, the pair coincides with a pair of incommensurable basis frequencies.  If frequency-line 

pairs of the form (12a,b) exist, then the moving-frame distribution Q is time-periodic in frames for 

which the corresponding pair of frequencies is rationally related, i.e., satisfy (13).  If such 

frequency-line pairs do not exist, then q is not of the form (10).  Since there is a countably infinite 

number of pairs of basis frequencies for any given v, there will also be a countably infinite number 

of frequency-line pairs, any of which can be used to satisfy (13).  An example application of this 

approach is given in §III.D.  Generalization to two or three dimensions and to distributions with 

more than two basis frequencies is discussed in §IV. 

C.  Procedure to determine frame velocity for one-dimensional experimental data 

 To illustrate application of our approach in the context of experimental data, we consider 

discrete-time time series at discrete locations provided from a temporally quasi-periodic one-

dimensional distribution ( , )q ✁ ✂ , without knowing the functional form of the distribution itself.  

At each location, one can use the laboratory-frame time series to determine the power spectrum, 

consisting of a set of discrete observed frequencies, each representable as a linear combination of 

the same pair of incommensurable basis frequencies, the choice of which is not unique. 

 We consider four cases based on different spatial and temporal resolutions relative to 

spatial and temporal variation of the data, corresponding to whether accurate interpolation in space 

or time is possible.  In each case, we assume that the data are acquired over a domain 
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min max� � �✁ ✁  and a time period 1 max✂ ✂ ✂✄ ✄ , with uniform spacing ☎✆  and uniform temporal 

increment ✝✞ , respectively.  (If the spatial or temporal resolution is sufficient to accurately 

interpolate, increments need not be uniform.)  We also assume that quasi-periodic behavior has 

been established by 1✟ , possibly following an initial transient.  Because the power spectrum is in 

the frequency domain, max 1✠ ✠✡  should be large enough for the Fourier transform to provide 

adequate frequency resolution.  As discussed below, a large max min☛ ☛☞  is preferred, especially 

when sufficiently accurate spatial interpolation is not possible, in order to have a large range of 

possible frame velocities.  In each of the four cases, we construct (with minor variations depending 

on resolution) discrete-time moving-frame time series analogous to the continuous moving-frame 

time series obtained from the distribution PGT( , )U ✌ ✍✎ ✎  discussed in §III.A and determine extracted 

frequencies in the moving frames, from which we calculate frequency-line pairs. 

 In each of the four cases below, applicability of the approach is not restricted to temporally 

quasi-periodic distributions corresponding to sums of periodic functions of their arguments.  This 

is made clear by reference to (7), which has a highly nonlinear dependence of ( , )u ✏ ✑  on 

trigonometric functions, and more generally by (10). 

 High resolution in time and space.  Data at each location are often sampled at a 

sufficiently high rate to allow accurate interpolation in time.  For such data acquired either on a 

continuous basis (e.g., with a streak camera [44]) or discretely (e.g., with a camera having finite 

�shutter speed✁), spatial resolution will typically be very high, allowing for spatial interpolation as 

necessary.  This is also usually the case for numerical simulations.  Here, we deal with these cases 

as if the data are or can be treated as continuous in space and time. 

 We process the data to mimic an observer moving through the distribution with constant 

nonzero velocity v, as illustrated in Fig. 5.  We construct I moving-frame time series by sampling 

data along the lines 1( )
i

v✒ ✒ ✓ ✓✔ ✕ ✔ , beginning at 1✖ ✖✗  for I arbitrarily chosen positions i✘  (not 

necessarily at measurement locations) in min maxi✙ ✙ ✙✚ ✚ .  Here, either the spatial increment mf✛✜  

(lab-frame distance between consecutive points in each moving-frame time series; see Fig. 5) or 

temporal increment mf mf v✢ ✣✤ ✥ ✤  is arbitrarily chosen, with mfsgn( ) sgn( )v✦✧ ★ .  The i-th 
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and temporal duration of any particular data set will limit the duration of the moving-frame time 

series, which limits the frequency resolution of the Fourier transform.  These errors and resolution 

limitations can be mitigated by examining additional time series for each frame velocity, each of 

which will have observed frequencies that can be generated from the same basis frequencies. 

 For each time series and for several values of v, we generate the power spectrum and 

determine a pair of extracted frequencies, E,Af  and E,Bf , from which we calculate several pairs of 

basis frequencies, e.g., E,Af  and E,A E,Bf f� .  (If E,Af  and E,Bf  are extracted frequencies, then E,Af  

and E,A E,Bpf f✁  also constitute a pair of basis frequencies for any integer p, as do E,Bf  and 

E,A E,Bf pf✁ .  Other choices are also possible.)  We then identify a frequency-line pair 1( )f v  and 

2 ( )f v  for which pairs of basis frequencies depend on the absolute values of linear functions of v, 

i.e., of the form (12a,b).  Since for each value of v it is not known a priori which basis frequencies 

correspond to which frequency lines, several values of v might be needed to make the pattern 

apparent.  Sufficient conditions for 1( )f v  and 2 ( )f v  to be a frequency-line pair are that they are of 

the form (12a,b), that they pass through a pair of basis frequencies for each v considered, and that 

there is at least one v for which those frequencies are incommensurable.  Once the continuous, 

piecewise-linear functions 1( )f v  and 2 ( )f v  have been determined, different rational r (and 

combinations of m and n such that 0mn ✻ ) can be used in (13) to find frame velocities v such that 

Galilean transformation will render the moving-frame distribution time-periodic. 

 This procedure is demonstrated in §III.D for spatially- and temporally-discretized data 

generated from the example distribution (7). 

 High resolution in time, low resolution in space.  This case is of interest in two distinct 

classes of situations.  In the first, data are taken with sensors (e.g., hot-wire anemometers, 

electrodes, pyrometers and other thermal sensors) far enough apart that spatial interpolation is 

problematic.  In the second class, which includes several magnetic resonance velocimetry 

techniques, spatial resolution is low for any instantaneous measurement, and can be improved by 

temporally aggregating data sampled over long time periods [14] or at high rates [45].  Such 

velocimetry techniques are well suited to steady and time-periodic flows, but can be applied to 
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temporally more complex flows with trade-offs between spatial and temporal resolution [46]. 

 The data are typically available on a uniformly-spaced grid, so the following approach or 

its two- and three-dimensional generalizations (see §IV) can be followed.  If the temporal sampling 

rate is sufficiently high, one can freely choose v and choose mf✎ ✎� ✁ ✂� , with 

mfsgn( ) sgn( )v✦✧ ★ , as the signed distance between sensor locations, with 

min mf( 1)i i✄ ✄ ✄☎ ✆ ✝ ✞ .  This will determine mf mf v✢ ✣✤ ✥ ✤ , and ensure that each spatial location 

mfi
j✌ ✌✟ ✠  sampled coincides with a sensor location, so that spatial interpolation is unnecessary.  

The moving-frame time series are then constructed as above using (14), requiring only a subset of 

the I time series. 

 Once the moving-frame time series are constructed, we proceed as in the case of essentially 

continuous temporal and spatial data.  If the number of measurement locations is small, the number 

of elements in the moving-frame time series will be limited to no more than the number of 

measurement locations, with a consequent reduction in the accuracy with which frequency can be 

determined.  A trade-off exists between large-magnitude v with moving-frame time series having 

many elements, and small-magnitude v with time series having greater temporal extent. 

 Low resolution in time, high resolution in space.  This case is very similar to the case of 

high temporal resolution and low spatial resolution.  Assuming that the data are sampled with 

constant time-step size ✝✞ , we can choose v and i✘  arbitrarily and determine mf✛✜  from 

mf✍ ✍✠ ✡ ✠  and mf mfv☛ ☞✌ ✍ ✌ , and then construct the time series using (14).  We proceed exactly 

as in the case of essentially-continuous temporal and spatial data, with the limitation that the 

number of elements in the time series cannot exceed the number of measurement times, thus 

limiting the accuracy with which frequency can be determined. 

 Low resolution in time and space.  In this case, the resolution is insufficient to support 

temporal or spatial interpolation, such as for concentration measurements in rivers [47].  (This is 

sometimes the case in three-dimensional imaging (e.g., particle image velocimetry [11] ❃✽ �✎✏✁

computed tomography [48]) where trade-offs are made between temporal and spatial resolution 

when scanning is performed in a third dimension.  These cases can be treated with the two- and 
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4 410 2 10�✁ ✂ ✂ ✄  and 
50 10✛☎ ☎ , sampled with increments 310✆

✝
✞ ✟  and 

410✠
✡

☛ ☞ .  Here, we 

demonstrate application of our procedure without using knowledge of the functional form used to 

create it.  To clearly demonstrate that our approach transforms a quasi-periodic distribution to one 

that is time-periodic in a moving frame, with power spectra consisting of a single frequency and 

its harmonics, we compute frequencies to five significant digits for a wide range of frame 

velocities, which requires a number of times (
910 ) and number of spatial locations (

73 10✌ ) not 

typical of experimental data.  Two or three significant digits in the frequencies, more common in 

experimental work, are achievable with realistic numbers of temporal and spatial points, and 

construction and analysis of multiple time series for a given frame velocity can mitigate error 

attributable either to interpolation or to use of time series with limited duration and resolution. 

 For frame velocities 0.10v ✍ ✎ , 0.08✏ , 0.06✏ , ✑ , 0.18, 0.20, we construct moving-frame 

time series originating at ( , ) (0,0)✒ ✓✔ ✔ ✕  with temporal increment 
3

mf 5 10✖
✗

✘ ✙ ✚ .  (The same 

analysis could have been applied to data with smaller spatial extent by either varying i✘  or by 

using smaller values of v, both of which can be chosen arbitrarily subject to adequate spatial and 

temporal interpolation.)  Because interpolation errors are small and each time series covers a large 

temporal range, we examine only a single time series in each frame.  For each v, we Fourier 

transform the time series and identify oN  observed frequencies.  Here, we arbitrarily take these 

frequencies to be those with 10f ✛  having peaks in the power spectrum with at least one one-

thousandth the power of the most energetic peak.  (See Supplemental Material §C [43] for 

supporting plots and table for four representative frame velocities.  For those velocities, oN ✜ 26, 

16, 4, and 25.)  For each frame velocity, the observed frequencies can be formed by summing 

integer multiples of at most two incommensurable frequencies, so that for each frame we determine 

a pair of extracted frequencies E,Af  and E,Bf , using zero as the second extracted frequency when 

the moving-frame distribution is observed to be time-periodic. 

 As explained above, a pair of extracted frequencies, or one extracted frequency and either 

the sum or difference of the pair, constitute a pair of basis frequencies.  The four frequencies E,Af , 

E,Bf , E,A E,Bf f� , and E,A E,Bf f✢  are plotted in Figure 7 for each frame velocity.  While it is 
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�✁✂ ✄☎�✆✝ ✝✞ �✟✝ �✠✡☎☛☛✁ ✆☞�✂✌✂✄✠, i.e., with magnitudes much smaller than the reciprocal of the 

frequency discretization of the Fourier transform. 

 For any rational r (and for nonnegative integers m and n with 0m n mn✍ ✎ ✏ ), v satisfying 

(13) gives a reference frame in which the distribution is time-periodic.  Examples are 

(1 0.62832) 10v ✑ ✒  and (1 0.62832) 10v ✑ ✓  for 1r ✂ , with the corresponding spatio-temporal 

distributions in these frames plotted in Fig. 8(a,c).  Figures 8(b,d) show that the power spectra of 

the ( 0, )U ✔ ✕✖ ✖✗  time series in these two frames consist of a fundamental frequency and its 

harmonics, confirming that the approach has indeed identified frames in which the distribution is 

time-periodic.  Figures 3 and 8(a) are indistinguishable, as expected, showing that the numerical 

procedure can arrive at the same Galilean transformations as did the analytical approach for the 

closed-form distribution in §III.A.  Additional frame velocities can be obtained by choosing other 

pairs of m and n, such as 0.1v ✘  for 0n m✙ ✍ .  For every combination of 0n ✚  and m in (13), 

the frame velocities (1 0.62832 ) 10v m n✛ ✜ , which are finite-precision equivalents of the 

condition derived in §III.A, will render the distribution time-periodic. 

 Figure 7 also shows that the paired equations 
1( ) 2(1 10 ) 0.62832f v v✢ ✣ ✣  and 

2( ) 1 10f v v✤ ✥ , 
1( ) (1 10 ) 0.62832f v v✦ ✧ ✧  and 

2( ) 1 10f v v✤ ✥ , 1( ) 0.62832f v ★  and 

2( ) (1 10 ) 0.62832f v v✩ ✪ ✪ , and 1( ) 2(1 10 ) 0.62832f v v✢ ✣ ✣  and 2( ) (1 10 ) 0.62832f v v✩ ✪ ✪  

describe valid choices of frequency-line pairs.  As discussed in §III.B, there is a countably infinite 

set of frequency-line pairs, such as 1( ) (1 10 ) 0.62832f v p v✫ ✬ ✬  and 2( ) 1 10f v v✤ ✥  for integer 

p, and each pair could be used, by solving (13) for different ( , )m n  combinations, to identify frames 

in which the distribution is rendered time-periodic.  Within the accuracy of finite-precision 

arithmetic, the set of frame velocities rendering the distribution time-periodic is independent of 

the choice of frequency-line pair. 

IV. MULTI-DIMENSIONAL GENERALIZATION 

 The approach can be extended to more complex situations.  We consider a distribution 

( , )q ✂✭ , quasi-periodic in time ✮ , whose spatio-temporal variation can be represented in terms of 

2 fN✯ ✰ ✱  periodic functions ig , each having a single argument of the form 
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V. DISCUSSION AND CONCLUSIONS 

 We note that in systems with diffusion, heat conduction, viscosity, or other dissipative 

effects, temporally-periodic or quasi-periodic long-time behavior typically follows an initial 

transient, and depends on internal or boundary forcing or on nonlinearity.  Our approach is clearly 

applicable to long-time quasi-periodic behavior preceded by a transient of different type. 

 The approach described can be applied in the presence of noise.  The Galilean 

transformation applies independently to the distribution ( , )q ✂✭  and a noise process ( , )w �✂ , 

leaving the relationship between signal and noise effectively unchanged.  Thus, a distribution with 

additive noise transforms from ( , ) ( , )q w✁ ✁✄☎ ☎  to ( , ) ( , )Q W✆ ✆✝ ✝ ✝ ✝✞✟ ✟ , and a distribution with 

multiplicative noise transforms from ( , )[1 ( , )]q w✠ ✠✡☛ ☛  to ( , )[1 ( , )]Q W☞ ☞✌ ✌ ✌ ✌✍✎ ✎ .  Extraction of 

basis frequencies from power spectra of time series will be unaffected by noise provided that its 

amplitude is sufficiently low.  Similarly, extraction of basis frequencies will be unaffected if the 

power spectrum of the noise process does not significantly overlap with the power spectrum of the 

distribution being examined.  For somewhat higher noise amplitudes, statistical stationarity, 

statistical homogeneity, and lack of spatio-temporal correlation of the noise become important in 

determining whether �✁✂ ✏✆✠�✄✆✑✒�✆✝☞✓✠ moving-frame frequency content can be identified. 

 Because Galilean transformation has no effect on additional independent variables (i.e., 

those other than position and time), our transformation will also be applicable to situations in which 

the propagating spatio-temporal quantity is a distribution function depending unrestrictedly on, for 

example, particle, drop, or bubble size, particle or molecular orientation, or particle momentum.  

An example of the latter is provided by a modified Fokker-Planck analysis of the distribution of 

particles, depending on position, time, and momentum, in a temporally quasi-periodic flow [59]. 

 We also note that transformation of a propagating distribution ( , )q ✔✕  temporally quasi-

periodic at each point ✖  in the laboratory frame to a distribution ( , )Q ✗✘ ✘✙  time-periodic at each 

point ✚✛  in the moving frame is equivalent to reducing the correlation dimension [60] of the time 

series.  Thus, in the most common case of two incommensurable temporal frequencies in the 

laboratory-frame distribution, corresponding to the time series of q at each spatial point ✖  having 
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correlation dimension two, the time series of Q at each point ✚✛  in the moving frame will have 

correlation dimension one. 

 In conclusion, a broad class of propagating distributions in one, two, or three spatial 

dimensions, with temporal behavior quasi-periodic in a laboratory frame, can be rendered time-

periodic in a moving frame by Galilean transformation.  Sufficient conditions for this to work, and 

the resulting transformations, are discussed, and a process is established to identify such 

transformations for spatially- and temporally-discretized experimental data. 
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