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We experimentally and theoretically investigate systems with a pair of source and inert particles
that interacts through the concentration field. The experimental system comprises a camphor disk
as the source particle and a metal washer as the inert particle. Both are floated on a red aqueous
solution at various concentrations, where the glycerol modifies the viscosity of the aqueous phase.
The particles form a pair owing to the attractive lateral capillary force. As the camphor disk
spreads surface-active molecules at the aqueous surface, the camphor disk and metal washer move
together, driven by the surface tension gradient. The washer is situated in the front of the camphor
disk, keeping the distance constant during their motion, which we call a pairing-induced motion.
The pairing-induced motion exhibited a transition between circular and straight motions as the
glycerol concentration in the aqueous phase changed. Numerical calculations using a model that
considers forces caused by the surface tension gradient and lateral capillary interaction reproduced
the observed transition in the pairing-induced motion. Moreover, this transition agrees with the
result of the linear stability analysis on the reduced dynamical system obtained by the expansion
with respect to the particle velocity. Our results reveal that the effect of the particle velocity cannot
be overlooked to describe the interaction through the concentration field.

I. INTRODUCTION

In nonequilibrium systems, a particle can sponta-
neously move by consuming free energy, and this is known
as a self-propelled particle. The mechanism of such a self-
propelled motion of a single particle has been intensively
studied [1–5], in addition to their collective behavior
[6–11]. Recently, self-propelled particles that interact
through a concentration field have attracted attentions
as an analog for chemotactic motions of living organ-
isms, e.g., Dictyostelium [12] and E . coli [13]. In an ac-
tual biological situation, the system of interest possesses
macroscopic dynamics due to several species interacting
within the system [14]. As a pioneering theoretical work,
Canalejo et al. reported the active phase separation in
the multiparticle system of binary species [15]. In their
model, the dynamics of concentration field is adiabati-
cally eliminated. Thus, the particles interact through the
concentration fields in an instantaneous manner. How-
ever, the concentration field can have their own spatio-
temporal dynamics, such as diffusion and chemical reac-
tion, which may alter the characteristics of the particle
motion. In fact, the concentration field and the parti-
cle position are introduced as independent variables in
the model for the camphor disk motion on water [16–19].
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This model can show the self-propulsion through sponta-
neous symmetry breaking owing to the dynamics of the
concentration field. Therefore, we investigate the sys-
tems with two types of particles coupled with the concen-
tration field having their own dynamics. In the present
study, we focus on a simple system that comprises a pair
of source and inert particles, both of which are driven by
a common concentration field.
In our experiment, we use a camphor disk and metal

washer as the source and inert particles, respectively, at
the surface of a glycerol aqueous solution. From the cam-
phor disk floating at the surface of the aqueous solution,
camphor molecules are continuously spread to the aque-
ous surface, and then, they are sublimated to the air
phase. A consequent spatial gradient of surface tension
drives the camphor disk and metal washer [20–28]. The
floating metal washer distorts the surface, which causes
the attractive lateral capillary force between the camphor
disk and metal washer [29]. Owing to the surface tension
gradient and attractive capillary force, the camphor disk
and metal washer exhibit the motion with a constant
mutual distance, a pairing-induced motion. The glyc-
erol concentration in the aqueous phase was varied as
a control parameter, which changes the viscosity of the
aqueous phase. We observed the transition between cir-
cular and straight motions as the glycerol concentration
in the aqueous phase changed. Moreover, we constructed
a mathematical model consisting of the reaction-diffusion
equation for the surface-active molecules and equations of
motion for the source and inert particles. Numerical re-
sults exhibit the transition from the straight to circular
pairing-induced motion. This transition is analytically
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FIG. 1. (a) Experimental setup. A camphor disk and a metal
washer were floated at the surface of the glycerol aqueous
solution in a square-shaped container (245 mm × 245 mm ×
25 mm). (b) Definition of the variables obtained from the
experimental results.

explained based on the bifurcation theory.

II. EXPERIMENTS

Camphor and glycerol were obtained from Fuji-film
Wako Pure Chemical (Osaka, Japan). Water was purified
with the Millipore Milli-Q system (Merck, Darmstadt,
Germany). Two kinds of stainless washers were obtained
from Ohsato (Tokyo, Japan). One is used to be embed-
ded in a camphor disk as a source particle, and the other
is used as an inert particle. We prepared a camphor disk
(diameter 7mm, height 2mm, weight 0.11 g) embedding
a stainless washer (diameter 6mm, height 0.4mm, weight
0.05 g) using a pellet press die set and a compression
molding (Pike technologies, Madison, USA). 400ml of
glycerol aqueous solution with the concentration of C or
pure water was poured into a square-shaped polystyrene
container (245 mm × 245 mm × 25 mm). We put a metal
washer (diameter 7.5mm, height 0.5mm, weight 0.13 g)
at the glycerol aqueous surface and then put the camphor
disk. The weight of the metal washer was appropriately
chosen to enhance the effect of the lateral capillary force.
The shadows of the camphor disk and metal washer at the
aqueous surface were recorded from below using a digi-
tal CMOS video camera (DMK37BUX273, The Imaging
Source, Bremen, Germany) at 30 fps. The experiments
were conducted at 25 ± 3 ◦C, and the captured images
were analyzed using ImageJ [30].
After the metal washer and camphor disk were placed

at the aqueous surface, they got close to each other ow-
ing to the attractive lateral capillary force. After a few
seconds, they started a pairing-induced motion, in which
the metal washer was in the front side and the camphor
disk was in the rear side. Here, the time t = 0 was defined
as when the pairing-induced motion started. Figure 2 (a)
shows the case with C = 0 vol%. The pair showed the
circular motion, with either clockwise direction or coun-
terclockwise direction chosen randomly. For low C such
a circular motion was typically observed. Figure 2 (b)
shows, on the contrary, the straight motion for C = 0.5
vol%. This type of straight motion was observed for high
C. In both cases, the pairs were bounced at the wall of
the container. They changed direction at the collision,
however, the circular/straight motion was quickly recov-
ered once they departed from the wall.

For the quantitative discussion on the pairing-induced
motion, we measured the centers of mass (COMs) of

the camphor disk rj
s and the metal washer r

j
i at time

t = tj . First, we calculated the curvature of the trajec-
tory to elucidate the transition between the circular and
straight motions. It should be noted that the trajecto-
ries were represented by those of the washer. In detail,
we obtained the velocity vj = (rj+1

i − r
j
i )/∆t, where

∆t = tj+1 − tj =1/30 s. Then, we obtained the angu-
lar velocity ωj = (θj − θj−1)/∆t, where θj was calcu-
lated by the relation vj = vj(cos θjex + sin θjey), where
vj > 0. Here, ex and ey are unit vectors in the x- and
y-directions, respectively. ϕj is the angle of the vector
of rj

i − rj
s from the x-axis, and the drift angle is defined

as ψj = θj − ϕj . From ωj and vj , the unsigned curva-
ture (the absolute value of the curvature) κj = κ(tj) was
obtained as κj = 2

∣

∣ωj
∣

∣ /(vj + vj−1).

The drift angle ψ and angular velocity ω were fluc-
tuated around a certain finite value during the circular
motion (Fig. 2(c)), while both were close to zero dur-
ing the straight motion (Fig. 2(d)). When the particles
exhibited the circular motion, the drift angle ψ had the
opposite sign to the angular velocity ω (Fig. 2(e)). It
implies that the metal washer rotated at a smaller radius
than the camphor disk. When the particles exhibited
straight motion, the drift angle ψ and angular velocity ω
were almost zero (Fig. 2(f)).

Figures 3(a)-(e) shows the trajectory for various C.
Figures 3(f)-(j) shows the distribution p of the unsigned
curvature κ at each concentration corresponding to the
trajectory shown in Figs. 3(a)-(e). The distribution p
is normalized to be

∫

pdκ = 1. The distribution was
taken only from the trajectories in the red box to prevent
the effect of the sharp turns near the container walls.
When C was 0 vol% and 0.125 vol%, the distribution
has a peak at κ ≃ 0.03 mm−1, indicating the trajectory
is circular. In contrast, when C was between 0.375 and
0.5 vol%, the distribution exhibits a strong peak around
κ = 0, which reflects a straight trajectory. In summary,
these distributions shown in Figs. 3(f)-(j) suggest that
the circular trajectory changed into the straight one with
an increase in C.
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FIG. 2. (a, b) Superimposed images of the camphor disk and
metal washer, whose trajectories are also denoted. Scale bar
is 30mm. (a) Circular and (b) straight motions observed on
the glycerol aqueous solutions at C =(a) 0 and (b) 0.5 vol%.
(c, d) Time series of the drift angle ψ (orange) and angular
velocity ω (blue) for (c) circular and (d) straight motions. The
time t corresponds to that in (a) and (b). (e, f) Relationship
between the drift angle ψ and the angular velocity ω for (e)
circular and (f) straight motions for the period from t = 0
to 184 s. Corresponding videos are available in Supplemental
Material [31].

III. NUMERICAL SIMULATIONS

We construct a two-dimensional mathematical model
to discuss the pairing-induced motion of the camphor
disk and metal washer floating at the aqueous surface
observed in the experimental system. In our model,
the camphor disk and metal washer are regarded as the
source and inert particles, respectively. We consider the
time development of the source particle position rs(t),
the inert particle position ri(t), and the concentration
field u(r, t) in the two-dimensional space, which corre-
sponds to the aqueous surface. For simplicity, we con-
sider that the inert particle does not affect the concentra-
tion field. We also neglect the hydrodynamic interaction
due to the motion of the particles.

The dynamics for the concentration field is described

as

∂u

∂t
= D∆u− αu +G(r, rs). (1)

Here, D is the effective diffusion coefficient [32, 33], and
α is the sublimation rate of the surface-active molecules.
G(r, rs) represents the supply rate of the molecules from
the source particle located at rs,

G(r, rs) =
G0

S0

Hǫ(r, rs, Rs), (2)

where Rs and S0 denote the radius and area of the source
particle, respectively. G0 is the total supply rate of the
surface-active molecules. Hǫ is the smoothed step func-
tion defined as

Hǫ(r, r
′, R′) =

1

2

(

1 + tanh
R′ − |r − r′|

ǫ

)

. (3)

Here, ǫ is a small positive parameter for smoothing.
When ǫ→ +0, the function Hǫ(r, r

′, R′) is replaced with
a step function as

H0(r, r
′, R′) =

{

1, |r − r′| ≤ R′,
0, |r − r′| > R′.

(4)

The dynamics for the motion of the source and inert
particles are described as

ms

d2rs

dt2
=− ηs

drs

dt
+ Fconc(γ, r, rs, Rs) + Fint(ri − rs),

(5)

and

mi

d2ri

dt2
=− ηi

dri

dt
+ Fconc(γ, r, ri, Ri) + Fint(rs − ri),

(6)

where ms and ηs denote the mass and viscous resistance
coefficient for the source particle, respectively, while mi

and ηi denote the mass and viscous resistance coefficient
for the inert particle, respectively.
The force originating from the surface tension gradient,

Fconc, is defined as

Fconc(γ, r, r
′, R′) =

∫∫

R2

[∇γ]Hǫ(r, r
′, R′)dr, (7)

which is illustrated in Fig. 4(a). It should be noted that

∫∫

R2

[∇γ]H0(r, r
′, R′)dr =

∫

∂Ω

γn(r′)dl′, (8)

holds when ǫ → +0. Here, ∂Ω is the periphery of the
particle, and dl′ is a line element along it. n(r′) is a unit
normal vector directing outward from the particle at the
periphery. The expression in Eq. (8) shows that Fconc
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FIG. 3. (a-e) Trajectories of the pair represented by those of the washer. (f-j) Distribution p of unsigned curvature κ corre-
sponding to (a)-(e). The trajectories in the domain surrounded by red squares in (a)-(e) are used to obtain p. The concentration
of glycerol was C was (a, f) 0, (b, g) 0.125, (c, h) 0.25, (d, i) 0.375 and (e, j) 0.5 vol%. The distribution p shifts gradually to
the lower κ as C increased, indicating that the circular motion gradually changed into the straight one.

represents the summation of the surface tension exerting
perpendicular at the periphery of the particle.
Here, we assume the following linear relationship be-

tween the surface tension γ and concentration u:

γ = γ0 − Γu, (9)

where γ0 is the surface tension of the camphor-free aque-
ous phase. Γ is a positive constant, reflecting that
surface-active molecules decrease the surface tension of
the aqueous phase [33, 34].
The force Fint is defined as

Fint(l) = Fint(|l|)
l

|l| =















fK1(q|l|)
l

|l|, |l| > Rs +Ri,

(a|l|+ b)
l

|l|, |l| ≤ Rs +Ri,

(10)

which describes the attractive lateral capillary force [29]
and short-range exclusive volume effect between the par-
ticles for |l| > Rs + Ri and |l| < Rs + Ri, respectively
(Fig. 4(b)). Here, l is the relative position vector from
the considered particle to the other particle. K1 is the
modified Bessel function of the second kind of order 1,
and q is the inverse of the capillary length. The constant
a denotes an effective spring constant, which is related
to the excluded volume. The constant b is explicitly de-
scribed as

b = fK1(q(Rs +Ri))− (Rs +Ri)a, (11)

so that the force shown in Eq. (10) becomes continu-
ous. The surface tension modulation caused by camphor
molecules, Γ, is negligible and thus we can neglect the de-
pendence of the lateral capillary force on the concentra-
tion u. For simplicity, we set ms = mi = m, ηs = ηi = η,
and Rs = Ri = R.

In numerical calculations and theoretical analyses, we
adopt the dimensionless form of the model. The dimen-
sionless variables and coefficients are defined as

t̃ = αt, r̃ =

√

α

D
r, q̃ =

√

D

α
q, l̃ =

√

α

D
l,

G̃0 =
1

αS0u0
G0, η̃ =

1

mα
η, Γ̃ =

u0

mα2
Γ,

f̃ =
1

mα
√
Dα

f, R̃ =

√

α

D
R, ǫ̃ =

√

α

D
ǫ,

ã =
1

mα2
a, b̃ =

1

mα
√
Dα

b, ũ =
u

u0
.

(12)

Here u0 is the unit of concentration. The tildes (̃ ) are
omitted hereafter for simplicity. The dimensionless forms
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FIG. 4. Force applied to the particle. (a) Force originating
from the concentration field. (b) Profile of attractive lateral
capillary force and repulsive force owing to the short-range
exclusive volume effect. The graph shows the force applied
to the particle at the origin from another particle at l = |l|
away.

are summarized as

∂u

∂t
=∆u− u+G0Hǫ(r, rs, R), (13)

d2rs

dt2
=− η

drs

dt
− Γ

∫∫

R2

[∇u]Hǫ(r, rs, R)dr

+ Fint(ri − rs), (14)

d2ri

dt2
=− η

dri

dt
− Γ

∫∫

R2

[∇u]Hǫ(r, ri, R)dr

+ Fint(rs − ri), (15)

Hǫ(r, r
′, R′) =

1

2

(

1 + tanh
R′ − |r − r′|

ǫ

)

, (16)

Fint(l) =















fK1(q|l|)
l

|l|, |l| > 2R,

(a|l|+ b)
l

|l|, |l| ≤ 2R,

(17)

b =fK1(2Rq)− 2Ra. (18)

Numerical calculations were performed by changing η
and Γ as parameters. Γ represents the intensity of the
driving force. The other parameters were a = 40, G0 =
4/π, q = 0.7, f = 0.1, R = 0.5, and ǫ = 0.1.
The concentration field was calculated using the al-

ternating direction implicit (ADI) method [35], and the
positions of the source and inert particles were integrated
using the Euler method. We adopted a periodic bound-
ary condition to investigate the long-term behavior with-
out the effect of the finite system size. The system size,
time step, and spatial mesh were L = 25.6, ∆t = 0.005,
and ∆x = 0.1, respectively. The initial position of the
inert particle was set at the center of the calculation area.
The initial position of the source particle was set at the
angles of π/9, 2π/9, and π/3 from the x-axis with a dis-
tance of 1/q from the inert particle to check whether the
effect of anisotropy of the spatial mesh configuration can
be neglected. We confirmed such anisotropy of the spa-
tial mesh is negligible at a steady state, but the statistics
were taken with all of these initial configurations to elim-
inate possible differences. The initial velocity of the inert
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FIG. 5. (a, b) Superimposed images obtained using numeri-
cal calculations, in which the color map shows the profile of
u. The green and pink disks represent the source and inert
particles, respectively. The solid and dotted lines exhibit tra-
jectories of the source and inert particles, respectively. The
white arrows indicate the direction of motions. (a) Circular
motion for Γ = 5.75 and η = 0.4. (b) Straight motion for
Γ = 5.75 and η = 0.425. (c) Phase diagram that classifies
circular and straight motions based on the mean value of the
unsigned curvature, κ̄, on the Γ-η plane. The source and in-
ert particles exhibited the circular motion for higher Γ and
lower η, while they exhibited the straight motion for lower Γ
and higher η. (d) Dependence of κ̄ on η for fixed Γ = 5.75
on the red line in (c). (e) Dependence of |ψ| on η for fixed
Γ = 5.75 on the red line in (c). The yellow and light blue areas
represent the parameter regions where circular and straight
motions appeared, respectively in (d) and (e). (f) Relation-
ship between the drift angle ψ and angular velocity ω.

particle was 0. The initial velocity of the source particle
was set in the opposite direction to the inert particle with
an absolute value of 0.01.

The pair of the source and inert particles eventually ex-
hibited steady motion, although the source particle alone
did not exhibit self-propelled motion in the same param-
eter sets as shown in Fig. 8 in Appendix A. The super-
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imposed images obtained based on the numerical calcula-
tion are shown in Figs. 5(a) and (b), in which the profile
of the concentration field u and the position of the source
and inert particles are displayed. The trajectories of the
source and inert particles are denoted as solid and dot-
ted lines, respectively. They exhibited a straight motion
for higher η and lower Γ, and they exhibited a circular
motion for smaller η and larger Γ. In both the cases, the
inert particle was in the front side, while the source par-
ticle was in the rear side. The configuration can be un-
derstood as follows. The inert particle escapes from the
concentration field created by the source particle, while
the attractive lateral capillary force keeps the relative dis-
tance between these two particles. We may also recognize
the pair of the source and inert particles as a camphor
boat whose relative positions are fixed [36]. To discuss
the transition between the straight and circular motions,
the unsigned curvature of the trajectory of the source
particle was evaluated. We confirmed that the unsigned
curvature of the trajectory reached a steady value, and
the values were almost the same independent of the ini-
tial condition for the particles configuration. Figure 5(c)
shows the phase diagram, in which the mean value of the
unsigned curvature κ̄ is shown. To obtain κ̄, the time av-
erage from t = 225 to 250 was considered for each initial
condition, and the mean value of the data for three dif-
ferent initial conditions for the particle configuration was
obtained. The smaller κ̄ indicates the straight motion,
while the larger κ̄ indicates the circular motion. That is
to say, when Γ was larger and η was smaller, they exhib-
ited a circular motion. In contrast, when Γ was smaller
and η was larger, they exhibited a straight motion. The
transition shown in Fig. 5(d) corresponds to the exper-
imental observation in Figs. 3(f)-(j). Figure 5(e) shows
the absolute value of the drift angle ψ. The transition of
|ψ| occurs at the same value of η as that of κ̄. When the
source and inert particles exhibit circular motions, the
drift angle ψ possesses the opposite sign to the angular
velocity ω (Fig. 5(f)). It implies that the inert particle
rotated with a smaller radius than the source particle.

Figure 6 shows the forces acting on the source and inert
particles based on the numerical calculation. For both
particles, the net force, i.e., the summation of the viscous
resistance forces (F s

vis, F
i
vis), the lateral capillary forces

(F s
cap, F

i
cap), and the driving forces (F s

conc, F
i
conc) by the

concentration field, acts in the direction perpendicular to
the particles velocities. The net forces act as centripetal
forces to keep them in a circular motion.

We further evaluate the quantitative aspect of the nu-
merical simulation. The diffusion length and the charac-
teristic decay time are estimated to be

√

D/α ≃ 1×10−2

m and 1/α ≃ 1 s, respectively, from the previous
study [37], in which the motions of the camphor parti-
cle confined in a one-dimensional region was investigated.
In this system, the camphor particle is reflected by the
walls due to the concentration field and exhibits oscilla-
tory motions. The orders of the diffusion length and the
characteristic decay time are estimated from the distance
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FIG. 6. Schematic illustration of forces acting on each particle
in the circular motion. Arrows indicate the direction and the
relative magnitude of these forces based on the numerically
obtained data. The gray curves indicate the trajectories of the
particles. The black arrows indicate the viscous resistance
forces (F s

vis, F
i
vis), the lateral capillary forces (F s

cap, F
i
cap),

and the driving forces (F s
conc, F

i
conc) from the concentration

field. The pink and green disks indicate the inert and source
particles, respectively. The pink and green arrows show the
net force acting on the inert and source particles. The scale
of the net forces is enhanced by a factor of 5. The inset
represents the wider view to illustrate the relation between
trajectories and net forces. Here the scale of the net forces is
further enhanced by a factor of 50.

of the reverse position from the wall and the period of
the oscillation, respectively. In the numerical simulation,
the particle and the system sizes were set as 1 and 25.6.
Then we obtained the velocities of the order of 0.1. These
values are estimated to be 10 mm, 256 mm, and 1 mm/s.
In the experiment, the particle and system sizes were set
as 7 mm and 245 mm, and the observed velocities were of
the order of 1 to 10 mm/s. These values in the numerical
calculations are consistent with those in the experiment.
We then evaluate the order of the force, starting from

the estimation of the resistance coefficient. From the pre-
vious study [38], the viscous resistance force Fvis acting
on a particle floating at an aqueous surface can be de-
scribed as

Fvis = −ηv ∼ −aπµv, (19)

Here, a is the radius of the camphor particle, µ is the vis-
cosity of the liquid phase, v is the velocity of the particles,
and ηe is the resistance coefficient. The dimensionless re-
sistance coefficient η̃e is defined as

η̃ =
η

mα
∼ aπµ

mα
, (20)

where m is the mass of the particle and α is the subli-
mation rate of the camphor. In our experiment, a = 3.5
mm and m = 1 × 10−4 kg, µ = 1 mPas. Here µ is
estimated from the viscosity of pure water. Then, the
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dimensionless resistance coefficient based on the experi-
mentally observed value is

η̃e ≃ 6.3× 10−1, (21)

which corresponds to ηe ∼ 10−5 kg/s. In numerical simu-
lation, we set η̃ ≃ 0.4, which is consistent with η̃e. Equa-
tions (5), (6) and (19) lead the estimation of the driving
force as,

Fconc ≃ −Fvis = ηv, (22)

when the particles are moving at a constant speed. From
the experimental results, the velocity of the pair is |v| ∼
10−2 m/s. Then we estimate the driving force |Fconc,e| ∼
10−6 N, which corresponds to |F̃conc,e| ∼ 1. In the nu-

merical calculations, |ṽ| ≃ 0.4 and hence |F̃conc| ∼ 0.1.
These values in the numerical calculations are not too far
from those in the experiment.

IV. BIFURCATION ANALYSIS

To elucidate the transition between the circular and
straight pairing-induced motions of the source and inert
particles, we perform the linear stability analysis for the
straight motion at a constant velocity (Fig. 7(a)) and
discuss the transition based on the bifurcation theory.
Considering that the linearity of the evolution equation

in Eq. (1) except for the source term, the concentration
field u of the surface-active molecules that spread from
the source particle can be described as a functional of
the source particle position rs(t). For the analyses, we
adopt the approximation that the concentration field u
is represented as a function of the relative position r−rs
and the velocity of the source particle vs = drs/dt. That
is to say, the concentration field is represented as

u(r) = uv(r − rs,vs), (23)

whose representative profile with rs = 0 and vs = ex
is shown in Fig. 7(b). The exact solution of uv(r,v) is
obtained in the form of infinite series, whose explicit ex-
pression together with the brief derivation is shown in
Appendix. It is noted that previous studies[15, 22, 23]
often introduce the interaction through the concentration
field by considering the one depending only on the source
particle position, while our model consider the concentra-
tion field depending on the source particle velocity as well
as the position. This concentration field exerts the force
on the source or inert particle with a radius of R located
at r′ as

F =− Γ

∫∫

R2

[∇uv (r − rs,vs)]H0(r, r
′, R)dr

=− Γ

∫∫

R2

[∇uv (r,vs)]H0(r, r
′ − rs, R)dr

≡Fv(r
′ − rs,vs, R). (24)

Thus, the force working on the particle through the con-
centration field is represented by Fv, which is a func-
tion of the relative position of the focused particle from
the source particle and the velocity of the source par-
ticle. Owing to this approximation, our original sys-
tem comprised the partial differential equation (PDE)
for the concentration field and ordinary differential equa-
tions (ODEs) for the particle position is simplified into
the system described by the two second-order ODEs for
rs and ri.
We discuss the linear stability of the straight pairing-

induced motion. Our system is now expressed as an
autonomous dynamical system with the eight degrees
of freedom, i.e., rs, ri, vs = drs/dt, and vi = dri/dt.
For the analysis, we introduce the position of the COM
r = (rs + ri) /2 and the relative position ℓ = ri − rs in
the place of rs and ri. The velocity of the COM and
relative velocity are introduced as v = (vs + vi) /2 and
w = vi − vs, respectively. Our simplified dynamical sys-
tem based on r, ℓ, v, and w is explicitly described as

dr

dt
=v, (25)

dv

dt
=− ηv +

1

2

[

Fv

(

0,v − 1

2
w, R

)

+Fv

(

ℓ,v − 1

2
w, R

)]

, (26)

dℓ

dt
=w, (27)

dw

dt
=− ηw − Fv

(

0,v − 1

2
w, R

)

+ Fv

(

ℓ,v − 1

2
w, R

)

− 2Fint(ℓ). (28)

First, we construct the solution corresponding to the
straight pairing-induced motion in the positive x direc-
tion. Considering that the inert particle precedes in the
straight pairing-induced motion, as shown in Fig. 7(a),
the solution is described using a constant speed v0 and a
constant interval ℓ0 as

r(t) = v0tex, (29)

v(t) = v0ex, (30)

ℓ(t) = ℓ0ex, (31)

w(t) = 0, (32)

The constant speed v0 and ℓ0 should be determined, so
that the two relations related to the force balance in the
x direction,

−2ηv0ex + Fv(0, v0ex, R) + Fv(ℓ0ex, v0ex, R) = 0,
(33)
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and

−Fv(0, v0ex, R) + Fv(ℓ0ex, v0ex, R)− 2Fint(ℓ0ex) = 0,
(34)

should hold.
The perturbation for the linear stability analysis is de-

scribed as

r(t) = v0tex + δr(t) = v0tex + δrx(t)ex + δry(t)ey ,
(35)

v(t) = v0ex + δv(t) = v0ex + δvx(t)ex + δvy(t)ey,
(36)

ℓ(t) = ℓ0ex + δℓ(t) = ℓ0ex + δℓx(t)ex + δℓy(t)ey, (37)

w(t) = δw(t) = δwx(t)ex + δwy(t)ey . (38)

The linearized equations are separated into two indepen-
dent parts

d

dt





δℓx
δvx
δwx



 = Ax





δℓx
δvx
δwx



 , (39)

d

dt





δℓy
δvy
δwy



 = Ay





δℓy
δvy
δωy



 , (40)

and a slave equation,

d

dt
δr = δv, (41)

where Ai (i = x, y) is explicitly described as

Ai =





0 0 1
fi
2

−η + gi+hi

2
− gi+hi

4

fi − 2pi gi − hi −η − gi−hi

2



 . (42)

To obtain the aforementioned linearized equation, we
used the relation in Eqs. (33) and (34). Here, fi, gi,
hi, and pi are defined as

fi = lim
ε→0

1

ε
[Fv(ℓ0ex + εei, v0ex, R)− Fv(ℓ0ex, v0ex, R)] · ei,

(43)

gi = lim
ε→0

1

ε
[Fv(ℓ0ex, v0ex + εei, R)− Fv(ℓ0ex, v0ex, R)] · ei,

(44)

hi = lim
ε→0

1

ε
[Fv(0, v0ex + εei, R)− Fv(0, v0ex, R)] · ei,

(45)

pi = lim
ε→0

1

ε
[Fint(ℓ0ex + εei)− Fint(ℓ0ex)] · ei. (46)

Eigenvalues are obtained as the solution of the charac-
teristic polynomial of Ai,

λ3 + (2η − hi)λ
2 +

(

η2 − hiη + 2pi − fi
)

λ

+ (2pi − fi) η − (gi + hi)pi + fihi = 0. (47)

Here, we consider the isotropy of the system, i.e., the
solution in which the straight pairing-induced motion
in any direction should exist. Therefore, Eqs. (33) and
Eqs (34) hold if we substitute v0(cos νex + sin νey) and
ℓ0(cos νex + sin νey) for v0ex and ℓ0ex, respectively,
where ν is a small parameter. Up to the first order of
ν, we obtain

(2py − fy)η − py(gy + hy) + fyhy = 0. (48)

Therefore, the characteristic polynomial for Ay is simpli-
fied as

λ
[

λ2 + (2η − hy)λ+ η2 − hyη + 2py − fy
]

= 0. (49)

That is to say, the matrix Ay possesses a zero eigenvalue,
and the corresponding eigenvector is t(ℓ0, v0, 0).
Using the aforementioned equations, we investigated

the linear stability by adopting parameter values that
were used in the numerical calculation. In the numeri-
cal evaluation, we truncated the infinite series of uv in
Eq. (B6) till n = 10. The limits of ε in Eqs. (43)–
(46) were calculated by setting ε = 10−3. For both ap-
proximations, we confirmed that the accuracy was within
10−3.
For the evaluation, we first numerically obtained v0

and ℓ0 for η and Γ based on Eqs. (33) and (34). We
used the values which satisfied the equations with the
accuracy of 10−3. The obtained values of v0 are plotted
against η with constant Γ = 5.75 in Fig. 7(c), and those
for ℓ0 in Fig. 7(d). v0 decreased with an increase in η,
while ℓ0 increased with an increase in η.
Using the obtained values of v0 and ℓ0, we calculated

fi, gi, hi, and pi (i = x, y), and then calculated the
eigenvalues of Ax and Ay using Eqs. (47) and (49), re-
spectively. The real parts of the eigenvalues of Ax are
plotted against η in Fig. 7(e), while those of Ay are
plotted against η in Fig. 7(f). It should be noted that
the zero eigenvalue is not shown in Fig. 7(f). As shown
in Fig. 7(e), the straight pairing-induced motion with a
translational speed v0 at a distance of ℓ0 between the
two particle is stable as far as the perturbation in the
x-axis direction is concerned. As shown in Fig. 7(f), the
maximum real parts of the eigenvalues of Ay changed its
sign at η = ηc ≃ 0.42. This means that the straight
pairing-induced motion is stable for η > ηc and unstable
for η < ηc. This result qualitatively agrees with numeri-
cal results, though the threshold value is slightly greater
in the theoretical analysis. Considering that the eigen-
value whose real part changes its sign at η = ηc does not
have an imaginary part, and that the system is symmetric
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FIG. 7. (a) Coordinate system and straight pairing-induced
motion. (b) Representative profile of uv(r,vs), where vs =
ex. The contours at every interval of 0.2 are shown. (c) v0
against η for Γ = 5.75. (d) ℓ0 against η for Γ = 5.75. (e)
Real parts of eigenvalues λ of Ax calculated for each η. The
eigenvalue around Re λ ≃ −0.05 (plotted with red) is real,
while other eigenvalues around Reλ ≃ −0.25 (plotted with
blue) are complex. (f) Real parts of the eigenvalues λ of Ay

calculated for each η. The zero eigenvalue is not plotted.

with the x-axis, the transition between the circular and
straight pairing-induced motions is most likely classified
as a pitchfork bifurcation. As higher-order terms are not
calculated, we cannot distinguish whether the bifurcation
is supercritical or subcritical. Based on the numerical
results shown in Figs. 5 (d) and (e), the bifurcation is
classified into a supercritical pitchfork bifurcation.

The transition from the straight to the circular mo-
tion can be intuitively understood as follows. The net
force acting on the pair is created by the force due to the
concentration field because the attractive lateral capil-
lary force satisfies the action-reaction law. In the limit of
the low velocity, the concentration field is radially sym-
metric around the source particle. Then, the net force
acting on the the inert particle always directs along the
source to the inert particle. As a result, the pair move

straight. Such a situation becomes unstable when the
velocity of the pair exceeds a threshold predicted by the
linear stability analysis.
It should be noted that the linear stability analysis

can be performed if we adopt the point-source approx-
imation. We confirmed that the qualitatively same bi-
furcation structure is reproduced using the point-source
approximation, though the bifurcation point is seriously
different from the numerical results, which are quantita-
tively consistent with experimental results.

V. CONCLUSION

In this study, we focus on the pairing-induced motion
of the source and inert particles. In the experiments, we
used the camphor disk and metal washer as the source
and inert particles, respectively. After we floated them
on glycerol aqueous solution, they attracted each other
through the attractive lateral capillary force. Then, they
showed circular and straight motions on the aqueous solu-
tion with lower and higher glycerol concentration, respec-
tively. We constructed a mathematical model to discuss
the transition between the circular and straight motions.
In the model, we considered time developments for the
positions of the source particle, inert particle, and con-
centration field formed by the source particle. In numeri-
cal calculations, we reproduced circular and straight mo-
tions corresponding to the experimental results. Further-
more, we performed the linear stability analysis based on
the straight pairing-induced motion and the obtained re-
sults were quantitatively consistent with the numerical
results. The analysis suggested that the transition can
be understood in terms of the pitchfork bifurcation.
In the current analysis, the force originating from the

concentration fields, Fv, is approximated by taking up
to the first-order terms with respect to time derivative
of the source particle position. This expression of the
force is exact when the source particle moves at a uni-
form velocity, and it enabled us to discuss the transition
between the straight and circular motions. Indeed, we
did not observe such transition when the concentration
field is represented as the function of the relative position
as mentioned in the previous study [15]. We expect that
further complex dynamics such as zig-zag, quasi-periodic,
and chaotic motions [39] can be realized by adequately
choosing experimental conditions and/or numerical pa-
rameters. To address such complicated motions based on
the bifurcation analysis, we need to improve our analysis
method. One possible candidate is to include higher-
order terms in the expansion of the concentration field
with respect to the velocity, acceleration, jerk, and com-
bination of these terms [19, 40, 41].
We should bear in mind that the effective interaction

induced by concentration fields is non-reciprocal, i.e., it
breaks the action-reaction law. Experimentally, a sin-
gle camphor disk shows self-propulsion in the absence
of a washer. However, numerically and theoretically, a
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pair of source and inert particles can have self-propulsion
even in the parameter range where a single source par-
ticle cannot have self-propulsion. The pair-induced mo-
tion is a direct consequence of the non-reciprocal inter-
action, and our study describes the relevance of its dy-
namic aspect. The well-known camphor-water system
should be re-investigated based on the new perspective
of non-reciprocal interaction [42–44].

One can easily conceive the extension of the present
system to one with multiple particles. The collective
motion of particles driven by the dynamics of the con-
centration field has not yet been understood in detail.
The knowledge drawn from our study can be applied to
develop experimental and numerical systems. The ex-
pansion of the concentration field as used in the present
study can be adopted to construct simple models with
multiple particles by extracting the essential dynamics of
the concentration field. We believe that the possibility
of extracting complex motions from such a simple sys-
tem will lead to a better understanding of the collective
motions of migrating cells and bacteria.
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Appendix A: The motion of the source particle

Figure 8(a) shows the phase diagram that represents
the steady velocity of the source particle vs on the Γ-η
plane. Here, vs is defined as the mean velocity from t =
225 to 250. Figure 8(b) shows the dependence of vs on η
for fixed γ = 5.75 represented by the red line in Fig. 8(a).
Both the phase and the bifurcation diagrams indicate
that the source particle did not exhibit self-propulsion in
the parameter sets corresponding to those in Fig. 5(c).

 6.25
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FIG. 8. (a) Phase diagram that represents the single source
particle motion based on the steady velocity vs. The source
particle exhibited self-propelled motion for the higher Γ and
the lower η, while it stopped for the lower Γ and the higher
η. (b) Dependence of vs on η for fixed Γ = 5.75 indicated by
the red line in (a).

Appendix B: Derivation of uv

In this Appendix, we derive the concentration field
uv(r,v) generated by the source particle whose position
and velocity are 0 and v, respectively. We consider the
situation that the source particle moves at a constant ve-
locity V = V ex. We introduce the co-moving frame ρ,
in which the source particle is located at the origin. The
dynamics for the concentration field is described as

∂u

∂t
− V ex · ∇u = ∆u− u+G0H0(ρ,0, R). (B1)

The stationary solution U(ρ;V ) should satisfy

−V ex · ∇U = ∆U − U +G0H0(ρ,0, R). (B2)

The general solution of the homogeneous equation for
Eq. (B2)

−V ex · ∇U = ∆U − U, (B3)

is given as the linear combination of

U(ρ, φ;V ) = In (kρ) exp (−ρµ cosφ) exp (inφ) , (B4)

and

U(ρ, φ;V ) = Kn (kρ) exp (−ρµ cosφ) exp (inφ) , (B5)

in the polar coordinates ρ and φ, which satisfy ρ =
ρ(cosφex + sinφey) [45]. Here, n is an integer, k =
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√

1 + V 2/4, and µ = V/2. In and Kn are the modified
Bessel functions of the first and second kinds of order
n, respectively. Therefore, the solution of Eq. (B2) is
obtained as

U(ρ;V ) =



































G0 −G0

∞
∑

n=0

αnIn (kρ) exp (−ρµ cosφ) cosnφ,

ρ ≤ R,

G0

∞
∑

n=0

βnKn (kρ) exp (−ρµ cosφ) cosnφ,

ρ > R.

(B6)

Here, the coefficients αn and βn are obtained from the
continuity condition of U and ∇U at the periphery of the

particle. They are explicitly given as

αn =ζn [−kRIn (µR)K′

n (kR) + µRI ′

n (µR)Kn (kR)] ,
(B7)

βn =ζn [kRIn (µR) I ′

n (kR)− µRI ′

n (µR) In (kR)] ,
(B8)

where

ζn =

{

1, n = 0,
2, n ≥ 1,

(B9)

and the prime (′) denotes the derivative. When the ve-
locity of the source particle is in the arbitrary direction,
the concentration field uv is obtained as

uv(r,v) = U(R(−ϑ)r; |v|), (B10)

where ϑ holds v = |v| (cosϑex + sinϑey), where R(ϑ) is
the rotation matrix

R(ϑ) =

(

cosϑ − sinϑ
sinϑ cosϑ

)

. (B11)
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