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In simplified models of glasses we clarify the existence of two different kinds of coexisting activated
dynamics, with one of the two dominating over the other. One is the energy barrier hopping that is
typically used to understand activation, and the other, which we call entropic activation, is driven
by the scarcity of convenient directions in phase space. When entropic activation dominates, the
height of the energy barriers is no longer the primary factor governing the system’s slowdown. In
our analysis, dominance of one mechanism over the other depends on temperature and the shape
of the density of states. We also find that at low temperatures a phase transition between the two
kinds of activation can occur. Our observations are used to provide a scenario that can harmonize
the facilitation and thermodynamic pictures of the slowdown of glasses into a single description.

I. INTRODUCTION 52

53

Glasses are inherently slow systems. Their slowness
can be captured by mean-field (MF) theory, which re- %
cently motivated a series of breakthroughs that allowed %
for a deeper understanding their sluggish behavior [1-3]. &
However, MF theory predicts divergences of the relax- 58
ation time that do not occur in real systems, because it %
does not capture relaxation mechanisms that appear in ¢
low-dimensions. These are generically called activation,
and they are most often pictured as the hopping of energy o,
barriers [4, 5]: since in MF the barriers diverge with the o
system size N, a simple argument is that activation in e,
MF cannot occur because barriers cannot be hopped [6]. o

However, activation can be studied in MF models by
restricting to finite-N and long times [7, 8]. Several works ¢
focused on comparing the dynamics of simple MF mod- ¢
els, such as the Random-Energy Model (REM) [9], t0 e
the Trap Model (TM) [10-12], to establish whether the -
barrier hopping dynamics can be assimilated to jump- »
ing between traps with a fixed threshold energy [13-21]. »,
Other works studied the saddles connecting minima [22—
25], extensions of the Franz-Parisi potential [26], or path- -,
integral approaches to study the dynamics between dif-
ferent minima [27].

Comparisons with the TM were also performed in mod-
els with a trivial landscape, such as the Step [28] or Fun-
nel models [29], where it was shown that entropic effects
can lead to Trap-like activation, if instead of considering 7
basins in phase space we construct them dynamically.
Indications of entropic effects in long-time dynamics was ”
also found in less idealized systems, such as the p-spin 2
model [30, 31], finite-connectivity Step models [32], or
even 3D Lennard-Jones mixtures between the dynami-
cal temperature Tq and the onset temperature T, [33] o
and experimental metallic glasses [34]. In these works, o
however, the underlying framework is either that acti-
vation only exists as barrier hopping [4, 11]; either that o
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it is an entropic effect that can be assimilated to bar-
rier hopping [28, 29]; or it is a transient behavior which
eventually turns into hopping [7, 32, 35]. This is hard to
reconcile with other pictures of the dynamical arrest of
glasses, such as facilitation [36, 37], that argue that the
landscape (energy barriers) is not crucial to explain the
slowness of glasses, which should instead be attributed
to kinetic constraints.

Here, we clarify the nature of these entropic effects,
showing how under the right lens they can be used to
unify the landscape with the facilitation pictures. We
take a paradigmatic model of glasses, the REM [9],
and show that both energy- and entropy-driven activa-
tion mechanisms coexist. When energy-driven activation
dominates, the system’s slowness is driven by the energy
barrier separating basins, while when entropic activation
dominates, the height of the barrier becomes unimpor-
tant, and the slowness is instead driven by the scarcity
of convenient directions. In our analysis, the dominance
of one mechanism or the other depends on the density of
states p(E), and on the temperature kgT = 37!, which
is the control parameter of a non-equilibrium phase tran-
sition between the two different activated regimes (we set
kg = 1 in this work).

II. MODELS

In the REM, we have a system with N spins, s; = £1.
The dynamics takes place by flipping a single spin at a
time: from any configuration one can reach N neighbor-
ing states. The energy of a configuration is independent
of the configuration itself, and is drawn from a proba-
bility distribution p(E). Two choices of p(FE) are used
in literature. The initial formulation of the REM used a
Gaussian energy distribution [9],

(1)
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while more recent efforts also considered the Exponentialios
REM (EREM) [20], which has 106
107

(2)108

109
where we set 3. = 1. These models have a transition,

from a paramagnetic to a glassy phase at 3, = v2In2
and (B, = (., respectively.

pe(E) = ﬁceﬁCEQ(_E) )

III. CHARACTERISTIC ENERGIES 112

A. Threshold Energy 13

114

In both models, we can define a threshold energy, Eip,us
analogous to that of the p-spin model [38], above whichs
no barriers are typically found. We calculate it as theur
energy for which the probability that a neighboring con-us
figuration has a lower energy is 1/N [20, 39], 119
120

121
(3)122
123

From Eq. (3) one obtains that, to leading order, thes

1 Ein

threshold energies of REM and EREM are 125
Ej =—+V2NInN, (4)
. 1
= — ElnN. (5) 6

127

This definition ensures that there are asymptotically nouss
barriers above Eyp, and descends from the mutual inde-12
pendence of neighboring configurations in the (E)REM. 10
After long times, the system typically finds itself in ain
configuration with an extensively deep energy [20, 39],ix
which we call trap (or basin). To transition from oneis
trap/basin to another, the system needs to climb to theis
threshold. Energetic activated dynamics is mainly drivenuss

J

Pr(E,B) = /OO dE' p(E"Yw(E — E') = /OO dE’p(E’)e_ﬁ(El—E) ’

where we made it explicit that P depends on 8. We noteus
that, since the configurations in the (E)REM are i.i.d.,
P\ (F) is the cumulative distribution of p(E), so we can
write P,L(Eth) = %

Since P;(E, B) varies with 8 while P (E) does not, also
E, must vary with temperature. For the Gaussian REM,
we find that the attractor energy is

N 5 144

E'g = 9 (9)145

dE'p(E"Yw(E — E') = /

by the jumps on these energy barriers, in a manner that is
analogous to what happens in the Trap Model, in which
the time spent in a trap of energy E follows and Arrhe-
nius law, 7 ~ exp[8(Ewn, — E)]. This was indeed found
to be the case, by looking at the limiting values of the
aging functions and comparing them with the predictions
of the TM [18, 20].

B. Attractor Energy

We can also define another characteristic energy, which
stems from toy models which represent a purely entropic
kind of activation [28, 29, 40]. This quantity was called
threshold energy in Refs. 28 and 29. As we will show,
it is quantitatively and qualitatively different from the
threshold energy, so we henceforth refer to it as the at-
tractor energy, E,. This quantity was first defined in
Ref. 41, as the energy such that the energy of the next
step is, on average, neither higher nor lower. However,
we find it more intuitive to work with the definition given
in Ref. 28, according to which F, is the energy at which
the probability Py(E) of increasing the energy at the next
step is equal to the probability P|(E) of decreasing it:

(6)

Pr(E) (or P (E)) is calculated by considering the proba-
bility of finding neighbors with a higher (or lower) energy
E’, and the transition rate w(E — E’) telling whether
a move towards such an energy is accepted. We con-
sider Monte Carlo Metropolis dynamics, w(E — E') =
min(1,exp(—B(E" — E))). As for the distribution of
neighboring energies, it is particularly easy to calculate
in the (E)REM, because the energy distribution of the
neighbors is the same as that of the whole system. There-
fore. one has

Pr(E,) = Py(E,) -

E
dE'p(E")

—0o0

E

(

whereas for the EREM it is

1 28.=B\ . ;
E:{Bﬂcln( S=2)  if0< B < 26, (10)

—00 ; if B> 20..

The attractor energy for the EREM is the same that is
found in Ref. 28 in a model which corresponds to a global
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FIG. 1. Left: Phase diagram of the EREM, with the as-1s

sociated characteristic energies and dynamical regimes. Forig
B < Bc we have the equilibrium phase. The solid line isg,
the equilibrium energy (E). At § = 2. we have the tran-,
sition from the entropically to the energetically activated
regime. The dashed line is the attractor energy. The hori-

zontal dashed-dotted line represents Eun (N = 10). Ey, exists
VB but is only relevant for 8 > 28.. Right: two diagrams™
showing how activated dynamics qualitatively takes place in'®

each of the regimes. 188
189

4

190
dynamics in the EREM. ! This is due to the fact thati
in the EREM the distribution of neighboring energies
(local) is equal to p.(E) (global).

Note that E, is not directly related to the equilibrium?
energy (E). For example, in the EREM, there is no equi-
librium energy from S > (. (the equilibrium energy di-1e3
verges to —oo at B = f), * but E¢ still is finite forie
Be < B < 2B.. We depict this in Fig. 1. In other words,os
the system still is attracted towards finite energies eveniss
though the equilibrium energy is divergingly negative. Inior
fact, it is straightforward to check that when F < E, (oriss
E > E,) the next configuration during the dynamics ises
more likely to have a higher (or lower) energy. Intuitively,zo
what happens is that even when neighbors with lower en-2n
ergy exist, they are to hard to find, and the system willzo
find it more convenient to just increase the energy. How-2os
ever, the system will immediately abandon high-energyo
configurations, while it will stay a very long time in thezos
low-energy ones. 206

207

208

IV. ENERGY- AND ENTROPY-DRIVEN 200
ACTIVATION

210
211
A. Energy-driven 212

213

We call energy-driven the typical thermally activatedzs
dynamics consisting of hopping barriers with an Arrhe-
nius rate. Since in the (E)REM the overwhelming major-

1By global dynamics we mean that any number of spins is flipped at

each time step, in contrast with the single-flip dynamics considered
in this paper. With global dynamics local minima disappear.

_ fgoo eBc—B) B4R _ Be

SO eBe=PldE —  Be—B"

ity of the barriers are at E = Ey, (see e.g. Ref. 21), this
kind of activation resembles the dynamics of the Trap
Model [10, 11, 18, 20].

B. Entropy-driven

Contrary to Ei,, E, can also exist in systems with a
single energy basin, such as the Step [28] or the Fun-
nel model [29]. In these systems, despite the absence
of energy-driven activation, the dynamics is a renewal
process, provided that one identifies the traps dynami-
cally, as all the configurations visited while F < E, [28].
With this construction, the relationship between aging
functions and trapping time distributions is the one pre-
dicted by the TM [28], and the typical time scales grow
exponentially in N [29]. In other words, E, identifies an
activated dynamics which is not driven by the height of
the energy barriers (as there are none), but which shares
many signatures of energy-driven activation. This kind
of activated dynamics is instead driven by the scarcity of
convenient directions, and was therefore called entropy-
driven [28].

C. Interplay between the two mechanisms

In the (E)REM, we can study the interplay between
these two mechanisms. Since Eij, is the minimal height
at which the system must go in order to leave a trap, the
entropic mechanism is not expected to play a role when
FE, < Ei,. We see that, for sufficiently large sizes, in
the REM E¢(8) < Ejj, V8. Therefore, we expect that
activation in the REM is purely energy-driven.

In contrast, in the EREM we have different behaviors
depending on 8. When g > 28., we have E, < Ej,
so the slow dynamics should be energy-driven. When
instead 8. < B < 28, (excluding a range of /3 close to
2. which shrinks with increasing N), we have E, >
FEi. This indicates that even when the system manages
escaping a trap, reaching FEyy,, it will likely keep going up
in energy, attracted towards E,. Thus, the height of the
barrier, (Eyy, — E), is not that important. The reason for
this is that even though in this regime there are directions
in phase space which would decrease the energy, they are
too rare, and the system would rather keep increasing
its energy than “invest time” looking for a descending
direction. In Fig. 1 we show a diagram of how activation
takes place in each of the two out-of-equilibrium phases.

Since activated dynamics is relevant in the limit of
large but finite IV, we can work out the transition in-
verse temperatures 3, by setting F,(8s, N) = En(N).
This gives us the N-dependent transitions

21 N+W_lnN -
ge = g N W) o
InN

26,
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FIG. 2. Median Eigge(8; N) in the EREM (a) and REM (b).
Different lines stand for different system sizes. Here and in
Fig. 3, results from memory-1 dynamics are shown in solid
lines, and results from full-memory dynamics (N < 30) are
shown as markers.

where W (z) is the Lambert function. In the Gaussian
REM the entropic phase disappears for increasing N. In
the EREM, instead, the transition stays at a finite tem-
perature, and we have entropy-driven activation at low
B, and energy-driven activation at high 3.

V. RIDGE ENERGY AND PHASE
TRANSITION

We run Monte Carlo simulations (details in App. A)
to verify this transition from an energy-driven phase at
high B, to an entropy-driven phase at lower 8. Since
REM and EREM do not allow for exact simulations at
large system sizes, for sizes N > 30 we rely on modi-
fied dynamics, where every time that a new configuration
is visited, all its neighbors’ energies, except that of the
last-visited configuration, are drawn anew. We call this
memory-1 dynamics, and elaborate more on it in App. B.

Our intent is now to relate this transition to physi-2°
cal observables. We measure the ridge energy, Eiigge,®
defined as the highest-reached energy during each basin2
transition, i.e. in each of the time intervals during whichz2ss
E(t) > Ei,. With energy-driven activation, we expect?+
that Elidge(8; N) will stay close to En(N), while forss
entropy-driven activation it will overshoot to higher val-256
ues. In Fig. 2 we plot the median FEligg. as a function?
of B, for EREM and REM. While in the REM the ridgezss
energies decrease steadily V3, in the EREM we see two?5
distinct entropy-driven (low ) and energy-driven (high2se
B) phases. 261

As we show in Fig. 3, the ridge energy scales with N in2s2
the way we expect. In the EREM at low S we are in thezss
entropic phase, and Ejgge ~ —1 ~ E,. In the energy-s
driven phase, instead, Eyidgge ~ —In(IN) ~ Ey,. In thes
REM, where we only have energy-driven activation, theass
ridge energy follows FEyy, at every (. 268
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FIG. 3. Median Eiigge as a function of N in the EREM and
REM (inset). Different lines correspond to different values of
B. The black dashed line represents Eg,(N) for each model,
according to Egs. (4) and (5).
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FIG. 4. The density of ridge energies in the EREM model,
using memory-1 dynamics, for N = 10000.

Through the lens of the median Eiqge, the transition
appears at [ slightly smaller than 2, which we understand
through two observations. First, 8¢ [Eq. (12)] indicates
when P; > P|. However, in order to reach E, from Eyy,
the system needs to go through a large number of steps
(i.e. growing with N) with ascending energy. If P; is
only slightly larger than P, (which is what happens at
B slightly lower than 2), this is not enough to accept a
sufficiently large number of steps to go all the way up to
energies of order 1. Second, this transition from energy-
to entropy-driven activation has features of a first-order
phase transition. We see this from Fig. 4, where we plot
the distribution P( le:‘fr ) at three different temperatures.
At low it is peaked around 0, while at high 3 it is peaked
around —1, as expected. Around the transition, instead,
we see the characteristic two-peak structure of first-order
phase transitions.
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VI. CONCLUSIONS 320

321

A. Summary 322
323

We showed that the “threshold energy” calculated dy-***
namically in models with a trivial landscape [28, 29]**
does not correspond to the typical landscape-based def-**°
inition of threshold energy, and decided to rename it as®’
attractor energy. Threshold and attractor energies de-**
fine two different kinds of activated dynamics, entropy->*°
and energy-driven, which can coexist, though typically**
one dominates over the other. FEnergy-driven activa-**'
tion corresponds to the typical picture of Arrhenius-like®*
basin hopping, whereas entropy-driven activation is not**
driven by barrier heights, but rather by the scarcity of**
convenient directions. While at sufficiently low temper-**
atures energetic activation always exists in landscapes®
with multiple minima, the existence of a higher-T' phase®™’
where entropy-driven activation dominates depends on
the shape of p(E). In this entropic activation phase, the
attractor energy F,, towards which the system is reg-
ularly driven, is higher than the threshold energy Eip,*
the height of the barriers loses relevance and we have a

breakdown of the Arrhenius behavior. 340
341

338

342
B. Reconsidering the importance of saddles 343

344

One consequence is that the study of the transition3®
paths of glasses by searching the lowest saddles, a techni-34
cally daunting task [22-25], is potentially not informative
for the dynamics at temperatures around the glass tran-
sition. Calculating the attractor energy, with its compar-3+
ison to the threshold, is simpler and has the potential of3%

unlocking the true activated nature of the dynamics. %t
352

353
C. Rationalizing observations in other systems 3
355

Additionally, entropic activation can elegantly ex-
plain an apparently puzzling result recently found by T.
Rizzo [27], who calculated, in the spherical p-spin model
the path from one equilibrium low-temperature configu-
ration to another. He found that the maximum energyss:
reached during this transition is considerably higher thansss
FEin even though the largest barriers should not exceedsso
FEi,. We see that the same phenomenon occurs in thesso
EREM, in a similar setting (we followed the system fromss
one trap at F < Fy, to another one), where we showedss
that the system is pushed towards a higher energy F, bysss
the scarcity of paths with energy close to Ei,. We canse
thus attribute this behavior to the same entropic effects,zes
and conjecture that at lower temperatures the paths willsss
be close to Eyy, (as per the transition that we found ins
the EREM). 368

This is also consistent with recent numerical obser-sys
vations by Stariolo and Cugliandolo in the discrete p-so
spin model, that the trapping time distributions seem tosn

follow the Step-model predictions better than those of
the Trap Model [30, 31]. In particular, they define the
traps dynamically by taking, instead of the position of
the saddle, the highest point reached during the dynam-
ics. Therefore, they are calculating the traps through the
attractor instead of the threshold energy, which explains
the observed Step-like behavior. Furthermore, they find
that the energy of the ridge is larger than FEyy,, which
is an indication that the lowest-energy path is not used,
just as we find here.

Also in 3D systems, such a Lennard-Jones mixtures,
although activated dynamics takes place between T, and
Ta [4, 5, 42], it was recently shown that it is not domi-
nantly of an energy-driven kind, since, for example, the
system is moving at energies significantly higher than the
ridges separating metabasins [33]: the height of the bar-
riers separating basins does not play a crucial role in this
regime.

D. The nature of activation in different kinds of
models

A typical intuition of why MF results do not apply in
low dimensions is that the energy barriers diverge with
the system size. However, in systems like hard spheres
there are no energy barriers, so it seems like beyond-MF
effects are not attributed to the right mechanism. It was
suggested in several occasions that the low-D correspon-
dent of a MF model can be non-trivial [43-45]. Our anal-
ysis suggests that we should often think of activation less
as the hopping of energy barriers, and more as a search
for convenient directions, which require a collective co-
operative behavior that is hard to obtain by randomly
moving particles. We should therefore regard activation
as a process beyond MF, not because the barriers are
diverging, but rather because it involves processes (ener-
getic and entropic) which take place on time scales t > N
(usually ¢ ~ e™).

E. Connection to Facilitation Theory

The dynamical facilitation picture shows that a strong
glass-like slowdown can appear in a trivial landscape
(without barriers), with the dynamics being slowed down
by dynamical constraints [36, 46]. These dynamical con-
straints are localized in space, so we do not aim at
a 1:1 correspondence with a mean-field model (as the
(E)REM), but we do note that the entropic barriers that
lead to the entropic phase in the EREM are (soft) kinetic
constraints. In fact, they mark directions in phase space
along which motion is suppressed (with high probability
a spin cannot be flipped), and they also appear in the ab-
sence of potential energy barriers [28, 29, 41, 47, 48]. As
an extra, here, kinetic constraints are not the only slow
dynamics mechanism, but they act concurrently with en-
ergetic activation; in addition to the fast mechanism of
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diffusion towards lower energies. In other words, the phe-a
nomenological ingredients of facilitation are present, to-ss
gether with additional mechanisms that should appear inss
the description of a glass. a7

Since the dynamical constraints, as well as activation,zs
appear at Ty [4, 36], we suppose a correspondence withazs
the thermodynamic transition in the EREM (at 5 = f).4%0
Cooling further, one observes entropy-driven activatedss:
dynamics between T, and Ty [33], and at Ty the dy-s
namics is deemed to become energy-driven [49]. Also inas
the EREM, entropic activation stays dominant until thes:
transition to the energetic phase at g = 20., suggestingass
a correspondence between Ty and the entropic-energetic
transition we observed in the EREM. However, in order
to confirm these speculations we need to be able to ob-43s
serve entropic activation in more complex models.

437

F. Verifying entropic activation in more complex
models

438
439

440

In simple models such as the EREM or the Funnel,,
model, the entropic phase is present both for local and,,,
global phase space dynamics [29]. However, this is nota,
necessarily true for more complex models such as the,,
p-spin. A starting point which would allow to study cor-s
related energy levels without changing the overall p(E) s
would be the Correlated REM [21] and the Number Par-,.,
titioning Problem (NPP) [50]. These two models have,
different kinds of correlations since, in the first, the,,
basins are smooth, while in the NPP the traps are anti-,s
correlated with their neighbors. In particular, in the NPP,g;,
it was observed that, at = 20., there is a transition,s,
within the glass phase, associated with a violation of the,s
fluctuation-dissipation theorem, with relevant differences,s,
between local and global dynamics. The relationships,ss
between our findings and those of Ref. 50 could be stud- s
ied analytically within the framework of Ref. 51, which,s,
studies the Step model in the limit of slowly decorrelating,s
variables. 450
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Appendix A: Numerical details
1. Monte Carlo Simulations

Our simulations are performed with the Metropolis
Monte Carlo algorithm [52]. Depending on the value of
[, we use two equivalent implementations, which we call
“standard” and “Gillespie”. The standard dynamics is a
textbook Monte Carlo simulation with Metropolis accep-
tance criteria (see e.g. Ref. 53 for a detailed description).
The run time of the standard procedure is tightly bound,
with tyax time steps. However, at large 3, the rejection
rate of standard dynamics is high and it may take many
steps for a new configuration to be accepted. We there-
fore use the Gillespie procedure (which is formally equiv-
alent) is much more efficient. The Gillespie algorithm is
a rejectionless method, that computes the time that the
system spends in a given configuration, and transitions
without rejection to one of the neighbors, according to
how probable it is to transition to each neighbor. For
a more detailed and didactic explanation of the Gille-
spie algorithm we refer the reader to Ref. 54. While the
Gillespie method this is efficient at large 3, it is extremely
inefficient at small 5. Thus, we set a cutoff of 5/8. = 2.3,
such that when 8/8. < 2.3, dynamics are run using the
standard procedure, and Gillespie otherwise. We also use
tmax = 107 for all calculations.

Note that the standard and Gillespie procedures are
formally equivalent [54]. To demonstrate this empirically,
we show the mean energy FE(t) for various choices of N
and B (with 5. = 1) in the EREM, in Fig. 5.

2. Inherent Structures

To ensure that we only measure transitions between
different traps, with memory dynamics we measure the
inherent structure (IS) before and after the transition,
and keep the transition only if they are different. To
measure the IS we take the steepest descent path towards
the nearest minimum. Since the system is discrete, we
define steepest descent as a trajectory which at each step
goes to its lowest-energy neighbor, until a minimum is
reached.
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Each row is a different inverse temperature. On the first col- 0
umn we have the full memory dynamics, while on the second”
we have the memory-1 dynamics (App. B). 50
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3. Threshold Energy

507

508

As already pointed out in Ref. 20, the subleading cor-g,
rections in the threshold energy of the REM are larges,
(around 13% in the largest sizes). Therefore, in our REM;,
simulations we calculated the threshold energy numeri-,
cally. For the EREM simulations, we used Eq. (4). 513
514

515

Appendix B: Memory and Memory-1 dynamics

517
In REM and EREM, the energy of each configurations:s
is a fixed random variable. This means that, for IV spins,sio
there are 2%V energies sampled from p(E), each of whichsz

is permanently paired to some configuration. Therefore,
in order to perform a long simulation in these models,
we need to store the energy of all the 2V states, to en-
sure that if a configuration is visited twice its energy has
not changed. Storing 2"V double precision floating point
numbers is expensive in terms of memory, and limits the
largest system sizes that we can simulate. This is why,
in order to simulate N > 30, instead of storing the all
the 2V energies, we only stored the last visited one, and
sampled anew the remaining N — 1 neighbors. We call
this dynamics memory-1, in contrast with the memory
dynamics which stores all the energies throughout the
whole simulation.

This simplification neglects loops in the dynamics,
which for large N are arguably rare, and does not allow
the system to directly return to configurations visited
more than one step earlier. The latter can be seen as an
advantage, since we want to wash back and forth motion
out of the dynamics we are measuring [4, 20]. Since the
REM and EREM dynamics is a renewal process [20], we
can expect that anyhow after some time the previously
visited phase space should be forgotten.

An additional difference between memory and
memory-1 dynamics is that the latter does not suffer from
finite size effects descending from the phase space being of
limited size: with memory dynamics there exists a lowest-
reachable energy, while with memory-1 it is always pos-
sible to reach a lower energy. In other words, memory-1
dynamics suffer less from finite-size effects than the exact
dynamics, and in any case this kind of effects does not
affect the calculation of Eiigee. In Fig. 6 we show the
comparison between the two dynamics for varying 5 and
N. At all temperatures, the difference between the two
dynamics decreases as N grows. Both dynamics present
finite-size effects, which decrease as the system becomes
larger.
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