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In simplified models of glasses we clarify the existence of two different kinds of coexisting activated6

dynamics, with one of the two dominating over the other. One is the energy barrier hopping that is7

typically used to understand activation, and the other, which we call entropic activation, is driven8

by the scarcity of convenient directions in phase space. When entropic activation dominates, the9

height of the energy barriers is no longer the primary factor governing the system’s slowdown. In10

our analysis, dominance of one mechanism over the other depends on temperature and the shape11

of the density of states. We also find that at low temperatures a phase transition between the two12

kinds of activation can occur. Our observations are used to provide a scenario that can harmonize13

the facilitation and thermodynamic pictures of the slowdown of glasses into a single description.14

I. INTRODUCTION15

Glasses are inherently slow systems. Their slowness16

can be captured by mean-field (MF) theory, which re-17

cently motivated a series of breakthroughs that allowed18

for a deeper understanding their sluggish behavior [1–3].19

However, MF theory predicts divergences of the relax-20

ation time that do not occur in real systems, because it21

does not capture relaxation mechanisms that appear in22

low-dimensions. These are generically called activation,23

and they are most often pictured as the hopping of energy24

barriers [4, 5]: since in MF the barriers diverge with the25

system size N , a simple argument is that activation in26

MF cannot occur because barriers cannot be hopped [6].27

However, activation can be studied in MF models by28

restricting to finite-N and long times [7, 8]. Several works29

focused on comparing the dynamics of simple MF mod-30

els, such as the Random-Energy Model (REM) [9], to31

the Trap Model (TM) [10–12], to establish whether the32

barrier hopping dynamics can be assimilated to jump-33

ing between traps with a fixed threshold energy [13–21].34

Other works studied the saddles connecting minima [22–35

25], extensions of the Franz-Parisi potential [26], or path-36

integral approaches to study the dynamics between dif-37

ferent minima [27].38

Comparisons with the TM were also performed in mod-39

els with a trivial landscape, such as the Step [28] or Fun-40

nel models [29], where it was shown that entropic effects41

can lead to Trap-like activation, if instead of considering42

basins in phase space we construct them dynamically.43

Indications of entropic effects in long-time dynamics was44

also found in less idealized systems, such as the p-spin45

model [30, 31], finite-connectivity Step models [32], or46

even 3D Lennard-Jones mixtures between the dynami-47

cal temperature Td and the onset temperature To [33]48

and experimental metallic glasses [34]. In these works,49

however, the underlying framework is either that acti-50

vation only exists as barrier hopping [4, 11]; either that51
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it is an entropic effect that can be assimilated to bar-52

rier hopping [28, 29]; or it is a transient behavior which53

eventually turns into hopping [7, 32, 35]. This is hard to54

reconcile with other pictures of the dynamical arrest of55

glasses, such as facilitation [36, 37], that argue that the56

landscape (energy barriers) is not crucial to explain the57

slowness of glasses, which should instead be attributed58

to kinetic constraints.59

Here, we clarify the nature of these entropic effects,60

showing how under the right lens they can be used to61

unify the landscape with the facilitation pictures. We62

take a paradigmatic model of glasses, the REM [9],63

and show that both energy- and entropy-driven activa-64

tion mechanisms coexist. When energy-driven activation65

dominates, the system’s slowness is driven by the energy66

barrier separating basins, while when entropic activation67

dominates, the height of the barrier becomes unimpor-68

tant, and the slowness is instead driven by the scarcity69

of convenient directions. In our analysis, the dominance70

of one mechanism or the other depends on the density of71

states ρ(E), and on the temperature kBT ≡ β−1, which72

is the control parameter of a non-equilibrium phase tran-73

sition between the two different activated regimes (we set74

kB = 1 in this work).75

II. MODELS76

In the REM, we have a system with N spins, si = ±1.77

The dynamics takes place by flipping a single spin at a78

time: from any configuration one can reach N neighbor-79

ing states. The energy of a configuration is independent80

of the configuration itself, and is drawn from a proba-81

bility distribution ρ(E). Two choices of ρ(E) are used82

in literature. The initial formulation of the REM used a83

Gaussian energy distribution [9],84

ρg(E) =
1√

2πN
e−

E2

2N , (1)
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while more recent efforts also considered the Exponential85

REM (EREM) [20], which has86

ρe(E) = βce
βcEΘ(−E) , (2)

where we set βc = 1. These models have a transition87

from a paramagnetic to a glassy phase at βg =
√

2 ln 288

and βe = βc, respectively.89

III. CHARACTERISTIC ENERGIES90

A. Threshold Energy91

In both models, we can define a threshold energy, Eth,92

analogous to that of the p-spin model [38], above which93

no barriers are typically found. We calculate it as the94

energy for which the probability that a neighboring con-95

figuration has a lower energy is 1/N [20, 39],96

1

N
=

∫ Eth

−∞
ρ(E)dE . (3)

From Eq. (3) one obtains that, to leading order, the
threshold energies of REM and EREM are

Egth =−
√

2N lnN , (4)

Eeth =− 1

βc
lnN . (5)

This definition ensures that there are asymptotically no97

barriers above Eth, and descends from the mutual inde-98

pendence of neighboring configurations in the (E)REM.99

After long times, the system typically finds itself in a100

configuration with an extensively deep energy [20, 39],101

which we call trap (or basin). To transition from one102

trap/basin to another, the system needs to climb to the103

threshold. Energetic activated dynamics is mainly driven104

by the jumps on these energy barriers, in a manner that is105

analogous to what happens in the Trap Model, in which106

the time spent in a trap of energy E follows and Arrhe-107

nius law, τ ∼ exp[β(Eth − E)]. This was indeed found108

to be the case, by looking at the limiting values of the109

aging functions and comparing them with the predictions110

of the TM [18, 20].111

B. Attractor Energy112

We can also define another characteristic energy, which113

stems from toy models which represent a purely entropic114

kind of activation [28, 29, 40]. This quantity was called115

threshold energy in Refs. 28 and 29. As we will show,116

it is quantitatively and qualitatively different from the117

threshold energy, so we henceforth refer to it as the at-118

tractor energy, Ea. This quantity was first defined in119

Ref. 41, as the energy such that the energy of the next120

step is, on average, neither higher nor lower. However,121

we find it more intuitive to work with the definition given122

in Ref. 28, according to which Ea is the energy at which123

the probability P↑(E) of increasing the energy at the next124

step is equal to the probability P↓(E) of decreasing it:125

P↑(Ea) ≡ P↓(Ea) . (6)

P↑(E) (or P↓(E)) is calculated by considering the proba-126

bility of finding neighbors with a higher (or lower) energy127

E′, and the transition rate w(E → E′) telling whether128

a move towards such an energy is accepted. We con-129

sider Monte Carlo Metropolis dynamics, w(E → E′) =130

min(1, exp(−β(E′ − E))). As for the distribution of131

neighboring energies, it is particularly easy to calculate132

in the (E)REM, because the energy distribution of the133

neighbors is the same as that of the whole system. There-134

fore. one has135

P↓(E) =

∫ E

−∞
dE′ρ(E′)w(E → E′) =

∫ E

−∞
dE′ρ(E′) , (7)

P↑(E, β) =

∫ ∞
E

dE′ρ(E′)w(E → E′) =

∫ ∞
E

dE′ρ(E′)e−β(E
′−E) , (8)

where we made it explicit that P↑ depends on β. We note136

that, since the configurations in the (E)REM are i.i.d.,137

P↓(E) is the cumulative distribution of ρ(E), so we can138

write P↓(Eth) = 1
N .139

Since P↑(E, β) varies with β while P↓(E) does not, also140

Ea must vary with temperature. For the Gaussian REM,141

we find that the attractor energy is142

Ega = −Nβ
2
, (9)

whereas for the EREM it is143

Eea =

{
1

β−βc
ln
(

2βc−β
βc

)
; if 0 < β < 2βc ,

−∞ ; if β > 2βc .
(10)

The attractor energy for the EREM is the same that is144

found in Ref. 28 in a model which corresponds to a global145
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FIG. 1. Left: Phase diagram of the EREM, with the as-
sociated characteristic energies and dynamical regimes. For
β < βc we have the equilibrium phase. The solid line is
the equilibrium energy 〈E〉. At β = 2βc we have the tran-
sition from the entropically to the energetically activated
regime. The dashed line is the attractor energy. The hori-
zontal dashed-dotted line represents Eth(N = 10). Eth exists
∀β but is only relevant for β > 2βc. Right: two diagrams
showing how activated dynamics qualitatively takes place in
each of the regimes.

dynamics in the EREM. 1 This is due to the fact that146

in the EREM the distribution of neighboring energies147

(local) is equal to ρe(E) (global).148

Note that Ea is not directly related to the equilibrium149

energy 〈E〉. For example, in the EREM, there is no equi-150

librium energy from β ≥ βc (the equilibrium energy di-151

verges to −∞ at β = βc),
2 but Eea still is finite for152

βc ≤ β < 2βc. We depict this in Fig. 1. In other words,153154

the system still is attracted towards finite energies even155

though the equilibrium energy is divergingly negative. In156

fact, it is straightforward to check that when E < Ea (or157

E > Ea) the next configuration during the dynamics is158

more likely to have a higher (or lower) energy. Intuitively,159

what happens is that even when neighbors with lower en-160

ergy exist, they are to hard to find, and the system will161

find it more convenient to just increase the energy. How-162

ever, the system will immediately abandon high-energy163

configurations, while it will stay a very long time in the164

low-energy ones.165

IV. ENERGY- AND ENTROPY-DRIVEN166

ACTIVATION167

A. Energy-driven168

We call energy-driven the typical thermally activated169

dynamics consisting of hopping barriers with an Arrhe-170

nius rate. Since in the (E)REM the overwhelming major-171

1By global dynamics we mean that any number of spins is flipped at
each time step, in contrast with the single-flip dynamics considered
in this paper. With global dynamics local minima disappear.

2In the EREM we have 〈E〉 =

∫ 0
−∞ e(βc−β)EdE∫ 0
−∞ e(βc−β)dE

= − βc
βc−β .

ity of the barriers are at E = Eth (see e.g. Ref. 21), this172

kind of activation resembles the dynamics of the Trap173

Model [10, 11, 18, 20].174

B. Entropy-driven175

Contrary to Eth, Ea can also exist in systems with a176

single energy basin, such as the Step [28] or the Fun-177

nel model [29]. In these systems, despite the absence178

of energy-driven activation, the dynamics is a renewal179

process, provided that one identifies the traps dynami-180

cally, as all the configurations visited while E < Ea [28].181

With this construction, the relationship between aging182

functions and trapping time distributions is the one pre-183

dicted by the TM [28], and the typical time scales grow184

exponentially in N [29]. In other words, Ea identifies an185

activated dynamics which is not driven by the height of186

the energy barriers (as there are none), but which shares187

many signatures of energy-driven activation. This kind188

of activated dynamics is instead driven by the scarcity of189

convenient directions, and was therefore called entropy-190

driven [28].191

C. Interplay between the two mechanisms192

In the (E)REM, we can study the interplay between193

these two mechanisms. Since Eth is the minimal height194

at which the system must go in order to leave a trap, the195

entropic mechanism is not expected to play a role when196

Ea < Eth. We see that, for sufficiently large sizes, in197

the REM Ega (β) < Egth ∀β. Therefore, we expect that198

activation in the REM is purely energy-driven.199

In contrast, in the EREM we have different behaviors200

depending on β. When β > 2βc, we have Ea < Eth,201

so the slow dynamics should be energy-driven. When202

instead βc < β < 2βc (excluding a range of β close to203

2βc which shrinks with increasing N), we have Ea >204

Eth. This indicates that even when the system manages205

escaping a trap, reaching Eth, it will likely keep going up206

in energy, attracted towards Ea. Thus, the height of the207

barrier, (Eth−E), is not that important. The reason for208

this is that even though in this regime there are directions209

in phase space which would decrease the energy, they are210

too rare, and the system would rather keep increasing211

its energy than “invest time” looking for a descending212

direction. In Fig. 1 we show a diagram of how activation213

takes place in each of the two out-of-equilibrium phases.214

Since activated dynamics is relevant in the limit of
large but finite N , we can work out the transition in-
verse temperatures β∗ by setting Ea(β∗, N) = Eth(N).
This gives us the N -dependent transitions

βg∗ = 2

√
2 lnN

N

N→∞−→ 0 , (11)

βe∗ = βc
2 lnN +W (− lnN

N )

lnN

N→∞−→ 2βc , (12)
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FIG. 2. Median Eridge(β;N) in the EREM (a) and REM (b).
Different lines stand for different system sizes. Here and in
Fig. 3, results from memory-1 dynamics are shown in solid
lines, and results from full-memory dynamics (N < 30) are
shown as markers.

where W (z) is the Lambert function. In the Gaussian215

REM the entropic phase disappears for increasing N . In216

the EREM, instead, the transition stays at a finite tem-217

perature, and we have entropy-driven activation at low218

β, and energy-driven activation at high β.219

V. RIDGE ENERGY AND PHASE220

TRANSITION221

We run Monte Carlo simulations (details in App. A)222

to verify this transition from an energy-driven phase at223

high β, to an entropy-driven phase at lower β. Since224

REM and EREM do not allow for exact simulations at225

large system sizes, for sizes N ≥ 30 we rely on modi-226

fied dynamics, where every time that a new configuration227

is visited, all its neighbors’ energies, except that of the228

last-visited configuration, are drawn anew. We call this229

memory-1 dynamics, and elaborate more on it in App. B.230

Our intent is now to relate this transition to physi-231

cal observables. We measure the ridge energy, Eridge,232

defined as the highest-reached energy during each basin233

transition, i.e. in each of the time intervals during which234

E(t) > Eth. With energy-driven activation, we expect235

that Eridge(β;N) will stay close to Eth(N), while for236

entropy-driven activation it will overshoot to higher val-237

ues. In Fig. 2 we plot the median Eridge as a function238239

of β, for EREM and REM. While in the REM the ridge240

energies decrease steadily ∀β, in the EREM we see two241

distinct entropy-driven (low β) and energy-driven (high242

β) phases.243

As we show in Fig. 3, the ridge energy scales with N in244

the way we expect. In the EREM at low β we are in the245

entropic phase, and Eridge ∼ −1 ∼ Ea. In the energy-246

driven phase, instead, Eridge ∼ − ln(N) ∼ Eth. In the247

REM, where we only have energy-driven activation, the248

ridge energy follows Eth at every β.249

FIG. 3. Median Eridge as a function of N in the EREM and
REM (inset). Different lines correspond to different values of
β. The black dashed line represents Eth(N) for each model,
according to Eqs. (4) and (5).
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FIG. 4. The density of ridge energies in the EREM model,
using memory-1 dynamics, for N = 10000.

Through the lens of the median Eridge, the transition250

appears at β slightly smaller than 2, which we understand251

through two observations. First, βe∗ [Eq. (12)] indicates252

when P↑ > P↓. However, in order to reach Ea from Eth,253

the system needs to go through a large number of steps254

(i.e. growing with N) with ascending energy. If P↑ is255

only slightly larger than P↓ (which is what happens at256

β slightly lower than 2), this is not enough to accept a257

sufficiently large number of steps to go all the way up to258

energies of order 1. Second, this transition from energy-259

to entropy-driven activation has features of a first-order260

phase transition. We see this from Fig. 4, where we plot261

the distribution P (
Eridge

|Eth| ) at three different temperatures.262

At low β it is peaked around 0, while at high β it is peaked263

around −1, as expected. Around the transition, instead,264

we see the characteristic two-peak structure of first-order265

phase transitions.266

267268269
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VI. CONCLUSIONS270

A. Summary271

We showed that the “threshold energy” calculated dy-272

namically in models with a trivial landscape [28, 29]273

does not correspond to the typical landscape-based def-274

inition of threshold energy, and decided to rename it as275

attractor energy. Threshold and attractor energies de-276

fine two different kinds of activated dynamics, entropy-277

and energy-driven, which can coexist, though typically278

one dominates over the other. Energy-driven activa-279

tion corresponds to the typical picture of Arrhenius-like280

basin hopping, whereas entropy-driven activation is not281

driven by barrier heights, but rather by the scarcity of282

convenient directions. While at sufficiently low temper-283

atures energetic activation always exists in landscapes284

with multiple minima, the existence of a higher-T phase285

where entropy-driven activation dominates depends on286

the shape of ρ(E). In this entropic activation phase, the287

attractor energy Ea, towards which the system is reg-288

ularly driven, is higher than the threshold energy Eth,289

the height of the barriers loses relevance and we have a290

breakdown of the Arrhenius behavior.291

B. Reconsidering the importance of saddles292

One consequence is that the study of the transition293

paths of glasses by searching the lowest saddles, a techni-294

cally daunting task [22–25], is potentially not informative295

for the dynamics at temperatures around the glass tran-296

sition. Calculating the attractor energy, with its compar-297

ison to the threshold, is simpler and has the potential of298

unlocking the true activated nature of the dynamics.299

C. Rationalizing observations in other systems300

Additionally, entropic activation can elegantly ex-301

plain an apparently puzzling result recently found by T.302

Rizzo [27], who calculated, in the spherical p-spin model,303

the path from one equilibrium low-temperature configu-304

ration to another. He found that the maximum energy305

reached during this transition is considerably higher than306

Eth even though the largest barriers should not exceed307

Eth. We see that the same phenomenon occurs in the308

EREM, in a similar setting (we followed the system from309

one trap at E < Eth to another one), where we showed310

that the system is pushed towards a higher energy Ea by311

the scarcity of paths with energy close to Eth. We can312

thus attribute this behavior to the same entropic effects,313

and conjecture that at lower temperatures the paths will314

be close to Eth (as per the transition that we found in315

the EREM).316

This is also consistent with recent numerical obser-317

vations by Stariolo and Cugliandolo in the discrete p-318

spin model, that the trapping time distributions seem to319

follow the Step-model predictions better than those of320

the Trap Model [30, 31]. In particular, they define the321

traps dynamically by taking, instead of the position of322

the saddle, the highest point reached during the dynam-323

ics. Therefore, they are calculating the traps through the324

attractor instead of the threshold energy, which explains325

the observed Step-like behavior. Furthermore, they find326

that the energy of the ridge is larger than Eth, which327

is an indication that the lowest-energy path is not used,328

just as we find here.329

Also in 3D systems, such a Lennard-Jones mixtures,330

although activated dynamics takes place between To and331

Td [4, 5, 42], it was recently shown that it is not domi-332

nantly of an energy-driven kind, since, for example, the333

system is moving at energies significantly higher than the334

ridges separating metabasins [33]: the height of the bar-335

riers separating basins does not play a crucial role in this336

regime.337

D. The nature of activation in different kinds of338

models339

A typical intuition of why MF results do not apply in340

low dimensions is that the energy barriers diverge with341

the system size. However, in systems like hard spheres342

there are no energy barriers, so it seems like beyond-MF343

effects are not attributed to the right mechanism. It was344

suggested in several occasions that the low-D correspon-345

dent of a MF model can be non-trivial [43–45]. Our anal-346

ysis suggests that we should often think of activation less347

as the hopping of energy barriers, and more as a search348

for convenient directions, which require a collective co-349

operative behavior that is hard to obtain by randomly350

moving particles. We should therefore regard activation351

as a process beyond MF, not because the barriers are352

diverging, but rather because it involves processes (ener-353

getic and entropic) which take place on time scales t� N354

(usually t ∼ eN ).355

E. Connection to Facilitation Theory356

The dynamical facilitation picture shows that a strong357

glass-like slowdown can appear in a trivial landscape358

(without barriers), with the dynamics being slowed down359

by dynamical constraints [36, 46]. These dynamical con-360

straints are localized in space, so we do not aim at361

a 1:1 correspondence with a mean-field model (as the362

(E)REM), but we do note that the entropic barriers that363

lead to the entropic phase in the EREM are (soft) kinetic364

constraints. In fact, they mark directions in phase space365

along which motion is suppressed (with high probability366

a spin cannot be flipped), and they also appear in the ab-367

sence of potential energy barriers [28, 29, 41, 47, 48]. As368

an extra, here, kinetic constraints are not the only slow369

dynamics mechanism, but they act concurrently with en-370

ergetic activation; in addition to the fast mechanism of371
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diffusion towards lower energies. In other words, the phe-372

nomenological ingredients of facilitation are present, to-373

gether with additional mechanisms that should appear in374

the description of a glass.375

Since the dynamical constraints, as well as activation,376

appear at To [4, 36], we suppose a correspondence with377

the thermodynamic transition in the EREM (at β = βc).378

Cooling further, one observes entropy-driven activated379

dynamics between To and Td [33], and at Td the dy-380

namics is deemed to become energy-driven [49]. Also in381

the EREM, entropic activation stays dominant until the382

transition to the energetic phase at β = 2βc, suggesting383

a correspondence between Td and the entropic-energetic384

transition we observed in the EREM. However, in order385

to confirm these speculations we need to be able to ob-386

serve entropic activation in more complex models.387

F. Verifying entropic activation in more complex388

models389

In simple models such as the EREM or the Funnel390

model, the entropic phase is present both for local and391

global phase space dynamics [29]. However, this is not392

necessarily true for more complex models such as the393

p-spin. A starting point which would allow to study cor-394

related energy levels without changing the overall ρ(E)395

would be the Correlated REM [21] and the Number Par-396

titioning Problem (NPP) [50]. These two models have397

different kinds of correlations since, in the first, the398

basins are smooth, while in the NPP the traps are anti-399

correlated with their neighbors. In particular, in the NPP400

it was observed that, at β = 2βc, there is a transition401

within the glass phase, associated with a violation of the402

fluctuation-dissipation theorem, with relevant differences403

between local and global dynamics. The relationships404

between our findings and those of Ref. 50 could be stud-405

ied analytically within the framework of Ref. 51, which406

studies the Step model in the limit of slowly decorrelating407

variables.408
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Appendix A: Numerical details436

1. Monte Carlo Simulations437

Our simulations are performed with the Metropolis438

Monte Carlo algorithm [52]. Depending on the value of439

β, we use two equivalent implementations, which we call440

“standard” and “Gillespie”. The standard dynamics is a441

textbook Monte Carlo simulation with Metropolis accep-442

tance criteria (see e.g. Ref. 53 for a detailed description).443

The run time of the standard procedure is tightly bound,444

with tmax time steps. However, at large β, the rejection445

rate of standard dynamics is high and it may take many446

steps for a new configuration to be accepted. We there-447

fore use the Gillespie procedure (which is formally equiv-448

alent) is much more efficient. The Gillespie algorithm is449

a rejectionless method, that computes the time that the450

system spends in a given configuration, and transitions451

without rejection to one of the neighbors, according to452

how probable it is to transition to each neighbor. For453

a more detailed and didactic explanation of the Gille-454

spie algorithm we refer the reader to Ref. 54. While the455

Gillespie method this is efficient at large β, it is extremely456

inefficient at small β. Thus, we set a cutoff of β/βc = 2.3,457

such that when β/βc < 2.3, dynamics are run using the458

standard procedure, and Gillespie otherwise. We also use459

tmax = 107 for all calculations.460

Note that the standard and Gillespie procedures are461

formally equivalent [54]. To demonstrate this empirically,462

we show the mean energy E(t) for various choices of N463

and β (with βc = 1) in the EREM, in Fig. 5.464

2. Inherent Structures465

To ensure that we only measure transitions between466

different traps, with memory dynamics we measure the467

inherent structure (IS) before and after the transition,468

and keep the transition only if they are different. To469

measure the IS we take the steepest descent path towards470

the nearest minimum. Since the system is discrete, we471

define steepest descent as a trajectory which at each step472

goes to its lowest-energy neighbor, until a minimum is473

reached.474
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FIG. 5. Energy as a function of time, in simulations with
Gillespie (red) and regular Monte Carlo (blue) dynamics.
Each row is a different inverse temperature. On the first col-
umn we have the full memory dynamics, while on the second
we have the memory-1 dynamics (App. B).

3. Threshold Energy475

As already pointed out in Ref. 20, the subleading cor-476

rections in the threshold energy of the REM are large477

(around 13% in the largest sizes). Therefore, in our REM478

simulations we calculated the threshold energy numeri-479

cally. For the EREM simulations, we used Eq. (4).480

Appendix B: Memory and Memory-1 dynamics481

In REM and EREM, the energy of each configuration482

is a fixed random variable. This means that, for N spins,483

there are 2N energies sampled from ρ(E), each of which484

is permanently paired to some configuration. Therefore,485

in order to perform a long simulation in these models,486

we need to store the energy of all the 2N states, to en-487

sure that if a configuration is visited twice its energy has488

not changed. Storing 2N double precision floating point489

numbers is expensive in terms of memory, and limits the490

largest system sizes that we can simulate. This is why,491

in order to simulate N ≥ 30, instead of storing the all492

the 2N energies, we only stored the last visited one, and493

sampled anew the remaining N − 1 neighbors. We call494

this dynamics memory-1, in contrast with the memory495

dynamics which stores all the energies throughout the496

whole simulation.497

This simplification neglects loops in the dynamics,498

which for large N are arguably rare, and does not allow499

the system to directly return to configurations visited500

more than one step earlier. The latter can be seen as an501

advantage, since we want to wash back and forth motion502

out of the dynamics we are measuring [4, 20]. Since the503

REM and EREM dynamics is a renewal process [20], we504

can expect that anyhow after some time the previously505

visited phase space should be forgotten.506

An additional difference between memory and507

memory-1 dynamics is that the latter does not suffer from508

finite size effects descending from the phase space being of509

limited size: with memory dynamics there exists a lowest-510

reachable energy, while with memory-1 it is always pos-511

sible to reach a lower energy. In other words, memory-1512

dynamics suffer less from finite-size effects than the exact513

dynamics, and in any case this kind of effects does not514

affect the calculation of Eridge. In Fig. 6 we show the515

comparison between the two dynamics for varying β and516

N . At all temperatures, the difference between the two517

dynamics decreases as N grows. Both dynamics present518

finite-size effects, which decrease as the system becomes519

larger.520
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