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We address the effects of dry friction, which has emerged only recently to play an important
role in some biological systems. In particular, we investigate the non-equilibrium dynamics of a
mesoscopic particle, bound to a spring being pulled at a definite speed, moving on a surface with
dry friction in a noisy environment. We model the dry friction phenomenologically with a term
that is proportional to the sign of the velocity and by means of numerical simulations of a Langevin
equation, we show that a) the frictional force scales with the logarithm of the pulling velocity, b)
the probability distribution function of the spatial displacement away from the potential minimum
is non-Gaussian, c) the fluctuation-dissipation theorem is violated, as expected, but d) the work
function obeys the stationary fluctuation theorem, with an effective temperature related to the
noise of the system.

I. INTRODUCTION

While Coulombic or dry friction plays an important
role for the sliding of macroscopic objects [1], it has only
emerged recently in biological systems. For example,
leukocyte cells rolling in contact with the endothelium
[2] and living cells migrating on viscoelastic substrates
[3] exhibit the stick-slip motion, one of the hallmarks of
dry friction. At a smaller scale, the movement of kinesin
motor protein on microtubules, when it is dragged by
a focused laser tweezer, displays nonlinear friction that
is consistent with the behavior of dry friction [4]. More
recently, the friction between two F-actin filaments has
been measured and it is shown to be proportional to the
logarithm of the sliding velocity [5]. The latter behavior
is again a characteristic of dry friction [6]. What these
biological systems show is that the friction at the meso-
scopic scales may be dominated by the Coulombic force
rather than the viscous force, as we usually assume. In-
deed, we can estimate the drag force on a mesoscopic
object as Fd = 6πµRv ∼ 10−15 N, where µ ∼ mPa is the
dynamic viscosity, R ∼ µm is the linear size of the object,
and v ∼ µm/s is the typical speed. On the other hand,
the Coulombic friction can be as strong as ∆ ∼ 10−12 N
[4, 5, 7]. Thus, to elucidate the statistical description of
biological interaction, we must understand the interplay
of the Coulombic friction, which is a nonlinear force, the
fluctuations arising from the environments, which may
not be purely thermal in origin, and the external force
such as the harmonic potential as in most experimental
set-ups.

In this paper, we report on a non-equilibrium analysis
of a simple model that exhibits interesting behavior un-
der the influence of dry friction and the fluctuations of
the environment, but otherwise confined to a harmonic
potential. A simple phenomenological model for dry fric-
tion was introduced by de Gennes to address the dy-
namics of granular grains on a vibrating surface [8]. To
model the dry friction experienced by the grain and the
effect of the vibrating surface, de Gennes included, re-

FIG. 1: A mesoscopic particle of mass m bound to harmonic
potential with spring constant Ks, pulled with a speed vs on a
surface with Coulombic friction, and subjected to a Gaussian
noise from the environment.

spectively, a term that is proportional to the sign of the
velocity and a Gaussian white noise into the equation of
motion. He showed that there are three different regimes:
a viscous, a partly stuck, and a stuck regime [8]. In the
partly stuck regime, the velocity distribution is exponen-
tial with a ”kink” at v = 0. Subsequently, there has
been a number of papers investigating various aspect of
the model. In Ref. [9], the authors formulated a path in-
tegral approach to understand the stick-and-slip motion.
They also calculated the average velocity as a function of
an external constant force acting on the particle [10]. In
Ref. [11], the authors analyzed the Fokker-Planck (FP)
equation not only for the velocity but also for the spatial
displacement, whose statistics exhibit interesting multi-
scale properties arising from the Coulombic friction.

However, none of these papers deals with the funda-
mentals of measuring dry friction under experimental
settings [4]. We address this problem by exploring, by
means of numerical simulations, the non-equilibrium dy-
namics of a particle subjected to dry friction and noise
(not necessarily arising from thermal fluctuations), but
otherwise confined to a harmonic potential which pulls
the particle at a constant speed (see Fig. 1). Here is a
summary of our results: (1) we show that for a range of
velocity, the frictional force scales with the logarithm of
pulling velocity, in agreement with recent experimental
findings, (2) we find that the spatial displacement has
a non-Gaussian probability distribution function (PDF),
and (3) we demonstrate the violation of the fluctuation-
dissipation theorem, which is expected for out of equi-
librium system. Nonetheless, (4) we show that the sta-



2

tionary fluctuation theorem for work done on the particle
holds if we define an effective temperature related to the
noise of the system. This paper is organized as follows:
In Sec. II, we introduce the model. In Sec. III, we study
the stationary state distribution of spatial and velocity
component of model. In Sec. IV, we study the frictional
force for different noise and pulling speed. In Sec. V and
VI, we study the mean square displacement and fluctua-
tion dissipation theorem in conjunction with fluctuation
theorem for the model.

II. THE MODEL

The Langevin equation for the set up as depicted in
Fig. 1 can be written as

m
dv

dt
= −∆σ(v)−Ks(x− vst) + η(t), (1)

where x is the position of the particle and v = dx/dt
its velocity. The dry friction is modelled by −∆σ(v),
where ∆ is the strength and σ(x) is the sign function,

defined as σ(v) = 1 for v > 0, σ(v) = −1 for v < 0, and
σ(v) = 0 for v = 0. The third term represents the har-
monic potential moving at speed vs and Ks is the spring
constant. The last term η(t) represents the stochastic
force arising from the fluctuations of the environment,
modelled by a Gaussian white noise, i.e., 〈η(t)〉 = 0 and
〈η(t)η(t′)〉 = 2g2δ(t− t′), where g represents the strength
of the noise.

To show that the dynamics of this system described
by Eq. (1) is intrinsically out of equilibrium, we first de-
rive the corresponding FP equation. Introducing the co-
moving frame, defined by x′ = x − vst and v′ = v − vs,
we obtain

∂tP =− ∂x′(v′P ) +m−1∂v′ [( ∆σ(v′ + vs) +Ksx
′ )P ]

+ (g2/m2) ∂2v′ P, (2)

where P (v′, x′, t) is the phase-space distribution function
of the particle as a function of t. Note that this equation,
as in any FP equation, can be written as ∂tP = −∇ · J,
which expresses conservation of probability. The current
J consists of two parts [12]: a reversible part

Jr =

(
v′P

−(Ks/m)x′P − (∆/2m) (σ(v′ + vs) + σ(−v′ + vs))P

)
, (3)

and an irreversible part,

Jir =

(
0

−(∆/2m) (σ(v′ + vs)− σ(−v′ + vs))P − (g2/m2) ∂v′P

)
. (4)

Under time reversal, t→ −t, the position and the veloc-
ity components of reversible Jr (irreversible Jir) current
are transformed in the same (opposite) way as the time
derivative of x′ and of v′, respectively.

An equilibrium system, in addition to being time inde-
pendent, i.e., ∂tP = 0, satisfies the condition of detailed
balance, which dictates that Jir must vanish [12, 13].
This gives an equation for the equilibrium phase distribu-
tion, which can be readily solved. However, this solution
does not satisfy the stationary state condition∇·Jr = 0,
unless Ks is identically zero [13]. This implies that a har-
monically bound particle under dry friction and noise is
intrinsically out-of-equilibrium. Nevertheless, the system
does posses a stationary state, and most of our results are
obtained in this regime.

III. STATIONARY STATE DISTRIBUTIONS

In this section, we present the PDFs from the nu-
merical simulation of Eq. (1). First, for simplicity, we
scale out a characteristic length, ` ≡ ∆/Ks, and a time,

τ ≡
√
m/Ks, so that x̃ = x′/`, t̃ = t/τ and ṽ = (τ/`) v′.

The scaled Langevin equation only depends on 2 param-
eters, ṽs = vs(τ/`) and g̃ = g/(∆

√
τ). We employ the

Euler scheme with convergence of order 1 to integrate Eq.
(1) forward in time [14, 15]. The probability distribution,
P (ṽ, x̃), is obtained by binning the phase space from a
trajectory generated by running the code for ∼ 106 τ ,
which, we believe, is sufficient time to establish steady
state [16].

We find it visually more appealing to report P (ṽ) and
P (x̃), obtained by binning, respectively, ṽ and x̃ from
the trajectories of Eq. (1). The results are plotted in
Fig. 2 for different values of ṽs at a fixed g̃. First, a
striking feature of P (ṽ) is the sharp non-differentiable
point (singularity) for all g̃ and ṽs at ṽ = 0. The sin-
gularity, which is also present without the spring, arises
from the discontinuity of the sign function in the Eq.
(1) [8, 17]. When the particle is being pulled at a low
velocity, there appears another maximum in P (ṽ) near
ṽ ≈ ṽs. As the pulling speed increases, this peak be-
comes more pronounced and eventually, it corresponds
to the most probable speed. Physically, at low pulling
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FIG. 2: The stationary state phase space distribution P (ṽ, x̃)
as obtained from numerical simulations of Eq. (1) for g̃ = 1
where x̃ = x′/`, ṽ = (τ/`) v′, and g̃ = g/(∆

√
τ). (a) The

normalized velocity distribution in the lab-frame P (ṽ)/PM

[where PM is the maximum of P (ṽ) and P (ṽ) ≡
∫
dx̃ P (ṽ, x̃)]

for different values of ṽs. From the left, ṽs = 0 (�), ṽs = 1 (◦),
ṽs = 2 (4), ṽs = 10 (?). The sharp peak at ṽ ≈ 0 for all
values of ṽs shown is a signature of dry friction. However,
as ṽs increases, there appears a secondary maximum, roughly
at ṽ ∼ ṽs, corresponding to the object sliding due to the
force from the spring. Increasing ṽs increases the magnitude
of the peak and ṽs becomes the most probable speed. (b)
The normalized spatial distribution in the co-moving frame
P (x̃) ≡

∫
dṽ P (ṽ, x̃) for different values of ṽs [same legends as

in (a)]. Note that the distribution is not Gaussian in x̃; this
can be seen from the inset of (b) which shows the kurtosis
of P (x̃) vs ṽs for g̃ = 1. While the calculated skewness is
small, the kurtosis starts out at roughly 5 for ṽs = 0, and
goes asymptotically to 2 as ṽs increases. For comparison, a
purely Gaussian distribution has kurtosis of 3 (solid line) and
uniform distribution has a kurtosis of 1.8.

speed, the particle does not have enough momentum to
overcome dry friction and becomes stuck momentarily,
but at some point the linearly increasing force sets the
particle into motion, in short jumps. At a higher pulling
speed, the particle starts to slide more frequently, there-
fore its most probable speed becomes roughly ṽs. Also,
we note that increasing ṽs broadens the width of the peak

at ṽ = ṽs. Interestingly, the two peaks, one at ṽ = 0 and
the other at ṽ = ṽs coexist for a large range of ṽs. In-
creasing the strength of the effective noise g̃ causes the
transition from single peak to double peak to happen at
larger pulling speed.

For the displacement of the particle x̃ away from the
bottom of the potential, we find that, despite being a
harmonic potential, P (x̃) is not Gaussian, as shown in
Fig. 2b. This non-Gaussianity is likely arising from the
nonlinear nature of the dry friction. To characterize the
non-gaussianity of the distribution P (x̃), we can measure
its skewness and kurtosis. A purely Gaussian distribution
has a kurtosis and a skewness of 3 and zero, respectively.
In our case, the skewness is roughly zero and the kur-
tosis is not 3, as shown in the inset of Fig. 2(b). For
low pulling velocities, the kurtosis is determined to be
more than 3 and decreases to 2 for large pulling veloci-
ties. Another interesting feature of P (x̃) is that the most
probable value of x̃, i.e. the value of x̃ at which P (x̃) is
a maximum, decreases as ṽs increases. This is related to
the counteracting force due to the harmonic potential to
balance out the Coulombic friction. Note that this also
happens for the case with viscous friction, except that
the most probable value of x̃ decreases linearly with in-
creasing ṽs. For the case of Coulombic friction, the most
probable value of x̃ approaches to a constant value as the
pulling velocity gets larger, as expected.

IV. FRICTIONAL FORCE AS A FUNCTION OF
PULLING VELOCITY

One of the motivations to study the dynamics of the
system depicted in Fig. 1 is that it represents a typical
experimental set-up to measure friction, where the har-
monic potential is generated by an optical tweezer [4]. In
a statistical steady state, the force from the spring bal-
ances that of the dry friction on the average. Therefore,
the friction force is given by F = Ks〈x′〉 = ∆〈x̃〉, which is
a function of pulling speed, ṽs. The average is calculated
directly from the time series of the x̃(t) in the simulation.
The results are plotted in Fig. 3. At low g̃, we are in
the deterministic limit, where 〈x̃〉 = σ(ṽs). However, at
higher g̃, the magnitude of force initially increases as the
pulling speed, the slope of which decreases as g̃ increases.
We can interpret this behaviour as follows: In determin-
istic limit, pulling the object at a constant speed, the av-
erage of applied force must equal the Coulombic friction.
However, increasing the effective noise makes the particle
move with constant speed even with an applied force (on
average) smaller than Coulombic force of the contact sur-
face. In other words, the solid friction is effectively soft-
ened. In fact, as can be seen in Fig 3b, there is a range of
the pulling velocity ṽs, in which the frictional force scales
with logarithm of the pulling velocity. This scaling is a
signature of dry friction, and has been predicted with mi-
croscopic models and confirmed experimentally [5]. It is
interesting to obtain this here using a phenomenological



4

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

ṽs

F
/Δ

(a)

0 50 100

1.0

1.2

1.4

1.6

ṽs

e
x

p
(F

/Δ
)

(b)

FIG. 3: Frictional force, as obtained from F = Ks〈x′〉 = ∆〈x̃〉
as a function of the pulling velocity, ṽs for increasing values of
g̃ = 0.1 (+), 1 (◦), 5 (4), 10 (�). When fluctuations are weak,
the force curve resembles a step function, but as g̃ increases,
the force scales sub-linearly for small ṽs and asymptotically
goes to a constant for large ṽs given by ∆. (b) The force vs.
pulling velocity curve as in (a) but plotted in a linear-log scale
[same legends as in (a)], showing that the force scales with ṽs
as ln ṽs for sufficiently large g̃. This scaling is a signature of
dry friction. The error bars represent the standard deviation
of simulations [15].

model. This scaling arises from the activation process in
a noisy environment. In our case, when the particle is
being pulled, the system has two states: a stuck phase
with ṽ ≈ 0 and a sliding phase with ṽ ≈ ṽs. Note that in
transition from stuck phase to sliding phase, the particle
needs to move faster than ṽs to catch up with the moving
spring. The noise in the system might occasionally kick
the system from a stuck to the sliding phase. Therefore,
assuming that Kramer’s law [12] is valid for this system,
〈v〉 ∼ exp−(F/g2), which implies that F ∼ ln vs.

V. MEAN-SQUARED DISPLACEMENT AND
THE VIOLATION OF THE

FLUCTUATION-DISSIPATION THEOREM

Another interesting quantity that shows the interplay
between diffusion property and dry friction is the mean-
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FIG. 4: The mean-squared displacement as a function of time
for g̃ = 0.2 (a) and g̃ = 1 (b) for ṽs = 0 (◦) and ṽs = 2 (O).
At low g̃, the MSD resembles the motion of the particle in the
deterministic limit: at low ṽs, the particle is in the diffusive
regime, but at high ṽs, the particle exhibits oscillatory mo-
tion. At high g̃, MSD resembles that of a damped harmonic
oscillator in the under-damped limit. Note that in both cases,
increasing ṽs increases the amplitude of the oscillation. Inset
of (b): A phase diagram showing the region in the parameter
space in which the particle exhibits diffusive (D) and under-
damped (U) behaviors. The regions are obtained by visually
inspecting the behaviour of MSD at a particular g̃ and ṽs.
If the MSD monotonically increases to a constant value, we
consider it as diffusive (D). On the other hand, if the MSD
exhibits oscillations we consider it as under-damped (U). We
note that only for a small range of g̃ and ṽs we have diffusive
motion. The system crosses over under-damped regime by in-
creasing g̃ and ṽs. Red points represent roughly the boundary
of the diffusive and under-damped regimes.

squared displacement (MSD) of the particle, defined as

d̃2(t) = 〈[ x̃(t)− x̃(0) ]
2〉, where the average represents

the average over noise as well as time average. In Fig. 4,
we plot our numerical results for the MSDs, in which we
identify two distinct behaviors of the particle - a diffusive
regime which occurs at both small g̃ and small pulling
velocity, ṽs, and an under-damped regime for large g̃ and
ṽs, as shown in the inset of Fig 4b. We should note
that this behavior is different from a similar system with
viscous force only, in that its behavior does not depend
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on ṽs.

In the diffusive regime, the MSD rises as time increases
and flatten to an asymptotic value of 2

[
〈x̃2〉 − 〈x̃〉2

]
,

which is the width of the distribution. In the under-
damped regime, the MSD exhibits oscillatory motion. In-
terestingly, the higher the pulling ṽs, the more oscillatory
is the MSD. This is expected because as ṽs increases, we
are increasing the energy of the system and the particle
essentially exhibits deterministic motion.

Next, we discuss the fluctuation-dissipation theorem
(FDT), which is a cornerstone of equilibrium statistical
mechanics; it posits that, at equilibrium, the correlation
function, C(t − s), of an observable is linked to its re-
sponse function, R(t− s), via ∂sC(t− s) = kBT R(t− s),
where kB is the Boltzmann’s constant and T is the tem-
perature. Here, the linear response function is defined as
R(t− s) ≡ 〈δx(t)/δf(s)〉 for the variable x(t) in response
to an external force f(t). Among its many applications,
the FDT allows one to measure the correlation function
to back out some information encoded in the response
function about the dissipative process of the system [19].

However, as shown earlier, our system is intrinsically
out-of-equilibrium and we expect the FDT to be violated
because of continuous dissipation of energy as indicated
by a non-zero irreversible current of our system. How-
ever, it would be interesting to see if a FDT-like rela-
tion could still hold when an effective temperature is
properly defined [20]. To that end, we take the aver-
age kinetic energy to be an effective temperature, i.e.
(1/2) kBTeff = (m/2)〈v′2〉 = (∆2/2Ks)〈ṽ2〉 and we plot,
from our numerical simulations, 2kBTeff Imχ(ω) versus
ω C(ω), where C(ω) and χ(ω) are the the Fourier trans-
form of C(t− s) and R(t− s), respectively [21] in scaled
units. If FDT holds, then all data points would collapse
onto a straight line with a slope of 1. The results are plot-
ted in Fig. 5, where we display our numerical results for
4 representative cases; two cases in which the pulling ve-
locity is zero and two cases in which the system is driven,
ie. the pulling velocity is not zero.

When the system is not driven i.e., ṽs = 0, the FDT
is indeed violated for both low and high g̃ regimes. For
these cases, the correlation functions and response func-
tions are displayed in c and d in Fig. 5. For low g̃, which
is the diffusive regime (see Inset of Fig. 4b), a FDT-like
relation can be restored if we choose an effective temper-
ature that is different from Teff above. The exact value of
this temperature is greater than Teff and approaches Teff

as g̃ increases to the boundary of the diffusive regime.

At an even higher g̃ in the under-damped regime, not
only the FDT is violated, but also if we insist on having
a FDT like relationship, a frequency dependent temper-
ature must be introduced. This can be seen in Fig. 5d,
where the ratio of Imχ(ω) and ω C(ω) is no longer single-
valued due to the asymmetry in the ratio of Imχ(ω) and
ω C(ω) around ω = 1. For example, at ω = 0.57 and
ω = 1.37, the value of the correlation function, ω C(ω) is
roughly the same (about 2.05), but the response function
Imχ(ω) at ω = 1.37 has a value of 1.9 that is smaller than

FIG. 5: Plots of the Fourier transform of the linear response
function, kBTeff Imχ(ω) (×) and correlation function, ω C(ω)
( ) for different values of g̃ and ṽs, where Teff represents
the effective temperature. Here, [a] (g̃ = 1, ṽs = 2), [b]
(g̃ = 1, ṽs = 5), [c] (g̃ = 0.1, ṽs = 0), and [d] (g̃ = 1, ṽs = 0).
For a fluctuation-dissipation theorem to hold, ω C(ω) and
2kBTeff Imχ(ω) must overlap. For case [a], at this partic-
ular g̃ and ṽs, the FDT is obeyed. For cases [b], [c], and
[d], the FDT is violated. However, for case [c], the FDT
can be restored with a redefinition of the effective temper-
ature, about 1.4 × Teff. (e) A plot of the response function,
2kBTeff Imχ(ω) vs. the correlation functions, ω C(ω) for cases
[a] (�), [b] ( ), [c] (•), and [d] (H), as indicated. Note that
the response function and the correlation functions have been
normalized by the maximum values of ωC(w) for each cases.
For a fluctuation-dissipation-like theorem to hold, the slope
would be one, as indicated by the solid black line. We also
observe that cases [b] and [d] are not single-valued, implying
a frequency dependent temperature.

that of ω = 0.57 which is 2.2. Therefore, they appear to
be double valued in Fig. 5(e).

When the system is driven, there is a small range of
ṽs at a particular g̃, in which a FDT-like relation with
an effective temperature so defined holds [see Fig. 5(a)].
However, if the pulling velocity is increased, the FDT is
violated again, Fig. 5(b).
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VI. FLUCTUATION THEOREM

Recently, the fluctuation theorem (FT) has emerged as
a useful tool to characterize fluctuations of a system that
is driven out-of-equilibrium. It provides a precise quan-
titative statement about the probability of a dissipative
quantity σt, such as the entropy production rate or the
rate at which work is being done, and states that [22]

lim
t→∞

1

t
ln

P (σt = A)

P (σt = −A)
= A, (5)

where P (σt = A) is the probability that σt has a value A.
It attempts to characterize these fluctuations in far-from-
equilibrium regimes where linear response theory fails.
FT has been extensively investigated for the problem of
a particle attached to a moving spring and subjected to
viscous friction and thermal fluctuations [23–25].

Here, we examine the FT associated with the work
done on a particle experiencing Coulombic friction. Fol-
lowing Ref. [26], we define the rate at which work is being
done on the particle as the work required to keep the po-

tential moving, and write WT = −(Ks/T )
∫ t+T
t

dt′ (x−
vst
′) vs. Note that this definition of work implies that it

vanishes identically when the pulling velocity is zero. In
the inset of Fig. 6, we plot the probability distribution
for WT for different values of T for two different cases.
It is interesting to note that despite the displacement x̃
having a non-Gaussian distribution (see Fig. 2), WT is
Gaussian distributed for sufficiently large values of T .
Furthermore, it is clear that for a given T , the proba-
bility of having ”negative” work WT < 0 is finite, but
increasing T results in a higher probability for the sys-
tem of having ”positive” work WT > 0. In both cases,
the average of WT /T for all the values of T is Ks〈x′〉 vs,
as it should be.

To verify the conventional steady-state FT for
WT , we plot T −1 ln [P (WT = w)/P (WT = −w)] versus
w/(kBTeff) in Fig. 6 for two cases: one in which FDT
holds and the other one, FDT doesn’t. For the first case,
the FT holds for large values of T with the effective tem-
perature Teff. However, for the second scenario, the FT
only holds at large T if we redefine Teff. Increasing T
further does not change the slope in both cases. There-
fore, we have verified for a model of dry friction, which is
intrinsically out-of-equilibrium, that the steady-state FT
holds, provided T is sufficiently large, even though FDT
doesn’t hold, as previously demonstrated.

VII. CONCLUSION

We have numerically explored a simple model in which
the effects of Coulombic friction and a harmonic poten-
tial are taken into account for a mesoscopic particle mov-
ing in a noisy environment. This problem corresponds to
the typical experimental set-up, in which friction is being
measured quantitatively. For a range of pulling velocity,
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FIG. 6: Fluctuation theorem for the time-averaged work
done (over a time period T ) on the particle: WT ≡
−(Ks/T )

∫ t+T
t

dt′ (x − vst
′) vs. We plot from our nu-

merical simulations, T −1 ln [P (WT = w)/P (WT = −w)] vs
WT /(kBTeff) for (a) (g̃ = 1, ṽs = 2), and (b) (g̃ = 1, ṽs = 5),
at three different values of T /τ = 5 (◦), 15 (4), and 20 (?),

where τ ≡
√
m/Ks. The error bars indicate the standard de-

viation of simulations and for most of the points it is smaller
than the symbols used [15]. We should note that the param-
eters for (a) and (b) correspond to the FDT holds or doesn’t
hold, respectively (see Fig. 5). To verify the stationary state
FT, the value of T should be large enough. When increasing
the value of T , the slope of (a) approaches 1, while for (b) it
is 0.84. Thus, the FT holds for (a) but for (b) it holds only if
we redefine Teff, as 1.188 times the average kinetic energy of
the particle. Insets: The probability distribution of work WT
for different values of T .

our model gives a frictional force that scales with the
logarithm of the pulling velocity. This behavior is typi-
cally observed experimentally. We have also investigated
the non-equilibrium properties of the model. In particu-
lar, we demonstrate that the model obeys a form of the
Fluctuation Theorem, despite the fact that it is intrinsi-
cally out-of-equilibrium as demonstrated by the violation
of the Fluctuation-dissipation Theorem. We hope that
these results give insights into those experiments that
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measure friction, such as micro-balance experiments.
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