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The heart is an excitable medium which is excited by membrane potential depolarization and propagation. 

Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca 

release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus voltage and 

Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate 

their own dynamical instabilities which are affected by their bidirectional couplings, leading to complex 

dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which 

cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially 

discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-

2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the 

mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain 

incompletely understood. In this study, we use cardiac tissue models described by amplitude equation, coupled 

iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical 

and computational investigations. We show that when the Ca subsystem is stable, the Ca-SDA pattern always 

follows the APD-SDA pattern and thus they are always synchronized. When the Ca subsystem is unstable, 

synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling 

strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) 

synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-

APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable 

and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns 

is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. 

The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, anti-phase, or quasiperiodic 

depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide 

mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies. 
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I. Introduction 

The function of the heart is to pump blood via 

mechanical contraction and relaxation. Contraction and 

relaxation of the heart are regulated by intracellular calcium 

(Ca) which rises and decays following the membrane 

potential depolarization and repolarization cycle. This 

process is called excitation-contraction coupling [1]. On the 

other hand, the membrane potential or voltage is also 

affected by Ca via Ca-dependent ionic currents, and thus Ca 

and voltage are bi-directionally coupled. Complex action 

potential duration (APD) and Ca cycling dynamics can occur 

due to instabilities originating from the voltage subsystem 

(voltage-driven) or the Ca subsystem (Ca-driven), as well as 

their bidirectional couplings [2]. Alternans, a period-2 

behavior, is the most widely investigated nonlinear 

dynamics in cardiac systems, including animal experiments 

and clinical settings [3-12]. Theoretical and simulation 

studies have shown that alternans can arise from instabilities 

originating from voltage [6, 7, 13] or Ca cycling [14-20], 

which can be potentiated or attenuated by the bidirectional 

couplings of the two [21-23]. Both voltage-driven alternans 

and Ca-driven alternans have been demonstrated in 

experimental studies [6, 24-30]. Since voltage and Ca are 

coupled, voltage-driven alternans can result in Ca alternans 

and Ca-driven alternans can result in APD alternans. 

Clinically, alternans manifests in the hearts as either pulsus 

(mechanical) alternans or T-wave (electrical) alternans. 

Pulsus alternans and T-wave alternans are widely known as 

precursors of lethal ventricular arrhythmias and sudden 

cardiac death [3, 4, 9, 10, 12]. A potential mechanism linking 

alternans to arrhythmias is spatially discordant alternans 

(SDA) [31-37] in which APD or Ca exhibits a temporally 

period-2 but spatially out-of-phase (or anti-phase) behavior 

(see Fig.1), referring to as APD-SDA and Ca-SDA in this 

study, respectively. APD-SDA results in large APD 

gradients, making the tissue susceptible to conduction block 

and formation of spiral waves [31, 33] or generation of 

arrhythmia triggers [38]. Therefore, understanding the 

mechanisms of SDA can provide insights into the 

understanding of cardiac arrhythmogenesis. 

The genesis of APD-SDA has been widely investigated 

in previous studies [33, 39-41], which  mainly focus on the 

role of conduction velocity (CV) restitution (CVR). CVR is 

an action potential conduction property in which CV 

changes as the diastolic interval (DI) changes due to 

incomplete recovery of the sodium current or changes in 

excitability [32, 33, 42, 43]. The role of CVR in APD-SDA 

is supported by some of the experiments [24, 44-47] but not 

by others [47-49]. In recent simulation and theoretical 

studies [50, 51], we performed systematic analyses on the 

roles of CVR, tissue heterogeneities, convection due to 

conduction, and nodal line curvature in the genesis and 
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dynamics of APD-SDA, which provide additional 

theoretical insights for those experiments that do not support 

the mechanism of CVR-indued APD-SDA. However, these 

theoretical studies do not take into account the condition 

when Ca-driven alternans is also present. Since Ca and 

voltage are bidirectionally coupled, when APD alternans 

becomes spatially discordant, Ca alternans may also be 

spatially discordant, or vice versa. Experimental studies [44, 

48, 49, 52] have shown that during SDA, the nodal lines of 

APD-SDA may or may not co-localize with those of the Ca-

SDA, i.e., the APD-SDA and Ca-SDA may or may not 

synchronize with each other. Fig.1 shows such an example 

from optical mapping experiments in a rabbit heart by 

Hayashi et al [44]. In this example, the APD-SDA nodal 

lines co-localize with the Ca-SDA nodal lines in the upper 

region of the mapping area but not in the lower region. In the 

lower region, there are Ca-SDA nodal rings without 

corresponding APD-SDA nodal rings. This indicates that in 

the upper region, the Ca-SDA pattern is synchronized with 

the APD-SDA pattern but not in the lower region. Therefore, 

there is a key question to be addressed: when and how are 

APD-SDA patterns and Ca-SDA patterns synchronized in 

cardiac tissue? 

Answering this question is important for understanding 

cardiac arrhythmogenesis [53]. Since a critical APD gradient 

is needed for reentry initiation [54-57], synchronization of 

Ca-SDA and APD-SDA patterns is needed for the Ca-driven 

alternans to result in a large enough APD gradient. In other 

words, since Ca is not directly coupled between cells 

(Fig.2A), it can alternate out-of-phase in space. If Ca is not 

synchronized in space with APD, its effect on APD will be 

averaged out in space since voltage is diffusively coupled 

between cells. Previous simulation studies have investigated 

the formation of SDA in the presence of Ca-driven alternans 

[44, 58-60], but have not addressed the question of when and 

how APD-SDA and Ca-SDA patterns can be synchronized. 

In this study, we perform a systematic theoretical study 

combined with computer simulations to understand the 

formation and stability of SDA patterns in the presence of 

both voltage-driven instability (or voltage-driven alternans) 

and Ca-driven instability (or Ca-driven alternans), in 

particular synchronization of the APD-SDA pattern with the 

Ca-SDA pattern. We use three types of mathematical models 

of different complexity and physiological details, i.e., the 

amplitude equation (AE) model with generic kinetics, the 

coupled map lattice (CML) model incorporating certain 

physiological properties, and the ionic model (i.e., the rabbit 

ventricular myocyte model by Mahajan et al [61]) describing 

the detailed physiological processes. Spatiotemporal APD 

and Ca dynamics in both one-dimensional (1D) cable and 

two-dimensional (2D) tissue models are investigated. 

Through theoretical analyses and computer simulations of 

these models, we reveal the conditions and mechanisms for 

the formation and synchronization of APD-SDA and Ca-

SDA patterns, which provides mechanistic insights into the 

formation and synchronization of the APD-SDA and Ca-

SDA patterns observed in experimental studies. 

 

II. Methods and materials 

 

A. Mathematical models 

The AE model is described in the corresponding section 

in Results. Details of the CML model and the ionic model 

are described in Appendix.  

 

B. Voltage and Ca coupling 

Fig.2A is a schematic plot for voltage and Ca coupling 

and cell-to-cell coupling in cardiac tissue. In cardiac tissue, 

the cells are electrically coupled via ion channels called gap 

junctions. When one cell depolarizes, the voltage differences 

between this cell and its neighbors result in current flows to 

its neighbors, causing the neighboring cells to depolarize. 

Although Ca may also pass through the gap junction to cause 

cell-to-cell Ca coupling [62], it is believed that this coupling 

is very weak, which is omitted in computational cardiac 

tissue models. Here we also assume that there is no cell-to-

cell Ca coupling, and the cells are coupled only via voltage. 

Ca and voltage are bidirectionally coupled within a cell 

via the Ca-dependent ionic currents as well as Ca-dependent 

signaling. We refer the couplings to as Ca-to-APD coupling 

and APD-to-Ca coupling as detailed below:  

1) Ca-to-APD coupling. Ca affects APD via Ca-

dependent ionic currents or Ca-dependent signaling which 

then regulates ionic currents. For example, increasing Ca 

increases Na-Ca exchange current (INCX), which is an inward 

current, prolonging APD. Increasing Ca enhances Ca-

dependent inactivation of the L-type Ca current (ICa,L), 

shortening APD. Increasing Ca also increases the slow 

component of the delayed rectifier potassium current (IKs) 

and the Ca-activated small conductance potassium current 

 
 
FIG.1. Spatially discordant APD and Ca alternans in a rabbit heart. 

A. An image of a rabbit heart and the optical mapping area. B. 

Simultaneous recordings of voltage and Ca from three different 

sites marked in A. C. Nodal lines (white) in APD alternans map. 

D. Nodal lines (white) in the Ca alternans map. Modified from 

Hayashi et al. 
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(ISK) [63, 64], which are outward currents activated by Ca, 

shortening APD. Therefore, increasing Ca can either 

lengthen or shorten APD (Fig.2B), which results in positive 

Ca-to-APD coupling or negative Ca-to-APD coupling, 

respectively.  

2) APD-to-Ca coupling. APD affects Ca mainly in two 

ways.  First, lengthening APD affects Ca entry and extrusion 

via changing ICa,L and INCX, which change the Ca load for the 

next beat. The amount of Ca released is larger for a higher 

SR Ca load, and this property is called refractional release 

relationship [65, 66]. Second, lengthening APD shortens DI 

preceding the next beat, reducing the availability of LCCs as 

well as that of the Ca release channels, called ryanodine 

receptors, for opening due to incomplete recovery. 

Furthermore, the SR Ca load may also be affected by DI due 

to refilling from the previous release. These effects together 

give rise to a property called Ca release restitution [67-69]. 

Therefore, lengthening APD in the present beat can either 

enhance Ca release or reduce Ca release in the following beat 

(Fig.2C), resulting in positive APD-to-Ca coupling or 

negative APD-to-Ca coupling, respectively. 

 

C. Spatially and electromechanically concordant and 

discordant alternans 
When APD (or Ca) alternates in phase in the whole 

tissue, it is called spatially concordant alternans (SCA). 

When APD (or Ca) alternates out of phase in space, it is 

called SDA (Fig.3). During alternans, APD and Ca may 

alternate either in phase or in anti-phase. In the in-phase 

mode, a large Ca corresponds to a long APD, and vice versa, 

which is called electromechanically concordant alternans. In 
the anti-phase mode, a large Ca corresponds to a short APD, 

and vice versa, which is called electromechanically 

discordant alternans. The electromechanically concordant 

alternans occurs when the Ca-to-APD coupling is positive 

and electromechanically discordant alternans occurs when 

the Ca-to-APD coupling is negative. 

In the AE model, the variables are the amplitudes of 

APD and Ca alternans. Furthermore, in the CML model and 

the ionic model, we present most of the results using the 

alternans amplitudes. The APD alternans amplitude (∆𝑎𝑛) is 

defined as 

∆𝑎𝑛 = (−1)𝑛(𝑎𝑛+1 − 𝑎𝑛)/2                  (1) 

in which 𝑎𝑛 is the APD of the nth beat. The pre-factor (−1)𝑛 

maintains the sign of ∆𝑎𝑛 during alternans. In other words, 

the term (𝑎𝑛+1 − 𝑎𝑛) changes sign in a beat-to-beat manner 

during alternans, and the pre-factor keeps ∆𝑎𝑛  either 

positive or negative, unchanged from beat to beat. In a SCA, 

∆𝑎𝑛 keeps either positive or negative in the whole spatial 

domain. In a steady-state SDA, the sign of ∆𝑎𝑛  remains 

unchanged in time but changes in space. ∆𝑎𝑛 = 0 

corresponds to the SDA node. Similarly, one defines the Ca 

alternans amplitude (∆𝑐𝑛) as 

∆𝑐𝑛 = (−1)𝑛(𝑐𝑛+1 − 𝑐𝑛)/2                   (2) 

𝑐𝑛 is the peak value of the Ca concentration of the nth beat. 

In the real cardiac myocytes, the intracellular Ca 

concentration is in the order of 1 M. For simplicity, we use 

an arbitrary unit for 𝑐𝑛  and  ∆𝑐𝑛  but use the real unit 

millisecond for 𝑎𝑛 and ∆𝑎𝑛 in the AE model and the CML 

model. The bottom panels of Fig.3 plot the steady-state 

patterns of ∆𝑎𝑛 and ∆𝑐𝑛 from the SDA shown in the top and 
middle panels. The SDA in Fig.3A is electromechanically 

concordant in which the signs of ∆𝑎𝑛 and ∆𝑐𝑛 are the same, 

i.e., a positive ∆𝑎𝑛  corresponds to a positive ∆𝑐𝑛 , and a 

 

FIG.2. Schematic diagrams of cell-to-cell coupling and Ca and 

voltage coupling. A. A schematic diagram of coupling between 

cells and coupling between voltage and Ca in chain of cardiac 

cells. B. Ca-to-APD coupling. Increasing Ca (black dashed) can 

either lengthen APD (positive Ca-to-APD coupling) or shorten 

APD (negative Ca-to-APD coupling). C. APD-to-Ca coupling. 

Lengthening APD in the 1st beat causes shortening of DI, which 

may result in either a smaller Ca (positive APD-to-Ca coupling) 

or a larger Ca (negative APD-to-Ca coupling) in the 2nd beat. See 

main text for more detailed description. 
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FIG.3. Electromechanically concordant and discordant SDA. A. 

An example of an electromechanically concordant SDA in which 

APD and Ca alternate in-phase. Top: APD vs cell # for two 

consecutive beats. Middle: Peak Ca vs cell # for the same two 

consecutive beats. Bottom: Alternans amplitude of APD (∆𝑎) and 

Ca (∆𝑐) calculated from the two beats. B. Same as A but for an 

electromechanically discordant SDA in which APD and Ca 

alternate in anti-phase. A and B are simulation results of the CML 

model (see Appendix) with the following parameters: 𝑇 = 250 

ms, 𝛾 = 0.002 , 𝜎𝑅 = 0.8 , 𝜏𝑎 = 40 , and 𝛽 = 4  for A and 𝑇 =
250 ms, 𝛾 = −0.002, 𝜎𝑅 = 0.8, 𝜏𝑎 = 38, and 𝛽 = 4.6 for B. 
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negative ∆𝑎𝑛 corresponds to a negative ∆𝑐𝑛. Fig.3B shows 

an SDA of electromechanically discordant alternans in 

which the signs of ∆𝑎𝑛 and ∆𝑐𝑛 are opposite, i.e., a positive 

∆𝑎𝑛 corresponds to a negative ∆𝑐𝑛, and vice versa. 

 

D. Pacing protocol 
In this study, we pace all cells in the tissue 

simultaneously, i.e., a global pacing protocol, and thus there 

is no action potential conduction. As we clarified previously 

[50, 51], this protocol is not only physiologically realistic, 

but also a simplified setting that can be helpful for 

understanding  the SDA dynamics in the presence of 

conduction. We will investigate in a future study the effects 

of conduction on the SDA dynamics in the presence of Ca 

alternans using local pacing protocols. 

 

E. Computer simulation methods 

Computer simulations are carried out for all three types 

of models.  Numerical simulations of 1D cable and 2D tissue 

are carried out using a forward Euler method with Δ𝑥 =
0.0125 cm, and Δ𝑦 = 0.0125 cm. Δ𝑡 = 0.02 ms for the AE 

model and Δ𝑡 = 0.01  ms for the ionic model are used. 

Simulations are carried out by GPU (NVIDIA GeForce RTX 

3090) accelerated computing with CUDA C++. 

 

 

III.  Results  
 

A. SDA formation and synchronization in the AE 

model—Theoretical analyses 

The advantage of the AE model is that it is relatively 

simple so that we can perform analytical treatments, such as 

stability analysis and theoretical solutions [40, 51, 70]. The 

first AE model describing voltage-driven SDA dynamics in 

a 1D cable was derived by Echebarria and Karma [40, 70]. 

A similar AE model was developed to describe the effects of 

voltage and Ca coupling on subcellular Ca alternans in single 

myocytes by Shiferaw and Karma [71]. In a recent study 

[51], we used the AE model to investigate the voltage-driven 

SDA dynamics in tissue models under different conditions, 

such as repolarization and coupling heterogeneities. Here we 

extend the AE model to describe the SDA dynamics in the 

presence of Ca-driven alternans by phenomenologically 

adding an AE describing the amplitude of Ca alternans and 

the bidirectional coupling effects. Using this AE model, we 

can perform stability analyses for both SCA and SDA in 

cardiac tissue and investigate the conditions for 

synchronization of the APD-SDA and Ca-SDA patterns. The 

theoretical predictions are then examined using both the 

CML model and the ionic model that have more 

physiological parameters and details.  

  

1. The AE model 

Under global pacing, the AE model is described by the 

following coupled partial differential equations: 

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 − 𝛽∆𝑎3 + 𝛾∆𝑐 + 𝜉2

𝜕2∆𝑎

𝜕𝑥2
                 (3) 

𝑇
𝜕∆𝑐

𝜕𝑡
= 𝜌∆𝑐 − 𝜀∆𝑐3 + 𝜎∆𝑎                                   (4) 

where T is the pacing period and 𝑡 ≡ 𝑛𝑇 with n being the 

beat number of pacing. In the AE model, the alternans 

amplitude of APD is treated as a time and space continuous 

variable, i.e., Δ𝑎(𝑥, 𝑡).  and , which are related to the 

slope of the APD restitution curve [40, 70], are the 

parameters determining the stability and amplitude of the 

APD alternans in the absence of Ca-driven alternans. In 

other words, in the absence of Ca-driven alternans (or when 

Ca and APD are decoupled), when 𝛼 < 0, no APD alternans 

occurs. When 𝛼 > 0, APD alternans occurs with the steady-

state alternans amplitude ∆𝑎 = ±√
𝛼

𝛽
. Similarly, ρ and  are 

parameters determining the stability and amplitude of the Ca 

alternans. Without coupling, when 𝜌 < 0, no Ca alternans 

occurs. When 𝜌 > 0, Ca alternans occurs with the steady-

state alternans amplitude ∆𝑐 = ±√
𝜌

𝜀
. In this study, we fix 

𝛽 = 𝜀 = 0.0001 but vary  and ρ for stability and alternans. 

 in Eq.3 describes the Ca alternans to APD alternans 

coupling and  in Eq.4 describes the APD alternans to Ca 

alternans coupling, with both couplings assumed to be linear. 

Note that couplings in Eqs. 3 and 4 are those for Ca and APD 

alternans amplitudes (i.e., ∆𝑎 and ∆𝑐), not the Ca-to-APD 

coupling and the APD-to-Ca coupling. However, as 

illustrated in Fig.2B, for a positive Ca-to-APD coupling, an 

increase in Ca amplitude lengthens APD, which shortens the 

APD in the following beat due to a shorter DI, increasing the 

APD alternans amplitude (∆𝑎). The increase in Ca amplitude 

also increases the Ca alternans amplitude (∆𝑐). Therefore, a 

positive Ca-to-APD is equivalent to a positive  in Eq.3. 

Similarly, a negative Ca-to-APD coupling corresponds to a 

negative . For the same argument, a positive APD-to-Ca 

coupling corresponds to a positive  in Eq.4 and a negative 

APD-to-Ca coupling corresponds to a negative . 

To understand the roles of Ca and APD coupling in the 

genesis of the spatiotemporal dynamics, we first perform a 

linear stability analysis with the following linearized 

equations: 

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 + 𝛾∆𝑐 + 𝜉2

𝜕2∆𝑎

𝜕𝑥2
                           (5) 

𝑇
𝜕∆𝑐

𝜕𝑡
= 𝜌∆𝑐 + 𝜎∆𝑎                                           (6) 

Inserting (
Δ𝑎(𝑥, 𝑡)
Δ𝑐(𝑥, 𝑡)

) = (
Δ𝑎0
Δc0

) 𝑒𝑖𝑘𝑥+𝜆𝑡   into Eqs. 5 and 6, 

one obtains the following Jacobian: 

𝐽 = (
𝛼 − 𝜉2𝑘2 𝛾

𝜎 𝜌
) /𝑇                                      (7) 

whose eigenvalues are:  

𝜆𝑘 =
(𝛼−𝜉2𝑘2+𝜌)±√(𝛼−𝜉2𝑘2−𝜌)2+4𝛾𝜎

2𝑇
                     (8) 

As indicated in Eq.8, 𝜆𝑘 depends on 𝛾𝜎. Here we discuss the 

three coupling cases (𝛾𝜎 = 0, 𝛾𝜎 > 0, and 𝛾𝜎 < 0) in the 

sections below. 

 

2. Synchronization of APD-SDA and Ca-SDA patterns 

when 𝛄𝛔 = 𝟎  
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We first deal with a special condition, i.e., γσ = 0. This 

condition is satisfied when Ca and APD are either 

completely decoupled ( 𝛾 = 0  and 𝜎 = 0)  or one-way 

coupled (𝛾 = 0 and 𝜎 ≠ 0 or 𝛾 ≠ 0 and 𝜎 = 0). However, 

as long as 𝛾𝜎 = 0, the eigenvalues in Eq.8 are decoupled 

into a voltage-dependent one and a Ca-dependent one, i.e., 

𝜆𝑘,1 = (𝛼 − 𝜉2𝑘2)/𝑇  and 𝜆𝑘,2 = 𝜌/𝑇                 (9) 

Note that 𝜆𝑘,2 is independent of k, which is due to that Ca is 

not coupled between cells (Fig.2A). Since the case of 𝛾 = 0 

and 𝜎 = 0  (APD and Ca are completely decoupled) is 

trivial, we discuss the other two cases in detail below. 

(a)  𝛾 = 0  and 𝜎 ≠ 0 . In this case, the APD is not 

affected by Ca but Ca is affected by APD. This condition can 

be satisfied when the Ca-dependent inward and outward 

currents are properly balanced so that changing Ca does not 

change APD, i.e., 𝛾 = 0. Although this condition may be 

difficult to be satisfied in the real system, it still gives us 

insights for the condition when the Ca-to-APD coupling is 

weak, i.e., when  is small. When 𝛾 = 0 , Eqs.3 and 4 

become: 

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 − 𝛽∆𝑎3 + 𝜉2

𝜕2∆𝑎

𝜕𝑥2
                          (10) 

𝑇
𝑑∆𝑐

𝑑𝑡
= 𝜌∆𝑐 − 𝜀∆𝑐3 + 𝜎∆𝑎(𝑥, 𝑡)                       (11) 

One can categorize the system into four conditions:  

1) When both the APD and the Ca subsystems are stable 

(𝛼 < 0 and 𝜌 < 0), there is no alternans and thus no SDA 

patterns.  

2)  When the APD subsystem is stable and the Ca 

subsystem is unstable (𝛼 < 0 and 𝜌 > 0), there is no APD 

alternans, and thus ∆𝑎(𝑥, 𝑡) = 0, the Ca-SDA pattern can be 

any pattern determined by the initial condition.  

3) When the APD subsystem is unstable and the Ca 

subsystem is stable (𝛼 > 0 and 𝜌 < 0), the Ca-SDA pattern 

passively follows the APD-SDA pattern.  

4) When both subsystems are unstable (𝛼 > 0 and 𝜌 >
0 ), the Ca-SDA pattern can be dyssynchronous or 

synchronized to the APD-SDA pattern, which can be 

understood as follows. Under this condition, the steady-state 

Ca-SDA pattern is determined by the solutions of 𝑓(∆𝑐) =
0, in which  

𝑓(∆𝑐) = 𝜌∆𝑐 − 𝜀∆𝑐3 + 𝜎∆𝑎                 (12) 

𝑓(∆𝑐) = 0 can exhibit either three real solutions or one real 

solution (Fig.4A), and the transition occurs when |𝜎𝑐∆𝑎| =

√
4𝜌3

27𝜀
 or in another form: 

|𝜎𝑐| = √
4

27
𝜌
|∆𝑐|

|∆𝑎|
= √

4𝜌3𝛽

27𝜀𝛼
                    (13) 

in which  ∆𝑎 = ±√
𝛼

𝛽
 and ∆𝑐 = ±√

𝜌

𝜀
 are the steady-state 

alternans amplitudes of a single cell. Note that Eq.13 is valid 

only for 𝛼 > 0 since ∆𝑎 = 0 for 𝛼 ≤ 0. When |𝜎| > |𝜎𝑐|, 
𝑓(∆𝑐) = 0 has one real solution, otherwise, there are three 

real solutions. When there are three solutions, Δ𝑐 of a cell 
can be either the positive solution or the negative solution 

depending on the initial condition. Under this condition, the 

Ca-SDA pattern can be arbitrary, independent of the APD-

SDA pattern and determined solely by the initial condition 

(left panel in Fig.4B). When there is only one solution,  Δ𝑐 

follows the same sign of ∆𝑎, and thus the Ca-SDA pattern 

synchronizes to the APD-SDA pattern (right panel in 

Fig.4B). Note that in the nodal region, Δ𝑐 still varies from 

cell to cell, which is due to that ∆𝑎  is too small to 

synchronize Δ𝑐  as indicated by Eq.13. Therefore, when 

|𝜎| > |𝜎𝑐|, synchronization of the Ca-SDA pattern to APD-

SDA pattern occurs, except in the nodal region where |∆𝑎| 
is small. 

In cardiac myocytes, stochastic opening of ion channels 

causes random fluctuations in both APD and Ca. However, 

due to the cell-to-cell coupling, the fluctuations in APD 

become small in cardiac tissue [72]. On the other hand, the 

random fluctuations in Ca can be very large [73-77] due to 

criticality [17, 78]. We hypothesize that the random noise 

can lower the threshold of synchronization, i.e., the noise in 

Ca can promote synchronization of Δ𝑐(𝑥, 𝑡) to ∆𝑎(𝑥, 𝑡). We 

demonstrate this by adding noise to the system. Since the 

random fluctuation in APD is small, we only add noise to 

Ca, i.e., we add noise to Eq.11 but not Eq.10. Furthermore, 

for simplicity, we add a Gaussian white noise to Eq.11, i.e.,                                     

𝑇
𝑑∆𝑐

𝑑𝑡
= 𝜌∆𝑐 − 𝜀∆𝑐3 + 𝜎∆𝑎 + 𝜂(𝑡)           (14) 

where 𝜂(𝑡) is the Gaussian white noise satisfying < 𝜂(𝑡) >
= 0  and < 𝜂(𝑡)𝜂(𝑡′) >= 2𝐷𝛿(𝑡 − 𝑡′) . D is the noise 

strength. The corresponding Fokker-Planck equation 

describing the probability of ∆𝑐  [ 𝑝(∆𝑐) ] is: 
𝜕𝑝

𝜕𝑡
=

−
𝜕𝑓(∆𝑐)𝑝

𝜕∆𝑐
+ 𝐷

𝜕2𝑝

𝜕∆𝑐2
.   The steady-state solution of the Fokker-

Planck equation is expressed as [79]:  

𝑝(Δ𝑐) ∝ exp⁡[−
𝑈(Δ𝑐)

𝐷
]                        (15) 

 
FIG.4. Synchronization of Ca-SDA to APD-SDA patterns in the 

AE model without Ca-to-APD coupling (𝛾 = 0 ). A. Plots of 

function 𝑓(∆𝑐) (Eq.12) for different 𝜎∆𝑎 values.  B. Space-time 

plots of ∆𝑐 for 𝜎 = 0.1 (left) and 𝜎 = 0.5 (right) for a one-node 

APD-SDA as indicated.  C. Space-time plots of ∆𝑐 for 𝜎 = 0.1 

with two noise strengths: 𝐷 = 500 (left) and 𝐷 = 1000 (right). 

D. 𝑆𝑣𝑐  vs noise strength D. For each D, 20 simulations with 

different random initial conditions are carried out with the 

corresponding 𝑆𝑣𝑐 plotted. In the simulations in B-D, the initial 

conditions for Ca-SDA are spatially random in which ∆𝑐  is a 

binary number, randomly chosen as either -100 or 100. ∆𝑎 is a 

one-node SDA as indicated in B. 𝛼 = 0.5 and 𝜌 = 0.5. 
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in which 𝑈(Δ𝑐) = −
𝜌

2
Δ𝑐2 +

𝜀

4
Δ𝑐4 + 𝜎Δ𝑎Δ𝑐  is a double-

well potential. When 𝜎Δ𝑎 = 0, the probability distribution 

is symmetric for the two potential wells. When 𝜎Δ𝑎 ≠ 0, 

one potential well is higher than the other, which causes the 

transition of Δ𝑐 from the higher potential well to the lower 

potential well, synchronizing the Ca-SDA pattern to the 

APD-SDA pattern. For example, for the case of 𝜎 = 0.1 in 

Fig.4B, adding noise causes the Ca-SDA pattern to 

synchronize to the one-node APD-SDA pattern (Fig.4C). 

To quantify the degree of synchronization between the 

APD-SDA pattern and the Ca-SDA pattern, we define a 

synchronization index as follows:  

𝑆𝑣𝑐(𝑡) =
1

𝐿
∑ 𝑠𝑔𝑛[∆𝑎(𝑖, 𝑡)] × 𝑠𝑔𝑛[∆𝑐(𝑖, 𝑡)]𝐿
𝑖=1         (16) 

where L is the length of the cable (the total number of cells). 

A perfectly synchronized Ca-SDA pattern with an APD-

SDA pattern gives rise to 𝑆𝑣𝑐 = 1 for electromechanically 

concordant SDA and 𝑆𝑣𝑐 = −1  for electromechanically 

discordant SDA. Fig.4D plots 𝑆𝑣𝑐 versus the noise strength, 

showing that when the noise is weak, no synchronization 

occurs, but once the noise is strong enough, synchronization 

occurs. However, the synchronization weakens as the noise 

strength increases due to the increased probability of the 

transitions from the lower potential well to the higher one. 

 

 (b)  𝛾 ≠ 0 and 𝜎 = 0. In this case, Ca is not affected by 

APD but APD is affected by Ca. This condition can be more 

easily satisfied in the real system. For example, this 

condition can be satisfied at slow pacing rates since the Ca 

channels, ryanodine receptors, and SR Ca load are all 

recovered before the next beat so that Ca is not affected by 

the change of APD in the previous beat. Under this 

condition, Eqs. 3 and 4 are then reduced to: 

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 − 𝛽∆𝑎3 + 𝛾Δ𝑐(𝑥, 𝑡) + 𝜉2

𝜕2∆𝑎

𝜕𝑥2
          (17) 

When the Ca subsystem is stable (𝜌 < 0), i.e., there is no Ca-

driven alternans, then  Δ𝑐(𝑥, 𝑡) = 0, Eq.17 exhibits a front 

solution in an infinite spatial domain as [51]: 

Δ𝑎(𝑥, 𝑡) = √
𝛼

𝛽
tanh⁡(√

𝛼

2𝜉2
𝑥)                             (18) 

In this case, the node dynamics is determined solely by 

voltage, predicted by 𝜆𝑘,1, which has been investigated in 

detail in our previous analysis [51]. When the Ca subsystem 

is unstable (𝜌 > 0), Eq.17 cannot be solved analytically in 

general. We first consider a special case in which we assume 

that the Ca alternans is spatially concordant, i.e.,  Δ𝑐(𝑥, 𝑡) =
Δ𝑐 is a constant. Then Eq.17 has the following solution in an 

infinite spatial domain: 

Δ𝑎(𝑥, 𝑡) ∝ tanh⁡[√
𝛼′

2𝜉2
(𝑥 − 𝜈(𝛾Δ𝑐)𝑡)]            (19) 

in which 𝜈(𝛾Δ𝑐) is the front (or node) velocity as a function 

of 𝛾Δ𝑐 . The velocity is positive if 𝛾Δ𝑐 is positive or vice 

versa. This implies that if the Ca alternans is spatially 

concordant (i.e., Ca-SCA), an initial node in APD alternans 
will eventually drift off the tissue, resulting in an APD-SCA 

pattern. In other words, if Ca alternans is spatially 

concordant, APD alternans has to be spatially concordant. 

However, when the Ca alternans is spatially discordant 

(i.e., Ca-SDA), the APD-SDA patterns are more complex, 

i.e., the APD-SDA can be either synchronized or 

desynchronized to the Ca-SDA pattern depending on the 

spatial scale of the Ca-SDA pattern and the coupling strength 

. As shown in our previous analysis [51], in homogeneous 

tissue without Ca-driven alternans, the APD-SDA node’s 

stability is neutral. However, in the presence of Ca-driven 

alternans, the APD-SDA node in homogeneous tissue may 

become stable or anchored to the Ca-SDA node, as explained 

in Fig.5A. We assume a Ca-SDA pattern with a single node 

(red curve in Fig.5A). If the initial node of the APD-SDA is 

in the left of the Ca-SDA node, based on Eq.19, the APD-

SDA node will drift toward the right since 𝛾Δ𝑐 > 0. If the 

initial APD-SDA node is in the right of the Ca-SDA node, 

then it will drift toward the left since 𝛾Δ𝑐 < 0. The final 

APD-SDA state is that its node is completely aligned with 

the Ca-SDA node, synchronizing to the Ca-SDA pattern. 

The theoretical scenario is demonstrated in simulations of 

the AE model as an example shown in Fig.5B. However, the 

synchronization of the APD-SDA pattern to the Ca-SDA 

pattern depends on the coupling strength  and the spatial 

scale of the Ca-SDA pattern, i.e., the size of the 

synchronized clusters in Ca-SDA pattern. When the spatial 

scale of the Ca-SDA pattern is large, APD-SDA 

synchronizes to the Ca-SDA (e.g., Fig.5C), but when the 

spatial scale is small, they do not synchronize (e.g., Fig.5D). 

Fig.5E plots 𝑆𝑣𝑐  versus the spatial scale of the given Ca-
SDA patterns, showing that the degree of synchronization 

increases with the increase of the spatial scale of Ca-SDA. 

 
FIG.5. Synchronization of APD-SDA to Ca-SDA in the AE model 

without APD-to-Ca coupling ( 𝜎 = 0 ). A. Schematic plot of 

synchronization of an APD-SDA (blue) to a Ca-SDA (red). 

Arrows indicate that an initial APD-SDA node away from the Ca-

SDA node drifts toward the Ca-SDA node. B. Simulation of the 

AE model showing the scenarios in A. C. Synchronization of 

APD-SDA to a Ca-SDA pattern when the spatial scale of Ca-SDA 

pattern is large. D. Same as C but the spatial scale of Ca-SDA 

pattern is small. E. 𝑆𝑣𝑐 versus the spatial scale (l) of the Ca-SDA 

pattern. 𝛼 = 0.5, 𝜌 = 0.5, and 𝛾 = 0.5. In the simulations in C-E, 

the initial conditions are spatially random SDAs in which ∆𝑎 and 

∆𝑐 are binary numbers, randomly chosen as either -100 or 100 

with spatial segmentation length l. 𝑙 = 80 cells for C and 𝑙 = 10 

cells for D. In E, 20 random initial conditions are used for each l. 
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The case shown in Fig.5 is for 𝛾 > 0, but the results still 

hold for 𝛾 < 0. The difference is that for 𝛾 > 0, the SDA 

patterns are electromechanically concordant, but for 𝛾 < 0, 

the SDA patterns are electromechanically discordant. 

Moreover, the results will also hold for periodic boundary 

conditions. Note that the number of nodes can be either even 

or odd under open boundary conditions, but it has to be even 

for periodic boundary conditions due to the required 

symmetry [i.e., Ca (or APD) has to be equal at the two 

boundaries]. Similar to the case of open boundary 

conditions, if there is no Ca-SDA, then the APD-SDA nodes 

are unstable, which will disappear by drifting toward each 

other and annihilate, leading to APD-SCA. When Ca 

alternans is discordant, then the APD-SDA will synchronize 

or desynchronize to the Ca-SDA the same ways as shown in 

Fig.5.  

 

3. Synchronization of APD-SDA and Ca-SDA patterns 

when 𝛄𝛔 > 𝟎 

This condition is satisfied when 𝛾 > 0  and 𝜎 > 0  or 

𝛾 < 0 and 𝜎 < 0. Since 𝛾𝜎 > 0, the eigenvalues in Eq.8 are 

always real. As 𝜆𝑘 < 0  changes to 𝜆𝑘 > 0 , a pitchfork 

bifurcation occurs, leading to alternans. Fig.6A plots the 

stability boundaries ( 𝜆𝑘 = 0⁡ for the larger of the two 

eigenvalues of Eq.8) for different k values. The spatial 

modes are unstable (𝜆𝑘 > 0) above (or to the right of) the 

boundaries. As k increases, the stability boundary moves 

upright ward, indicating that high spatial modes are more 

stable. As 𝑘 → ∞, the boundary becomes vertical at 𝜌 → 0, 

which indicates that for 𝜌 > 0 , all modes are unstable. 

Therefore, for 𝜌 < 0 , the number of nodes of a cable is 

largely determined by the mode stability as investigated in 

detail in our previous study [51]. For  𝜌 > 0, i.e., the Ca 

subsystem is unstable, since all the linear modes are 

unstable, any pattern is possible. However, due to the 

coupling between cells and between APD and Ca, as well as 

nonlinear interactions, the spatial patterns cannot be 

completely arbitrary, which depend on the stabilities of the 

APD and Ca subsystems, the coupling strength, and the 

initial conditions.  

Figs.6 B-E show some representative steady-state SDA 

patterns for the same set of α and ρ values (𝛼 = 𝜌 = 0.5). 

Figs. 6 B and C show a single-node and a high spatial 

periodicity SDA using spatially periodic initial conditions, 

respectively. As the number of nodes increases, the 

magnitudes of APD alternans are attenuated. Figs.6 D and E 

 
FIG.6. Spatiotemporal Ca and APD dynamics in the AE model for 𝛾𝜎 > 0. A. Stability boundaries (colored lines) in the ρ-α plane for different 

spatial modes of the linear stability analysis of the steady state. Shown are the boundary for 𝑘 = 0 (red), 4 (blue), and 50 (green). 𝛾 = 0.5 and 

𝜎 = 0.5. B. Steady-state ∆𝑎 (black) and ∆𝑐 (red) in space for beat #100 with 1 node in both ∆𝑎 and ∆𝑐. C. Same as B but with 20 nodes in both 

∆𝑎 and ∆𝑐. D. Space-time plots of ∆𝑎 and ∆𝑐 with an initial condition of ∆𝑎 = 0 and random ∆𝑐 in which ∆𝑐 is a binary number, uniformly chosen 

as either -100 or 100. 𝛾 = 0.5 and 𝜎 = 0.5. E. Same as D but with 𝜎 = 0.1. F. 𝑆𝑣𝑐 vs σ. For each , 20 𝑆𝑣𝑐 values from different initial conditions 

as in C and D are plotted. 𝛾 = 0.5. G. Color map of 𝑆𝑣𝑐 vs α and ρ. For each set of α and ρ, one random initial condition (spatial scale 𝑙 = 1 cell) 

is simulated. 𝛾 = 0.5 and 𝜎 = 0.3. The white line is the synchronization boundary predicted by Eq.13 under 𝛾 = 0, showing that positive Ca-to-

APD coupling (𝛾 > 0) enhances spontaneous synchronization. H. Same as G but with a larger spatial scale of the initial conditions: 𝑙 = 20 cells. 
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show SDA from random initial conditions with strong and 

weak APD-to-Ca coupling, respectively. Under strong 

coupling, synchronous APD-SDA and Ca-SDA patterns 

form spontaneously although the initial conditions are purely 

random. When the coupling is weak, APD-SDA and Ca-

SDA becomes dyssynchronous. The mechanisms of pattern 

formation and synchronization of the SDA patterns can be 

understood based on the simple cases of 𝛾 = 0 (Fig.4) and 

𝜎 = 0 (Fig.5). An APD-SDA pattern forms first because of 

the heterogeneous initial condition and spatial mode 

instability, which then synchronizes the Ca-SDA pattern via 

the mechanism described in Fig.4. Once they are 

synchronized, the Ca-SDA pattern stabilizes the nodes via 

the mechanism described in Fig.5. 

Fig.6F shows 𝑆𝑣𝑐  versus  from simulations done the 

same way as in Figs. 6 D and E. Synchronization occurs 

when  is greater than a certain value, as predicted by Eq.13. 

Note that Eq.13 is only valid for 𝛾 = 0, which predicts 𝜎𝑐 =
0.192 for the α and ρ values used.  Since 𝛾 > 0 in Fig.6F, 

the  value for synchronization is smaller, indicating that 

positive Ca-to-APD coupling enhances synchronization [see 

also the comparison of the boundary for 𝛾 = 0 (white line) 

with the boundary from the simulation for 𝛾 > 0 in Fig.6G]. 

As indicated by Eq.13, the synchronization of APD-SDA 

and Ca-SDA depends on α and ρ (Fig.6G), i.e., the stabilities 

of the voltage and Ca subsystems. When  𝜌 < 0, i.e., the Ca 

subsystem is stable, Ca-SDA and APD-SDA are always 

synchronized. When 𝜌 > 0 , i.e., the Ca subsystem is 

unstable, spontaneous synchronization is promoted by 

increasing α and/or decreasing ρ.  In other words, larger APD 

alternans and/or smaller Ca alternans potentiates 

synchronization, which is implied in Eq.13 (|𝜎𝑐| ∝
|∆𝑐|

|∆𝑎|
). In 

the region where spontaneous synchronization fails (green 

region in Fig.6G), synchronization can be enhanced by 

 
FIG.7. Spatiotemporal Ca and APD dynamics in the AE model for 𝛾𝜎 < 0. A. Stability boundaries (colored lines) in the ρ-α plane for different 

spatial modes of the linear stability analysis of the steady state. Shown are the boundaries for 𝑘 = 0 (red), 4 (blue), and 50 (green). The spatial 

mode is stable inside (in the lower-left direction of) the solid lines. 𝛾 = −0.5 and 𝜎 = 0.5. B. Steady-state ∆𝑎 (black) and ∆𝑐 (red) showing an 

electromechanically concordant SDA in which ∆𝑎 and ∆𝑐 are in-phase. 𝛼 = 0.6 and 𝜌 = −0.8, marked by the circle in A. C. Steady-state ∆𝑎 

(black) and ∆𝑐 (red) showing an electromechanically discordant SDA in which ∆𝑎 and ∆𝑐 are anti-phase. 𝛼 = −0.7 and 𝜌 = 0.5, marked by the 

square in A. D. Space-time color-scale plots of ∆𝑎 (left) and ∆𝑐 (middle) showing a quasiperiodic SDA in which ∆𝑎 and ∆𝑐 are not phase-locked 

but quasiperiodic (right). 𝛼 = 0.6 and 𝜌 = −0.3, marked by the diamond in A. E. A uniform initial condition leads to a stable steady state (left, 

no alternans), but a non-uniform (one-node) initial condition leads to multi-node electromechanically discordant SDA (right). 𝛼 = −0.5 and 𝜌 =
0.4, marked by the triangle in A. F. A one-node initial condition leads to a quasiperiodic SDA (left), but a multi-node initial condition leads to a 

multi-node electromechanically discordant SDA. 𝛼 = 0.6 and 𝜌 = 0.4, marked by the pentagon in A.  In E and F, the upper panels are color-scale 

plots of ∆𝑎, and the lower panels are those of ∆𝑐. 
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increasing the spatial scale of the initial Ca-SDA pattern 

(Fig.6H) via the mechanism as shown in Fig.5. 

The same applies to the condition of 𝜎 < 0 and 𝛾 < 0 

except that the SDA patterns are electromechanically 

discordant. 

 

4. SDA dynamics when 𝛄𝛔 < 𝟎 

In this case, Ca-to-APD coupling is negative and APD-

to-Ca coupling is positive (𝛾 < 0 and 𝜎 > 0) or vice versa 

(𝛾 > 0 and 𝜎 < 0). Since 𝛾𝜎 < 0, the eigenvalues in Eq.8 

can be either real or a pair of complex conjugates, and thus 

the system can undergo a pitchfork bifurcation or a Hopf 

bifurcation. A pitchfork bifurcation leads to alternans and a 

Hopf bifurcation leads to quasiperiodic behavior. Fig.7A 

shows the stability boundaries in the -ρ plane for different 

spatial modes (k values) of the steady state. The arc lines are 

the pitchfork bifurcations, and the straight ones are the Hopf 

bifurcations which are determined by 𝜌 = −(𝛼 − 𝜉2𝑘2) and 

𝛾𝜎 < −(𝛼 − 𝜉2𝑘2 − 𝜌)2/4. The stability boundary for 𝑘 =
0  is the same as for the single cell, which has been 

investigated in the previous studies [21, 22]. It has been 

shown that the alternans can be electromechanically 

concordant in which APD and Ca alternate with their phases 

locked in-phase, electromechanically discordant in which 

APD and Ca alternate with their phases locked anti-phase, or 

electromechanically quasiperiodic in which APD and Ca 

alternate with their phases changing quasiperiodically. 

Because of the complex cellular alternans dynamics, the 

spatiotemporal dynamics in tissue become more complex. 

Figs.7 B, C, and D show three characteristic SDA patterns: 

electromechanically concordant, discordant, and 

quasiperiodic alternans in the 1D cable. However, the 

stability boundary shifts upwards and leftwards as k 

increases, resulting in intersections of the stability 

boundaries for different k values. This differs from the 𝛾𝜎 >
0 case, in which there are no intersections of the stability 

boundaries for different k values. The interaction of the 

stability boundaries results in more complex dynamics in the 

cable. For example, in the location marked by the triangle in 

Fig.7A, it predicts that the uniform mode (𝑘 = 0) is stable, 

but a non-uniform mode is unstable. Examples of this case 

in Fig.7E in which the homogeneous solution is stable (no 

alternans) but inhomogeneous initial condition leads to a 

multiple-node and electromechanically discordant SDA. In 

the location marked by the black square, the low-k modes are 

quasiperiodic but the high-k modes are stable. Fig.7F shows 

an example in which a single-node (low-k mode) SDA is 

quasiperiodic, but a multiple-node (high-k mode) pattern is 

stable. If one uses random initial conditions with different 

spatial scales, patterns of a mixture of quasiperiodic and 

stable alternans can co-exist. 

The results in Fig. 6 are for SDA dynamics versus  and 

ρ for positive coupling and those in Fig.7 are for negative 

coupling. Fig.8 shows 𝑆𝑣𝑐 in - plane for 𝛼 = 0.5 and 𝜌 =
0.5 for which both the APD subsystem and the Ca subsystem 

are unstable. Fig.8A is the color map of 𝑆𝑣𝑐 for pure random 

initial conditions and Fig.8B is that for a larger spatial scale 

of the initial conditions. When 𝛾𝜎 > 0, APD-SDA and Ca-

SDA are synchronized when |𝜎| > |𝜎𝑐| , and the SDA 

patterns are electromechanically discordant when 𝛾 < 0 

(lower-left quadral, 𝑆𝑣𝑐 ≈ −1 ) and electromechanically 

concordant when 𝛾 > 0  (upper-right quadral, 𝑆𝑣𝑐 ≈ 1 ).  

When 𝛾𝜎 < 0 , APD-SDA and Ca-SDA are synchronized 

but in quasiperiodic modes when |𝜎| > |𝜎𝑐| . Because of 

this, 𝑆𝑣𝑐  map (calculated at the last pacing beat) looks 

random since the APD-SDA and Ca-SDA are in different 

phases of quasiperiodicity at the last beat for different 

parameter sets. When |𝜎| < |𝜎𝑐|, APD alternans exhibits no 

effects on Ca alternans, the synchrony between APD-SDA 

and Ca-SDA is poor. In this region, the synchrony is 

enhanced by increasing the spatial scale of the initial 

condition (Fig.8B), via the mechanism of synchronization 

(due to APD-to-Ca coupling) shown in Fig.5. 

In summary, the AE model demonstrates that there are 

two ways in which the APD-SDA and Ca-SDA patterns can 

be synchronized. The first one is spontaneous 

synchronization caused by strong APD-to-Ca coupling. In 

this mechanism of synchronization, the SDA patterns are 

selected by the APD-SDA patterns which are determined by 

the spatial mode instability and the initial conditions. This 

mechanism of synchronization is promoted by strong APD 

instability. The second one is initial condition dependent 

synchronization in which synchronization is promoted by 

increasing the spatial scale of the initial Ca-SDA patterns.  

This mechanism of synchronization is promoted by strong 

Ca instability. Once the system is synchronized, the APD-

SDA and Ca-SDA may be locked into electromechanically 

concordant, discordant, and quasiperiodic patterns 

depending on the coupling relationships. 

 

B. SDA dynamics in the 1D CML model 
To examine the theoretical predictions of the AE model 

under more physiological conditions, we use a CML model 

formulated based on previous studies [51, 80], described in 

detail in the Appendix. This model contains physiological 

 
FIG.8. Color maps of 𝑆𝑣𝑐  versus  and  in the AE model. A. 

Purely random initial conditions of  ∆𝑎 and ∆𝑐 (spatial scale 𝑙 =
1 cell). B. Random initial conditions with a spatial scale of 𝑙 = 20 

cells. 𝛼 = 0.5 and 𝜌 = 0.5.  Note that in the upper-left and lower-

right quadrals, 𝛾𝜎 < 0, the SDA dynamics is quasiperiodic, 𝑆𝑣𝑐 
measured at the last beat depends on the status the SDA pattern, 

which varies from beat to beat. Therefore, the 𝑆𝑣𝑐 values in these 

two quadrals exhibit a random-like pattern in the color map. In the 

upper-right (electromechanically concordant) and lower-left 

(electromechanically discordant) quadrals, the SDA patterns are 

phase-locked and stable. 
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parameters, such as APD restitution, fractional Ca release, 

and Ca release restitution, allowing us to directly link the 

dynamics to physiological parameters. We vary the 

following parameters: the slope of the APD restitution 

(controlled by 𝜏𝑎  in Eq.A6), the slope of the fractional 

release (controlled by  in Eq.A7), and the APD and Ca 

coupling strengths  and 𝜎𝑅 (see Eqs. A1 and A9). Note that 

𝜎𝑅 determines the APD-to-Ca coupling in the CML model, 

which is equivalent to  in the AE model but not identical 

since 𝜎𝑅 affects the stability of Ca in the CML model. As 

shown in Eq.A9 [𝑞(𝑑𝑛) = 1 − 𝜎𝑅𝑒
−𝑑𝑛/𝜏𝑞], the APD-to-Ca 

coupling becomes weaker as the pacing period T is longer. 

When T is very long (and thus  𝑑𝑛 is very large),  𝑞(𝑑𝑛) →
1, APD-to-Ca coupling vanishes. Therefore, at slow pacing, 

changing APD (and thus DI) has little or no effect on Ca 

release, which corresponds to 𝛾𝜎 ≈ 0  in the AE model. 

However, as the pacing period T decreases (𝑑𝑛  becomes 

smaller), the term  𝜎𝑅𝑒
−𝑑𝑛/𝜏𝑞 has a bigger effect, and thus 

enhancing the APD-to-Ca coupling. In the CML model, the 

APD-to-Ca coupling is always positive since lengthening 

APD shortens DI resulting in a smaller 𝑞(𝑑𝑛) and thus a 

smaller Ca (see the definition of positive APD-to-Ca 

coupling in Fig.2C). Therefore, the sign of  determines the 

coupling between APD and Ca.  

For 𝛾 > 0, the coupling is positive, corresponding to 

𝛾𝜎 > 0  in the AE model. Fig.9A shows the stability 

boundary in the 𝜏𝑎 - plane for the single cell (or 𝑘 = 0 

mode) for 𝛾 = 0.002. The system is stable (no alternans) 

when both 𝜏𝑎  and  are large. Figs.9 B and C show two 

spatial patterns of alternans with a single node and multiple 

nodes, respectively. Figs. 9 D and E show SDA patterns 

from random initial conditions with strong and weak 

coupling, respectively. The APD-SDA and Ca-SDA are 

synchronized (except in the nodal region) when the APD-to-

Ca coupling is strong (Fig.9D) but not when the coupling is 

weak (Fig.9E). The case in Fig.9D is similar to that in 

Fig.6D, in which the APD-SDA forms first and then 

synchronizes the Ca-SDA pattern to it.  Figs.9 F and G show 

𝑆𝑣𝑐  versus 𝜎𝑅  and 𝑆𝑣𝑐  versus T, respectively. 

Synchronization occurs when 𝜎𝑅  is greater than a critical 

value, agreeing with the AE model (Fig.6).  The dependence 

of synchronization on T is more complex. 𝑆𝑣𝑐 is low for 𝑇 <
250 ms, high for 250 < 𝑇 < 285 ms, low again for 285 <

𝑇 < 320 ms, and finally high for 𝑇 > 320 ms. This can be 

understood based on the insights for AE model as follows. 

Based on Eq.13, |𝜎𝑐| ∝
|∆𝑐|

|∆𝑎|
, and thus synchronization tends 

to occur when ∆𝑐 is small and ∆𝑎 is large for a fixed . For 

𝑇 < 250  ms, ∆𝑎  is relatively small but ∆𝑐  is larger 

 
FIG.9. Spatiotemporal Ca and APD dynamics in the CML model for 𝛾 > 0. A. Stability boundary in the 𝜏𝑎-β plane for 𝑘 = 0 (or a single cell).  

B. ∆𝑎 and ∆𝑐 versus cell # recorded from beat #999 and #1000 with a single node. C. Same as B but with multiple nodes. D. ∆𝑎 and ∆𝑐 versus n 

with a random initial condition. E. Same as D but with a weaker coupling, 𝜎𝑅 = 0.3. F. 𝑆𝑣𝑐 versus 𝜎𝑅. 20 different random initial conditions are 

used for each 𝜎𝑅.  G. 𝑆𝑣𝑐 versus T.  20 random initial conditions are used for each T. Arrows mark the T for the transition between desynchronized 

and synchronized SDA patterns.  In F and G, the cases of 𝑆𝑣𝑐 = 1 correspond to SCA. H. a and c versus T for a single cell. The default parameters 

are:  𝑇 = 270 ms, 𝜏𝑎 = 40,  𝛽 = 4, 𝛾 = 0.002, and 𝜎𝑅 = 0.4. 
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(Fig.9H), and thus the ability of APD-SDA to synchronize 

Ca-SDA is not strong enough. But as T increases, ∆𝑎 

increases while ∆𝑐 decreases, and when T is large enough 

(shaded region in Fig.9H), ∆𝑎  is large enough to 

synchronize ∆𝑐, causing spontaneous synchronization. As T 

increases further, ∆𝑎  decreases again, which may be too 

small to synchronize ∆𝑐. As 𝑇 > 320 ms, both APD and Ca 

are stable, the system always synchronizes. Note that as in 

the AE model, when 𝜎𝑅 is small (or T is short), spontaneous 

synchronization fails, but the APD-SDA and Ca-SDA 

patterns can still be synchronized if the spatial scale of the 

initial Ca-SDA pattern is large. 

For 𝛾 < 0, the coupling is negative. Fig.10A shows the 

stability boundary in the 𝜏𝑎- plane for the single cell (or the 

𝑘 = 0 mode) for 𝛾 = −0.002. Unlike in the AE model that 

one can calculate the stability boundaries easily for any k, it 

becomes nontrivial for the CML model. We numerically 

determine the three regions of alternans behaviors for 𝑘 =

0 : the electromechanically concordant, discordant, and 

quasiperiodic alternans regions, which are marked by 

different colors. Figs.10 B-F show steady-state patterns or 

space-time plots for different initial conditions and different 

parameter sets marked by the symbols in Fig.10A. The 

behaviors are almost identical to those predicted by the AE 

model shown in Fig.7.  

 

C.  SDA dynamics in a 1D cable of the rabbit ventricular 

myocyte model 

To further examine the theoretical predictions in 

physiologically detailed ionic models, we carry out 1D cable 

simulations using the rabbit ventricular myocyte model by 

Mahajan et al [61]. Fig.11A is a bifurcation diagram 

showing APD and peak Ca versus pacing period T. Alternans 

occurs when 𝑇 < 230 ms. Figs.11 B-F show different SDA 

patterns resulted from different initial conditions for 𝑇 =
180  ms. In Figs.11 B and C, the initial conditions are 

 
FIG.10. Spatiotemporal Ca and APD dynamics in the CML model for 𝛾 < 0. A. Phase diagram showing different Ca and APD dynamics versus 

𝜏𝑎 and β in a single cell. White: Stable steady state; Cyan: Electromechanically concordant alternans; Green: Electromechanically discordant 

alternans; and Red: Quasiperiodicity. 𝛾 = −0.002 , 𝜎𝑅 = 0.8 , and 𝑇 = 250  ms. B. Steady-state ∆𝑎  (black) and ∆𝑐  (red) showing an 

electromechanically concordant SDA. 𝜏𝑎 = 24 and 𝛽 = 5.7, marked by the circle in A. C. Steady-state ∆𝑎 (black) and ∆𝑐 (red) showing an 

electromechanically discordant SDA. 𝜏𝑎 = 38 and 𝛽 = 4.6, marked by the square in A. D. Space-time color-scale plots of ∆𝑎 (left) and ∆𝑐 

(middle) showing a quasiperiodic SDA (right). 𝜏𝑎 = 24 and 𝛽 = 5.3, marked by the diamond in A. E. A uniform initial condition leads to a stable 

steady state (left, no alternans), but a non-uniform (1-node) initial condition leads to multi-node electromechanically discordant SDA (right). 𝜏𝑎 =
32 and 𝛽 = 4.6, marked by the triangle in A. F. A 1-node initial condition leads to a quasiperiodic SDA (left), but a multi-node initial condition 

leads to a multi-node electromechanically discordant SDA. 𝜏𝑎 = 27 and 𝛽 = 4.5, marked by the pentagon in A.  In E and F, the upper panels are 

color-scale plots of ∆𝑎, and the lower panels are those of ∆𝑐 
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periodic. In Figs. 11 D-F, the initial conditions are random 

with different spatial scales. In the cases of random SDA 

patterns, the Ca-SDA and APD-SDA patterns are 

synchronized when the spatial scale is large but become 

dyssynchronous when it is small. These features are the same 

as for the AE and the CML model. Since the APD and Ca 

coupling is positive, we do not observe electromechanically 

discordant and quasiperiodic SDA patterns in this ionic 

model. We also do not observe spontaneous synchronization 

with pure random initial conditions, indicating that the 

voltage-driven instability in this model is either absent or not 

strong enough to promote spontaneous synchronization. The 

instability leading to alternans in the model is mainly Ca-

driven.  

 

D. Nodal line dynamics and SDA pattern 

synchronization in 2D tissue models 

SDA nodes form nodal lines in 2D tissue. When the 

nodal lines are straight, they behave the same way as the 

SDA nodes in 1D cable. However, nodal lines can become 

curved in 2D tissue (such as the ones shown in Fig.1), and a 

question arising is how the curvature affects the stability of 

the nodal lines and the SDA dynamics. As shown in our 

previous studies [50, 51], in the absence of Ca alternans, the 

SDA nodes or nodal lines are marginally stable in 

homogeneous tissue. Curved nodal lines or nodal rings are 

unstable, which become straight or shrink and disappear 

unless the tissue is heterogeneous. Here we investigate the 

effects of nodal line curvature on nodal line stability and 

synchronization of SDA patterns in 2D homogeneous tissue 

in the presence of Ca alternans. We extend the AE model 

into 2D tissue as:  

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 − 𝛽∆𝑎3 + 𝛾∆𝑐 + 𝜉2(

𝜕2∆𝑎

𝜕𝑥2
+

𝜕2∆𝑎

𝜕𝑦2
)       (20) 

𝑇
𝜕∆𝑐

𝜕𝑡
= 𝜌∆𝑐 − 𝜀∆𝑐3 + 𝜎∆𝑎                                      (21) 

First, we consider the stability of a nodal ring, and for the 

purpose of theoretical argument, we consider a special case 

in which there is no APD-to-Ca coupling (𝜎 = 0 ). We 

further simplify the condition by assuming that the Ca 

alternans is spatially concordant and in steady state, i.e., 

∆𝑐(𝑥, 𝑦, 𝑡) = Δ𝑐 . We transform Eq.20 into a polar 

coordinate system, which becomes:   

𝑇
𝜕∆𝑎

𝜕𝑡
= 𝛼∆𝑎 − 𝛽∆𝑎3 + 𝛾∆𝑐 +

𝜉2

𝑟

𝜕∆𝑎

𝜕𝑟
+ 𝜉2

𝜕2∆𝑎

𝜕𝑟2
        (22) 

𝑇
𝜕∆𝑐

𝜕𝑡
= 𝜌∆𝑐 − 𝜀∆𝑐3                                                    (23) 

 

Assuming an initial APD-SDA nodal ring of radius r, one 

can obtain an eikonal-curvature equation for the node speed 

as [51]: 

𝑐𝑛𝑜𝑑𝑒 =
𝜈(𝛾Δ𝑐)

𝑇
−

𝜉2

𝑇𝑟
                                       (24) 

where 𝑐𝑛𝑜𝑑𝑒 is the velocity of the APD-SDA node, and the 

first term is caused by Ca-to-APD coupling and the second 

term by curvature. The sign of 𝜈(𝛾Δ𝑐) depends on the sign 

of 𝛾Δ𝑐. If 𝜈(𝛾Δ𝑐) < 0, the effect of Ca-to-APD coupling 

and that of curvature are in synergy. If 𝜈(𝛾Δ𝑐) > 0, the two 

effects compete, and there is a critical radius at which 

𝑐𝑛𝑜𝑑𝑒 = 0, which gives rise to, 

𝑟𝑐 =
𝜉2

𝜈(𝛾∆𝑐)
                                                   (25) 

In other words, the drifting direction of the nodal ring 

depends on its radius. Now we consider that there is a nodal 

ring in Ca alternans. As depicted in Fig.12A, 𝜈(𝛾∆𝑐)  is 

positive on one side and negative on the other side of the 

node. Therefore, if the initial APD nodal ring is outside the 

Ca nodal ring, the “force” from the curvature and the one 

from the Ca alternans are in synergy, pulling the APD-SDA 

nodal ring toward the Ca-SDA nodal ring. If the initial APD 

nodal ring is smaller than the Ca nodal ring, then the two 

forces compete with each other. Therefore, depending on the 

strength of the two forces, the APD-SDA nodal ring can 

 
FIG.12. APD-SDA and Ca-SDA nodal ring dynamics in 2D tissue 

of the AE model. A. Schematic plots to illustrate the effects of Ca-

SDA nodal ring (red) and curvature on APD-SDA nodal ring 

(dashed blues). The blue arrows indicate the “force” of the Ca-

SDA nodal ring and the green arrows indicate the “force” of the 

curvature on the APD-SDA ring. B. The critical ring radius (𝑟𝑐) 
versus  determined via computer simulations of the AE model 

(Eqs. 20 and 21). 𝛼 = 0.5, 𝜌 = 0.5, and 𝛾 = 0.1. C. Ring radius r 

versus beat # for different initial ring radius for 𝜎 = 0.1. Left: the 

initial APD-SDA nodal ring (blue) radius 𝑟 > 𝑟𝑐. Right: the initial 

APD-SDA nodal ring (green) radius 𝑟 < 𝑟𝑐 .  D. Ring radius R 

versus beat # for different initial ring radius for 𝜎 = 0.3. Left: the 

initial APD-SDA nodal ring (blue) radius 𝑟 > 𝑟𝑐. Right: the initial 

APD-SDA nodal ring (green) radius 𝑟 < 𝑟𝑐. 
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FIG.11. APD-SDA and Ca-SDA patterns in a 1D cable of the 

rabbit ventricular cell model. A. Bifurcation diagrams showing a 

and peak 𝑐𝑖 versus the pacing period T. B-F. Steady-state APD-

SDA and Ca-SDA patterns for different initial conditions. The 

spatial scales of random initial conditions in D-F are 𝑙 = 50 cells, 

𝑙 = 10 cells, and 𝑙 = 1 cell, respectively. 𝑇 = 180 ms. Random 

initiation conditions are set by random initial values of the SR Ca 

load. 
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either expand to move toward the Ca-SDA nodal ring and 

stabilizes, or shrink to disappear. Based on Eq.24, when the 

APD-SDA nodal ring radius is larger than 𝑟𝑐 , it will 

synchronize to the Ca-SDA nodal ring as long as the Ca-

SDA nodal ring is larger than 𝑟𝑐. When the APD-SDA nodal 

ring radius is smaller than 𝑟𝑐, it will shrink and disappear no 

matter what the Ca-SDA nodal ring radius is.  However, in 

the presence of APD-to-Ca coupling (𝜎 ≠ 0), the nodal ring 

dynamics becomes more complex, which is demonstrated in 

the AE model and the ionic model below.  

To verify the theoretical argument, we carry out 

numerical simulations of the AE model (Eqs. 20 and 21). 

Fig.12B shows 𝑟𝑐 versus  obtained from the simulations. 𝑟𝑐 

remains unchanged for 𝜎 < 0.19 but then increases almost 

linearly with . When  is smaller than the critical value, the 

APD-SDA nodal ring synchronizes with the Ca-SDA nodal 

ring as long as both ring radius is greater than 𝑟𝑐  or 

disappears when either the APD-SDA nodal ring radius or 

the Ca-SDA nodal ring radius is smaller than 𝑟𝑐 (Fig.12C). 

The Ca-SDA nodal ring can be any size larger than the 

critical size and remains unchanged in time. These behaviors 

are the same as predicted by the simplified condition 

(Fig.12A). When  is greater than the critical value, APD-

SDA and Ca-SDA nodal rings will synchronize if their radii 

are greater than 𝑟𝑐, but the final ring radius depends on the 

initial ring sizes and the coupling strength. When either of 

their radii is smaller than 𝑟𝑐 , both nodal rings disappear 

(Fig.12D). Note that the critical  value is the same as the 

one when Ca-SDA is synchronized to APD-SDA via APD-

to-Ca coupling, which is determined by Eq.13. Inserting 𝛼 =
0.5, 𝛽 = 0.0001, 𝜌 = 0.5, and 𝜀 = 0.0001 into Eq.13, one 

obtains 𝜎𝑐 = 0.192, agreeing with the simulation results. 

To further investigate the synchronization of APD-SDA 

and Ca-SDA patterns in 2D tissue, we carry out simulations 

of the AE model using random initial conditions with 

different block sizes of both ∆𝑎 and ∆𝑐. Fig.13A shows 𝑆𝑣𝑐 
versus  for different spatial scales of the initial SDA 

pattern. When 𝜎 > 0.19, APD-SDA and Ca-SDA become 

synchronized (𝑆𝑣𝑐 ≈ 1), almost independent of the spatial 

scales of the initial pattern. Fig.13B shows an example of the 

synchronized SDA patterns in which the APD-SDA nodal 

lines and Ca-SDA nodal lines co-localize and the nodal lines 

are stable and curved. Under this condition, no small nodal 

rings can exist, as predicted by the nodal ring results in 

Fig.12. When 𝜎 < 0.19, APD-SDA and Ca-SDA are either 

completely desynchronized ( 𝑆𝑣𝑐 ≈ 0 ) or partially 

synchronized (0 < 𝑆𝑣𝑐 < 1). The degree of synchrony is 

better (𝑆𝑣𝑐 is larger) for a larger spatial scale of the initial 

SDA pattern. Fig.13C shows an example of a SDA pattern, 

in which the APD-SDA nodal lines co-localize with Ca-SDA 

nodal lines but there are several other Ca-SDA nodal rings 

without corresponding APD-SDA nodal rings. This behavior 

is the same as in the rabbit heart experiments shown in Fig.1. 
 

FIG.13. Synchronization of APD-SDA and Ca-SDA patterns 

when both APD and Ca are unstable. Simulations are done in the 

AE model with 𝛼 = 0.5 , 𝜌 = 0.5 , and 𝛾 = 0.1 . Tissue size is 

800800 cells. A. Svc versus  for different spatial scales of the 

initial condition with random block sizes: 11 cell (black), 1010 

cells (red), 2020 cells (blue), 5050 cells (green), and 100100 

cells (magenta). Note: Only one random initial condition is used 

for each  for the calculation of 𝑆𝑣𝑐. When 𝜎 < 𝜎𝑐 ≈ 0.19, 𝑆𝑣𝑐 
depends strongly on the block size of the initial condition. B. 

Example APD-SDA (left) and Ca-SDA (right) patterns for  𝜎 =
0.3 . The initial condition block size is 100100 cells. The 

calculated synchronization index is 𝑆𝑣𝑐 = 0.93 . C. Example 

APD-SDA (left) and Ca-SDA (right) patterns for 𝜎 = 0.1. The 

initial condition block size is 100100 cells. The calculated 

synchronization index is 𝑆𝑣𝑐 = 0.75. In B-C, the white lines are 

the nodal lines (∆𝑎 = 0 or ∆𝑐 = 0). 
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FIG.14. APD-SDA and Ca-SDA dynamics in 2D tissue when 

alternans is driven by Ca alone. Simulations are done in the AE 

model with 𝛼 = −0.5 , 𝜌 = 0.5 , and 𝛾 = 0.1 . Tissue size is 

800800 cells. A. Steady-state APD-SDA (black) and Ca-SDA 

(red) nodal rings. 𝜎 = 0.1. B. Ring radius versus beat # showing 

the time evolution for the APD-SDA (blue and green) and Ca-

SDA (red) nodal rings shown in A.  C.  Svc versus  for different 

spatial scales of the random initial condition. Block sizes: 11 cell 

(black), 1010 cells (red), 2020 cells (blue), 5050 cells (green), 

and 100100 cells (magenta). D. Example APD-SDA (upper) and 

Ca-SDA (lower) patterns for  𝜎 = 0.1. The initial condition block 

size is 160160 cells. The calculated synchronization index is 

𝑆𝑣𝑐 = 0.99. E. Example APD-SDA (upper) and Ca-SDA (lower) 

patterns for  𝜎 = 0.1. The initial condition block size is 2020 

cells. The calculated synchronization index is 𝑆𝑣𝑐 = 0.54. In D 

and E, the white lines are the nodal lines (∆𝑎 = 0 or ∆𝑐 = 0). 
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The results shown in Figs. 12 and 13 are for the 

condition in which both APD and Ca are unstable. If we use  

𝛼 = −0.5  and 𝜌 = 0.5  for which the APD subsystem is 

stable and the Ca subsystem is unstable, then the nodal ring 

dynamics and APD-SDA and Ca-SDA synchronization 

differ from the case in Figs.12 and 13.  Figs.14 A and B show 

the results in which two Ca-SDA nodal rings are set initially, 

but only one APD-SDA nodal ring can exist, which co-

localizes with the large Ca-SDA nodal ring. This behavior is 

independent of the APD-to-Ca coupling strength. Fig.14C 

shows 𝑆𝑣𝑐 versus  for different spatial scales of the initial 

SDA pattern, showing that the synchrony does not depend 

on  but only on the spatial scale of the initial condition.  

Figs. 14 D and E show two examples of the SDA patterns 

resulted from two initial conditions, respectively. For the 

large spatial scale (Fig.14D), the APD-SDA and Ca-SDA 

patterns are well synchronized. For the small spatial scale 

(Fig.14E), however, the synchrony is much reduced due to 

that there are very small spatial scales in the Ca-SDA pattern 

but not in the APD-SDA pattern due to cell-to-cell coupling. 

We then carry out simulations of 2D tissue using the 

rabbit ventricular myocyte model. Figs.15 A and B show the 

nodal ring behavior, which is identical to that shown in 

Fig.14. Figs. 15 C-E show example SDA patterns resulted 

from random initial patterns of different spatial scales. 

Agreeing completely with those shown in Fig.14, i.e., 

synchronization occurs when the spatial scales are large but 

not for the small ones. Moreover, the SDA patterns always 

remain as the same as the initial Ca-SDA patterns (Note that 

in Figs. 14 and 15, the Ca-SDA patterns are composed of 

discretized square boxes that are the same as their initial 

conditions, while the APD-SDA patterns are smoothed due 

to cell-to-cell coupling). Agreeing with the 1D cable results 

in Fig.11, the 2D results in Fig.15 implies that in the rabbit 

ventricular myocyte model, alternans is mainly caused by 

the Ca-driven instability. 

 

IV. Summary and Discussion 
In this study, we investigate the mechanisms of 

formation and stability of the SDA dynamics and 

synchronization of APD-SDA and Ca-SDA patterns in 

cardiac tissue models in the presence of both voltage-driven 

and Ca-driven instabilities and the effects of Ca and voltage 

coupling. We show that when the Ca subsystem is stable, the 

Ca-SDA pattern always follows the APD-SDA pattern and 

thus they are always synchronized. When the Ca subsystem 

is unstable, synchronization of APD-SDA and Ca-SDA 

patterns depends on the stabilities of both subsystems, their 

coupling strengths, and the spatial scales of the initial Ca-

SDA patterns. Spontaneous (initial condition-independent) 

synchronization is promoted by enhancing APD instability 

and reducing Ca instability as well as stronger Ca-to-APD 

and APD-to-Ca coupling, a pattern formation caused by 

dynamical instabilities. When Ca is more unstable and APD 

is less unstable or APD-to-Ca coupling is weak, 

synchronization of APD-SDA and Ca-SDA patterns is 

promoted by larger initially synchronized Ca-SDA clusters, 

i.e., initial condition-dependent synchronization. The 

synchronized APD-SDA and Ca-SDA patterns can be 

locked in-phase, anti-phase, or quasiperiodic depending on 

the coupling relationship between APD and Ca. Unlike the 

case of absence of Ca-driven instability in which curved 

nodal lines are unstable [50, 51], curved nodal lines can be 

stable in homogeneous tissue when Ca-driven alternans 

exists.  

The theoretical and simulation results provide 

mechanistic insights into APD-SDA and Ca-SDA dynamics 

observed in experimental studies. Based on our theoretical 

insights that when there is no Ca-driven instability, the APD-

SDA and Ca-SDA patterns are always synchronized. One 

can imply that Ca is unstable in those experimental settings 

[44, 48, 49] in which Ca-SDA and APD-SDA patterns are 

desynchronized (e.g., Fig.1). Moreover, the large spatial 

scales in the Ca-SDA pattern desynchronize with the APD-

SDA pattern in these experiments indicate that the Ca and 

voltage subsystems may be both unstable (see Fig.13), since 

when either of the two subsystems is stable, APD-SDA and 

Ca-SDA will tend to be synchronized when the spatial scale 

 
FIG.15. APD-SDA and Ca-SDA dynamics in a 2D tissue of the 

rabbit ventricular cell model. Tissue size is 800800 cells and 𝑇 =
180 ms. A. Steady-state APD-SDA (black) and Ca-SDA (red) 

nodal rings. B. Ring radius versus beat # showing the time 

evolution of the APD-SDA (blue) and Ca-SDA (red) nodal rings. 

C. Example APD-SDA (upper) and Ca-SDA (lower) patterns. The 

initial condition block size is 100100 cells. The calculated 

synchronization index is 𝑆𝑣𝑐 = 0.93 . D. Example APD-SDA 

(upper) and Ca-SDA (lower) patterns. The initial condition block 

size is 5050 cells. The calculated synchronization index is 𝑆𝑣𝑐 =
0.76 . E. Example APD-SDA (upper) and Ca-SDA (lower) 

patterns. The initial condition block size is 2020 cells. The 

calculated synchronization index is 𝑆𝑣𝑐 = 0.66.  In C-E, the white 

lines are the nodal lines (∆𝑎 = 0 or ∆𝑐 = 0). Random initiation 

conditions are set by the random initial values of the SR Ca load 

and the gating variable of IKs. 
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of the synchronized clusters of Ca-SDA pattern is large 

(Figs.14 and 15). 

The mechanistic insights from the current study provide 

a better understanding of the roles of Ca-driven alternans in 

cardiac arrhythmogenesis. Since Ca in neighboring cells are 

not directly coupled, theoretically, their phases of alternans 

can be arbitrary from cell to cell. If alternans is caused solely 

by the Ca instability and the phases of Ca alternans are 

arbitrary, due to the smoothing effect caused by diffusive 

coupling of voltage, the amplitudes of APD alternans will be 

small. This cannot generate a large enough APD gradient for 

arrhythmogenesis [56]. Synchronization of the Ca alternans 

between cells is required to generate large amplitude APD-

SDA for arrhythmogenesis. As shown in this study, there are 

two ways to synchronize the SDA patterns. The first one is 

when Ca alternates in phase in large clusters, which can 

synchronize APD-SDA to the Ca-SDA to generate large 

APD gradients (e.g., Figs. 5C and 11D). This type of 

clustering  may naturally occur in the real system, for 

example, in heterogeneous tissue in which the onset of 

alternans is regionally heterogeneous [81, 82]. The second 

way is when APD-to-Ca coupling is strong enough so that 

APD-SDA and Ca-SDA are spontaneously synchronized to 

form SDA patterns with large alternans amplitude (e.g., 

Figs.6D and 9D). Strong APD-to-Ca coupling can be caused 

by Ca release restitution [67-69] [𝑞(𝑑𝑛) in the CML model], 

which is promoted by fast heart rates. Therefore, Ca 

alternans at fast heart rates can be more arrhythmogenic than 

the one at slow heart rates due to stronger APD-to-Ca 

coupling promoted Ca-SDA and APD-SDA 

synchronization. In other words, fast heart rates not only 

promote Ca alternans but also promote Ca-SDA and APD-

SDA synchronization to promote arrhythmias. 

There are some limitations of this study needed to be 

mentioned. In the iterated map model, Ca alternans is caused 

by steep fractional release and APD alternans caused by 

steep APD restitution. Other mechanisms of Ca alternans 

and APD alternans exist [83, 84], which may affect the SDA 

dynamics. However, since the AE model is a generic model 

irrespective of the specific mechanisms of alternans, the 

mechanisms from AE model should still be applicable to the 

SDA dynamics from other mechanisms of alternans. 

Subcellular Ca alternans has been observed in experiments 

[27, 59, 85-87] and computer models [19, 59, 71, 88, 89], 

and tissue models with detailed cell models or multi-scale 

modeling approaches [59, 75, 77, 90-92] are needed to 

investigate how the subcellular Ca alternans dynamics affect 

the formation and synchronization of the APD-SDA and Ca-

SDA patterns. We only use a global pacing protocol in which 

no action potential conduction exists. As we argued 

previously [50, 51], this pacing protocol not only has its own 

physiological realism but also provides a useful means for 

the understanding of the SDA dynamics when action 

potential conduction is present. We will carry out further 

investigations to include action potential conduction in the 

models to investigate how conduction and conduction 

restitution affect the SDA dynamics in the presence of Ca-

driven alternans. We omitted the cell-to-Cell coupling of Ca 

in our models. It is known Ca can pass through the gap 

junction to the neighboring cells [62], and thus cell-to-cell 

Ca coupling exists. However, it is believed that this coupling 

is very weak, and therefore, it has been omitted in 

computational cardiac tissue models. Although the cell-to-

cell Ca coupling may be weak, it may become nontrivial 

under certain conditions. Furthermore, if this coupling is not 

weak, it will affect the Ca-SDA patterns and their 

synchronization with APD-SDA patterns, which cannot be 

omitted. These need to be investigated in future studies. 

Finally, we only investigate the nodal line dynamics in the 

ionic tissue model using the Mahajan et al action potential 

model [61] in which the alternans is primarily driven by a Ca 

instability and the Ca-to-APD coupling is positive. We can 

change the Ca-to-APD coupling in the model to be negative 

by adding a Ca-activated small conductance potassium 

current as shown in our previous study [19]. However, under 

the negative coupling condition, we were still not able to 

generate quasiperiodicity in this model by simply changing 

the conductance of the L-type Ca current or any of the 

potassium currents, likely due to the lack of enough voltage-

driven instabilities. Other ionic models may be used in future 

studies to investigate the coupled dynamics when both Ca-

driven and voltage-driven instabilities are present to reveal 

the predictions from the AE model and the CML model. 
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VI. Appendix. The CML and ionic models 

 

1. The CML model 
A CML model is an array of coupled iterated maps of 

APD and Ca. In a previous study [51, 80], we developed a 

CML model to describe the spatiotemporal dynamics of 

APD in 1D and 2D models. Here we use the same CML 

model to investigate the SDA dynamics in the presence of 

Ca-driven alternans. 

 

a. The single-cell iterated map model 

We use the iterated map model we developed previously 

[22] for APD and Ca dynamics in the presence of Ca and 

APD coupling. The equations are:  

𝑎𝑛+1 = 𝐹(𝑑𝑛, 𝑙𝑛, 𝐵𝑛) = 𝑓(𝑑𝑛)(1 + 𝛾𝑐𝑛+1
𝑝

)          (A1) 

𝑙𝑛+1 = 𝑙𝑛 − 𝑞(𝑑𝑛)𝑔(𝑙𝑛) + 𝑢(𝑇)ℎ(𝑐𝑛+1
𝑝

)              (A2) 

𝐵𝑛+1 = 𝐵𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)]                                    (A3) 

where 𝑎𝑛+1 is the APD of the (n+1)th beat, and 𝑑𝑛 is the DI 

of the nth beat, satisfying 𝑑𝑛 = 𝑇 − 𝑎𝑛.  ln is the SR Ca load 

at the end of the nth beat, and 𝐵𝑛 is the total cytosolic Ca at 
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the end of the nth beat. 𝑐𝑛 is the diastolic Ca at the end of the 

nth beat, which is described by 

𝑐𝑛 = 𝐵𝑛 − 𝑙𝑛                                                         (A4) 

𝑐𝑛+1
𝑝

 is the peak cytosolic Ca at the (n+1)th beat, which is 

described by 

𝑐𝑛+1
𝑝

= 𝑐𝑛 + 𝑞(𝑑𝑛)𝑔(𝑙𝑛)                                      (A5) 

The functions are defined as follows: 

𝑓(𝑑𝑛) = 𝑎0 + 𝑎1/(1 + 𝑒
−
𝑑𝑛−𝑑0
𝜏𝑎 )                           (A6) 

𝑔(𝑙𝑛) = 𝑙𝑛[1 − (1 − 𝛼)/(1 + 𝑒
𝑙𝑛−𝑙0
𝛽 )]                  (A7) 

ℎ(𝑐𝑛+1
𝑝

) = 𝜈𝑐𝑛+1
𝑝

[1 − 1/(1 + 𝑒
𝑐𝑛+1
𝑝

−𝑐0
𝑝

𝛿 )]              (A8) 

𝑞(𝑑𝑛) = 1 − 𝜎𝑅𝑒
−𝑑𝑛/𝜏𝑞                                         (A9) 

𝑢(𝑇) = 1 − 𝜌𝑒−𝑇/𝜏𝑢                                             (A10) 

𝑐(𝑇) = 𝑐0(1 + 𝜀𝑒
−
𝑇

𝜏𝑐)                                          (A11) 

 is the parameter describing Ca-to-APD coupling and 𝜎𝑅 is 

the one describing APD-to-Ca coupling. 𝑎0, 𝑎1, 𝑑0, and 𝜏𝑎 

in Eq.A6 are the parameters determining the APD and APD 

restitution properties. 𝑎0 = 50 ms, 𝑎1 = 150 ms, and 𝑑0 =
100 ms are used. We change 𝜏𝑎 to alter the APD restitution 

properties.  and β are the parameters determining the 

fractional Ca release properties and we change β to change 

the fractional Ca release properties to promote Ca alternans. 

𝛼 = 0.036 , 𝜅 = 0.2 , 𝜈 = 0.4 , 𝛿 = 20 , 𝜌 = 0.15 , 𝜀 = 2 , 

𝑙0 = 93.5 , 𝑐0
𝑝
= 50 , 𝑐0 = 28 , 𝜎𝑅 = 0.4 , 𝜏𝑞 = 80 ,  𝜏𝑢 =

200 , and 𝜏𝑐 = 300 . 𝜎𝑅  is altered for synchronization of 

APD-SDA and Ca-SDA. Note that the Greek letters , β, ρ 

and  are parameters specific to the iterated map model, not 

related to the same Greek letters in the AE model. The 

physiological meanings of the functions and parameters are 

detailed in the previous study [22]. 

 

b. The 1D cable CML model 

Under global pacing, there is no conduction, and thus 

every cell in the cable has the same excitation period, which 

is just the pacing period T. Therefore, the DI and APD of a 

cell satisfy the following relationship:   

𝑑𝑛(𝑖) = 𝑇 − 𝑎𝑛(𝑖)                            (A12) 

where i is the cell index in the cable and n is the beat number. 

Based on our previous formulation [51, 80], 𝑎𝑛(𝑖)  is 

determined as follows: 

𝑎𝑛(𝑖) = 𝐹𝑛−1(𝑖) + 𝜀 ∑ 𝑤𝑘[𝐹𝑛−1(𝑖 + 𝑘) − 𝐹𝑛−1(𝑖)]
𝑀
𝑘=−𝑀           

(A13) 

where 𝐹𝑛(𝑖) = 𝐹[𝑑𝑛(𝑖), 𝑙𝑛(𝑖), 𝐵𝑛(𝑖)]  is the function 

described in Eq.A1.  is a parameter controlling the coupling 

strength of voltage between cells and M is the maximum 

coupling length (i.e., number of cells). 𝑤𝑘  describes the 

distance-dependent weight of coupling strength, which is a 

Gaussian function, i.e.,  𝑤𝑘 =
𝑒−𝑘

2/2𝜎2

√2𝜋𝜎
. We use 𝜀 = 1, 𝜎 =

25, and 𝑀 = 100. No-flux boundary conditions are used. 

Details of the CML model and boundary conditions are 

presented in Wang et al  [80]. 

 

2. The ionic model 

1D cable and 2D tissue simulations are carried out using 

the rabbit ventricular action potential model by Mahajan et 

al [61]. The governing partial differential equation for 

voltage (V) in the 1D cable is: 
𝜕𝑉

𝜕𝑡
= −

𝐼𝑖𝑜𝑛+𝐼𝑠𝑡𝑖𝑚

𝐶𝑚
+ 𝐷

𝜕2𝑉

𝜕𝑥2
                             (A16) 

where Cm=1 F/cm2, D=0.001 cm2/ms, and Iion is the total 

ionic current density from the rabbit ventricular action 

potential model by Mahajan et al [61]. Istim is the stimulus 

current density, which is a 0.5 ms duration and -80 A/cm2 

pulse applied periodically with a pacing period T.  The 

governing partial differential equation for V in the isotropic 

2D tissue model is: 
𝜕𝑉

𝜕𝑡
= −

𝐼𝑖𝑜𝑛+𝐼𝑠𝑡𝑖𝑚

𝐶𝑚
+ 𝐷(

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
)                (A17) 

No-flux boundary conditions are used for both 1D and 2D 

tissue models.  

 
*Email: zqu@mednet.ucla.edu. 

 
References 

[1] D. M. Bers, Cardiac excitation-contraction coupling, Nature 

415, 198 (2002). 

[2] Z. Qu, G. Hu, A. Garfinkel, and J. N. Weiss, Nonlinear and 

stochastic dynamics in the heart, Phys Rep 543, 61 (2014). 

[3] L. Traube, Ein fall von pulsus bigeminus nebst 

bemerkungen tiber die lebershwellungen bei klappenfehlern 

und uber acute leberatrophic, Ber. Klin. Wschr. 9, 185 (1872). 

[4] H. E. Hering, Das Wesen des Herzalternans, Muenchener 

Med Wochenschr 4, 1414 (1908). 

[5] G. R. Mines, On dynamic equilibrium in the heart, J Physiol 

46, 349 (1913). 

[6] J. B. Nolasco and R. W. Dahlen, A graphic method for the 

study of alternation in cardiac action potentials, J. Appl. 

Physiol. 25, 191 (1968). 

[7] M. R. Guevara, G. Ward, A. Shrier, and L. Glass, Electrical 

alternans and period doubling bifurcations, IEEE Comp. 

Cardiol. 562, 167 (1984). 

[8] L. Glass, Dynamics of cardiac arrhythmias, Physics Today 

49, 40 (1996). 

[9] D. S. Rosenbaum, L. E. Jackson, J. M. Smith, H. Garan, J. 

N. Ruskin, and R. J. Cohen, Electrical alternans and 

vulnerability to ventricular arrhythmias, N Engl J Med 330, 235 

(1994). 

[10] S. M. Narayan, T-wave alternans and the susceptibility to 

ventricular arrhythmias, J Am Coll Cardiol 47, 269 (2006). 

[11] X. Zhou, A. Bueno-Orovio, M. Orini, B. Hanson, M. 

Hayward, P. Taggart, P. D. Lambiase, K. Burrage, and B. 

Rodriguez, In vivo and in silico investigation into mechanisms 

of frequency dependence of repolarization alternans in human 

ventricular cardiomyocytes, Circ Res 118, 266 (2016). 

[12] P. K. Moore, K. E. Raffel, and I. R. Whitman, Macroscopic 

T-wave alternans: A red flag for code blue, JAMA Intern Med 

177, 1520 (2017). 

[13] A. Vinet, D. R. Chialvo, D. C. Michaels, and J. Jalife, 

Nonlinear dynamics of rate-dependent activation in models of 

single cardiac cells, Circ. Res. 67, 1510 (1990). 

mailto:zqu@mednet.ucla.edu


17 

 

[14] Z. Qu, M. Nivala, and J. N. Weiss, Calcium alternans in 

cardiac myocytes: Order from disorder, J Mol Cell Cardiol 58, 

100 (2013). 

[15] R. Rovetti, X. Cui, A. Garfinkel, J. N. Weiss, and Z. Qu, 

Spark-induced sparks as a mechanism of intracellular calcium 

alternans in cardiac myocytes, Circ Res 106, 1582 (2010). 

[16] E. Alvarez-Lacalle, I. R. Cantalapiedra, A. Penaranda, J. 

Cinca, L. Hove-Madsen, and B. Echebarria, Dependency of 

calcium alternans on ryanodine receptor refractoriness, PLoS 

One 8, e55042 (2013). 

[17] E. Alvarez-Lacalle, B. Echebarria, J. Spalding, and Y. 

Shiferaw, Calcium alternans is due to an order-disorder phase 

transition in cardiac cells, Phys Rev Lett 114, 108101 (2015). 

[18] M. A. Colman, C. Pinali, A. W. Trafford, H. Zhang, and 

A. Kitmitto, A computational model of spatio-temporal cardiac 

intracellular calcium handling with realistic structure and 

spatial flux distribution from sarcoplasmic reticulum and t-

tubule reconstructions, PLoS Comput Biol 13, e1005714 

(2017). 

[19] Z. Song and Z. Qu, Delayed global feedback in the genesis 

and stability of spatiotemporal excitation patterns in paced 

biological excitable media, PLoS Comput Biol 16, e1007931 

(2020). 

[20] J. G. Restrepo, J. N. Weiss, and A. Karma, Calsequestrin-

mediated mechanism for cellular calcium transient alternans, 

Biophys J 95, 3767 (2008). 

[21] Y. Shiferaw, D. Sato, and A. Karma, Coupled dynamics of 

voltage and calcium in paced cardiac cells, Phys Rev E 71, 

021903 (2005). 

[22] Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics 

of cardiac excitation-contraction coupling: an iterated map 

study, Phys Rev E 75, 011927 (2007). 

[23] P. N. Jordan and D. J. Christini, Characterizing the 

contribution of voltage- and calcium-dependent coupling to 

action potential stability: implications for repolarization 

alternans, Am J Physiol Heart Circ Physiol 293, H2109 (2007). 

[24] I. Banville and R. A. Gray, Effect of action potential 

duration and conduction velocity restitution and their spatial 

dispersion on alternans and the stability of arrhythmias, J. 

Cardiovasc. Electrophysiol. 13, 1141 (2002). 

[25] M. E. Diaz, S. C. O'Neill, and D. A. Eisner, Sarcoplasmic 

reticulum calcium content fluctuation is the key to cardiac 

alternans, Circ Res 94, 650 (2004). 

[26] E. Picht, J. DeSantiago, L. A. Blatter, and D. M. Bers, 

Cardiac alternans do not rely on diastolic sarcoplasmic 

reticulum calcium content fluctuations, Circ Res 99, 740 

(2006). 

[27] J. Kockskamper and L. A. Blatter, Subcellular Ca2+ 

alternans represents a novel mechanism for the generation of 

arrhythmogenic Ca2+ waves in cat atrial myocytes, J Physiol 

545, 65 (2002). 

[28] Y. Li, M. E. Diaz, D. A. Eisner, and S. O'Neill, The effects 

of membrane potential, SR Ca2+ content and RyR 

responsiveness on systolic Ca2+ alternans in rat ventricular 

myocytes, J Physiol 587, 1283 (2009). 

[29] L. H. Xie, D. Sato, A. Garfinkel, Z. Qu, and J. N. Weiss, 

Intracellular Ca alternans: coordinated regulation by 

sarcoplasmic reticulum release, uptake, and leak, Biophys J 95, 

3100 (2008). 

[30] E. Martinez-Hernandez, G. Kanaporis, and L. A. Blatter, 

Mechanism of carvedilol induced action potential and calcium 

alternans, Channels 16, 97 (2022). 

[31] J. M. Pastore, S. D. Girouard, K. R. Laurita, F. G. Akar, 

and D. S. Rosenbaum, Mechanism linking T-wave alternans to 

the genesis of cardiac fibrillation, Circulation 99, 1385 (1999). 

[32] J. M. Cao, Z. Qu, Y. H. Kim, T. J. Wu, A. Garfinkel, J. N. 

Weiss, H. S. Karagueuzian, and P. S. Chen, Spatiotemporal 

heterogeneity in the induction of ventricular fibrillation by 

rapid pacing: importance of cardiac restitution properties, Circ 

Res 84, 1318 (1999). 

[33] Z. Qu, A. Garfinkel, P. S. Chen, and J. N. Weiss, 

Mechanisms of discordant alternans and induction of reentry in 

simulated cardiac tissue, Circulation 102, 1664 (2000). 

[34] W. T. Clusin, Calcium and cardiac arrhythmias: DADs, 

EADs, and alternans, Crit Rev Clin Lab Sci 40, 337 (2003). 

[35] Z. Qu, Y. Xie, A. Garfinkel, and J. N. Weiss, T-wave 

alternans and arrhythmogenesis in cardiac diseases, Front 

Physiol 1, 154 (2010). 

[36] L. M. Muñoz, A. R. M. Gelzer, F. H. Fenton, W. Qian, W. 

Lin, R. F. Gilmour, and N. F. Otani, Discordant alternans as a 

mechanism for initiation of ventricular fibrillation in vitro, J 

Am Heart Assoc 7, e007898 (2018). 

[37] B. R. Choi, W. Jang, and G. Salama, Spatially discordant 

voltage alternans cause wavebreaks in ventricular fibrillation, 

Heart Rhythm 4, 1057 (2007). 

[38] W. Lu, T. Y. Kim, X. Huang, M. B. Liu, G. Koren, B. R. 

Choi, and Z. Qu, Mechanisms linking T-wave alternans to 

spontaneous initiation of ventricular arrhythmias in rabbit 

models of long QT syndrome, J Physiol 596, 1341 (2018). 

[39] M. A. Watanabe, F. H. Fenton, S. J. Evans, H. M. Hastings, 

and A. Karma, Mechanisms for discordant alternans, J 

Cardiovasc Electrophysiol 12, 196 (2001). 

[40] B. Echebarria and A. Karma, Instability and 

spatiotemporal dynamics of alternans in paced cardiac tissue, 

Phys Rev Lett 88, 208101 (2002). 

[41] J. J. Fox, M. L. Riccio, F. Hua, E. Bodenschatz, and R. F. 

Gilmour, Spatiotemporal transition to conduction block in 

canine ventricle, Circ Res 90, 289 (2002). 

[42] E. de Lange and J. P. Kucera, Alternans resonance and 

propagation block during supernormal conduction in cardiac 

tissue with decreased [K(+)](o), Biophys J 98, 1129 (2010). 

[43] B. Echebarria, G. Roder, H. Engel, J. Davidsen, and M. 

Bar, Supernormal conduction in cardiac tissue promotes 

concordant alternans and action potential bunching, Phys Rev 

E Stat Nonlin Soft Matter Phys 83, 040902 (2011). 

[44] H. Hayashi, Y. Shiferaw, D. Sato, M. Nihei, S. F. Lin, P. 

S. Chen, A. Garfinkel, J. N. Weiss, and Z. Qu, Dynamic origin 

of spatially discordant alternans in cardiac tissue, Biophys J 92, 

448 (2007). 

[45] C. de Diego, R. K. Pai, A. S. Dave, A. Lynch, M. Thu, F. 

Chen, L. H. Xie, J. N. Weiss, and M. Valderrabano, Spatially 

discordant alternans in cardiomyocyte monolayers, Am J 

Physiol Heart Circ Physiol 294, H1417 (2008). 

[46] S. Mironov, J. Jalife, and E. G. Tolkacheva, Role of 

conduction velocity restitution and short-term memory in the 

development of action potential duration alternans in isolated 

rabbit hearts, Circulation 118, 17 (2008). 

[47] A. Gizzi, E. M. Cherry, R. F. Gilmour, Jr., S. Luther, S. 

Filippi, and F. H. Fenton, Effects of pacing site and stimulation 



18 

 

history on alternans dynamics and the development of complex 

spatiotemporal patterns in cardiac tissue, Front Physiol 4, 71 

(2013). 

[48] O. Ziv, E. Morales, Y. K. Song, X. Peng, K. E. Odening, 

A. E. Buxton, A. Karma, G. Koren, and B. R. Choi, Origin of 

complex behaviour of spatially discordant alternans in a 

transgenic rabbit model of type 2 long QT syndrome, J Physiol 

587, 4661 (2009). 

[49] E. Lau, K. Kossidas, T. Y. Kim, et al., Spatially Discordant 

Alternans and Arrhythmias in Tachypacing-Induced Cardiac 

Myopathy in Transgenic LQT1 Rabbits: The Importance of IKs 

and Ca2+ Cycling, PLoS One 10, e0122754 (2015). 

[50] C. Huang, Z. Song, J. Landaw, and Z. Qu, Spatially 

discordant repolarization alternans in the absence of conduction 

velocity restitution, Biophys J 118, 2574 (2020). 

[51] C. Huang, Z. Song, Z. Di, and Z. Qu, Stability of spatially 

discordant repolarization alternans in cardiac tissue, Chaos: An 

Interdisciplinary Journal of Nonlinear Science 30, 123141 

(2020). 

[52] E. J. Pruvot, R. P. Katra, D. S. Rosenbaum, and K. R. 

Laurita, Role of calcium cycling versus restitution in the 

mechanism of repolarization alternans, Circ Res 94, 1083 

(2004). 

[53] Z. Qu, M. B. Liu, R. Olcese, H. Karagueuzian, A. 

Garfinkel, P.-S. Chen, and J. N. Weiss, R-on-T and the 

initiation of reentry revisited: Integrating old and new concepts, 

Heart Rhythm 19, 1369 (2022). 

[54] F. G. Akar and D. S. Rosenbaum, Transmural 

electrophysiological heterogeneities underlying 

arrhythmogenesis in heart failure, Circ Res 93, 638 (2003). 

[55] K. R. Laurita and D. S. Rosenbaum, Interdependence of 

modulated dispersion and tissue structure in the mechanism of 

unidirectional block, Circ Res 87, 922 (2000). 

[56] Z. Qu, A. Garfinkel, and J. N. Weiss, Vulnerable window 

for conduction block in a one-dimensional cable of cardiac 

cells,  1: Single extrasystoles, Biophys J 91, 793 (2006). 

[57] Z. Qu, A. Garfinkel, and J. N. Weiss, Vulnerable window 

for conduction block in a one-dimensional cable of cardiac 

cells, 2: Multiple extrasystoles, Biophys J 91, 805 (2006). 

[58] D. Sato, Y. Shiferaw, A. Garfinkel, J. N. Weiss, Z. Qu, and 

A. Karma, Spatially discordant alternans in cardiac tissue. Role 

of calcium cycling, Circ Res 99, 520 (2006). 

[59] S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, 

Dynamical mechanism for subcellular alternans in cardiac 

myocytes, Circ Res 105, 335 (2009). 

[60] D. Sato, D. M. Bers, and Y. Shiferaw, Formation of 

spatially discordant alternans due to fluctuations and diffusion 

of calcium, PLoS One 8, e85365 (2014). 

[61] A. Mahajan, Y. Shiferaw, D. Sato, et al., A rabbit 

ventricular action potential model replicating cardiac dynamics 

at rapid heart rates, Biophys. J. 94, 392 (2008). 

[62] P. A. Boyden, W. Dun, and B. D. Stuyvers, What is a Ca2+ 

wave? Is it like an Electrical Wave?, Arrhythmia & 

Electrophysiology Review 2015;4(1):35–9  (2015). 

[63] S. K. Chua, P. C. Chang, M. Maruyama, et al., Small-

conductance calcium-activated potassium channel and 

recurrent ventricular fibrillation in failing rabbit ventricles, Circ 

Res 108, 971 (2011). 

[64] X.-D. Zhang, D. K. Lieu, and N. Chiamvimonvat, Small-

conductance Ca2+-activated K+ channels and cardiac 

arrhythmias, Heart Rhythm 12, 1845 (2015). 

[65] T. R. Shannon, K. S. Ginsburg, and D. M. Bers, 

Potentiation of fractional sarcoplasmic reticulum calcium 

release by total and free intra-sarcoplasmic reticulum calcium 

concentration, Biophys. J. 78, 334 (2000). 

[66] M. Nivala and Z. Qu, Calcium alternans in a couplon 

network model of ventricular myocytes: Role of sarcoplasmic 

reticulum load, Am J Physiol Heart Circ Physiol 303, H341 

(2012). 

[67] H. R. Ramay, O. Z. Liu, and E. A. Sobie, Recovery of 

cardiac calcium release is controlled by sarcoplasmic reticulum 

refilling and ryanodine receptor sensitivity, Cardiovasc Res 91, 

598 (2011). 

[68] E. A. Sobie, L. S. Song, and W. J. Lederer, Restitution of 

Ca(2+) release and vulnerability to arrhythmias, J Cardiovasc 

Electrophysiol 17 Suppl 1, S64 (2006). 

[69] A. Cely-Ortiz, J. I. Felice, L. A. Díaz-Zegarra, et al., 

Determinants of Ca2+ release restitution: Insights from 

genetically altered animals and mathematical modeling, J Gen 

Physiol 152 (2020). 

[70] B. Echebarria and A. Karma, Amplitude equation approach 

to spatiotemporal dynamics of cardiac alternans, Phys Rev E 

Stat Nonlin Soft Matter Phys 76, 051911 (2007). 

[71] Y. Shiferaw and A. Karma, Turing instability mediated by 

voltage and calcium diffusion in paced cardiac cells, Proc Natl 

Acad Sci U S A 103, 5670 (2006). 

[72] J. Heijman, A. Zaza, D. M. Johnson, Y. Rudy, R. L. 

Peeters, P. G. Volders, and R. L. Westra, Determinants of beat-

to-beat variability of repolarization duration in the canine 

ventricular myocyte: a computational analysis, PLoS Comput 

Biol 9, e1003202 (2013). 

[73] A. Skupin, H. Kettenmann, U. Winkler, M. Wartenberg, 

H. Sauer, S. C. Tovey, C. W. Taylor, and M. Falcke, How does 

intracellular Ca2+ oscillate: by chance or by the clock?, 

Biophys J 94, 2404 (2008). 

[74] M. Nivala, C. Ko, A. Garfinkel, J. N. Weiss, and Z. Qu, 

Self-organization of pacemaking sites for calcium waves and 

oscillations in cardiac myocytes, Biophys J 100, 557a (2011). 

[75] F. O. Campos, Y. Shiferaw, A. J. Prassl, P. M. Boyle, E. J. 

Vigmond, and G. Plank, Stochastic spontaneous calcium 

release events trigger premature ventricular complexes by 

overcoming electrotonic load, Cardiovasc Res 107, 175 (2015). 

[76] Z. Song, Z. Qu, and A. Karma, Stochastic initiation and 

termination of calcium-mediated triggered activity in cardiac 

myocytes, Proc Natl Acad Sci USA 114, E270 (2017). 

[77] M. A. Colman, Arrhythmia mechanisms and spontaneous 

calcium release: Bi-directional coupling between re-entrant and 

focal excitation, PLOS Comput Biol 15, e1007260 (2019). 

[78] M. Nivala, C. Y. Ko, M. Nivala, J. N. Weiss, and Z. Qu, 

Criticality in intracellular calcium signaling in cardiac 

myocytes, Biophys J 102, 2433 (2012). 

[79] H. Risken, The Fokker-Planck Equation (Springer, Berlin, 

1989). 

[80] S. Wang, Y. Xie, and Z. Qu, Coupled iterated map models 

of action potential dynamics in a one-dimensional cable of 

coupled cardiac cells, New J Phys 10, 055001 (2007). 



19 

 

[81] A. R. Cram, H. M. Rao, and E. G. Tolkacheva, Toward 

prediction of the local onset of alternans in the heart, Biophys J 

100, 868 (2011). 

[82] R. Visweswaran, S. D. McIntyre, K. Ramkrishnan, X. 

Zhao, and E. G. Tolkacheva, Spatiotemporal evolution and 

prediction of [Ca2+]i and APD alternans in isolated rabbit 

hearts, J Cardiovasc Electrophysiol 24, 1287 (2013). 

[83] Z. Qu, M. B. Liu, and M. Nivala, A unified theory of 

calcium alternans in ventricular myocytes, Scientific Reports 6, 

35625 (2016). 

[84] J. Landaw and Z. Qu, Memory-induced nonlinear 

dynamics of excitation in cardiac diseases, Phys Rev E 97, 

042414 (2018). 

[85] M. E. Diaz, D. A. Eisner, and S. C. O'Neill, Depressed 

ryanodine receptor activity increases variability and duration of 

the systolic Ca2+ transient in rat ventricular myocytes, Circ Res 

91, 585 (2002). 

[86] L. H. Xie and J. N. Weiss, Arrhythmogenic consequences 

of intracellular calcium waves, Am J Physiol Heart Circ Physiol 

297, H997 (2009). 

[87] G. L. Aistrup, Y. Shiferaw, S. Kapur, A. H. Kadish, and J. 

A. Wasserstrom, Mechanisms underlying the formation and 

dynamics of subcellular calcium alternans in the intact rat heart, 

Circ Res 104, 639 (2009). 

[88] Z. Song, M. B. Liu, and Z. Qu, Transverse tubular network 

structures in the genesis of intracellular calcium alternans and 

triggered activity in cardiac cells, J Mol Cell Cardiol 114, 288 

(2018). 

[89] L. Romero, E. Alvarez-Lacalle, and Y. Shiferaw, 

Stochastic coupled map model of subcellular calcium cycling 

in cardiac cells, Chaos: An Interdisciplinary Journal of 

Nonlinear Science 29, 023125 (2019). 

[90] Z. Qu, A. Garfinkel, J. N. Weiss, and M. Nivala, Multi-

scale modeling in biology: How to bridge the gaps between 

scales?, Prog Biophys Mol Biol 107, 21 (2011). 

[91] Y. Shiferaw, G. L. Aistrup, and J. A. Wasserstrom, 

Synchronization of triggered waves in atrial tissue, Biophys J 

115, 1130 (2018). 

[92] M. A. Colman, E. Alvarez-Lacalle, B. Echebarria, D. Sato, 

H. Sutanto, and J. Heijman, Multi-scale computational 

modeling of spatial calcium handling from nanodomain to 

whole-heart: Overview and perspectives, Front Physiol 13 

(2022). 

 


