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Steadily moving transition (switching) fronts, bringing local transformation, symmetry breaking or collapse,

are among the most important dynamic coherent structures. The nonlinear mechanical waves of this type play a

major role in many modern applications involving the transmission of mechanical information in systems rang-

ing from crystal lattices and metamaterials to macroscopic civil engineering structures. While many different

classes of such dynamic fronts are known, the interrelation between them remains obscure. Here we consider a

minimal prototypical mechanical system, the Fermi-Pasta-Ulam (FPU) chain with piecewise linear nonlinearity,

and show that there are exactly three distinct classes of switching fronts, which differ fundamentally in how

(and whether) they produce and transport oscillations. The fact that all three types of fronts could be obtained

as explicit Wiener-Hopf solutions of the same discrete FPU problem, allows one to identify the exact mathemat-

ical origin of the particular features of each class. To make the underlying Hamiltonian dynamics analytically

transparent, we construct a minimal quasicontinuum approximation of the FPU model that captures all three

classes of the fronts and interrelation between them. This approximation is of higher order than conventional

ones (KdV, Boussinesq) and involves mixed space-time derivatives. The proposed framework unifies previous

attempts to classify the mechanical transition fronts as radiative, dispersive, topological or compressive and

categorizes them instead as different types of dynamic lattice defects.

I. INTRODUCTION

Transition fronts in discrete systems continue to attract a

lot of attention because they represent examples of far-from

equilibrium collective phenomena that emerge from the un-

derlying many-body interactions. Interpreted as highly non-

linear coherent dynamic structures, such fronts play an im-

portant role in the energy transmission from macro to mi-

croscales. They are observed in both integrable and non-

integrable Hamiltonian systems [1, 2], can be topological or

non-topological [3–5], spreading or compact [6], compres-

sive or undercompressive (non-Lax) [7], stable or unstable

[8]. Together with solitons and breathers, they play a crucial

role as building blocks in complex nonlinear wave patterns

that emerge generically in mechanical systems ranging from

crystals [9–11] to nanomechanical structures [12–15].

The concept of transition fronts is equally relevant for the

description of pattern formation [16] and transport proper-

ties in nonmechanical dynamical systems, including coupled

waveguide arrays [17, 18], quantum systems [19, 20], Bose-

Einstein condensates [21–24], electronic liquids [25], ultra-

cold quantum gases [26, 27], rarefied plasma [28], intense

electron beams [29], liquid helium [30], and exciton polari-

tons [31]. In this paper we focus on mechanical switching

fronts due to their the importance of their dynamics for the

design of modern metamaterials [13, 32–34]. The term me-

chanical metamaterials is used here to describe high-contrast

(soft-hard) composite structures with complex architecture at

mesoscale. Characteristically, macroscopic properties of such

structures are controlled more by the structural stability of the

sub-elements than by their material properties [33, 35–41].

The use of additive manufacturing techniques opened a way

to exploit various elastic instabilities embedded in the meta-

material response and to creatively guide them using applied

deformation [13, 42, 43]. Dynamic effects targeted by var-

ious metamaterial architectures include mitigation of impact

loadings, non-destructive detection of inhomogeneities, sup-

pression or amplification of internal instabilities, transmis-

sion, guiding and encryption of mechanical information in-

cluding the enabling of logic operations, dynamic unfolding

of deployable structures, energy harvesting and even activat-

ing soft robotics [34, 44–54].

One of the most interesting nonlinear dynamic effects

which qualifies metamaterials as mesoscopic analogs of or-

dered solid-state materials, like ferroelectrics, ferromagnets

and ferroelastics, is their ability to support moving transition

fronts (analogs of domain boundaries), which enable the sys-

tem to perform dynamic switching between different equi-

librium states [32, 55–61]. There is already a rich body of

theoretical and experimental literature devoted to the study of

such dynamic snapping/switching waves in mesoscopic me-

chanical systems [15, 57, 62–64]. The ability to propagate

transition fronts in metamaterials opens new ways towards

potential applications in shape morphing, reconfigurable de-

vices, mechanical logic, and controlled energy absorption

[43, 65–69]. Analysis of low-dimensional model systems can

serve as a guide for the structural design and optimization of

the actual 3D mechanical systems.

Despite the ubiquity of transition fronts in metamaterials,

the relation between different classes of such mobile non-

linear dynamic structures remains obscure. In this paper we

consider a well known prototypical system, the Fermi-Pasta-

Ulam (FPU) model [70–73] and present a unified description

of the three main types of steady transition fronts in this one-

dimensional lattice, which we identify as subkinks, shocks

and superkinks. Various realizations of these archetypes have

been previously encountered in applications and treated as

unrelated: subkinks as subsonic phase boundaries [74–76],

shocks as classical supersonic shock waves [77, 78] and su-

perkinks as supersonic activity waves [54, 79]. They were

first treated as disconnected solutions of the FPU model

in [62, 80]. Some conceptual links between subkinks and

shocks have been previously established in [77, 78], while

superkinks remain a disconnected class of transition fronts
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[79, 81–83].

A unified description of all these transition fronts can be

obtained if we use the simplest choice of nonlinearity and as-

sume that the FPU interactions are piecewise linear. In fact,

such interactions were already considered in the original pa-

per [70] and have since been employed for the description of

various dynamic nonlinear phenomena, e.g. [80, 84–88].

More specifically, we consider the Hamiltonian dynamics

of a mass-spring chain with mass displacements un(t) satis-

fying the infinite system of equations

ρh
d2un(t)

dt2
= σ

(

un+1 − un
h

)

− σ

(

un − un−1

h

)

. (1)

Here h is the equilibrium distance between the masses m =
ρh, where ρ is the mass density. In terms of the strain vari-

ables

εn(t) =
un+1(t)− un(t)

h
,

the equations become

ρh2
d2εn(t)

dt2
= σ(εn+1)− 2σ(εn) + σ(εn−1). (2)

The assumed piecewise linear macroscopic stress-strain rela-

tion can be written as

σ(ε) =

{

E1ε, ε < εc
E2ε− σ0, ε > εc,

(3)

where εc is the critical (switching) strain, and E1, E2 are

the elastic moduli in the two linear regimes. We assume

that E2 > E1, so that the two characteristic speeds c1,2 =
√

E1,2/ρ satisfy c2 > c1. The corresponding piecewise

quadratic elastic energy density φ(ε) =
∫

σ(ε)dε is continu-

ous:

φ(ε) =

{

E1

2 ε
2, ε < εc,

E2

2 (ε2 − ε2c)− σ0(ε− εc) +
E1

2 ε
2
c , ε > εc.

Examples of stress and energy density functions are shown in

Fig. 1. Note that as the stress jump at the critical strain

∆σ = σ(εc − 0)− σ(εc + 0) = σ0 − (E2 − E1)εc

varies from positive to negative values, we obtain two fun-

damentally different types of stress-strain curves. Thus, the

elastic energy density φ(ε) is nonconvex when ∆σ > 0 and

convex for ∆σ ≤ 0. When ∆σ > 0, the different branches of

the stress-strain curve can be considered as different ‘phases’

of the material, with spinodal region (where φ(ε) is concave

in a smoother setting) represented by the single point ε = εc.

When ∆σ < 0, the stress jump at ε = εc is just a repre-

sentation of the hardening-type nonlinearity, which is again

concentrated at a single point. The advantage of the piece-

wise linear choice for the stress-strain relation is the possibil-

ity to construct the corresponding traveling wave solutions of

the FPU problem explicitly using the Wiener-Hopf transform

technique [80]. While smoothening the constitutive response

around the singular point εc could make the model more real-

istic, sometimes even without sacrificing much of analytical

transparency [89–91], stronger nonlinearity is needed to cap-

ture such important physical effects as thermalization of the

radiated phonons [92–94]. However, such generalization of

the model, which will make its analytical treatment almost

impossible without contributing much to the classification of

the transition fronts, is outside the scope of this paper.

To make the structure of the underlying Hamiltonian dy-

namics clearly visible, we pose the problem of constructing

the minimal quasicontinuum (QC) approximation of the FPU

model capturing all three classes of the fronts. The term qua-

sicontinuum is used here in the sense that it is a continuum

approximation of the discrete system, which is, however, not

scale-free and carries a memory about the lattice discrete-

ness [95]. Our analysis shows that the desired approxima-

tion must be necessarily of higher order than the conventional

ones (KdV, classical ‘good’ or ‘bad’ Boussinesq) and should

involve mixed space-time derivatives. The obtained minimal

QC model with desired properties can be viewed as a higher

order version of the ‘good’ Boussinesq approximation [96].

In contrast to the more conventional approach of adding spa-

tially nonlocal terms to the elastic energy [97, 98], it intro-

duces the higher order derivatives into the inertial part of the

model (into the kinetic energy), as advocated earlier in [99].

The proposed QC framework not only provides a transpar-

ent interpretation of the three types of transition fronts as het-

eroclinic trajectories of different kinds in the phase space, but

also helps to explain in physical terms why some kinks are

radiative (dissipative), while others are not, why some shocks

are dispersive, while others are not, and why kinks are topo-

logical, while shocks are not. The comparison with the exact

solutions of the discrete problem shows that, on both qual-

itative and quantitative levels, the relation between different

classes of transition fronts is captured adequately by this min-

imal QC approximation.

It is important to mention that while the non-stationary

(spreading) dispersive shock waves (DSW) [100–102] are not

the focus of our study, which aims to classify steadily moving

transition fronts, we show numerically that the DSWs replace

the steady transition fronts in a subdomain of the parameter

space. The adequacy of the QC approximation is corrobo-

rated by the fact that the DSW stability subdomains in dis-

crete and QC models nearly overlap.

On a theoretical side, our approach unifies for the first time

the previous attempts to classify the mechanical transition

fronts as radiative, dispersive, topological or compressive and

categorizes them instead in a unified framework as fundamen-

tally distinct types of dynamic lattice defects. The obtained

analytical solutions can be also used in applications as a guid-

ance in the design of new metamaterials exploiting structural

nonlinearity at the scale of the periodicity cell. For instance,

our analysis points to a particular type of nonlinearity which

should be used if the goal is the suppression of shock load-

ing by channeling the largest amount of energy from macro

to micro scales. It is also makes clear that a different type of

nonlinearity must be engineered if the task is to transmit me-

chanical information with minimal losses. There is of course

still a long way from our prototypical 1D designs to the con-
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Figure 1. Piecewise linear stress-strain relation σ(ε) defined in Eq. (3) and the corresponding energy density φ(ε) for different values of ∆σ.

Here E1 = 1, E2 = 4, εc = 1, σ0 = 1 (solid), σ0 = 3 (dotted) and σ0 = 5 (dashed).

struction of real 3D mesoscopic composite structures.

The rest of the paper is organized as follows. In Sec. II

we formulate the classical continuum approximation of the

discrete problem and identify irreducible classes of transition

fronts. Then in Sec. III we introduce a non-classical quasi-

continuum approximation of the same discrete problem and

construct explicit solutions of the corresponding dispersive

traveling wave problem describing all three distinct types of

transition fronts. In particular, we discuss the issues of so-

lution admissibility in the piecewise linear model and the ef-

fective energy dissipation in this Hamiltonian framework and

present the results of direct numerical simulations that sug-

gest stability of the obtained traveling waves. In Sec. IV we

construct an explicit traveling wave solution of the original

discrete problem providing a unified description of all three

types of fronts. We also present numerical simulations illus-

trating stability of the different types of transition fronts in

various domains of the parameter space. In Sec. V we briefly

mention potential applications of our results for the design

of metamaterials. Summary of the results and concluding re-

marks can be found in Sec. VI. Some asymptotic results are

presented in the Appendix A.

II. CONTINUUM MODEL

In our search of a unified description for the different types

of transition fronts, it is natural to start with the classical con-

tinuum approximation of the original discrete model (1). It

can be obtained by taking a formal limit h→ 0 and replacing

finite differences by the lowest order derivatives. Following

[103], we obtain the standard nonlinear wave equation, which

can be represented as the first-order system

∂ε

∂t
=
∂v

∂x
, ρ

∂v

∂t
=

∂

∂x
σ(ε). (4)

Here ε(x, t) = ux and v(x, t) = ut are the strain and parti-

cle velocity, respectively. The system (4) has discontinuous

solutions, which must satisfy the classical Rankine-Hugoniot

(RH) conditions

JvK + V JεK = 0, ρV JvK + Jσ(ε)K = 0, (5)

where V is the velocity of the jump discontinuity. The no-

tation JfK ≡ f+ − f− will be used throughout the paper to

describe the jump between the limiting values to the right and

to the left of a discontinuity.

By changing the parameter ∆σ and varying independently

the velocity of the jump discontinuity, we can obtain three

fundamentally different types of steadily moving transition

fronts shown schematically in Fig. 2. Each transition front

connects a state ε = ε+ in front with a state ε = ε− behind.

Both of these states ε± belong to the stress-strain curve which

is piecewise linear, and to be nontrivial the transition front

must connect the states on two sides of the singular point ε =
εc. The RH conditions state that the slope of the Rayleigh

line connecting (ε+, σ(ε+)) and (ε−, σ(ε−)) is proportional

to the square of the velocity V of the front:

σ(ε+)− σ(ε−) = ρV 2(ε+ − ε−). (6)

The three different types of transition fronts are defined by

the relation between their velocity V and the characteristic

velocities c1 and c2, which can be determined by comparing

the slopes of the Rayleigh line and the corresponding linear

regimes of the stress-strain curve. In what follows, we will

refer to them as subkinks (subsonic kinks, V < c1 < c2,

panel (a) of Fig. 2), shocks (intersonic fronts, c1 < V < c2,

panel (b)) and superkinks (supersonic kinks, c1 < c2 < V ,

panel (c)).

A. Well posedness

Note that there are five variables to be determined for each

discontinuity: v±, ε± and V . Two relations between these

five unknowns are furnished by the RH conditions (5). Fig. 2

shows qualitatively the fundamentally different relations of

this type. Additional information can be obtained by solving

the problem (4) using the method of characteristics. Due to

the piecewise linear nature of the problem, two families of

characteristics with velocities ±c1,2 can be defined on both

sides of the moving front.

Fig. 3 shows the arrangement of such characteristics in

space-time for all three types of transition fronts. When

V < c1 (subkinks) or V > c2 (superkinks), there are two

incoming characteristics at the front, which reduces the num-

ber of unknowns to one, and therefore an additional condi-

tion is needed to find the remaining parameter, for instance,
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Figure 2. Rayleigh lines connecting (ε+, σ(ε+)) and (ε−, σ(ε−)) with the slope ρV 2 satisfying Eq. (6) for three distinct types of traveling

wave solutions: (a) subsonic kinks, V < c1 < c2, (b) shocks, c1 < V < c2, (c) supersonic kinks, c1 < c2 < V . The driving force is

G = S2 − S1, where S1 (blue) and S2 (pink) are the areas cut by the Rayleigh line from the stress-strain curve.

V . If c1 < V < c2 (shocks), there are three incoming char-

acteristics, which means that all five parameters can be deter-

mined without any additional conditions. In this sense kinks

are undercompressive (non-Lax), while shocks are compres-

sive [104]. The necessity of an additional ‘kinetic relation’

t

η

(a)

t

η

(b)

t

η

(c)

Figure 3. Characteristics η± (c1,2 ± V )t = const of the continuum

problem in the moving frame with η = x−V t in phase 1 (blue) and

phase 2 (red): (a) subkinks, V < c1; (b) shocks, c1 < V < c2; (c)

superkinks, V > c2. Here η = x− V t.

on discontinuous transition fronts was first pointed out in

[74, 78, 105]; see also [106]. The difference between sub-

kinks and superkinks, which both require an additional con-

dition closing the problem, is not apparent in this purely con-

tinuum setting.

B. Dissipation rate

While the system of continuum equations (4) is conserva-

tive, it known that the corresponding discontinuous solutions

may be dissipative. One way to supply the missing closure

relations for subkinks and superkinks is to specify the dissi-

pation rate at the moving transformation front.

For all three classes of fronts the energy dissipation on the

discontinuity can be written as the product [105]

R = GV ≥ 0, (7)

where V is the velocity of the front and G is the conjugate

generalized (or driving) force, which is also known as the en-

ergy release rate. After appropriate symmetrization [74], it

takes the form

G = Jφ(ε)K − {σ(ε)}JεK, (8)

where we introduced a notation for the averaging over the

jump {f} = (f++f−)/2. The quasistatic notion of a driving

force on a moving discontinuity dates back to Eshelby [107–

109]. A recent application of this notion in inertial dynamics

can be found, e.g., in [75].

In our piecewise linear continuum model the driving force

G can be computed explicitly. We obtain

G =
E2 − E1

2
(ε2c − ε+ε−) +

σ0
2
(ε+ + ε− − 2εc). (9)

In terms of the diagrams in Fig. 2, one can show thatG can be

represented as the difference between the two colored areas

between the Raleigh line and the stress-strain curve: G =
S2 − S1. Given that V > 0, the area S1 (blue) corresponds

to the energy rate received on the jump while the area S2

(red) describes the rate of energy loss. To ensure the overall

dissipative nature of the jump encapsulated by the inequality

(7), it is therefore necessary that S2 ≥ S1.

Note that according to Fig. 2, in the case of subkinks the

energy is received at the frontal part and lost (dissipated) at

the back part of the transition front. Inside shocks the energy

can only dissipated. For superkinks the energy is lost in the

frontal part and regained in the back part.

C. Inner structure of the fronts

As we have seen, in the continuum model the transition

region is infinitely localized in space (jump discontinuity).

However, the different arrangements shown in Fig. 2 suggest

that it may be of interest to reconstruct the energetic structure

of each of the archetypal front in the configurational space

of strains varying from ε+ to ε−. The idea is that the en-

ergy transfers implied by the relative size of the areas S1 and

S2 shown in Fig. 2 are accomplished by some microscopic

dispersive mechanisms that are overlooked by the continuum

approximation.
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For instance, in the case of subkinks, the continuously

emerging energy in the frontal part of the transition region

must be somehow transported from the back of the front

where it is released. Such transport can be accomplished by

the emitted sub-continuum (lattice) waves whose group ve-

locity is larger than their phase velocity (which is necessarily

equal to V ). In the case of superkinks, the energy released in

the frontal part is at least partially re-acquired in the back part,

and for this the system can use lattice waves whose group

velocity is smaller than the phase velocity. At any rate, to

support all the three types of the fronts, the dispersion must

be sufficiently complex, which is of course the case for the

original discrete model.

To support this intuitive picture, it is instructive to intro-

duce the notion of the local energy variation inside the strain

interval connecting the limiting states ε+ and ε−. Since the

actual trajectory in the stress-strain space is not known, we

can consider energy variation along the Rayleigh line which

ensures the conservation of the macroscopic mass and mo-

mentum. The corresponding auxiliary function was intro-

duced in [110] and in our notation it takes the form

G(ε, ε+) = φ(ε)− φ(ε+)− (ε− ε+)Σ(ε),

where

Σ(ε) = σ(ε+) +
ρV 2

2
(ε− ε+)

is the average of σ(ε+) and the stress taken along the

Rayleigh line. One can show that the limiting states ε+ and

ε− correspond to the extrema of the potential G with respect

to ε. Note also that the reference energy is chosen in such a

way that

G(ε+, ε+) = 0,

which means that the energy level assigned to the state ahead

of the jump ε = ε+ is zero. On the other hand, the overall dis-

sipative (or non-dissipative) nature of each type of the fronts

is reflected by the fact that at the final state ε = ε− we have

G(ε+, ε−) = −G ≤ 0.

In this way the implied energy landscape describes the en-

ergy variation inside the moving front independently of its

type. However, it is important to remember that the function

G does not describe the actual variation of the energy inside

the moving front, as we still do not refer to any particular

dispersive mechanisms operating inside the transition zone.

The behavior of G as a function of ε for all three types

of transition fronts is shown schematically in Fig. 4. As ex-

pected, the effective energy landscapes for different univer-

sality classes are also qualitatively different. Thus, for sub-

kinks, in addition to dissipation, which is expressed by the

fact that the minimum at ε− is lower than the minimum at

ε+, there is also an energy barrier in between that needs to be

overcome. Crossing this barrier requires energy to be contin-

uously transmitted by dispersion from the downstream, where

it is continuously released. For shocks, there is no barrier,

and the continuously released energy must be fully removed,

with none of it being reabsorbed. Finally, for superkinks,

there is no dissipation (as will be confirmed later). How-

ever, in this case there is an anti-barrier, and energy transmis-

sion by dispersion is still necessary, but now from upstream

to downstream. Note also that since the barriers exist in the

case of kinks and not shocks, the former can be considered

as topological ‘lattice defects’, while the latter remain non-

topological.

III. QUASICONTINUUM MODEL

The scale-free approximation we used to obtain the contin-

uum model does not reveal the fate of the energy dissipated

on the localized transition front and does not explain which

additional macroscopic jump condition must be chosen in the

case of subkinks and superkinks. To answer these questions

we may simply solve the discrete problem. The qualitative in-

formation can be also obtained from a quasicontinuum (QC)

approximation with sufficiently rich dispersion to adequately

mimic the subcontinuum energy transport [95, 96].

In this section we show that the minimal QC approxima-

tion of the FPU model capturing all of the dynamic regimes

of interest can be constructed following the general approach

proposed in [99]. The plan is to focus on temporal dispersion

and introduce internal scales into the expression of kinetic

energy, while keeping the elastic energy as in the scale-free

theory. The main idea dates back to the theory of rotational

inertia of beams by Rayleigh [111], with subsequent gener-

alizations for other dispersive problems [112, 113]. While in

the context of discrete lattices, the QC theories of this type

have been previously considered repeatedly [114–118], we

show below that even the simplest QC theory, targeting all

three universality classes, must necessarily include some new

elements.

A. Main equations

To construct the QC approximation systematically, we set

x = nh, and introduce the variables ε(x, t) = εn(t) and

σ(x, t) = σ(εn(t)), viewed as functions of continuous space

and time. We can then rewrite the infinite system (2) as a

single advance-delay partial differential equation, which after

the spatial Fourier transform takes the form

ρh2
d2ε̂

dt2
= 4 sin2

(

kh

2

)

σ̂, (10)

where f̂(k, t) =
∫∞

−∞
f(x, t) exp (ikx) dx is the Fourier

transform of f(x, t). To simplify the problem and develop

the corresponding long-wave asymptotic expansion, in what

follows we assume that kh≪ 1.

To adequately describe the temporal dispersion [99], we

use the (2, 4) Padé approximation of sin2(kh/2) in kh which

affects the kinetic energy, while preserving the classical con-

tinuum form of the elastic energy. This yields

4 sin2(kh/2) ≈ (kh)2

1 + a1(kh)2 + a2(kh)4
, (11)



6

ε εc

ε
ε

G

 (ε, ε)

(a)

ε

εc ε
ε

G

 (ε, ε)

(b)

ε

εc
ε ε

 (ε, ε)

(c)

Figure 4. Different behavior of the dissipation function G(ε, ε+): (a) subkinks, V < c1, (b) shocks, c1 < V < c2, (c) superkinks, V > c2.

where a1 = 1/12 and a2 = 1/240. The need to retain exactly

two subcontinuum terms in this approximation is dictated by

the requirement that the resulting QC model is minimal, as

will be explained below. We note that in addition to yielding

bounded dispersion relations for the two linear regimes, as

will be seen below, the expansion in Eq. (11) is accurate up

to O(k8) near k = 0, and thus provides a long-wave approx-

imation of the discrete Laplacian operator. Other choices of

Padé approximations are discussed in [96, 119–121].

Substituting the expansion in Eq. (11) into Eq. (10) and

mapping it back into physical space we obtain, after integra-

tion,

ρ

(

1− a1
∂2

∂x2
+ a2

∂

∂x4

)

∂2u

∂t2
=
∂σ

∂x
, (12)

where u(x, t) is the displacement field defined by the rela-

tion ux = ε; here we also used the scaling x̃ = x/h but

dropped the tildes in order to simplify the expressions. The

single partial differential equation (12) represents the desired

QC approximation of the infinite FPU system (1) of ordinary

differential equations.

To reveal the structure of the augmented kinetic energy

term, we now derive the equation (12) from the Hamiltonian

action principle. We start with the sufficiently general action

functional of the form

A =

∫

Ω

L(u,i , u,ij , u,ijk) dq
1dq2, (13)

where L is a Lagrangian density, q1 = x is the spatial coordi-

nate, q2 = t denotes time, and the subscripts after the comma

indicate partial derivatives with respect to q1 and q2. The in-

tegration in Eq. (13) is over the two-dimensional space-time

domain Ω representing the evolving body between the time

instants t = t0 and t = t1. The deformation history is given

by the function u(qa), a = 1, 2. Given the structure of the

action functional we can write the Euler-Lagrange equations

in the form [122]

(

∂L/∂u,i − (∂L/∂u,ij),j + (∂L/∂u,ijk),jk

)

,i
= 0, (14)

where here and in what follows the summation over repeated

indices is implied. To obtain Eq. (12) from Eq. (14), we need

to specify the Lagrangian. It is not difficult to see that the de-

sired equation will be obtained if we consider the Lagrangian

in the form

L = (ρ/2)(u2t + a1u
2
tx + a2u

2
txx)− φ(ux). (15)

Here the density of the elastic energy φ(ux) is the same as

in the classical continuum theory, while two sub-continuum

terms with mixed derivatives appear in the expression of the

kinetic energy. While the ‘micro-kinetic’ term a1u
2
tx is now

standard (see, e.g., [116, 123]), to our knowledge, the next

term in the expansion, a2u
2
txx, has not been used construc-

tively before.

The advantage of using the variational principle is that it

allows one to derive not only the governing equation but also

the corresponding jump conditions. This is relevant because

despite regularization provided by the high derivative terms

in the energy, our piecewise linear QC theory is still non-

smooth at the transition point ux = εc. The corresponding

generalization of the RH jump conditions, compatible with

our higher order QC theory, emerges as a natural consequence

of extremality of the action functional. Indeed, if the space-

time domain Ω contains a surface Γ of discontinuity, the stan-

dard Euler-Lagrange equations must be supplemented by the

additional necessary conditions of extremality localized on

Γ. In our case the surface Γ is characterized by the condition

ux = εc, so JuK = 0. While the particle trajectories are con-

tinuous on Γ, some derivatives of the displacement field may

be discontinuous. We interpret the constraints on such singu-

lar surfaces imposed by the action principle as the dispersive

Rankine-Hugoniot (DRH) jump conditions.

Using the standard manipulations detailed, for example, in

[122], we obtain

J∂L/∂u,i − (∂L/∂u,ij),j + (∂L/∂u,ijk),jkKni = 0, (16)

J∂L/∂u,ij − (∂L/∂u,ijk),kKninj = 0. (17)

J∂L/∂u,ijkKninjnk = 0. (18)

Here na is the unit vector normal to Γ facing the + direc-

tion; the spatial (n1) and the temporal (n2) components of
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such normal are related through n2 = −n1V , where V is the

velocity of the discontinuity.

The necessary conditions (16), (17) and (18) of extremality

must be supplemented by the kinematic compatibility condi-

tions

Ju,iK = µni,

where µ is a scalar. Eliminating µ, we obtain an auxiliary

jump relation

JutK + V JuxK = 0. (19)

which represents the balance of mass across the discontinuity.

In our special case the three DRH conditions (16), (17) and

(18) reduce to

ρV Jut − a1utxx + a2utxxxxK + Jσ(ux)K = 0, (20)

Ja1utx − a2utxxxK = 0 (21)

Ja2utxxK = 0 (22)

To satisfy all these conditions, we assume that JutK = 0 and

JutxK = 0. Then JuxK = 0, while the two conditions (21) and

(22) reduce to JutxxxK = 0 and JutxxK = 0, respectively. The

condition (20) reduces to

ρa2V JutxxxxK + Jσ(ux)K = 0. (23)

The derived jump conditions guarantee that the physical de-

scription of the phenomena in the bulk and on the discontinu-

ity surface are exactly the same.

B. Dimensionless formulation

In what follows, we use dimensionless variables

Ṽ =
V

c1
, σ̃ =

σ

E1
, σ̃0 =

σ0
E1
,

with tildes dropped to simplify notation. The system is con-

trolled by the dimensionless parameters εc and

γ =

√

E2

E1
> 1.

For the analysis presented below, it is convenient to work with

the following equation obtained by differentiating the dimen-

sionless version of Eq. (12) with respect to x:

(

1− a1
∂2

∂x2
+ a2

∂

∂x4

)

∂2ε

∂t2
=
∂2σ

∂x2
(24)

C. Traveling waves

To find steadily moving transition fronts, we seek solutions

of Eq. (24) in the form of traveling waves:

ε(x, t) = ε(η), η = x− V t. (25)

We place the front separating two linear regimes at η = 0
and thus require that the following consistency condition is

satisfied:

ε(0) = εc. (26)

Moreover, we consider the solutions admissible only if they

satisfy the inequalities

ε(η) > εc for η < 0, ε(η) < εc for η > 0. (27)

Since our solutions can be expected to contain phonon radi-

ation at ±∞, we formulate the boundary conditions in the

form

〈ε(η)〉 → ε± as η → ±∞, (28)

with constant limits ε± constrained by the standard RH con-

dition (6) with stress-strain law given by Eq. (3), which in the

dimensionless formulation becomes

ε− =
(V 2 − 1)ε+ − σ0

V 2 − γ2
. (29)

The angular brackets in Eq. (28) denote the average over the

period of the short-wave oscillations representing phonon ra-

diation; more generally,

〈ε(η)〉 = lim
τ→∞

1

τ

∫ η+τ

η

ε(ζ)dζ.

The admissibility conditions in Eq. (27) require that ε+ <
εc, and ε− > εc. Physically, this means that the moving

transition front performs the switching from one branch of

the piecewise linear stress-strain curve to another.

Substituting Eq. (25) into Eq. (24), integrating twice and

taking into account the boundary conditions (28), we obtain

the ordinary differential equation

V 2

[

1− a1
d2

dη2
+ a2

d4

dη4

]

ε(η) = σ(η)+(V 2−1)ε+, (30)

where

σ(η) = ε(η)H(η) + (γ2ε(η)− σ0)H(−η), (31)

and H(η) is the Heaviside function. We also need to apply

the following jump conditions at η = 0:

JεK = Jdε/dηK = 0, (32)

q
d3ε/dη3

y
= 0,

q
d2ε/dη2

y
= 0. (33)

It is straightforward to check that the condition (23), which

takes the form Jσ(η)K − a2V
2
q
d4ε/dη4

y
= 0, is satisfied

automatically.

D. Mechanical radiation

Since Eq. (30) is piecewise linear, it can be solved explic-

itly. The analytical solution in each of the two linear regimes
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Figure 5. The characteristic roots in the quasicontinuum model when (a) V < 1, (b) 1 < V < γ, (c) V > γ. Due to symmetry, only the

roots with ℑk ≥ 0 and ℜk ≥ 0 are shown. Insets show the dispersion relations and real roots as intersections with the line V k.

can be written as a combination of linear waves whose fre-

quencies and wave numbers satisfy the characteristic equa-

tions

ω2
±(k)− V 2k2 = 0, (34)

where ω+(k) and ω−(k) are the dispersion relations defined

by

ω2
+(k)

k2
=
ω2
−(k)

(γk)2
=

1

1 + a1k2 + a2k4
(35)

and shown in the insets of Fig. 5. The double root of (34) at

k = 0 is responsible for a linear term in the solution, and due

to the assumption of boundedness, it contributes only con-

stants in each domain of linearity. Due to the even symmetry

of the functions ω±(k), the four nonzero roots of (34), which

we denote by k±j , j = 1, 2, 3, 4, must satisfy k±3 = −k±1 and

k±4 = −k±2 . Therefore it suffices to seek nonzero roots with

ℑk > 0 and ℜk > 0, where ℜk and ℑk are real and imag-

inary parts of k, respectively. The structure of the roots for

three different types of fronts is shown in Fig. 5.

Of principal importance for the description of phonon radi-

ation produced by the moving front are the nonzero real roots

of (34). The corresponding points of intersection of ω±(k)
and V k are marked in the insets of Fig. 5. When V < 1
(subkinks), a symmetric pair of such roots ±k± exists for

each domain of linearity: when 1 < V < γ (shocks), only

the roots ±k− remain, and, finally in the case of superkinks

V > γ there are no nonzero real roots at all. Since each

nonzero real root describes energy radiation to and from the

moving front, the superkinks can potentially receive but can-

not dissipate energy in the form of radiated waves.

To exclude the energy flux from infinity (anti-dissipation,

which can be sometimes interpreted as an AC driving [124]),

we must impose the radiation conditions disqualifying some

of the waves associated with the real roots. In our case these

conditions, comparing the velocity of the energy propagation

(group velocity) with the velocity of the front, take the form

[80, 87]

ω′
+(k) > V, ω′

−(k) < V. (36)

Since the functions ω±(k) are known, these conditions are

explicit. They leave only one real root component of the so-

lution in the case of subkinks and shocks.

E. General solution

We observe that the whole configuration of the roots of the

characteristic equations (real and complex) changes depend-

ing on the values of V . The nonzero roots are given by ±k±1,2,

where

k+1,2 =
√
2

√

−5∓
√

5(12− 7V 2)

V
,

k−1,2 =
√
2

√

−5∓
√

5(12γ2 − 7V 2)

V
.

(37)

More specifically, for the state ahead of the moving front we

have the following three regimes:

k+1 = ip, k+2 = s, V < 1,

k+1,2 = ip1,2, 1 < V < V∗,

k+1,2 = ∓id+ f, V > V∗.

(38)

For the state behind the front we have the same three regimes

but in different V ranges:

k−1 = iq, k−2 = r, V < γ,

k−1,2 = iq1,2, γ < V < V∗∗,

k−1,2 = ∓ig + w, V > V∗∗.

(39)

Explicit expressions for the real and positive functions p(V ),
s(V ), p1,2(V ), d(V ), f(V ), q(V ), r(V ), q1,2(V ), g(V ) and

w(V ) can be extracted from (37). The critical values

V∗ =
√

12/7, V∗∗ = γ
√

12/7 > V∗

are the artifacts of the QC approximation, which, as we show

below, do not have any fundamental meaning.

Applying the radiation conditions (36) and the boundary

conditions (28), we can write the general solutions corre-

sponding to all three types of transition fronts. In particular,

in the case of subkinks (V < 1), the solution takes the form

ε(η) =
{

ε− +B1e
qη +B2 cos(rη) +B3 sin(rη), η < 0

ε+ +A1e
−pη, η > 0.

(40)
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One can see that for subkinks there is one unknown coeffi-

cient on the + side and three on the − side. All of them can

be found from the consistency, continuity, RH and DRH con-

ditions. Indeed, the consistency condition (26) and the first

of the continuity conditions in Eq. (32) yield in this case the

relations

ε+ +A1 = εc = ε− +B1 +B2. (41)

This allows us to eliminate ε±. Using the RH condition (29),

the second continuity condition in Eq. (32) and the DRH con-

ditions (33), we then obtain the system of linear equations for

the coefficients in Eq. (40):

−C0A1 +B1 +B2 = b

pA1 + qB1 + rB3 = 0,

p2A1 − q2B1 + r2B2 = 0,

p3A1 + q3B1 − r3B3 = 0,

where

C0 =
V 2 − 1

V 2 − γ2
, b = (1− C0)εc +

σ0
V 2 − γ2

.

The system yields explicit expressions for the four unknown

coefficientsA1, B1, B2 and B3 as functions of V that are not

provided here to simplify the exposition. The expressions for

ε±(V ) are then found from Eq. (41).

For shocks and superkinks (V > 1) the structure of the

roots in Eq. (38) and Eq. (39) changes depending on the value

of V relative to the thresholds V∗ and V∗∗. To account for this,

it is convenient to introduce the shortcuts

λ1,2 =

{

−p1,2, 1 < V < V∗
−d± if, V > V∗

and

µ1,2 =

{

q1,2, γ < V < V∗∗
g ± iw, V > V∗∗.

Then for shocks (1 < V < γ) we have

ε(η) =
{

ε− +B1e
qη +B2 cos(rη) +B3 sin(rη), η < 0

ε+ +A1e
λ1η +A2e

λ2η, η > 0,

(42)

with two unknown coefficients on + side and three on − side

(for V > V∗ the two nonconstant terms at η > 0 are complex

conjugate since λ2 = λ̄1 and A2 = Ā1). The conditions

(26), (29), (32) and (33) yield ε+ + A1 + A2 = εc = ε− +
B1 + B2 and the following linear system for the coefficients

in Eq. (42):

−C0(A1 +A2) +B1 +B2 = b

λ1A1 + λ2A2 − qB1 − rB3 = 0,

λ21A1 + λ22A2 − q2B1 + r2B2 = 0,

λ31A1 + λ32A2 − q3B1 + r3B3 = 0.

(43)

This system of four equations does not allow one to find all

five unknown coefficients A1, A2, B1, B2 and B3 as func-

tions of V . In other words, the structure of shocks is not fully

determined internally, which in turn means that ε± cannot be

determined as functions of V . All parameters are fully de-

fined in this case only if we provide one additional external

condition, for example, ε+ = 0, which impliesA1+A2 = εc.
In the range V > γ (superkinks) the solution reads

ε(η) =

{

ε− +B1e
µ1η +B2e

µ2η, η < 0

ε+ + A1e
λ1η +A2e

λ2η, η > 0,
(44)

with λ2 = λ̄1, A2 = Ā1 for V > V∗ and µ2 = µ̄1, B2 = B̄1

for V > V∗∗. In this case there are two unknown coefficients

on each side of the front, so the solution is again fully spec-

ified by conditions (26), (29), (32) and (33), which yield the

linear system

−C0(A1 +A2) +B1 +B2 = b,

λ1A1 + λ2A2 − µ1B1 − µ2B2 = 0,

λ21A1 + λ22A2 − µ2
1B1 − µ2

2B2 = 0,

λ31A1 + λ32A2 − µ3
1B1 − µ3

2B2 = 0.

for the four unknown coefficients A1, A2, B1, B2 that can

be found as explicit functions of V , as well as the relations

ε+ + A1 + A2 = εc = ε− + B1 + B2, which allows one to

find the two remaining functions ε±(V ).
To summarize, after using the conditions (36), (28), (26)

and the first condition in Eq. (32), we are left in the range

V < 1 (subkinks) with one unknown coefficient on + side

and three on − side (a single exponential boundary layer and

a radiated wave). All of them can be found from the four

conditions: the second condition in Eq. (32), Eq. (29) and

Eq. (33). When 1 < V < γ (shocks) we are left with two

coefficients on + side and three on − side (a radiated wave

and a single exponential boundary layer) and only four con-

ditions. This leaves one of the constants in the corresponding

linear system (43) undetermined. Finally, in the range V > γ
(superkinks) there are two coefficients on each side, so the

solution is again fully specified by the four conditions.

Once the strain field is determined in each regime, particle

velocity is found from v(η) = −V ε(η).

F. Discussion

Now that the mathematical structure of traveling wave so-

lutions is well understood, we provide a physical interpreta-

tion of the results that furnishes a somewhat more intuitive

explanation of the fundamental differences between the three

types of transition fronts.

Observe first that in all three cases, the traveling wave so-

lutions describing the transition fronts can be written in the

same general form

ε(η) = ε± + Λ±(η) + Φ±(η), η ≷ 0, (45)

Here the functionsΛ±(η) depend on the real roots of the char-

acteristic equation and describe the radiative part of the solu-

tion. The functions Φ±(η) depend on the non-real complex
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roots and describe the exponentially localized boundary lay-

ers on both sides of the moving fronts. The constant terms

in (45) are due to the double root at the origin; the strains ε±
correspond to the averaged states at η → ±∞ and satisfy the

classical RH condition (29).

We now consider in more detail the radiative component of

the solution Λ±(η). We have seen that to exclude the energy

flux from infinity (radiation condition), we need to set (in all

three cases) that radiation is absent ahead of the front, so that

Λ+(η) = 0.

Moreover, while all three solutions obtained above in equa-

tions (40), (42) and (44), have the form (45), the nontrivial

radiation component (behind the moving front) exists only

for subkinks and shocks and can be written as

Λ−(η) = 2α− cos (rη + β−), (46)

with α−, β− expressed in terms of B2 and B3 in Eq. (40)

and Eq. (42). Thus, both subkinks and shocks radiate (dissi-

pate) energy. In contrast, the superkinks are completely free

from radiation (dissipation), since in this case we also have

Λ−(η) = 0.

We now turn to the boundary layer terms Φ±(η). For

subkinks it involves a single decaying exponential term on

each side of the front (Φ+(η) = A1e
−pη, Φ−(η) = B1e

qη);

see Eq. (40). For shocks, there is a single exponential de-

cay behind the front (Φ−(η) = B1e
qη), while ahead of

it the decay is double exponential (Φ+(η) = A1e
−p1η +

A2e
−p2η) when 1 < V < V∗ and oscillatory (Φ+(η) =

2e−dη[ℜ(A1) cos(fη)−ℑ(A1) sin(fη)]) when V∗ < V < γ
(see Eq. (42)). For superkinks, there is a similar transition

from double exponential to oscillatory decay ahead of the

front at V = V∗ if γ < V∗ and behind it at V = V∗∗ (see

Eq. (44)). As the analysis of the discrete problem presented

below shows, both double exponential and oscillatory decay

are artifacts of the chosen QC approximation.

As we have seen, for both types of kinks all parameters

of the traveling wave, and in particular, the limiting states

ε±, are fully determined by the front velocity V . This means

that the kinetic relations G = G(V ), whose absence in the

classical continuum description produced the fundamental ill-

posedness of the problem, are now fixed through the recovery

of the internal structure of the kinks. In other words, such

fronts are fully autonomous in the sense that their kinetics is

fully controlled by the microscopic dispersion. For instance,

if the state in front of the moving kink ε+ is known, then both

the state behind, ε−, and the velocity of the front V are fully

determined.

In contrast, in the case of shocks, the knowledge of V is

not sufficient to determine both ε±, and one of the limiting

strains remains as a free parameter. As a result, no particular

kinetic relation in the form G = G(V ) emerges from the re-

construction of the internal structure of such transition front.

In other words, in the case of shocks, the knowledge of the

state ahead is not sufficient for complete specification of the

remaining parameters and for fixing the internal structure of

the transition. This means, for instance, that in addition to the

state ahead of the front ε+, another piece of information has

to be prescribed by the external (non-traveling-wave) solution

in order to make the front velocity V known.

G. Characteristics

The obtained QC picture is in full agreement with what we

have learned by studying the classical continuum approxima-

tion in Sec. II. There we found that kinks are different from

shocks primarily due to the difference in the number of in-

coming characteristics shown in Fig. 3.

In particular, Fig. 3 shows that for both types of kinks two

characteristics are bringing information to the front. Since in

our analysis of the internal structure of the transition fronts

we eliminated particle velocities v(η), we may always as-

sume that this information concerns the limiting values v±.

Therefore, we can conclude that in the case of kinks, no infor-

mation about one of the limiting strains ε± is arriving from

outside. Thus, to fix the unknown limiting strain and to ul-

timately specify the front velocity V , the system must rely

exclusively on the internal dispersive machinery. The anal-

ysis of the QC approximation shows that such machinery is

indeed in place delivering all of the unknown quantities.

In contrast, in the case of shocks, the classical continuum

model tells us that the three characteristics are coming from

outside. Therefore, the system can use one additional piece

of external information to fix the limiting strains ε± and to

specify the front velocity V . In this case, the internal dis-

persive structure of the front does not have an autonomy and

simply adjusts to the conditions imposed from the outside.

Remarkably, this is exactly what our study of the dispersive

QC model have shown: for shocks the internal traveling wave

solution is (one-parameter) underdetermined, and to make the

global problem well posed a single additional piece of infor-

mation is needed. Such information is then naturally provided

by the additional incoming characteristic that does exists in

the case of shocks.

H. Dynamical system

Since all three types of transition fronts represent traveling

wave solutions of the fourth order ordinary differential equa-

tion (30), it is of interest to examine them from the point of

view of the theory of dynamical systems. In this perspec-

tive they emerge as fundamentally different types of hete-

roclinic trajectories connecting various types of attractors in

the four-dimensional phase space. The nature of such attrac-

tors depends on the structure of the roots of the characteristic

equations, which control the asymptotic behavior of the het-

eroclinic trajectories as η → ±∞. The knowledge of these

asymptotics is sufficient to distinguish between the different

universality classes of the transition fronts.

For example, in the case V < 1 (subkinks) the tran-

sition fronts correspond to heteroclinic trajectories of the

type center-saddle to center-saddle. Such transitions are

non-generic and are possible due to the sufficiently high di-

mensionality of our dynamical system. More specifically,

they are captured by our QC approximation because the lat-

ter includes the minimal number of the higher order dis-

persive corrections to the classical continuum model which

makes the corresponding phase space four-dimensional. At

η = −∞ the heteroclinic trajectory describing subkinks un-
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winds as the center-related separatrix. The corresponding

two-dimensional center effectively describes the radiation be-

hind the moving subkink, while the saddle-related component

of the asymptotics describes the exponent boundary layer. At

η = +∞ this trajectory ends as a saddle-related separatrix,

which describes the exponential boundary layer ahead of the

moving front.

Similar considerations can be applied to shock and su-

perkink trajectories. For simplicity, we assume in what fol-

lows that γ <
√

12/7 and V <
√

12/7. This eliminates

the oscillatory decay for shocks and superkinks, which, as

we have discussed, is an artifact of the QC approximation.

In the range 1 < V < γ (shocks) the corresponding hete-

roclinic orbits are of the type center-saddle to saddle-saddle.

Such transitions are clearly generic. At η = −∞ the hetero-

clinic trajectory unwinds again as a center-related separatrix

describing radiation behind the front. The center-related part

of the asymptotics describes again the exponential boundary

layer. At η = +∞ the trajectory ends as a saddle-related sep-

aratrix describing the exponential decay ahead of the front.

Finally, for V > γ (superkinks) the corresponding orbit is

of saddle-saddle to saddle-saddle type. Such transitions are

again non-generic. In this case the heteroclinic trajectory

starts as a saddle-related separatrix describing the exponen-

tial decay behind the front and ends again as a saddle-related

separatrix describing the boundary layer ahead of the front.

We have thus confirmed that the physical nature of the all

three types of the transition fronts described by the general

Eq. (12) is fully consistent with the asymptotic behavior of

the heteroclinic trajectories at η → ±∞. The fact that the

latter is controlled by the structure of the roots of the char-

acteristic equations characterizing the corresponding attrac-

tors goes beyond the adopted piecewise linear approxima-

tion of the stress-strain relation. Thus, even without such

an assumption the subkinks can be expected to correspond

to non-generic transition fronts that are described by center-

saddle to center-saddle trajectories and generate their own ki-

netic relations. Such transitions, however, would be possible

only if sufficiently higher order dispersion is included into

the model. Similarly, even in a smoother model shocks corre-

spond (under our assumptions) to the heteroclinic orbits that

are generic saddle-saddle to center-saddle trajectories, which

do not generate any specific kinetic relations. Finally, under

the same assumptions superkinks are non-generic transitions

described by the saddle-saddle to saddle-saddle heteroclinic

orbits. The fact that all possible types of sufficiently low-

dimensional non-dissipative attractors are accounted for sug-

gests that the proposed classification of the transition fronts

is exhaustive.

I. Dissipation rate

In the dispersively regularized setting the jump discontinu-

ities of strain and velocity that are present in the classical con-

tinuum theory are replaced by the extended transition zones.

In addition, the energy released on such jumps in the contin-

uum theory no longer disappears locally. Instead it is chan-

neled by nonlinearity from long to short waves and radiated

away from the moving front in the form of lattice waves. In

the piecewise linear theory it is transported by such waves to

infinity. In other words, despite the absence of explicit damp-

ing, the effective dissipation takes place due to the energy

escape by phonon radiation.

The developed QC model allows one to trace all these pro-

cesses in full detail. In particular, one can compute explicitly

the thermodynamic driving forceG for all three types of tran-

sition fronts and determine the corresponding rate of energy

dissipation R = GV ≥ 0. Based on the analysis of the exist-

ing modes of radiation, one can see that R is strictly positive

for subkinks and shocks but equals zero for superkinks.

More specifically, depending on the structure of the real

roots of the characteristic equations, the transition front may

or may not emit elastic waves. In general, we have R = R++
R−, where

R+ =
∑

k∈N+

〈E+(k)〉(ω′
+(k)− V ) = G+V,

R− =
∑

k∈N−

〈E−(k)〉(V − ω′
−(k)) = G−V,

(47)

and G+ and G− are the cumulative energy fluxes associated

with emitted elastic waves ahead and behind the front, re-

spectively. Here N± = {k : ℑk = 0, ℜk > 0, ω±(k) =
V k, ω′

±(k) ≷ V } is the set of positive real roots of the char-

acteristic equation for corresponding linear regime that sat-

isfy the radiation conditions (36), and E±(k) are the energy

densities associated with the corresponding modes, averaged

over the corresponding time period T = 2π/ω±(k), with

〈f〉 = T−1
∫ T

0
fdt. The energy is transported away from

the front with relative velocities ω′
±(k)− V [125].

From the structure of the exact solutions of the QC model

one can see that the set N+ is empty for all transition fronts.

Thus, independently of the front type there is no radiation of

phonons ahead of the front, and G+ = 0. In the superkink

regime, N− is also empty, and therefore G− = 0 as well,

yielding R = 0. We recall that in the case of subkinks and

shocks there is a single emitted lattice wave mode with wave

number r > 0 propagating in the region η < 0, so that N− =
{r}. The associated energy with the density

E−(r) =
V 2

2

(

Λ2
− + a1(Λ

′
−)

2 + a2(Λ
′′
−)

2
)

+
γ2

2
Λ2
−.

averaged over the period 2π/ω−(r), is transported backwards

relative to the moving front with the relative velocityω′
−(r)−

V [125]. This yields the driving force G = G− + G+ given

by

G = G− = 2γ2(α−)2ω2
−(r)

(

1− ω′
−(r)

V

)

> 0,

where we recall that α− is half of the amplitude of the radia-

tion contribution to the solution defined in Eq. (46) and can be

obtained from Eq. (40) and Eq. (42) for subkinks and shocks,

respectively. The difference is that for subkinks the function

G(V ) is known once and for all, while for shocks we can only

obtain a one-parametric family of such functions.
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J. Admissibility
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Figure 6. Admissibility sets of solutions of the QC problem. In the

blue region we have ε(η) ≤ εc for some intervals of η < εc, and

its dotted lower boundary marks the threshold ε− = εc. The insets

show examples of the strains ε(η), with horizontal lines marking

ε = εc. Here γ2 = 1.5, εc = 1, and we set ε+ = 0.

We recall that the explicit expressions for the general solu-

tion of the piecewise linear problem are invalid if the admissi-

bility conditions (27) are violated. Therefore the inequalities

ε(η) > εc for η < 0 and ε(η) < εc for η > 0 must be

checked a posteriori, which means that some of the formally

constructed solutions may have to be discarded [84, 126].

The analysis of the global behavior of the obtained strain

fields shows that all subkinks with V < 1 and all superkinks

with V > γ are automatically admissible. In both of these

cases the transition fronts can be represented in the space

of parameters ε+ and ∆σ by one-dimensional manifolds be-

cause the velocity of the front is determined uniquely by the

corresponding kinetic relation. In the case of shocks, which

can be either admissible or inadmissible, the velocity V is

not determined internally. Therefore, shocks occupy a two-

dimensional (2D) domain in the (ε+, ∆σ) plane. This do-

main is further divided into two subdomains: at sufficiently

large values of ∆σ shocks are admissible, while those located

below a certain threshold are inadmissible. The inadmissible

shocks show the repeated crossing of the εc threshold by the

oscillatory tail behind the moving front.

The admissibility diagram in (V, ∆σ) plane is shown in

Fig. 6, where we fixed ε+ = 0. The insets illustrate the ana-

lytical solutions describing different types of transition fronts.

The 2D domain of shocks on this diagram is bounded on two

sides by the condition 1 < V < γ and from below by the

dotted line below which ε− < εc. One can see that only the

shock solutions in the pink (upper) region above the threshold

values ∆σ∗(V ) marked by a solid black curve are admissible,

while the ones in the blue (lower) region are inadmissible.

This is illustrated on the corresponding inset by the multiple

crossings of εc (the dash-dotted horizontal line) by the strain

profile ε(η).
To understand which solutions replace shocks in the ‘for-

bidden’ region, we need to resort to simulations. Using direct

numerical simulations of Eq. (12) for a sufficiently broad set

of initial data we can also numerically test the stability of the

admissible transition fronts.
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Figure 7. Different regimes of front propagation in the QC model

with the parameters γ2 = 1.5 and εc = 1 at t = 50: (a) subkink

(εl = 6, ∆σ = 2.5); (b) conventional shock (εl = 10, ∆σ = 2.5);

(c) dispersive shock (εl = 10, ∆σ = 0); (d) superkink (εl = 6,

∆σ = −1.5).

K. Numerical simulations

We solve Eq. (24) in the finite domain x ∈ (0, 200) with

the Riemann-type initial data

ε(x, 0) =

{

εl, x < 100,

0, x ≥ 100,

∂ε

∂t
(x, 0) = 0.

using the implicit fourth-order conservative finite-difference

method developed in [127]. The first and second spatial

derivatives of strain are set to zero at the boundaries. The

emergence of particular transition fronts, as an outcome of

the breakdown of the initial state, will then depend on the

choice of the parameters ∆σ and εl.
The results are summarized in Fig. 7, which shows time

snapshots near the end of four different simulations. In each

simulation we have chosen a particular set of parameters

εl and ∆σ to reach one of the four structurally dissimilar

regimes shown in Fig. 6.

While in all presented snapshots we observe complex

breakdown patterns, most of their elements correspond to lin-

ear dispersive pulses with their characteristic overshoots. To

identify genuinely nonlinear substructures one needs to look

for the patterns magnified in the insets in Fig. 6. Thus, the

inset in Fig. 7(a) shows an admissible subkink moving to the

right. The comparison of the internal structure of such nu-

merically generated wave profile with the corresponding ana-

lytical solution shows perfect agreement, which confirms that

the transformation fronts of this type can indeed serve as dy-

namical attractors. Similarly, the inset in Fig. 7(d) shows an
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admissible superkink moving to the right, which also matches

the analytical waveform and points towards stability of the

corresponding traveling wave solution. An admissible shock

is shown in the inset of Fig. 7(b), and we again see that the

analytical profile is reproduced faithfully and conclude that

such transition fronts can be stable. The remaining panel (c)

of Fig. 7 corresponds to parameter values that target inadmis-

sible shocks. Not surprisingly, we do not observe a traveling

wave profile in this case. Instead, the nonlinear structure that

we see is reminiscent of a non-steady dispersive shock wave

(DSW).

Our broader numerical experiments strongly suggest that,

in the whole domain of non-admissibility, shock traveling

waves are replaced by DSWs. This result, obtained so far

only in the QC setting, will be confirmed below by a sim-

ilar analysis of the original discrete problem. We recall

that DSWs have been extensively studied using various other

QC approximations of the FPU system (see, for example,

[100, 102, 128–130]). We can then conclude that in our

regime diagram shown in Fig. 6 the domain of inadmissi-

ble shocks should be interpreted as a domain of stability of

DSW type non-steady (spreading) transition fronts. The ab-

sence of steadily moving shock fronts in the FPU model with

convex energy density (∆σ ≤ 0 in our problem) is well

known. It has been previously linked to the low dimension-

ality (lack of transversal radiation) and the absence of irre-

versibility (purely elastic constitutive modeling), which is a

ubiquitous feature of the real crystals [131–133]. Here by

allowing regimes with ∆σ > 0 we acquire a limited para-

metric domain where stable stationary shocks exist. One can

argue that the implied nonconvexity, which allows the system

to accommodate large-amplitude lattice waves transmitting

radiated energy away from the moving front, is the way to

bring multivaluedness into the constitutive response, which

ultimately imitates the inherent multistability of the plastic

response. That one-dimensional shock traveling waves are

not possible under the assumption of energy convexity is con-

firmed in our numerical simulation results by the appearance

of the inadmissible region in the regime diagram, where the

steadily moving transition fronts are replaced by the spread-

ing DSW profiles.

To summarize, the analysis of the dispersively regularized

QC model allowed us to clarify the ambiguities left by the

classical continuum description. In such essentially micro-

scopic model all three classes of transition fronts acquired

their natural raison d’être, with the numerical simulations

providing confirmation of the exhaustiveness for the proposed

classification. It is rather remarkable that such a task could be

accomplished using a relatively simple QC approximation of

the original discrete problem. Note, however, that the chosen

approximation was not of the lowest order, and to capture the

complete picture we had to introduce two internal time scales

and modify the kinetic rather than elastic energy. As we show

in the next section, the obtained description is fully adequate

when compared to the results discussed below for the discrete

model.

IV. DISCRETE MODEL

We now analyze the dimensionless version of the original

FPU problem (2), which takes the form

d2εn(t)

dt2
= σ(εn+1)− 2σ(εn) + σ(εn−1), (48)

with bilinear interactions σ(ε) = ε at ε < εc, and σ(ε) =
γ2ε − σ0 at ε > εc. The dispersion relations in each linear

regime are defined by

ω2
+(k) = ω2

−(k)/γ
2 = 4 sin2 (k/2) (49)

and are much more intricate than in the QC model due to the

presence of lattice resonances and the richness of the spec-

trum of available lattice-scale waves. Therefore the analysis

of the discrete problem can potentially challenge the descrip-

tion of the energy radiation provided by the QC model.

To find the corresponding traveling waves solutions

εn(t) = ε(η), η = n − V t, of the discrete problem (48),

we need to solve the advance-delay equation

V 2 d
2ε

dη2
= σ(η + 1) + σ(η − 1)− 2σ(η), (50)

where the function σ(η) = σ(ε(η)) is given by Eq. (30). We

will use the Fourier transform technique to solve Eq. (50) sub-

ject to the consistency condition (26), the boundary condi-

tions (28) and the radiation conditions (36).

It is convenient to represent the transformed function in the

form

ε̂(k) =

∫ ∞

−∞

ε(η)eikη dη = ε̂+(k) + ε̂−(k),

where

ε̂±(k) =

∫ ∞

−∞

ε(η)H(±η)eikη dη

are analytic in ℑk ≷ 0. The Fourier transform of (50) then

yields

M+ε̂
+ +M−ε̂

− =
M− −M+

ik
ε∗, (51)

where we introduced the parameter

ε∗ =
σ0

γ2 − 1
(52)

and the characteristic functions

M±(k) = ω2
±(k) + (0 + ikV )2. (53)

Here 0± ikV = lims→0+(s± ikV ), and we use the causality

principle [80] to handle the zero at the origin. A comparison

of the characteristic functions (53) with their QC analogs in

the whole complex plane shows that while the discrete disper-

sion relations (49) are more complex than their QC counter-

parts (35), the QC approximation captures the long-wave be-

havior adequately. More precisely, as shown in Fig. 8, the QC

model gives an excellent approximation of the real and purely

imaginary roots of Eq. (53) that have sufficiently small mag-

nitude. In general, it captures the four nonzero roots of each

characteristic function that are closest to k = 0 qualitatively

well but may represent purely imaginary roots by complex

quadruples and vice versa.
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Figure 8. The structure of the magnitudes of (a) the real roots

k = ±r and (b) the imaginary roots k = ±iq in the discrete

(solid curves) and QC (dashed curves) for ω2
+(k)−k2V 2 = 0 (blue

curves) and ω2
−(k) − k2V 2 = 0 (red curves). Black dashed curves

mark the sonic limits separating the velocity domains of different

transition fronts. Complex roots with nonzero real and imaginary

parts bifurcate at the velocities V∗ and V∗∗ marked by dash-dotted

lines in the QC model and from the non-sonic maxima of the real

root curve in (a) in the discrete model. Here γ = 2.

A. Characteristic roots

Similar to the QC model, the solution of the discrete prob-

lem can be written in terms of elementary waveforms asso-

ciated with the roots of the characteristic functions (53). In

what follows, we consider the generic case when V is non-

resonant (V 6= ω′
+(k) and V 6= ω′

−(k) for any real k). We

can then define the sets Z = Z+
r ∪ Z−

r ∪ Z+
c ∪ Z−

c and

P = P+
r ∪ P−

r ∪ P+
c ∪ P−

c containing nonzero roots of the

characteristic equations M±(k) = 0. Here

Z
±
r = {z :M+(z) = 0, z 6= 0, ℑz = 0, ω′

+(z) ≷ V },
P
±
r = {p :M−(p) = 0, p 6= 0, ℑp = 0, ω′

−(p) ≷ V },
Z±
c = {z :M+(z) = 0, ℑz ≶ 0},

P±
c = {p :M−(p) = 0, ℑp ≶ 0}.

(54)

The structure of the roots of Eq. (53) is illustrated in Fig. 9,

which can be compared to the corresponding root structure

for the QC model shown in Fig. 5 (see also Fig. 8, which com-

pares the structure of real and purely imaginary roots). As in

that case, the even symmetry of each characteristic function

implies that the roots are symmetric about the origin, and it

suffices to consider the region ℜk ≥ 0 and ℑk ≥ 0.

Of particular importance are the sets of nonzero real roots

Z+
r ∪Z−

r (roots ofM+(k)) and P+
r ∪P−

r (roots ofM−(k)). As

we will see, some of these roots correspond to radiated lattice

waves. When the sets are nonempty for given non-resonant

V , they contain an odd number of positive real roots, given by

2l+1 and 2m+1, respectively. We arrange these roots in the

ascending order: zj < zj+1, j = 1, . . . , 2l, and pj < pj+1,

j = 1, . . . , 2m.

We observe that in the case of superkinks (V > γ) both

functions M±(k) have no nonzero real roots, as shown in

Fig. 8(a) and Fig. 9(c), and hence there are no radiated waves

in this case (no dissipation). For shocks (1 < V < γ) only

M−(k) has such roots (see Fig. 8(a) and Fig. 9(b)). More

specifically, we have m = 0 (i.e., one positive real root) for

the values of velocity V below the first resonance velocity

V1 which solves ω′
−(k) = V1k for some real k and naturally

satisfies the condition V1 > 1. We then have m = 1 (three

positive real roots) for the values of V between the first and

second resonance velocities, where the second resonance ve-

locity is defined accordingly, and so on. Finally, for subkinks

(V < 1) each of the characteristic equations has at least one

positive real root (see Fig. 8(a) and Fig. 9(a)), with l and m
each increasing by one when the corresponding resonance ve-

locity is crossed.

In addition to real roots, there are infinite sets of com-

plex roots Z+
c ∪ Z−

c (roots of M+(k)) and P+
c ∪ P−

c (roots

of M−(k)) with nonzero imaginary part that can be seen in

Fig. 9. These roots bifurcate from the maxima of the real-

root curves shown in Fig. 8(a). This includes purely imagi-

nary roots that bifurcate from the sonic maxima at k = 0 and

are shown in Fig. 8(b). The non-real roots define the structure

of the boundary layers on both sides of the moving front.

B. Characteristics revisited

To make a connection with the classical continuum theory,

we recall that the configuration of the real roots zj and pj
around the origin k = 0 is intimately related to the structure

of the characteristics in the continuum approximation. There-

fore by studying these roots one can expect to reconstruct the

main subdivision of the transformation fronts into the three

universality classes.

We shall exploit the fact that in the long-wavelength limit

the discrete problem can be replaced by a single nonlinear

wave equation. Indeed, in the limit k → 0, s → 0+ we can

approximate the linear operators in Eq. (53) by

M+(k) = ω2
+(k) + (s+ ikV )2 ≈ g+(k, s)

≡ ((1 + V )(−ik)− s) ((1− V )(−ik) + s) ,

M−(k) = ω2
−(k) + (s+ ikV )2 ≈ g−(k, s)

≡ ((γ + V )(−ik)− s) ((γ − V )(−ik) + s) ,

(55)

Observe also that using the convective coordinate η = x −
V t we can rewrite the system (4) as a pair of linear wave

equations for ε(η, t) in each of the two domains of linearity:

[

(1 + V )
∂ε

∂η
− ∂ε

∂t

] [

(1− V )
∂ε

∂η
+
∂ε

∂t

]

= 0, η > 0,

[

(γ + V )
∂ε

∂η
− ∂ε

∂t

] [

(γ − V )
∂ε

∂η
+
∂ε

∂t

]

= 0, η < 0.

(56)

Applying Fourier transform in η and Laplace transform in t
transforms Eq. (56) into the equations g±(k, s) = 0, where

the functions g±(k, s) are defined in Eq. (55).

Since the characteristics of Eq. (56) are defined by the

equations η± (1±V )t = const at η > 0 and η± (γ±V )t =
const at η < 0, the location of the roots of the functions

g±(k, 0) is directly linked to the configuration of the char-

acteristics relative to the line η = const. The configuration

of the roots of the equations g±(k, 0) = 0 is shown schemat-

ically in Fig. 10 separately for each class of the transition

fronts. One can see that in the range V < 1 (subkinks) the

purely imaginary roots are located in two different complex

half-planes for both g+(k, 0) = 0 and g−(k, 0) = 0. This is
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Figure 9. Distribution of the roots of M±(k) in Eq. (53) for the discrete model when (a) V < 1, (b) 1 < V < γ, (c) V > γ. Due to

symmetry, only the roots with ℜk ≥ 0 and ℑk ≥ 0 are shown. Insets show the dispersion relations and real roots as intersections with the

line V k.
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Figure 10. Schematic presentation of the roots g+(k, 0) (blue trian-

gles) and g−(k, 0) (red circles): (a) V < 1, (b) 1 < V < γ, (c)

V > γ.

equivalent to the fact that there is one incoming and one out-

going characteristic on both sides of the line x−V t = const.

Both roots of the equation g+(k, 0) = 0 end up in the upper

complex half-plane in the range 1 < V < γ (shocks), pro-

ducing two incoming characteristics on the right side of the

line x−V t = const, while there is still one incoming and one

outgoing characteristic on the left side. Finally, in the range

V > γ (superkinks), the remaining roots of g−(k, 0) = 0 also

shift into the upper complex half-plane, which produces two

outgoing characteristics behind the moving front. One can

see that the location of the roots in Fig. 10 is in full agree-

ment with the propagation direction of the macroscopic per-

turbations with respect to the moving front for each of our

universality classes, as shown in Fig. 3.

C. Solution of the discrete problem

We observe that ε̂±(k) can be written as

ε̂±(k) =
ε±

0∓ ik
+ χ̂±(k), (57)

where the first term accounts for the boundary conditions

(28), and the second term satisfies limk→±i0 χ̂
±(k) = 0, so

that limη→±∞〈ε(η)〉 = limk→±i0 ε̂
±(k) = ε±.

To find χ̂±(k), we use the Wiener-Hopf technique [62, 77,

86, 88]. To this end, we factorize the main linear operator

L(k) =
M+(k)

M−(k)
=
ω2
+(k) + (0 + ikV )2

ω2
−(k) + (0 + ikV )2

(58)

of the problem, which means representing it in the form

L(k) = L+(k)L−(k), (59)

where the superscripts ± identify functions that are regular

(have no zeroes or singularities) in ℑk ≷ 0, respectively.

Such factorization allows us to rewrite (51) as

L+(k)

[

−ε∗ − ik

(

χ̂+(k) +
ε+

0− ik

)]

=
1

L−(k)

[

ik

(

χ̂−(k) +
ε−

0 + ik

)

− ε∗

]

.

(60)

This representation ensures that the right hand side is regular

in the lower half-plane, while the left hand-side is regular in

the upper half-plane, so that both can be analytically contin-

ued to the whole plane after we move the zeroes and singu-

larities along the real axis into the corresponding half-planes.

Using the infinite product theorem [134] we can represent

L±(k) as follows [135]:

L±(k) = l±(k)L0
±(k). (61)

Here the terms l±(k) depend on nonzero real roots of the

characteristic equations, while the terms L0
±(k) are defined

by the remaining non-real (complex) roots.

More specifically, we have

L±
0 (k) =

√

1− V 2

γ2 − V 2

∏

z∈Z
±
c

(

1− k

z

)

∏

p∈P
±
c

(

1− k

p

) (62)

where the products are over the sets Z±
c and P±

c of non-real

roots defined in Eq. (54). Note that the zeroes and poles of

L+
0 (k) (the set Z+

c ∪ P+
c ) are all located in ℑk < 0, and

the zeroes and poles of L−
0 (k) (the set Z−

c ∪ P−
c ) are all in

ℑk > 0.

Similarly, the functions l±(k) can be expressed in terms

of the nonzero real roots of the corresponding characteris-

tic equations belonging to the sets Z±
r and P±

r in Eq. (54).

These roots are placed into the “+” sets (which contribute to

the solution at η > 0) if the associated group velocities ω′(k)
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exceed the phase velocity V and into “-” sets (contributing

to the solution at η < 0) if ω′(k) < V . This ensures that

the solution satisfies the radiation condition (36), and the ra-

diated waves carry energy away from the front. Recalling

the structure of the real roots discussed in Sec. IV A, we ob-

serve that for subkinks (V < 1) this implies that the roots

±z2j , j = 1, . . . , l, of M+(k) in Z+
r and the roots ±p2j ,

j = 1, . . . ,m, ofM−(k) in P+
r contribute to l+(k), while the

remaining roots ±z2j−1, j = 1, . . . , l + 1, of M+(k) in Z−
r

and ±p2j−1, j = 1, . . . ,m + 1, of M−(k) in P−
r contribute

to l−(k). We thus obtain

l+(k) =

l
∏

j=1

(

1 +
(0− ik)2

z22j

)

m
∏

j=1

(

1 +
(0− ik)2

p22j

) ,

l−(k) =

l+1
∏

j=1

(

1 +
(0 + ik)2

z22j−1

)

m+1
∏

j=1

(

1 +
(0 + ik)2

p22j−1

)

(63)

for subkinks. When l = 0 or m = 0, the corresponding

products equal unity. Here we combined symmetric pairs ±r
of real roots using

(

1− k

r ± i0

)(

1− k

−r ± i0

)

= 1 +
(0± ik)2

r2
,

where the notation r ± i0 underscores the fact that the real

roots are effectively shifted into the half-planes ℑk ≷ 0. In

particular, the zeroes and poles of l+(k) (the set Z+
r ∪P+

r ) are

moved into ℑk < 0, while the zeroes and poles of l−(k) (the

set Z−
r ∪ P−

r ) are shifted into ℑk > 0. In the case of shocks

(1 < V < γ) the sets Z±
c are empty, and we have

l+(k) =
1

m
∏

j=1

(

1 +
(0− ik)2

p22j

) ,

l−(k) =
1

m+1
∏

j=1

(

1 +
(0 + ik)2

p22j−1

) .

(64)

Finally, in the superkink regime, both characteristic functions

have no nonzero real roots, and thus we have

l±(k) = 1. (65)

We now consider the asymptotic behavior of the functions

L±(k). Note first that equations (61)-(65) imply that

L±(k) ∼
√

1− V 2

γ2 − V 2
, k → ±i0, (66)

where we take the principal branch of the square root, which

becomes purely imaginary when 1 < V < γ. As shown in

Appendix A, the asymptotic behavior at infinity is given by

L±(k) ∼ R∓1, k → ±i∞, V < 1 or V > γ,

L±(k) ∼ R∓1k±1, k → ±i∞, 1 < V < γ
(67)

where R is given by

R =
Π+

z Π
−
p

Π−
z Π

+
p

=

l
∏

j=1

z2j
m+1
∏

j=1

p2j−1

l+1
∏

j=1

z2j−1

m
∏

j=1

p2j

, V < 1 (68)

for subkinks,

R =
Π−

p

Π+
p

=

m+1
∏

j=1

p2j−1

m
∏

j=1

p2j

, 1 < V < γ (69)

for shocks, while for superkinks the absence of radiation im-

plies

R = 1, V > γ.

Following the standard Wiener-Hopf procedure [134], we

perform the analytic continuation of both sides of Eq. (60)

to the entire complex plane and apply the Liouville theorem.

Noting that the asymptotic estimates in Eq. (67) imply that

both sides of Eq. (60) can be continued to a function that is at

most linear in k, we obtain

L+(k)

[

−ε∗ − ik

(

χ̂+(k) +
ε+

0− ik

)]

=
1

L−(k)

[

−ε∗ + ik

(

χ̂−(k) +
ε−

0 + ik

)]

= ψ0 + ψ1k.

(70)

Here the constants ψ0 and ψ1 depend on the velocity regime

due to the different asymptotic behavior in Eq. (67) for kinks

and shocks. Taking the limit k → ±i0 in Eq. (70) and using

the asymptotics Eq. (66), we obtain

√

1− V 2

γ2 − V 2
(ε+ − ε∗) =

√

γ2 − V 2

1− V 2
(ε− − ε∗) = ψ0. (71)

These relations hold for all velocities. Recalling Eq. (52), one

can see that the first equality in Eq. (71) implies that the RH

condition (29) automatically holds for ε±.

Observe now that by Eq. (67), both sides of the first equal-

ity in Eq. (70) are constant at infinity when either V < 1 or

V > γ. Therefore, we must set ψ1 = 0 in these velocity

ranges. For subkinks (V < 1) and superkinks (V > γ), tak-

ing the limits of the two sides of the first equality in Eq. (70)

as k → i∞ and k → −i∞, respectively, equating them to ψ0

and applying the consistency condition (26), which implies

lims→∞(sε̂±(±is)) = ε(0±) = εc, then yields

ψ0 =
εc − ε∗
R

, (72)

where we recall Eq. (57). Here R is defined in Eq. (68) for

subkinks and R = 1 for superkinks. Equations (71) and (72)

then imply that in these regimes the limiting states ε± are

fully determined by the velocity V via

ε± = ε∗ +
εc − ε∗
R

(

1− V 2

γ2 − V 2

)∓1/2

. (73)
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Shocks (1 < V < γ) correspond to the generic case when

both constants ψ0 and ψ1 in Eq. (70) are nonzero. In this case

the zero-limit equation (71), which still holds, and the limits

k → ±i∞ yield

ψ0 = i

√

γ2 − V 2

V 2 − 1
(ε− − ε∗) , ψ1 =

εc − ε∗
R

, (74)

where R is defined in Eq. (69). Note, however, that although,

as noted above, the RH condition (29) is automatically satis-

fied for all three types of fronts, in the case of shocks the lim-

iting states ε± are not uniquely determined by V , i.e., there

is no condition that is equivalent to Eq. (73) we have for sub-

kinks and superkinks. Therefore, in the case of shocks one

of the limiting states remains a free parameter, which agrees

with the conclusions we reached while considering the prob-

lem in both continuum and QC frameworks.

The solutions of the two equations in Eq. (70) thus take the

form

χ̂±(k) =
ε∗ − ε±
0∓ ik

+
ψ0 + ψ1k

0∓ ik

[

L±(k)
]∓1

. (75)

Here ψ0 is given by Eq. (72) and ψ1 = 0 in the case of both

kinks and subkinks. Instead, in the case of shocks ψ0 and ψ1

are given by Eq. (74). This yields the strains in the physical

space given by

ε(η) = ε± +
1

2π

∫ ∞

−∞

χ̂±(k)e−ikη dk, η ≷ 0, (76)

where the integrals are computed by closing the contour of

integration in ℑk ≶ 0 for η ≷ 0 and applying the residue

theorem. Here we recall that all real zeroes and singularities

have been effectively shifted off the real axis into the corre-

sponding half-planes. As in the QC case, the solution can

be then expressed in the general form (45). Recall that this

form includes localized (Φ±(η)) and radiative (Λ±(η)) com-

ponents.

The localized components Φ±(η) are given by exponen-

tially decaying functions arranged in the infinite sums

Φ+(η) =
∑

z∈Z
+
c

ω2
−(z)− (zV )2

2z2V (ω′
+(z)− V )

L−(z)(ψ0 + ψ1z)e
−izη,

Φ−(η) =
∑

p∈P
−
c

ω2
+(p)− (pV )2

2p2V (ω′
−(p)− V )

(ψ0 + ψ1p)

L+(p)
e−ipη.

(77)

The summation is over the sets of complex roots P−
c (the

poles of L−(k) in ℑk > 0) and Z+
c (the poles of 1/L+(k)

in ℑk < 0) defined in (54). To compute the residues we

used Eq. (58) and the identities 1/L+(k) = L−(k)/L(k) and

L−(k) = L(k)/L+(k) that follow from Eq. (59).

The radiative components Λ±(η) in Eq. (45) describe the

lattice waves taking the energy from the moving front to in-

finity. For subkinks (V < 1), we have

Λ−(η) = 2
m+1
∑

j=1

α−
j cos (p2j−1η + β−

j ),

Λ+(η) = 2

l
∑

j=1

α+
j cos (z2jη + β+

j ),

(78)

where the second sum is zero when l = 0. For shocks (1 <
V < γ), there is no radiation ahead of the front, so Λ+(η) ≡
0, while Λ− has the same form as above. The real coefficients

α±
j and β±

j can be obtained from the polar representation

α+
j e

−iβ+

j =
L−(z2j)

[

ω2
−(z2j)− (z2jV )2

]

2z22jV
[

ω′
+(z2j)− V

] (ψ0 + ψ1z2j),

α−
j e

−iβ−

j = −
[

ω2
+(p2j−1)− (p2j−1V )2

]

2p22j−1V
[

V − ω′
−(p2j−1)

]

L+(p2j−1)

× (ψ0 + ψ1p2j−1)

with the corresponding values of ψ0 and ψ1. Only the sec-

ond equation is relevant for shocks since Λ+ = 0 in that case.

Here we used Eq. (A4) and Eq. (A5) obtained in Appendix A.

Finally, for superkinks (V > γ) there is no radiation either

ahead or behind the propagating front, and so in this case

Λ−(η) = Λ+(η) ≡ 0.

In addition to strains we can also explicitly compute the

particle velocities v(η). To this end we need to solve the

equation v(η+1)− v(η) = −V ε′(η), where ε(η) is given by

Eq. (45), Eq. (77) and Eq. (78). Using Fourier transform, we

obtain

v(η) = v± +Θ±(η) + Υ±(η), η ≷ 1/2,

where v+ − v− = −V (ε+ − ε−) coincides with the first RH

condition in Eq. (5) for the continuum problem, and since one

of v± is arbitrary by Galilean invariance, we may set v± =
−V ε±. Here we can also identify the exponentially decaying

terms

Υ+ = −
∑

z∈Z
+
c

ω−(z)− (zV )2

4z sin z
2 [ω

′
+(z)− V ]

L−(z)

× (ψ0 + ψ1z)e
−iz(η−1/2),

Υ− = −
∑

p∈P
−
c

ω+(p)− (pV )2

4p sin p
2 [ω

′
−(p)− V ]

(ψ0 + ψ1p)

L+(p)
e−ip(η−1/2)

and the oscillatory terms Θ±(η) describing radiation. For

subkinks (V < 1), we have

Θ+(η) = −
l
∑

j=1

α+
j z2jV

sin
z2j
2

cos (z2j(η − 1/2) + β+
j ),

Θ−(η) = −
m+1
∑

j=1

α−
j p2j−1V

sin
p2j−1

2

cos (p2j−1(η − 1/2) + β−
j ),

(79)

where the second sum is zero when l = 0. For shocks

(1 < V < γ), the function Θ−(η) has the same form, while

Θ+(η) ≡ 0. For superkinks, Θ−(η) = Θ+(η) ≡ 0.

D. Dissipation rate

The knowledge of the exact solution of the discrete prob-

lem gives us the access to the energy (phonon) radiation from
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the moving fronts to infinity. As we have already mentioned,

since the radiated energy is lost by the front, the associated

rate of the energy transport to infinity by lattice waves can be

interpreted as the rate of dissipation.

Following the procedure we used for the QC model, we

again consider the cumulative energy fluxes G+ and G−

emitted ahead and behind the front. Recalling Eq. (47), we

find that dissipation rates R± = G±V on both sides are zero

for superkinks, which involve no phonon radiation, and thus

G+ = G− = 0 in this case. For subkinks (V < 1) we obtain

R+ =

l
∑

j=1

〈E+(z2j)〉(ω′
+(z2j)− V ),

R− =
m+1
∑

j=1

〈E−(p2j−1)〉(V − ω′
−(p2j−1)),

where R+ = 0 when l = 0, and E+(z2j) = v2j /2 + ε2j/2

and E−(p2j−1) = v2j /2 + γ2ε2j/2 are energy densities car-

ried by individual lattice waves with (real and positive) wave

numbers z2j ∈ Z+
r and p2j−1 ∈ P−

r , respectively, and the

averaging is over the corresponding time periods. Using the

expressions for strains εj in Eq. (78) and particle velocities vj
in Eq. (79) of the emitted waves with the corresponding wave

numbers, we obtain

G+ = 2
l
∑

j=1

(α+
j )

2ω2
+(z2j)

(

ω′
+(z2j)

V
− 1

)

,

G− = 2γ2
m+1
∑

j=1

(α−
j )

2ω2
−(p2j−1)

(

1− ω′
−(p2j−1)

V

)

,

(80)

where G+ = 0 when l = 0. For shocks (1 < V < γ),

G− has the same form, and G+ = 0. This yields explicit

expressions for the driving force G = G+ +G− in different

velocity regimes. Alternatively, we can compute the driving

force from the macroscopic area-difference formula (9) (with

E1 = 1 and E2 = γ2 in the dimensionless formulation).

Using Eq. (73) for the kink regimes, Eq. (29) for shocks and

recalling Eq. (52), we obtain

G =











γ2−1
2

(

1− 1
R2

)

(εc − ε∗)
2
, V < 1,

γ2−1
2 [(εc − ε∗)

2
+ V 2−1

γ2−V 2 (ε+ − ε∗)
2
], V ∈ (1, γ),

0, V > γ.

For subkinks and superkinks this yields the kinetic relations

G = G(V ) (recall that R depends on V via Eq. (68) in the

subkink regime), which complement the classical RH con-

ditions, while for shocks the driving force remains dependent

on the choice of ε+, which, as we recall, is a free parameter in

this case. We have verified that these ‘macroscopic’ expres-

sions for G are equivalent to the ones obtained by computing

the energy fluxes directly.

E. Admissibility

As in the case of the QC approximation, one still needs

to verify which of the obtained solutions are admissible, i.e.,
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Figure 11. Admissibility sets of solutions of the discrete problem. In

the blue region we observe ε(η) ≤ εc when η < εc, and the dashed

lower boundary of the region marks the threshold ε− = εc. The

insets show examples of the strains ε(η). Here γ2 = 1.5, εc = 1,

and we set ε+ = 0.

satisfy Eq. (27). In Fig. 11 we show the admissibility dia-

gram for the discrete problem, which is a direct analog of the

similar diagram for the QC model presented in Fig. 6. As

in that case, admissible subkink and shock solutions in the

discrete problem feature a single radiation mode propagating

behind the front, where the wave number r is a positive root

of the characteristic equation ω−(r) = V r, while Λ+ ≡ 0.

In the superkink case, Λ± ≡ 0. In the case of shocks one

of the limiting states remains a free parameter, which agrees

with both continuum and QC approximations. One can see

that for V < 1 sufficiently fast subkinks are admissible. For

V > γ, all superkinks satisfy the assumed inequalities. In

the interval 1 < V < γ the TW solutions describing shock

waves are admissible inside the pink domain. In the blue do-

main such TW solutions are not admissible and are replaced

by the DSWs, as we will discuss in the next subsection.

We conclude that the main features of the QC regime di-

agram Fig. 6 are preserved in the full discrete model. Thus,

both types of kinks, represented in Fig. 11 by one dimen-

sional manifolds, are admissible (for sufficiently large V in

the case of subkinks). Shocks are again not defined uniquely

for a given ∆σ and are admissible for sufficiently large val-

ues of∆σ. The two diagrams differ significantly only at small

V < 1, where the QC model, as expected, does not capture

the complex resonant behavior of the (typically inadmissible)

slow discrete subkinks.

Our comparison suggests that outside the regimes of par-

ticularly slow subkinks, all three types of transition fronts are

adequately described by only a few roots of the characteristic

equation capturing long (but not infinitely long) lattice waves.

This implies that carefully designed QC theories with only

a few parameters (describing the crucial mesoscopic scales)

can be successful in capturing such a fundamental nonlin-

ear dynamic effect as radiative friction. It also points to the

paramount importance of the QC reproduction of the relevant

mesoscopic time scales, in addition to the more conventional

task of modeling the internal length scales. In other words,
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the task of the adequate dispersive approximation of the ki-

netic energy may be at least as challenging as the task of the

satisfactory representation of the nonlocal elastic energy.

F. Numerical simulations

To test the stability of the obtained analytical solutions, we

conducted a series of numerical simulations, in which, start-

ing with Riemann initial data, we traced the emergence of

the nonlinear transition fronts propagating at constant veloc-

ity. More specifically, we solved numerically the system (2)

(rescaled so that ρ = 1 and h = 1) with N = 1000 springs

and discontinuous initial conditions of the form

εn(0) =

{

εl, n < 500,

0, n ≥ 500,

dεn
dt

(0) = 0

and free boundary conditions. We used the Dormand-Prince

algorithm (ode45 in Matlab), and the duration of simulations

was such that the boundaries did not affect the front dynam-

ics. In each simulation we varied εl and∆σ, while keeping all

other parameters fixed. As in the case of QC model, we iden-

tified four generic types of traveling fronts which all emerged

and stabilized by the numerical time t = 500.

200 400 600 800 1000
0

1

2

3

4

5

6

n

ε n

(a)

200 400 600 800 1000
0

5

10

15

20

25

n

ε n

(b)

200 400 600 800 1000
0

5

10

15

20

25

n

ε n

(c)

200 400 600 800 1000
0

1

2

3

4

5

6

n

ε n

(d)

Figure 12. Different regimes of front propagation in FPU chain un-

der Riemann-type initial conditions with different left strain εl and

∆σ: (a) subkink (εl = 5, ∆σ = 2.5); (b) conventional shock

(εl = 25, ∆σ = 2.5); (c) dispersive shock (εl = 25, ∆σ = 0);

(d) superkink (εl = 5, ∆σ = −1.5). Here γ2 = 1.5, εc = 1 and

t = 300.

The results of the simulations are summarized in Fig. 12.

They confirm the possibility of stable propagation of all three

types of transition waves. Similar to the QC model, the tran-

sition fronts are accompanied by linear dispersive waves. In

particular, in all cases such a wave appears behind the front

and moves away from it with velocity −γ. In the case of a

subkink shown in Fig. 12(a), there is also a linear dispersive

wave propagating ahead of the transition front with velocity

1. In the superkink case (Fig. 12(d)), there are two linear dis-

persive waves moving behind the front with velocities γ and

−γ.

Our results suggest stability of the all three regimes, sub-

kinks, shocks and superkinks inside the corresponding admis-

sible domains of the (V,∆σ) plane. Recall that subkinks

are admissible when V < 1 is sufficiently large. An ex-

ample of a subkink propagation is shown in Fig. 12(a). We

found that superkinks can only appear when V > 1 and

∆σ < −εc(γ2 − 1) < 0. An example is shown in Fig. 12(d).

Recall also that shocks are only admissible when 1 < V < γ
and ∆σ is above a certain threshold, as shown in Fig. 11.

An example of an admissible shock propagation is shown in

Fig. 12(b). Inside the domain of inadmissible shocks we ex-

pectedly do not find steady transition fronts but find instead

the spreading transition profiles of DSW type (Fig. 12(c)),

similar to the corresponding prediction of the QC model. We

reiterate that the DSWs are mentioned here only for com-

pleteness. The detailed study of such non-steady regimes is

outside the scope of this paper, in part because these solu-

tions are well documented in the literature. They appear here

naturally as stable replacements for the inadmissible traveling

waves.

V. APPLICATIONS IN METAMATERIAL DESIGN

The importance of metamaterials is due to their ability

to exploit post-instability structural responses. Effectively,

metamaterials utilize internal changes in the sub-elements,

which imitate molecular phase transitions at supermolecular

scales. The success of metamaterial paradigm is due to the

fact that artificial ‘meta-molecules’ with desired properties

can be manufactured at the relevant scales.

The localized transition fronts studied in this paper can

be viewed as elementary bites of mechanical information

that can be generated, delivered and erased in periodic lat-

tice metamaterials. Due to the presence of stress-sensitive

repeating structural units, such metamaterials can manipu-

late mechanical information using advantageously the disper-

sion of elastic waves. By carefully tailoring relationships be-

tween characteristic dimensions, one can design metamate-

rials combining the effects of strong dispersion with various

forms of energy nonconvexity. One of the main challenges

in the design of metamaterial structures is to ensure that the

switching takes place at a predefined levels of stress and that

the particular switching waves are generated when the task is,

for instance, to enhance actuation or perform energy harvest-

ing.

In view of these and other potential applications, the proto-

typical FPU model studied in this work can serve as a proof of

concept showing the broad variety of the functionally distinct

switching regimes which can be controlled by the deliberate

parameter tuning. Even though the actual 3D metamaterials

with the desired properties would still have to be designed, the

results obtained in this paper already now provide a specific

guidance regarding, for instance, which metamaterial should

be chosen to ensure a supersonic, dissipation-free, commu-

nication of mechanical information, as opposed to a design

favoring subsonic switching which ensures a heavily dissipa-
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tive response.

VI. CONCLUSIONS

The goal of this paper was to reveal the interrelations

between structurally different steadily moving transition

(switching) fronts in the classical FPU model. Our main re-

sult is the demonstration that this non-integrable Hamiltonian

model supports three types of such fronts that can be clas-

sified as subsonic (subkinks), intersonic (shocks) and super-

sonic (superkinks).

To obtain analytical results we limited our analysis to

piecewise linear elastic responses. In this case exact solu-

tions of the discrete model for each class of fronts can be pre-

sented in the form of infinite series. Within this setting, we

have shown that the proposed classification is exhaustive. The

common framework considered in this work allows us to de-

scribe all three types of switching waves in a unified way and

associate them with particular classes of elastic responses.

While the constructed explicit solutions of the discrete

problem are sufficient to corroborate these qualitative claims,

the origin of the difference between the three types of fronts

remains relatively opaque in the FPU setting dealing with an

infinite system of nonlinear ordinary differential equations.

To achieve conceptual transparency, we constructed a QC ap-

proximation of the FPU problem. An excellent agreement

with the behavior of the discrete model was obtained using a

long-wave (infra-red) approximation utilizing only two inter-

nal scales. We stress that the successful coarse-grained the-

ory relies on the approximation of kinetic energy, in contrast

to more conventional asymptotic approaches such as the KdV

model and its higher order analogs.

A detailed comparison of the exact solutions for the QC

theory and the discrete problem showed that the chosen ap-

proximation adequately describes the complex interrelation

between all three types of the transition fronts. This means

that the whole complexity of the dispersive structure of the

FPU model was not really necessary for the description of

the main features of these special solutions. In other words,

the dispersive properties of all three different classes of fronts

can be satisfactorily captured using a simple QC model.

Our analysis also reveals that the obtained macroscopically

dissipative subkink and shock front profiles cannot be ade-

quately described by the continuum nonlinear wave equation,

as may be suggested by a naive homogenization. Instead, they

should be interpreted as microscopic descriptions of Whitham

shocks connecting oscillatory and constant states [136, 137].

Such generalized (dispersive) shocks usually correspond to

heteroclinic traveling waves of the a dispersive model con-

necting standard critical points with periodic orbits. To cap-

ture such connections in a PDE format we had to use a higher

order QC model.

To fully understand the different structure of the three types

of transition fronts, we have drawn upon a broad variety of

physical and mathematical considerations, including char-

acteristics, barriers, topological transitions, undercompres-

sive nature, critical manifolds and kinetic relations, which all

point to the existence of exactly three universality classes of

transition fronts. In this sense the obtained perspective can

be viewed as unifying not only for the description of switch-

ing waves but also for different analytical approaches to the

analysis of nonlinear dispersive systems.

Several important issues have been naturally left for future

studies. The traveling wave description of the switching

waves is clearly incomplete when it comes to transient effects

like interaction with obstacles and multiple collisions. The

approach to such problems proposed for special cases in

[138] can be also generalized and applied in our more gen-

eral framework. The present work does not address thermal

effects, which may become relevant for metamaterial with

submicron scale mimicking cytoskeleton or extracellular

environment. For these purposes the approach proposed in

[139] can be generalized here as well. Another issue that we

have not addressed in this work concerns different modes of

manipulation and control of transition fronts from a distance

using DC and AC-type dynamic loading, which is of particu-

lar interest for metamaterial applications. The successful use

of such control has been recently demonstrated for semilinear

discrete systems in [124].
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Appendix A: Some asymptotic results

To obtain the asymptotic behavior at infinity, we follow

[135] and observe that for subkinks (V < 1) we have

H±
z (k) =

√

1− V 2
∏

z∈Z
±
c

(

1− k

z

)

=

VΠ+
z Π

−
z

T±
z (k)

exp

[

± 1

2πi

∞
∫

−∞

ln

(

Hz(ξ)Tz(ξ)

V 2Π2
z

)

dξ

ξ − k ∓ i0

]

∼ VΠ+
z Π

−
z (0∓ ik)−2l−1, k → ±i∞,

(A1)

where

T±
z (k) = (0∓ ik)2l+1, Tz = T+

z T
−
z , Hz = H+

z H
−
z

and

Π+
z =

l
∏

j=1

z2j , Π−
z =

l+1
∏

j=1

z2j−1, Πz = Π+
z Π

−
z ,

and

H±
p (k) =

√

γ2 − V 2
∏

p∈P
±
c

(

1− k

p

)

=

VΠ+
p Π

−
p

T±
p (k)

exp

[

± 1

2πi

∞
∫

−∞

ln

(

Hp(ξ)Tp(ξ)

V 2Π2
p

)

dξ

ξ − k ∓ i0

]

∼ VΠ+
p Π

−
p (0 ∓ ik)−2m−1, k → ±i∞,

(A2)
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where

T±
p (k) = (0 ∓ ik)2m+1, Tp = T+

p T
−
p , Hp = H+

p H
−
p

and

Π+
p =

m
∏

j=1

p2j , Π−
p =

m+1
∏

j=1

p2j−1, Πp = Π+
p Π

−
p .

Here the expressions under the logarithms in the Cauchy-type

factorization integrals are set up in such a way that they tend

to 1 as k → ±i∞, while the logarithms remain real along the

entire integration path [135]. These asymptotic expressions

imply that in the subkink regime

L±
0 (k) =

H±
z (k)

H±
p (k)

∼ Π+
z Π

−
z

Π+
p Π

−
p
(0∓ ik)2(m−l), k → ±i∞,

while

l±(k) ∼
(Π±

p )
2

(Π±
z )2

(0∓ ik)2(l−m), k → ±i∞,

so that

L±(k) ∼ R∓1, k → ±i∞, V < 1,

where R is given by Eq. (68). For shocks (1 < V < γ)

Eq. (A2) still holds but due to the absence of nonzero real

roots of M+(k) in this regime, Eq. (A1) is replaced by [135]

H±
z (k) = i

√

V 2 − 1
∏

z∈Z
±
c

(

1− k

z

)

=

iV exp

[

± 1

2πi

∞
∫

−∞

ln

(

Hz(ξ)

V 2

)

dξ

ξ − k ∓ i0

]

∼ iV, k → ±i∞,

(A3)

so that

L±
0 (k) ∼

i

Π+
p Π

−
p
(0∓ ik)2m+1, k → ±i∞,

which together with

l+(k) ∼ (Π+
p )

2(0 − ik)−2m, k → i∞
l−(k) ∼ (Π−

p )
2(0 + ik)−2(m+1), k → −i∞,

implies that

L± ∼ R∓1k±1, k → ±i∞, 1 < V < γ,

where R is given by Eq. (69). Finally, for superkinks (V >
γ), both characteristic functions have no nonzero real roots,

and thus H±
z ∼ iV as in Eq. (A3) and H±

p ∼ iV in the

limit k → ±i∞. Together with (65) this implies L± ∼ 1 as

k → ±i∞ in this velocity regime. Combining these results,

we obtain Eq. (67).

Recalling Eq. (58) and Eq. (59), one can also show that

near the real singularities

1

L+(k)
∼ ω2

−(z2j)− (z2jV )2

2z2jV i|ω′
+(z2j)− V |

× L−(z2j)

0− i(k − z2j)
, k → z2j ,

(A4)

and

L−(k) ∼ ω2
+(p2j−1)− (p2j−1V )2

2p2j−1V i|ω′
−(p2j−1)− V |

× 1

L+(p2j−1)

1

0 + i(k − p2j−1)
, k → p2j−1,

(A5)

with similar expressions for the negative real singular points.
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