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A neural population responding to multiple appearances of a single object defines a manifold in
the neural response space. The ability to classify such manifolds is of interest, as object recognition
and other computational tasks require a response that is insensitive to variability within a manifold.
Linear classification of object manifolds was previously studied for max-margin classifiers. Soft-
margin classifiers are a larger class of algorithms and provide an additional regularization parameter
used in applications to optimize performance outside the training set by balancing between making
fewer training errors and learning more robust classifiers. Here we develop a mean-field theory
describing the behavior of soft-margin classifiers applied to object manifolds. Analyzing manifolds
with increasing complexity, from points through spheres to general manifolds, a mean-field theory
describes the expected value of the linear classifier’s norm, as well as the distribution of fields and
slack variables. By analyzing the robustness of the learned classification to noise, we can predict the
probability of classification errors and their dependence on regularization, demonstrating a finite
optimal choice. The theory describes a previously unknown phase transition, corresponding to the
disappearance of a non-trivial solution, thus providing a soft version of the well-known classification
capacity of max-margin classifiers. Furthermore, for high-dimensional manifolds of any shape, the
theory prescribes how to define manifold radius and dimension, two measurable geometric quantities
that capture the aspects of manifold shape relevant to soft classification.
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I. Introduction

Max-margin and soft-margin classification When
performing linear classification, the naive approach
would aim for classifying all the training samples cor-
rectly with the largest possible margin, an approach
known as max-margin classification [1, 2]. An alterna-
tive approach, known as soft-margin classification [3, 4],
is to allow for misclassification of some of the samples,
in order to increase the classification margin of most
samples. Soft-margin classification is common in appli-
cations, where the data is not necessarily linearly sepa-
rable. Furthermore, it allows for minimizing generaliza-
tion error by optimizing a regularization parameter that
balances between classification errors on the training set
and achieving a larger margin. Both max-margin and
soft-margin classification problems are solved by Sup-
port Vector Machine algorithms (hereafter, SVM).
Previous works on manifold classification The prob-

lem of manifold classification arises in neuroscience and
machine learning when a population of biological or ar-
tificial neurons represents an object, and variability in
object appearance would define a manifold in the neural
response space. In invariant object recognition tasks,
the response of output neurons is determined by object
identity alone, which is naturally defined as performing
manifold classification, i.e., using target labels that are
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constant within manifolds. The ability to perform max-
margin classification on manifolds of increased complex-
ity was analyzed in recent years. Building on the sem-
inal work of Gardner [5] which considered the classifi-
cation of points, recent works have extended theory to
describe manifolds of any shape [6, 7] and to allow for
certain correlations between manifolds [8]. Those theo-
retical advances described only max-margin classifiers,
which are not common in applications. Here we close
this gap by analyzing soft classification of manifolds
of increasing complexity, going from points, through
spheres, to general manifolds.
Previous works on soft classification theory Previ-

ous theoretical works on soft-margin classifiers have an-
alyzed the classification of finite numbers of training
samples. Statistical learning tools were used to provide
bounds on the generalization error and its asymptotic
convergence toward the error of the Bayes optimal clas-
sifier [9–11]. Such analysis is used to compare differ-
ent kernels and different regularization schemes [9], and
an analysis of the behavior of the error shows how the
choice of regularization can be used for improving upon
the bounds available for max-margin classifiers [10]. A
statistical physics analysis of soft-margin classification
in a teacher-student setup described the learning curve,
i.e., the dependence of training and generalization error
on the number of samples (extending the max-margin
analysis [12]). Such analysis was done for the unrealiz-
able case where the teacher is more sophisticated than
the student [13], and for realizable cases with or without
noise [14]. Here we avoid making specific assumptions
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on the teacher and instead consider soft classification
performance when averaging over random choice of la-
bels. A different statistical physics approach analyzed
the asymptotic behavior of max-margin and soft-margin
classifiers [15]. It predicts classification error rates, as-
suming a large number of high-dimensional samples are
drawn from a Gaussian mixture distribution.
The role of noise When a soft-margin classifier is

learned on a training set and then evaluated on a held-
out test set, the classification errors achieved are called
the training error and the test error, respectively. In
general we expect the training error to be minimized
for the max-margin classifier while the test error may
be minimized at a finite value of the soft classification
regularization parameter, which needs to be found em-
pirically. Here we aim to analyze this setting by con-
sidering a test set that is a noisy version of the training
set. This corresponds to noise-resistance of the clas-
sifier, and not to the notion of generalization error in
machine-learning where it is assumed that the training
and test set are sampled from the same distribution.

II. Results

A. Soft classification of points

Max-margin classification of points is discussed by [5];
here we extend this seminal work to soft classification.
Given P pairs {(xµ, yµ)}Pµ=1 of points xµ ∈ RN and
labels yµ ∈ {±1}, soft classification is defined by a set
of weights w ∈ RN and slack variables ~s ∈ RP such
that the fields at the solution obey for all µ ∈ [1..P ]

hµ = yµw · xµ ≥ 1− sµ (1)

The bold notation for xµ and w indicates that they are
vectors in RN , whereas the arrow notation is used for
other vectors, such as ~s. Given a regularization param-
eter c ≥ 0 the optimal classifier and slack variables are
defined w∗, ~s∗ = arg minw,~s L (w, ~s) for a Lagrangian

L = ‖w‖2/N + c‖~s‖2/N s.t. ∀µ hµ ≥ 1− sµ (2)

and L∗ denotes the minimal value of L.
Replica theory From the Lagrangian the volume of

solutions V (L, c) for a given value of the loss L and a
choice of regularization c is given by:

V (L, c) =

∫
dNw

∫
dP~sδ

(
‖w‖2 + c‖~s‖2 −NL

)
(3)

· · ·
P∏
µ

δ (yµw · xµ − hµ) Θ (hµ − 1 + sµ) (4)

The volume is defined for any positive L, c but we are
interested in the problem parameters where it vanishes,

which is expected to happen only at the minimal value
L∗. Thus by analyzing the conditions where V → 0
we characterize the optimal solution achieved by the
optimization procedure, without introducing an addi-
tional temperature variable as is usually done (e.g.,
[12, 16]). This allows us to describe not only L∗ but
also the expected norms of the weights ‖w‖ and slack
variables ‖~s‖, and the relation between N and P where
the solution is achieved. For random labels ~y ∈ {±1}P
and points xµi ∼ N (0, 1/N) we calculate the volume
through replica identity:

[log V ]x,y = lim
n→0

[
V n − 1

n

]
x,y

(5)

We solve this problem using a (replica symmetric)
mean-field theory, which is expected to be exact in
the thermodynamic limit N,P → ∞ with a finite ra-
tio α = P/N . Replica symmetry is to be expected for
soft classification since the problem is convex in both w
and ~s; hence the landscape does not have local minima
and the global minima are either unique or form a con-
vex set. In contrast, replica symmetry breaking implies
the existence of multiple unconnected minima [17]. An-
alyzing the case where V → 0 we obtain an expression
for the loss L in terms of two order parameters q and k
(see Note 2):

L/q =
k − 1

k
+

c

1 + ck
αα−1

0 (1/
√
q) (6)

where α−1
0 (κ) =

∫ κ
−∞Dt (κ− t)2 is Gardner’s points ca-

pacity [5], q = ‖w‖2/N is the norm of the weight vector,
and k is an additional order parameter, discussed below.
Note we assumed here ‖xµ‖ = 1; if instead ‖xµ‖ = a,
then q, c need to be scaled by 1/a2.
Self-consistent equations We expect the solution to

satisfy saddle-point conditions 0 = ∂L
∂q = ∂L

∂k , yielding
2 self-consistent equations for the order parameters q, k
(see Note 3):

1 =
(ck)

2

(1 + ck)
2αα

−1
0 (1/

√
q) (7)

1− k =
ck

(1 + ck)
αH (−1/

√
q) (8)

for H(x) =
∫∞
x

dt√
2π
e−x

2/2 the Gaussian tail function.
The mean-field equations can be solved numerically

for any load α (Algorithm 1 [18]); figure 1a-b shows
the resulting values of q and k, respectively. We ob-
serve that k(α) decreases monotonically from 1 at 0
(figure 1b), and similarly ‖~s‖ increases monotonically
from 0 to 1 (figure 1c). Those are tightly related as
from equations 2,6,7 we have that ck describes the rel-
ative strength of the weights’ norm and the slack norm
at the optimization target (equation 2):
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FIG. 1: Order parameters in soft classification
of points. (a) The optimal weights’ norm q1/2

(y-axis) for different values of α (x-axis) and choices of
the regularization variable c (color coded), including
the c→∞ limit (dashed line). (b) The order
parameter k (y-axis) for different values of α (x-axis)
and choices of c (color coded). (c) The mean slack
norm ‖~s‖2 (y-axis) for different values of α (x-axis)
and choices of c (color coded), including the c→∞
limit (dashed line).

ck =
√
q
/
α 〈s2〉 (9)

Thus the loss is dominated by the weights when ck is
large and by the slacks when it is small.

In contrast, q (α) is non-monotonic, increasing from
0 to a peak at a finite value, then decreasing (figure 1a).
This is an indication of the trade-off between achieving
a larger margin (small q) and making only small errors
(small ‖~s‖). Figure S1 [18] compares simulation results
for q with solutions of the self-consistent equations.

We now consider some interesting limits (see Note
3). When α → 0 we have k → 1 and q → 0 so that
α−1

0

(
1/
√
q
)
≈ 1/q and thus k ≈ 1 − αc/ (1 + c) and

q ≈ αc2/ (1 + c)
2. When α → ∞ we have k → 0 and

q → 0 with scaling k ≈ 1/cα, q ≈ 1/α. Both limits are
marked in figure S1.
Infinite c limit When c → ∞ and α < 2 there is a

solution for w (of unconstrained norm) where ~s = ~0, so
the Lagrangian becomes that of max-margin classifiers:

L = min ‖w‖2 s.t. ∀µ hµ ≥ 1 (10)

In this regime k is finite while ck diverges, so equation
7 recovers the max-margin theory [5] and q diverges for
α near 2. On the other hand, for c → ∞ and α > 2
there is no solution with ~s = ~0 so this term dominates
the loss and the Lagrangian becomes:

L = min ‖~s‖2 s.t. ∀µ hµ ≥ 1− sµ (11)

A mean-field solution of this Lagrangian involves two
order parameters q = ‖w‖2/N and K = limc→∞ ck,
which follow the self-consistent equations 7-8 (where k
on the left-hand-side of equation 8 approaches 0, see
Note 3). Thus in the limit of c → ∞ the mean-field
theory reduces to a simple relation between q and α
(dashed line in figure 1a):

α =

{
α0

(
1/
√
q
)

α < 2

α−1
0

(
1/
√
q
)
/H2

(
−1/
√
q
)

α > 2
(12)

Field distribution The theory also provides the joint
distribution of h, s; their variance is due to the quenched
variability in the choice of the classification labels and
the arrangement of points (see Note 4). The field dis-
tribution is a concatenation of truncated Gaussian vari-
ables, each representing a different solution regime:

h ∼

{
N
(

ck
1+ck ,

q
(1+ck)2

)
h < 1

N (0, q) h ≥ 1
(13)

Fields h ≥ 1 are the “interior” regime (i.e., of points
beyond the separating hyper-plane), where s = 0, while
fields h < 1 are the “touching” regime (i.e., of points
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touching the separating hyper-plane), where s > 0.
This distribution is shown for several choices of c and
α in figure 2a, and figure S2 compares theory to the
empirical histogram from simulations. The distribution
of slack variables then follows from s = max {1− h, 0}.
Classification errors We now turn our focus to the

classification errors achieved when performing soft clas-
sification. The classification error on the training set is
defined εtr = P (h < 0) = P (s > 1) and from the field
distribution we have:

εtr = H (ck/
√
q) = H

(
1/
√
α 〈s2〉

)
(14)

A comparison of the training error observed in simu-
lations with the theoretical predictions is given in fig-
ure S3. As demonstrated in figure 2b,d, the training
error is monotonically increasing with α and monoton-
ically decreasing with c throughout. For α < 2 where
max-margin classifiers achieve no errors this is to be ex-
pected, but surprisingly this is also the case for α ≥ 2
(see classification error for α ≥ 2, c→∞ in figure 2b).

Thus we turn to analyze classification error in the
presence of noise, where a finite c may be optimal.
When Gaussian noise N

(
0, σ2/N

)
is applied at each

component of the input vectors, a noise N
(
0, σ2q

)
is

added to the fields, so test error with respect to such
noise is give by εg = P

(
h+ ησ

√
q < 0

)
, where η is a

standard Gaussian, or equivalently:

εg = 〈H (h/σ
√
q)〉h (15)

Equation 15 can be evaluated using the field distribu-
tion (equation 13). The resulting levels of error ex-
hibit non-monotonic dependence on both α and c (figure
2c,d). A comparison of the theoretical predictions with
simulation results for different choices of c and levels of
noise is provided in figure S4.
Classification errors for small noise While an ex-

plicit expression for the error is complicated, when the
noise is small relative to the margin from the optimal
hyper-plane σ � 1/

√
q, we provide a simple approx-

imation for the test error which can be written as a
signal-to-noise ratio εg ≈ H(S) (hereafter: SNR; see
Note 5):

S = ck/

√
q
(

1 + (1 + ck)
2
σ2
)

(16)

From the scaling of q, k for large and small α-s we have:

S ≈

1/

√
α
(

1/ (1 + c)
2

+ σ2
)

α� 1

1/
√
α (1 + σ2) α� 1

(17)

In this regime the optimal choice of c can be found
by maximizing S (equation 16) with respect to c, that

is solving 0 = ∂S−2

∂c for c, which yields (see Note 6):

c∗ =
σ−2

1− k
− 1

k
(18)

which is positive in the regime where the SNR is a valid
approximation, and needs to be solved self-consistently
as k depends on c. Due to the dependence on k we have
that c∗ depends on α, but this analysis also suggests a
“canonical choice” of c which is independent of α:

c ≈ σ−2 (19)

This choice is expected to capture the order of magni-
tude of c∗, except when α is very small or very large (as
equation 18 diverges for both k → 0 and k → 1).

Figure 3a demonstrates the optimal choice of c calcu-
lated by solving equation 18 and compares it to equa-
tion 19, showing this approximation is within the cor-
rect scale for a large range of α values. The resulting
norm of the optimal solution changes smoothly with α
(figure 3b) and the canonical choice of c achieves clas-
sification error which differs from the optimal one only
when the error is much smaller than 1 (figure 3c), and
is superior to other sub-optimal choices of c (figure S5).

B. Methods for soft classification of manifolds

A manifold Mµ ⊆ RN for index µ ∈ [1..P ] is parame-
terized by its axes

{
uµl ∈ RN

}µ=1..P

l=0..D
and the manifold’s

intrinsic coordinates ~S ∈ Mµ ⊆ RD+1. Each point in
the manifold is a vector xµ(~S) ∈Mµ such that:

xµ(~S) =

D∑
l=0

uµl Sl (20)

As above, the bold notation for xµ and uµl indicates
that they are vectors in RN , whereas the arrow nota-
tion is used for other vectors, such as the coordinates ~S
(not to be confused with the slack ~s). By convention uµ0
is the manifold center and we take S0 = 1, so that dis-
tances are measured in units of the center norm. When
classifying P manifolds with weights w ∈ RN , denoting
axes projections vµl = yµuµl ·w the fields become:

hµ(~S) = yµw · xµ(~S) = vµ0 + ~S · ~vµ (21)

The classic soft classification formalism [3], called
here point-slack SVM, uses one slack variable per sam-
ple. It is usually inapplicable for manifold classification
as the number of samples may be infinite. Thus we con-
sider two simple alternatives which allow for soft clas-
sification of manifolds, both require only a single slack
variable per manifold. In several specific cases where
the point-slack formalism can be used, it is compared
with those formalisms.
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FIG. 2: Field distribution and errors in soft classification of points. (a) Field distributions at different
values of α (panels), with color coded regime (orange: “touching” regime; green: “interior” regime; a dashed line
at h = 1 indicates regime boundary), using c = 10. (b-d) Classification error (y-axis) for different values of α
(x-axis) and choices of c (color coded), including the c→∞ limit (dashed line in (b)). Each panel (b-c) shows
the error at a different noise level σ2 (indicated in title). (d) Classification error (y-axis) for different choices of c
(x-axis, log scale), for several values of α (color coded), levels of noise σ2 (solid / dashed lines).

Center-slack method A naive approach for the clas-
sification of manifolds is to assume the soft classifier is
learned using only the manifolds’ centers and then eval-
uated on the entire manifolds. Formally, soft classifica-
tion using center-slacks is defined by weights w ∈ RN
and slack variables ~s ∈ RP such that the central fields
obey for all µ ∈ [1..P ]:

vµ0 = yµw · uµ0 ≥ 1− sµ (22)

Given a regularization parameter c ≥ 0 the optimal
classifier is defined by Lagrangian:

L = ‖w‖2/N + c‖~s‖2/N s.t. ∀µ vµ0 ≥ 1− sµ (23)

Using this method the manifold structure is not used
during training, so the weights’ norm and field distri-
bution (with respect to the centers) are given by points
classification theory from previous section. However, an
evaluation of classification errors on the manifold would
require additional assumptions on the manifold.
Manifold-slack method The previous method uses a

slack variable to constrain the mean of the fields on the
manifold. A natural alternative would be to constrain
the minimal field on the manifold. Using the fields defi-
nition hµ(~S), soft classification using manifold-slacks is

defined by weights w ∈ RN and slack variables ~s ∈ RP
where the minimal fields obey for all µ ∈ [1..P ]:

hµmin
.
= min

~S∈Mµ

hµ(~S) ≥ 1− sµ (24)

That is, given a regularization parameter c ≥ 0 the
optimal classifier is defined by Lagrangian:

L = ‖w‖2/N + c‖~s‖2/N s.t. ∀µ hµmin ≥ 1− sµ (25)

Figure 4 illustrates soft classification of points (or
manifold centers, as noted above), spheres and general
manifolds. In what follows we first discuss spheres, then
extend the discussion to general manifolds.

C. Soft classification of spheres

A D-dimensional sphere of radius R in RN is defined:

xµ(~S) = uµ0 +R

D∑
l=1

Slu
µ
l s.t. ‖~S‖ ≤ 1 (26)

As in the case of points we would analyze the classifica-
tion problem for random labels ~y ∈ {±1}P and random
axes uµli ∼ N (0, 1/N), i.e., again scaling ‖uµl ‖ ≈ 1.
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FIG. 3: The optimal choice of c in soft
classification of points. (a) The optimal choice of c
(y-axis, log scale) for different values of α (x-axis) and
levels of noise σ2 (color coded). Compares the optimal
choice c∗ (solid lines) and the canonical choice c = σ−2

(dashed lines). (b) The weights’ norm q1/2 (y-axis) for
different values of α (x-axis) and levels of noise σ2

(color coded) when using the optimal value of c. (c)
Classification error (y-axis) for different values of α
(x-axis) and levels of noise σ2 (color coded). Compares
the optimal choice c∗ (solid lines) and the canonical
choice c = σ−2 (dashed lines).

1. Center-slack

Using center-slacks the classifier properties are given
by the theory of soft classification of points, self-
consistent equations 7-8, and the distribution of the
fields on the centers follows equation 13.

The classification error on the sphere is defined
ε = P (v0 +R

∑
l vlSl ≤ 0) but as vl = yw · ul

where w is independent of ul in this case, we have
that vl ∼ N (0, q), and as ‖~S‖ = 1 on the sphere
R
∑
l vlSl ∼ N

(
0, qR2

)
. If we assume Gaussian noise

N
(
0, σ2/N

)
is added independently for each sample

component, as we have done for points, we have noise
of N

(
0, q

(
σ2 +R2

))
at the fields. Thus the error is

given by ε = P
(
v0 +

√
(σ2 +R2) qη ≤ 0

)
where η is a

standard Gaussian, or equivalently:

ε =
〈
H
(
v0/
√

(σ2 +R2) q
)〉

v0
(27)

where surprisingly, the dimensionality D of the spheres
plays no role in this setting.

We conclude that soft classification of spheres of ra-
dius R using center-slacks with noise level of σ2 is equiv-
alent to soft classification of points with effective noise
σ2
eff = σ2 + R2. Several corollaries can be made from

the analysis of points, by using the effective noise σ2
eff

instead of σ2. First, when
(
σ2 +R2

)
q � 1 we expect

a good SNR approximation ε ≈ H(S) using:

S = ck/

√
q
(

1 + (σ2 +R2) (1 + ck)
2
)

(28)

Figure 5a show the resulting error when sampling from
the sphere (i.e., σ = 0) for different values of R, and
figure S6 compares the theory to the error measured
empirically. Second, the optimal choice of c is then
given by equation 18, as well as the “canonical choice”

c ≈ 1/
(
σ2 +R2

)
(29)

Contrary to the result from classification of points, due
to the contribution of R, here the optimal choice for c
is finite even for σ = 0, as illustrated in figure 5b.

2. Manifold-slack

We now consider soft classification of the entire mani-
fold, that is hµmin ≥ 1−sµ, thus generalizing the analysis
of max-margin classifiers for spheres [6]. For spheres the
point with the “worst” field, or minimal overlap with w,
is given by ~S = −v̂ (where v̂ = ~v/‖~v‖), and hence a nec-
essary and sufficient condition for the soft classification
of the entire sphere is given by vµ0 −R‖~vµ‖ ≥ 1− sµ.
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(a) (b) (c)

FIG. 4: Illustration of soft classification of points, spheres and general manifolds. A weight vector w
(gray arrow) defines the signed fields w · x on the manifolds being classified, satisfies yw · x ≥ 1− s. The light
gray hyper-plane depicts the decision boundary w · x = 0; points above it are labeled +1 and below it −1. The
dark gray hyper-planes depicts the boundaries w · x = ±1. The length of each manifold’s slack is indicated by a
dashed line from the manifold point with the minimal field yw · x to the hyper-plane w · x = y. Each panel
depicts the classification of 4 blue manifolds (target label is +1) against 4 orange manifolds (target label is −1).
The blue and orange manifolds are symmetrically positioned for illustration purposes only. Manifolds are
numbered from darkest to lightest. (a) Classification of points: the 1st point is in the interior yw · x > 1, has
s = 0; the 2nd and 3rd points have non-zero slack 0 < s < 1, are classified correctly; the 4th point is below the
decision boundary yw · x < 0, corresponds to an error, has s > 1. (b) Classification of spheres: the 1st sphere is
in the interior yw · x > 1, the 2nd sphere is fully embedded within the hyper-plane yw · x = 1− s, the 3rd and
4th spheres touching the hyper-plane yw · x ≥ 1− s with the minimal field above 0 for the 3rd, below 0 for the
4th. (c) Classification of general manifolds: the 1st manifold is in the interior yw · x > 1, the 2nd manifold has a
face embedded within the hyper-plane yw · x = 1− s, the 3rd and 4th manifolds touching the hyper-plane
yw · x ≥ 1− s with the minimal field above 0 for the 3rd, below 0 for the 4th.

Replica theory This observation allows us to write
an expression for the volume V (L, c) of solutions
achieving a target value of the loss L:

V (L, c) =

∫
dNw

∫
dP~sδ

(
‖w‖2 + c‖~s‖2 −NL

)
(30)

· · ·
P∏
µ

δ (vµ0 −R‖~vµ‖ − hµ) Θ (hµ − 1 + sµ) (31)

A replica analysis yields the following relation between
L,α and the same order parameters q, k (i.e., defined
exactly as in the case of points) when the volume of
solutions vanishes (see Note 7):

L/q =
k − 1

k
+
α

k

∫
DD~t

∫
Dt0F

(
~t, t0

)
(32)

F
(
~t, t0

)
= min
v0−R‖~v‖≥1/

√
q

{
‖~v − ~t‖2 +

ck

1 + ck
(v0 − t0)

2

}
(33)

where q = ‖w‖2/N and Dt0 = dt0e
−t20/2/

√
2π so ~t, t0

are D+1 Gaussian variables representing the quenched
noise in the solution, due to the variability of the labels

{yµ} and the manifolds’ axes {uµl }. Note that for D =

0, F (t0) = ck
1+ckα

−1
0

(
1/
√
q
)
so we recover equation 6.

Solving the inner problem (equation 33) using
Karush-Kuhn-Tucker conditions [19] (hereafter: KKT),
allows us to describe the joint distribution of v0, v =
‖~v‖, and s conditioned on t0, t = ‖~t‖ at different solu-
tion regimes (see Note 8):

1. “Interior” regime: the entire sphere is classified
correctly with h > 1 and a margin larger than
1/
√
q from the hyper-plane h = 0; in this regime

the slack is not utilized s = 0 and the solution
satisfies v0 = t0, vl = tl so that F = 0. This
regime is in effect for 1/

√
q +Rt ≤ t0 ≤ ∞.

2. “Touching” regime: the tip of the sphere touches
the hyper-plane h = 1 − s; in this regime v0, v, s
have non-trivial values. This regime is in effect
for 1/

√
q − 1+ck

ck t/R ≤ t0 ≤ 1/
√
q +Rt.

3. “Embedded” regime: the entire sphere is within
the hyper-plane h = 1 − s; in this regime v = 0
but v0, s have non-trivial values. This regime is
in effect for −∞ < t0 ≤ 1/

√
q − 1+ck

ck t/R.
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The same KKT analysis also provides the minimization
value F (t0, t) achieved at each regime, so that denot-
ing f (R,D, ck, q) =

∫
DD~t

∫
Dt0F

(
~t, t0

)
and χD (t) =

21−D/2

Γ(D/2) t
D−1e−t

2/2dt the Chi distribution withD degrees
of freedom:

f (R,D, ck, q) =

∫
χD (t)

∫ 1/
√
q− 1+ck

ck t/R

−∞
Dt0

[
ck

1 + ck
(1/
√
q − t0)

2
+ t2

]
(34)

+

∫
χD (t)

∫ 1/
√
q+Rt

1/
√
q− 1+ck

ck t/R

Dt0
ck

1 + ck (1 +R2)
(1/
√
q +Rt− t0)

2 (35)

and the mean-field equation becomes:

L/q =
k − 1

k
+

1

k
αf (R,D, ck, q) (36)

Self-consistent equations Assuming the optimal loss
L∗ satisfies saddle-point conditions 0 = ∂L

∂q = ∂L
∂k , we

have 2 self-consistent equations for k, q, similar to those
found in the case of points:

1 = αf − αk ∂
∂k
f (37)

1− k = αf + αq
∂

∂q
f (38)

See the concrete form in Note 9. Those equations
can be solved numerically to predict the weights’ norm
(Algorithm 2). This prediction is compared to the norm
observed in simulations (i.e., by finding the optimal
weights for classification of spheres, Algorithm 3). Fig-
ure 6 shows the resulting q, k for specific values of R,D
(and additional ones are presented in figure S8); q (α)
has a single peak, increasing from 0 to a finite value
at the peak, then decreasing monotonically, while k (α)
decrease monotonically from 1 to 0. We note that while
for spheres ck no longer corresponds exactly to the ra-
tio between the two parts of the optimization target, its
interpretation as a measure of the contribution of the
weights is maintained.

The mean-field equations can be simplified when con-
sidering several interesting limits (see Note 10). As in
the case of points, in the limit c→∞, we find a differ-
ent behavior below and above αHardC , the max-margin
capacity. For α < αHardC we have that k is finite while
ck diverges, with equation 37 becoming the mean-field
equation from max-margin classification [6], and the un-
derlying Lagrangian is given by

L = ‖w‖2/N s.t. ∀µ hµmin ≥ 1 (39)

On the other hand, for α > αHardC we have that k ap-
proaches 0 while q and K = limc→∞ ck are finite, with
the underlying Lagrangian

L = ‖~s‖2/N s.t. ∀µ hµmin ≥ 1− sµ (40)

A second interesting limit is α → 0. In this limit we
expect the order parameters to behave as in the case
of points, q → 0 and k → 1. We find that for small
α the self-consistent equations are simplified and for
α � 1 we have the approximations k ≈ 1 − α (1 +D)

and q ≈ α (ck)
2
/ (1 + ck)

2 (see figures 6, S8 where those
approximations are marked).
Phase-transition An analysis of the mean-field

equations reveals that for spheres (unlike points) there
is a finite value of α where q → 0, and above which the
self-consistent equations cannot be solved for k, q (see
figures 6, S8). The corresponding simulation results in-
dicate that when the theory equations cannot be solved
the optimal classifier is w = 0, that is q = 0, with
all the slack variable saturating at ~s ≡ 1. Thus, soft
margin classification problems always have a solution,
unlike max-margin problems, but above a certain value
of α this is the trivial solution. The critical value for α
can be found by assuming that both k,√q � 1; using a
scaling of x = ck/

√
q we get that α = αC would satisfy

(see Note 11):

α−1
C =

∫ xR

0

χD (t) t2 + xR

∫ ∞
xR

χD (t) t (41)

x =

(
1 +R2

∫ ∞
xR

χD (t)

)−1

R

∫ ∞
xR

χD (t) t (42)

where x is the self-consistent solution of equation 42.
Surprisingly, the critical value is independent of c and

we denote it αSoftC , as a soft analog of the max-margin
capacity αHardC [6]. Notably, the former is always larger
αSoftC ≥ αHardC , as shown in figure 7a.

For R → 0 we have that x = R
∫∞

0
χD (t) t =

R
√

2Γ
(
D
2 + 1

2

) /
Γ
(
D
2

)
and α−1

C = x2. Thus, for small
R, the critical value αSoftC diverges as R−2 (and in the
limit of points there is no phase transition). Conversely,
for R → ∞ we have x ≈ 0 and αSoftC = D−1, whereas
in this limit αHardC = (D + 1/2)−1 [6]. Intuitively, in
both casesw must be perpendicular to the PD manifold
axes; for soft classification this implies just N > PD or
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FIG. 5: Soft classification of spheres using
center-slacks. (a) Classification error (y-axis) for
different values of α (x-axis) and R (color coded),
without noise σ2 = 0, using the optimal choice of c
(solid lines) and the canonical choice c = R−2 (dashed
lines). (b) The optimal choice of c (y-axis, log scale)
for different values of α (x-axis) and R (color coded),
without noise σ2 = 0. The canonical choice c = R−2 is
indicated by the dashed horizontal lines.
Those results are independent of D, see main text.

α < D−1, while for max-margin classification due to the
finite capacity when classifying the centers this means
P/ (N − PD) < 2 or α < (D + 1/2)

−1.
The existence of a sharp transition in the manifold-

slack problem is the result of the thermodynamic limit.
For small N , the existence of a solution at any given α
depends on the particular labels realization. As N in-
creases, the probability of having a solution approaches
1 for α < αC , and 0 for α > αC (figure S7).
Phase-transition for large D regime When D � 1

the phase-transition equations 41-42 implies a simple
expression for capacity:

αSoftC ≈
(
1 +R2

) /
R2D (43)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

q1/
2

R=0.25 D=10

C
Soft

C
Hard

(a)
Theory
Simulations

 0

C
Soft

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

k

C
Soft

C
Hard

(b)
Theory

 0

C
Soft

C
Soft

C
Hard

c=10-1

c=100

c=101

C
Soft

C
Hard

c=10-1

c=100

c=101

FIG. 6: Order parameters in soft classification
of spheres using manifold-slacks. (a) The weights’
norm q1/2 (y-axis) for different values of α (x-axis),
and choices of c (color coded), for radius R = 0.25 and
dimension D = 10. Compares theory results (solid
lines) to simulation results (diamonds).
(b) The order parameter k (y-axis) for different values
of α (x-axis), and choices of c (color coded).
(a-b) Theory for the limits of α→ 0, α→ αSoftC is
marked as black dotted, dash-dot lines, respectively.

Figure 7b compares this approximation to the full ex-
pression for different values of R,D; as observed, this
approximation is reasonable for large D independently
of the value of R. In this regime the max-margin ca-
pacity is given by [6]:

αHardC ≈
(
1 +R2

)
α0(R

√
D) (44)

Phase-transition intuition To gain some intuition
for why a phase transition is to be expected for
manifold-slack, we need to consider the distribution of
slack values. As for points, the mean-field theory pro-
vides the full distribution of the fields and slack vari-
ables (see Note 12). Figure S9 compares the theo-
retical slack distribution to the histogram of the val-
ues observed in simulations. We note that the slack
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FIG. 7: Capacity in manifold-slack
classification of spheres. (a) The ratio between
αSoftC and αHardC (y-axis, log scale) for different values
of R (x-axis) and D (color coded). (b) The ratio
between αSoftC and equation 43 approximation (y-axis)
for different values of R (x-axis) and D (color coded).

distribution depends on q both for the mean and the
variance; decreasing q pushes the slack distribution to-
ward a δ-function at 1 when q = 0. Now consider how
manifold-slack is compared to center-slack. From the
theory of classification of points, the loss in classifi-
cation using center-slacks monotonically increases in α
and tends asymptotically (from below) toward L = cα.
As this is the loss achieved by the trivial solution, reach-
ing it at a finite α corresponds to the phase transition.
For large values of α, weights trained on manifold cen-
ters have small q and slack values near 1; those achieve
hmin ≈ v0 −

√
qR
√
D; thus if those weights were used

by the manifold-slack, the slacks would need to increase
by √qR

√
D, pushing their mean above 1. To avoid this,

the loss is reduced by decreasing q, pushing it toward
0. Below we use this intuition to speculate on whether
other soft classification formalisms would introduce a
phase transition (see discussion).

Classification errors Next we use the fields and slack
distributions to calculate the probability of classifica-
tion errors. In the framework of manifold-slacks it is
natural to consider the probability of error anywhere
on the manifold, or equivalently the fraction of mani-
folds where the worst point is misclassified. This is the
fraction of slack variables that are larger than 1, i.e.,
εmanifoldtr = P (s ≥ 1), which can be evaluated from
the slack distribution. This entire-manifold classifica-
tion error is given by εmanifoldtr = H(Smanifold) for
Smanifold defined in Note 13.

A different kind of error is the probability of clas-
sification error on uniformly sampled points from the
sphere, that is εsampletr = P (h < 0), similar to the er-
ror considered above for center-slacks. These fields can
be written as h = v0 + Rvz, where z = cos(θ) for θ
the angle between the weight vector and the point on
the sphere, v0 and v = ‖~v‖ are the projections of the
weight vector on the center and the sphere subspace.
Thus, εsampletr = P (v0 +Rvz < 0), where the joint dis-
tribution of v0, v is given by theory, and for a uniform
sampling from a sphere z ∈ [−1, 1] has a bell-shaped
distribution (see Note 13):

P (z) =
1√
π

(
1− z2

)D−3
2 Γ

(
D

2

)/
Γ

(
D − 1

2

)
(45)

with moments 〈z〉 = 0 and
〈
δz2
〉

= 1/D. In this setting
classification error monotonically decreases with c so the
optimal value of εsampletr is achieved for c =∞.

We now consider the classification error of points on
the sphere in the presence of noise, where the classifier
is trained on the entire manifold (i.e., with no noise),
and tested on noisy samples from the manifold. As-
suming Gaussian noise N

(
0, σ2/N

)
is added to each

component of manifold samples, the fields are affected
by noise N

(
0, σ2q

)
. Thus the probability of error in a

sample is given by P
(
h+ σ

√
qη < 0

)
where η is stan-

dard Gaussian, and equivalently:

εsampleg =

〈
H

(
v0 +Rzv

σ
√
q

)〉
v0,v,z

(46)

Large D regime The regime of spheres with D � 1
is important as real-world manifolds are expected to be
high-dimensional, and in this regime it is possible to
derive an SNR approximation of equation 46.

When R ∼ O (1), αSoftC is close to αHardC (see figure
7). Thus in this regime the benefit of soft classification,
in terms of the range of valid solutions, is small. On the
other hand, when R

√
D ∼ O (1), αSoftC can be much

larger than αHardC (figure 7a), and thus we focus on this
regime in our analysis of classification errors.

To derive an SNR approximation we assume that in
this regime v0 + Rzv is approximately Gaussian, and
that only the “touching” regime contributes to the error,
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FIG. 8: Errors in soft classification of spheres.
Results for spheres of radius R = 0.25 and dimension
D = 10. (a) Classification error without noise (y-axis)
for different values of α (x-axis) and choices of c (color
coded). Compares samples’ classification error (dark
lines) and entire-manifold classification error (light
lines). (b) Classification error at noise level σ2 = 1
(y-axis) for different values of α (x-axis) and choices of
c (color coded). (c) Classification error (y-axis) for
different choices of c (x-axis, log scale), for several
values of α (color coded), levels of noise σ2 (solid /
dashed lines).

thus substituting the values of v0, v derived from the
mean-field theory in that regime. The resulting SNR is
provided in Note 13.

Importantly, from this analysis we can calculate
the limiting behavior of the SNR. In the α → 0
limit the error anywhere on the manifold scales as
limα→0 ε

manifold
tr = H

(
ck/
√
q
)
, and using the order pa-

rameters in this limit leads to:

lim
α→0

εmanifoldtr = H
(
(1 + c) /

√
α
)

(47)

which is exactly the scaling for classification of the cen-
ter points alone (εcenterstr , equation 17 with σ2 = 0).
Thus in this regime (i.e., N → ∞) the manifold struc-
ture does not affect the classification error and further-
more the error in classification of the entire sphere is the
same as the error in classification of samples εsampletr , as
the former is bounded between the two classification
errors εcenterstr ≤ εsampletr ≤ εmanifoldtr .

On the other hand, in the α→ αSoftC limit, from the
scaling of k, q in this limit the error in classifying the
entire manifold saturates, but not the error classifying
samples (see Note 13):

lim
α→αSoftC

εmanifoldtr = H (0) = 1/2 (48)

lim
α→αSoftC

εsampleg = H

(
R
√
D

1 +R2

1√
1 + σ2

)
(49)

Thus the theory predicts that errors at the phase transi-
tion are independent of c and jump from this finite value
to 0.5 (in simulations using a finite N this transition is
smoothed, as already discussed above).

Figure 8a presents both types of training errors and
their dependence on α and c at specific values of R,D,
demonstrating that they are monotonically decreasing
with c and monotonically increasing with α. Unlike the
training error, in the presence of noise the test error is
not monotonic in both α (figure 8b) and c (figure 8c).
Thus error is minimized for a finite value of c, which
depends on both the noise level σ and the load α.

Theory’s agreement with empirical simulations is pre-
sented for different parameter values and choices of c in
figure S10 for the training error, and similarly in fig-
ure S11 for the test error. Thus theory can be used
to choose the optimal value of c. Figure S12 presents
the optimal value of c for different values of α and
levels of noise, demonstrating a non-trivial behavior
for manifold-slacks, unlike the monotonic behavior pre-
dicted by theory for center-slacks.
Comparison with other methods Comparing the per-

formance of the manifold-slack method with other
methods requires optimization of the regularization
value c independently for each method. When there
is no noise, below max-margin capacity α < αHardC ,
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FIG. 9: Comparison of classification errors for
spheres using different methods. (a)
Classification error (y-axis) using manifold-slacks (at
the optimal choice of c, solid lines) or max-margin
classification (dashed lines) at different values of α
(x-axis) for radius R = 0.25 and dimension D = 10.
Compares simulation results at different noise levels
(color coded). (b-c) Classification error using the
optimal choice of c (y-axis) for different values of α
(x-axis) and values of R (color coded), for dimension
D = 5. Compares simulation results of manifold-slack
classifiers (solid lines) and center-slack classifiers
(dashed lines), without noise (b) and with noise (c).

the optimal choice of c is infinite such that manifold-
slack classification converges to max-margin classifica-
tion. However, in the presence of noise the optimal
value of c is finite and using manifold-slacks reduces
classification error relative to max-margin classification
(figure 9a). While the manifold-slack method is strictly
better than the max-margin method due to choosing
from a larger pool of classifiers, the improvement is usu-
ally small and is achieved toward αHardC (see figure S13).

A systematic comparison of the manifold-slack and
center-slack methods finds that manifold-slacks are bet-
ter for small α values, with notable benefits at larger R
and smaller σ values (see figure 9b-c). Intuitively, when
the noise is small, manifold-slacks may achieve near-
zero error at a range of α values, while center-slacks
performance depends on R as a noise term and thus
may be order 1 when R is order 1. For larger α val-
ues the performance of center-slacks surpasses that of
manifold-slacks, and finally above αSoftC only the center-
slack method is a viable option.

As noted above, the point-slack method cannot in
general be used for classification of manifolds with an
infinite number of points. However, for classification of
line segments (i.e., spheres with D = 1), a correct clas-
sification of the 2P end-points is enough to classify the
entire line. Figure S14 compares manifold-slack with
point-slack classification of the 2P end-points, both us-
ing the optimal choice of c for a given level of noise. The
performance of point-slack SVM is usually close to that
of the manifold-slack method, but provides a signifi-
cant improvement toward αSoftC . The line segments case
demonstrates a striking contrast between those alterna-
tives. Using the manifold-slack method (with P slack
variables) there is a phase transition where the non-
trivial classifier vanishes at a finite α, as expected from
spheres classification theory. But there is no such tran-
sition using the point-slack method (with 2P slack vari-
ables), as expected from the point-slack theory (com-
pare the weights’ norms in figure S14a,b).

D. Soft classification of general manifolds

We now consider the more general case, which is rel-
evant for applications, where the above analysis of both
points and spheres would serve as a stepping stone to-
ward theoretic understanding of general manifolds.

1. Center-slack

The center-slack method is straightforward to gen-
eralize to general manifolds, with the centers defined
per our definition of a general manifold (u0 in equation
20). A classifier trained on the centers would have a
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norm per points classification theory (equations 7-8),
and central field distribution per equation 13.

The probability of classification error for a point on
the manifold x(~S) would be ε(~S) = P

(
v0 + ~S · ~v ≤ 0

)
with ~S · ~v ∼ N

(
0, q‖x(~S)− u0‖2

)
. A calculation

of classification error on a general manifold requires
to make further assumptions on the sampling of ~S ∈
M (see discussion). However, for the simple case of
uniform sampling from a point-cloud manifolds where
xm = u0 + δxm for m = 1..M we have that:

ε =
1

M

M∑
m=1

〈
H
(
v0/
√

(σ2 + ‖δxm‖2) q
)〉

v0
(50)

where σ2/N is the variance of Gaussian noise added
to each component, which generalize equation 27 from
spheres, with the empirical ‖δxm‖2 taking the role of
R2. Furthermore, when the number of samples is large
we expect self-averaging:

ε =

〈
H

(
v0/

√(
σ2 + R̂2

)
q

)〉
v0

(51)

for R̂2 = 1
M

∑M
m=1 ‖δxm‖2 the total variance of the

manifold points. Figure S15 compares the full theory
(equation 50) and the approximation (equation 51) to
empirical measurement of the error using center-slacks.

2. Manifold-slack

Replica theory Generalizing the mean-field theory of
spheres to general manifolds, the theory implies that
equation 32 is unmodified while equation 33 becomes:

F
(
~t, t0

)
= min
v0+g(~v)≥1/

√
q

{
‖~v − ~t‖2 +

ck

1 + ck
(v0 − t0)

2

}
(52)

where g (~v) = minS∈M ~v · ~S is a called the “support
function”. To characterize the solution of F

(
~t, t0

)
using

KKT conditions, we formally define “anchor points” as
the subgradient of this function (as in [7]):

S̃ (~v) =
∂

∂v
g (~v) (53)

and when the support function is differentiable, the sub-
gradient is unique and is equivalent to the gradient:

S̃ (~v) = arg min
~S∈M

~S · ~v (54)

For a given data manifold Mµ and known values of
q, k, one can sample from the anchor point distribution

using the mean-field theory (see Note 14):

S̃
(
~t, t0

)
=

~v∗ − ~t
ck

1+ck (v∗0 − t0)
(55)

where ~v∗, v∗0 are the values which minimize F
(
~t, t0

)
, to

be found using general least-squares optimization meth-
ods. This method for sampling from the anchor point
distribution is formally described in Algorithm 4.
Large D regime We note that the structure of the

manifold enters the mean-field equations only through
the anchor points and their distribution. For large D,
[7] have suggested their contribution can be summarized
by measuring two statistics. Those manifold properties
RM , DM are defined through the statistics of the anchor
points with respect to ~t, t0:

R2
M =

〈
‖δS̃‖2

〉
~t,t0

(56)

DM =

〈(
~t · δS̃

)2

/‖δS̃‖2
〉
~t,t0

(57)

As those generalize R,D of spheres, we suggest using
RM , DM to solve for q, k, and αSoftC in the equations
of soft classification of spheres. For each value of α, c
we can iteratively calculate RM , DM by sampling an-
chor points using the current values of q, k, then up-
date the estimation of q, k (using equations 95,97 with
R = RM , D = DM ), until convergence (Algorithm
7). Similarly, we can calculate αSoftC directly by it-
eratively calculating RM , DM at small q, k, then up-
date the estimation of αSoftC (using equation 41 with
R = RM , D = DM ), until convergence (Algorithm 8).

As was the case for spheres, whenD is large we expect
only the “touching” regime to contribute, and applying
KKT condition to minimizing F

(
~t, t0

)
we get a self-

consistent relation (see Note 14):

~v = ~t+
ck

1 + ck

(
1/
√
q − ~v · S̃ − t0

)
S̃ (58)

Thus equations 54,58 can be used to iteratively update
~v and S̃ (Algorithm 5). This iterative approach allows
for finding the anchor points without solving a least-
squares optimization problem for each value of ~t, t0, as
in the least-squares algorithm.

Using manifold-slacks we expect classification of gen-
eral manifolds to exhibit finite capacity because the
minimal field hmin is expected to be finite and negative
relative to the central field v0 as long as the weights
are finite. To use a concrete example, for simulations
of general manifolds we used point-cloud manifolds cre-
ated by sampling m points from a D-dimensional ellip-
soid with radii rl ∼ l−γ . Denoting R2 =

∑D
l=1 r

2
l the el-

lipsoid shape is defined by parameters R,D, γ. Figures
10a-b, S16a-b demonstrate the existence of finite capac-
ity when using manifold-slacks also for those manifolds.
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FIG. 10: Order parameters and manifold properties for point-cloud manifolds. Sampling m = 100
points from an ellipsoid with γ = 1.5, R = 0.25, D = 20. (a) The weights’ norm q1/2 (y-axis) for different values
of α (x-axis) and choices of c (color coded). Compares theory (solid lines) and simulation results (diamonds).
(b-d) The corresponding values of the order parameter k (b), manifold dimension DM (c) and manifold radius
RM (d) (y-axis) for different values of α (x-axis) and choices of c (color coded).

The predicted values of q matches the empirically ob-
served values, which vanish at a finite α value (figures
10a, S16a). The dependence of the measured DM on c
and α is quite small (see figures 10c, S16c) and similarly
for the measured RM (see figures 10d, S16d).

Figure S18 presents the weights’ norm for the clas-
sification of point-cloud manifolds and the theoretical
values predicted for q, k,RM , DM , using either the itera-
tive or the least-squares algorithm. The two algorithms
give very similar results, with a notable difference at
large R where the assumption that only the “touching”
regime contributes to the solution no longer holds.

As it is favorable to have manifold propertiesDM and
RM which do not depend on α, figure S19 shows that
using a single choice of DM , RM , calculated for α near
αSoftC (i.e., largest solvable α) to predict q provides a
good match for the entire range of α (but not using a
single choice calculated from a small α value).

Point-cloud manifolds are important for applications
of the theory and so we explored how manifold prop-
erties scale with the number of points in the manifold.
Figure 11 demonstrates the contrast between structured
manifolds, sampled from a low-dimensional ellipsoid,
and random manifolds, sampled from Gaussian statis-
tics. For both types the manifold radius RM does not
depend on the number of samples (figure 11a). How-
ever, while for structured manifolds the manifold di-
mension DM does not depend on the number of points
(figure 11b), for random manifolds we observe that DM

is linear in the number of points m (figure 11c). As a
result, for structured manifolds the capacity αSoftC sat-
urates to a finite value (figure 11d) when the number
of samples is increased while for random manifolds it
vanishes as 1/m (figure 11e). The properties of random

manifolds are further demonstrated in figure S20.
Classification errors For general manifolds, the clas-

sification error is defined assuming manifold points are
sampled according to some measure on the manifold
(see discussion); for the simpler case of point-cloud
manifolds, we assume this is a uniform distribution.

Figure S21 presents the training and test errors found
in classification of point-cloud manifolds, demonstrating
that the training error is monotonic in both c and α but
the test error is not. Classification errors can be pre-
dicted from the theory of classification of spheres, by
plugging-in the theoretical values of q, k,RM , DM , cal-
culated using the least-squares algorithm. Figure S22
compares the training error predicted with the error
measured in simulations, and figure S23 compares the
predicted test error at several noise levels with simu-
lation results. The observed agreement means that the
theory of spheres classification can be used to make pre-
dictions regarding classification of non-spherical mani-
folds by measuring the manifolds’ RM and DM , demon-
strates that those geometric properties capture the con-
tribution of manifold shape to classification.
Comparison with other methods Comparing the per-

formance of different classification methods on point-
cloud manifolds reveals a similar behavior to that ob-
served for spheres. Figure S24 compares the manifold-
slack method with both center-slack and max-margin
methods, using the optimal choice of c for each method.
Below αHardC manifold-slack classification exhibits im-
proved performance compared to max-margin classifi-
cation, but this improvement is usually small (figure
S24a-b). As in the case of spheres, for small α values
manifold-slacks are superior to center-slacks, with large
qualitative difference at low noise level when R is or-
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FIG. 11: Scaling of capacity and manifold geometry with the number of points in point-cloud
manifolds. Comparison of point-cloud manifolds of m points sampled from either an ellipsoid with γ = 1.5,
radius R = 0.5 and dimension D = 10, or from a random Gaussian. (a) Manifold radius (y-axis) dependence on
the number of manifold points (x-axis) for ellipsoid and random manifolds. (b-c) Manifold dimension (y-axis)
dependence on the number of manifold points (x-axis) for ellipsoid manifolds (b) and random manifolds (c).
(d-e) Capacity (y-axis) dependence on the number of manifold points (x-axis) for ellipsoid manifolds (d) and
random manifolds (e). All values calculated at the largest possible α; error bars indicate standard deviation with
respect to choices of c.

der 1, while for larger α values the performance of the
center-slack method is better (figure S24c).

For point-cloud manifolds, when the number of sam-
ples per manifold is not too large, the point-slack
method can also be used for manifold classification. Fig-
ure S25a-d shows that using the point-slack method,
there is no phase-transition to zero weights as for the
manifold-slack method. Despite this marked differ-
ence, the classification error achieved by the point-slack
method is only slightly better than that achieved by the
manifold-slack method (both using the optimal choice
of c, figure S25e-f). This improvement is significant only
at small levels of noise and towards αSoftC . Thus point-
slack SVM uses the additional degrees of freedom (and
additional computational costs) from assigning a sep-
arate slack variable per sample to slightly outperform
the manifold-slack method.

III. Discussion

The introduction of slack variables to SVMs allows
linear classification of data which is not linearly sepa-
rable, and for optimizing performance by choosing the
right balance between making training errors and in-
creasing classification margin (using the regularization
parameter c, equations 2,23,25). Here we analyze the
noise resilience of such classification by considering test
performance with respect to input noise (with variance
σ2/N applied to each input component).
Point-slack We first study the statistical mechanics

of a point-slack model where a set of P random points
in N dimensions are independently labeled, and each is
assigned a slack variable. We show that the problem

has a well defined solution for all load values α = P/N
(figure 1). In the absence of input noise, the optimal
choice of c is infinite for all α; however, in the presence
of noise in the test data, the optimal c is finite (figure 2).
Furthermore, the optimal choice of c can be calculated
from theory (equation 18), and is roughly given by the
“canonical choice” c = σ−2 (figure 3), demonstrating
that an optimal regularization is tuned to the noise.
Manifold classification Our main interest is the case

of points arranged in P randomly labeled manifolds,
such that all points within a manifold have the same tar-
get label. Assuming the number of points per manifold
is large (and possibly infinite) assigning a slack variable
to each point is not feasible. We introduced and ana-
lyzed two schemes of slack algorithms for classification
of manifolds, which differ in the manner in which slack
variables are attached to manifolds. In the center-slack
method, each manifold center is associated with a slack
variable, reducing the learning to point-slack SVM of
the centers. In the manifold-slack method, a slack vari-
able is associated with the “worst” point in each man-
ifold, relative to the separating hyper-plane. The rela-
tion between slack variables and errors is different in the
two methods (figure 4); when using center-slacks, if the
center is misclassified, most of the manifold may follow,
but using manifold-slacks most of it may be classified
correctly even if the “worst” point is not.
Center-slack The relatively simple center-slack

scheme has several attractive features. First, it has a
well defined, non-zero, solution for the weights for all
values of α. Second, the associated optimal c is pro-
vided by theory (figure 5) and is approximately given
by the simple “canonical choice” c = (R2 +σ2)−1, where
R is the manifold radius, expressing the intuition that
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the variability of the manifold data relative to the cen-
ter (quantified by R2) is an intrinsic noise on top of the
extrinsic noise σ2. Finally, for large α values its perfor-
mance is superior to the more sophisticated manifold-
slack method (figures 9b-c, S24c), as discussed below.
The disadvantages of the center-slack method are its
performance for small α values and that it does not
generalize max-margin manifold classification.
Manifold-slack The manifold-slack scheme is a nat-

ural extension of max-margin manifold classification
[6, 7] in which the optimal weight vector is a sum of
anchor points, one per manifold, which are the clos-
est points in each manifold to the separating hyper-
plane. Here each such point is assigned a slack vari-
able. For α below the error-less classification capacity
αHardC , when c approaches ∞, manifold-slack classifi-
cation approaches max-margin classification. However,
the optimal c may not be infinite even in this α regime
in the presence of noise (figure 8). As for larger val-
ues of α, a surprising result of our mean-field theory
is that the manifold-slack method possesses a solution
with non-zero weight vector only below a second crit-
ical value, αSoftC (figure 6). Thus, this method allows
for extending the range of linear classification above the
error-less capacity, but for a limited range (figure 7).

Using an optimal choice of c, the classification-error
performance of manifold-slacks is always better than
max-margin and may be superior to center-slacks, de-
pending on parameters. The main improvement over
max-margin is the extended range of α values (figure
7), as the reduction of the classification error is usu-
ally small (figures 9a, S13, S24a-b). The improved per-
formance compared to center-slacks is substantial for
small α values when the noise is small and R is order
1, where manifold-slacks achieves near-zero error while
center-slacks error is order 1 (figures 9b-c, S24c).

While many of the results for manifolds were derived
in the context of spheres, the theory extends well to gen-
eral manifolds by recovering their effective radius and
dimension (equations 56, 57, figures 10, S16). Impor-
tantly, their classification performance is well predicted
by plugging those values into the theory of spheres (fig-
ures S22, S23), thus demonstrating they capture the
classification-relevant aspects of manifolds’ geometry.
For structured point-cloud manifolds we find a dimen-
sion which does not depend on the number of points, in
sharp contrast to random point-cloud manifolds, where
the dimension is linear in this number (figure 11).
Extension to other formalisms Soft classification

can be defined in many ways [3, 4, 20], and each may be
extended to manifold classification. Based on our anal-
ysis we expect that attaching a slack variable to the
“worst” manifold point would lead to the same phase
transition reported here. Figure S17 demonstrates this
for a variant of manifold-slack where an L1 norm is

used on the slacks, where the weights’ norm vanishes
at a load that is independent of c. On the other hand,
attaching slack variables to predefined manifold loca-
tions would not lead to the appearance of such a tran-
sition. Furthermore, when attaching slack variables to
both predefined points and the “worst” point (previously
done in [21]), a phase transition is expected.
Measure on manifolds The use of manifold-slacks

benefits from being insensitive to the exact measure
assumed on the manifolds (as long as it is non-zero).
In the case of center-slacks, the center of mass of the
manifolds depends in general on the measure. Never-
theless, in some cases, there is a natural choice for the
center, as in spheres or ellipsoids (due to symmetry),
or in a points-cloud, where using the points’ average
corresponds to a uniform measure on the points. Fur-
thermore, one can use the measure-independent Steiner
point [22] as the manifold center. Regardless of the
employed classification method, the evaluation of the
errors depends in general on the measure.
Future work Extending the theory of max-margin

classification of manifolds to soft classification is an im-
portant step in connecting the theory to applications,
where soft-margin classifiers are more commonly used.
We believe the theory of general manifolds is relevant
for the analysis of real-world data [23]. To properly do
so, the theory needs to be extended to allow for center
correlations, as was done for max-margin classifiers [8];
we expect this to be straightforward as the methods of
[8] involve manifold preprocessing which is independent
of the geometrical analysis.

The issue of robustness to noise would naturally come
up when aiming to apply the theory to neural data anal-
ysis where noise is a common attribute of the problem,
unlike the artificial networks analyzed in [8]. It would
be interesting to apply the methods described here to
analyze object representations with non-Gaussian noise,
such as neural noise with Poisson-like characteristics.

On a broader scope, the discussion of robustness to
noise is a limited form of generalization. In general, we
would like to be able to discuss generalization with re-
spect to a finite number of samples from a manifold,
where the scaling behavior of the classification error
with the number of samples is an open question. Recent
work on the few-shot learning setup, where the number
of samples is very small, has revealed relatively simple
behavior of the classification error [24].
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Appendix

Note 1. Optimal loss in soft classification

We write a Lagrangian for the problems of points (equa-
tion 2) and spheres (equation 25), assuming no bias for
brevity. For spheres the constraint on the minimal field
is hµmin = vµ0 − R‖vµ‖ ≥ 1 − sµ so that both cases are
captured by the Lagrangian (with R = 0 for points):

L = ‖w‖2/N + c‖~s‖2/N + 2

P∑
µ

βµ (1− sµ − hµmin)

(59)
KKT conditions yield 3 equations, 0 = ∂L

∂wi
, 0 = ∂L

∂sµ

and 0 = ~β
(

1− ~s− ~hmin
)
. Those lead to ~β = ~sc/N

and ‖w‖2/N = ~βT~hmin and hence the optimal solution
L∗ satisfies:

L∗ =

P∑
µ

βµ =
c

N

P∑
µ

sµ = cα 〈s〉 (60)

Note 2. Replica theory for points

Consider P points xµ ∈ RN and labels yµ ∈ {±1};
soft-margin classification is defined as solving:
w∗, ~s∗ = arg min

w
‖w‖2 + c‖~s‖2 s.t. hµ ≥ 1− sµ (61)

where w∗ ∈ RN and ~s∗ ∈ RP+ and the fields hµ =
yµ (w · xµ + b) where we assume b = 0 for brevity. De-
noting the optimal loss as L∗, we write an expression
for the volume of solutions V (L, c) which vanishes for
L < L∗:
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V (L, c) =

∫
dNw

∫
dP~s

P∏
µ

Θ (hµ − 1 + sµ) δ
(
‖w‖2 + c‖~s‖2 −NL

)
(62)

=

∫
dNw

∫
dP~s

∫ ∞
1−sµ

dPhµ
∫
dP ĥµ

2π
ei

∑P
µ (yµw·xµ−hµ)ĥµ

∫
dl̂

2π
ei(‖w‖

2+c‖~s‖2−NL)l̂ (63)

We wish to calculate the values for which the volume vanishes assuming random (Gaussian) points xµ and
random (binary) labels yµ. Using the replica identity (equation 5) it is enough to find G which satisfies [V n] = enG,
to have that [log V ] ≈ G. Thus we consider V n, average over xµi ∼ N (0, 1/N) and denote qαβ = 1

N

∑N
i w

α
i w

β
i .

After integrating over ĥα,µ, wαi we have:

[V n]x =

∫
dn×nqαβ

∫
dn×nq̂αβ

2π

∫
dn l̂α√

2π
e−nNG0−nNG1 (64)

G0 =
i

n

n∑
α,β

qαβ q̂αβ +
1

2n
log det

(
−2iq̂αβ − δαβ2il̂α

)
+
i

n

n∑
α

Ll̂α (65)

G1 =
α

2n
log det q − α

n
log

∫
dnsα√

2π

∫ ∞
1−sα

dnhαeic
∑n
α(sα)2 l̂α− 1

2

∑n
α,β q

−1
αβh

αhβ (66)

We assume replica symmetry, i.e., qαβ = q + (q0 −
q)δαβ , −iq̂αβ = q̂ + (q̂0 − q̂)δαβ and −il̂α = l̂, and also
that the behavior in the thermodynamic limit N →∞
is dominated by the maximum of the integral, we set
0 = ∂G0

∂q̂ = ∂G0

∂q̂0
to get rid of those two variables:

G0 = −1

2
+ (q0 − L) l̂ − 1

2
log (q0 − q)−

1

2

q

q0 − q
(67)

We use the Hubbard-Stratonovich transform to de-
couple G1 into n terms, then use the replica iden-
tity log

∫
Dt z(t)n ≈ n

∫
Dt log z(t) for n → 0. In-

tegrating over the slack variables s, denoting k =

2l̂ (q0 − q) and taking the limit q → q0, the integral
in G1 is dominated by the maximal value, given by
ckq0
1+ck minh>1/

√
q (h− t)2. In the limit of q → q0:

lim
q→q0

(q0 − q)G0 = (q0 − L)
k

2
− 1

2
q0 (68)

lim
q→q0

(q0 − q)G1 =
α

2

ckq0

1 + ck
α−1

0 (1/
√
q0) (69)

for Gardner’s α−1
0 (κ) =

∫ κ
−∞Dt (κ− t)2 [5]. De-

noting G = G0 + G1, the volume vanishes when
limq→q0 (q0 − q)G = 0, yielding equation 6.

Note 3. Self-consistent equations for points

The self-consistent equations for points, equations 7-8,
are derived directly from the mean-field equation 6 by
assuming that for the optimal loss we expect saddle-
point conditions on L (q, k), namely that 0 = ∂L

∂q = ∂L
∂k .

Those self-consistent equations can be evaluated for
the limits α → 0 and α → ∞. When α → 0 we have
k → 1 and q → 0 so that α−1

0

(
1/
√
q
)
≈ 1/q, and thus

k ≈ 1 − c
1+cα while √q ≈ c

1+c

√
α. When α → ∞ we

have k → 0 and q → 0 so that scaling k = k0/α we have
k ≈ 1/cα and q ≈ 1/α.

The limit c→∞ exhibits different behavior for α < 2

and α > 2. For α < 2 the problem follows the La-
grangian from equation 10 and the solution satisfies
1 = αα−1

0

(
1/
√
q
)
which is the max-margin solution.

On the other hand, when c→∞ for α ≥ 2 the problem
follows the Lagrangian from equation 11 and we have
that limc→∞ k = 0 with finite q and K = limc→∞ ck,
which obey the self-consistent equations:

1 =
K2

(1 +K)
2αα

−1
0 (1/

√
q) (70)

1 =
K

1 +K
αH (−1/

√
q) (71)

and the relation between α and q becomes α =
α−1

0

(
1/
√
q
)
/H2

(
−1/
√
q
)
, yielding equation 12.

Note 4. Field and slack distribution for points

The replica theory yields, without integrating over the
slack variables s and using the notation k = 2l̂ (q0 − q)
that the limit q → q0 is given by an optimization prob-
lem with a Lagrangian:

L =
1

2
(h− t√q)2

+
1

2
cks2 + λ (1− h− s) (72)

where from KKT conditions the solution satisfies:
0 = λ (1− h− s) (73)
λ = h− t√q (74)
λ = cks (75)

In the “interior” regime s = 0, h =
√
qt; in the “touch-

ing” regime s > 0, h = 1− s =
√
qt+ cks, yielding:

h =

{
ck

1+ck +
√
q

1+ck t0 −∞ ≤ t0 ≤ 1/
√
q

√
qt0 1/

√
q ≤ t0

(76)

which can be written equivalently as equation 13. The
slack variables satisfy s = max {1− h, 0} or explicitly:

s =

{
1

1+ck −
√
q

1+ck t0 −∞ ≤ t0 ≤ 1/
√
q

0 1/
√
q ≤ t0

(77)
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Interestingly, the slack distribution allows deriving
the self-consistent equations 7-8 without saddle-point
assumption (i.e., without taking derivatives of L). From
the definition of L we have that L = q+αc

〈
s2
〉
while for

the optimal loss L∗ = αc 〈s〉 (see Note 1). Combining
these equations with equation 6 yields equations 7-8.
Furthermore, from the expression for

〈
s2
〉
and the self-

consistent equation 7, α
〈
s2
〉

= q
c2k2 (equation 9).

Note 5. Classification error for points

The training error εtr = P (h < 0) has a contribution
only from the “touching” regime of the field distribution
(equation 13), so that:

εtr = H (ck/
√
q) (78)

When i.i.d. Gaussian noise N
(
0, σ2/N

)
is applied

to each input component, as the weights are indepen-
dent of this noise, the fields are affected by i.i.d. noise
N
(
0, σ2q

)
, i.e., hσ = h + σ

√
qη when η is a standard

Gaussian variable. The noisy field distribution can be
written explicitly by convolving the field distribution
with Gaussian; but for an analytic analysis of the error
it is useful to write an expression for the error directly:

εg = P (h+ σ
√
qη < 0) = 〈H (h/σ

√
q)〉h (79)

Using the field distribution (equation 13) and replacing
g1 = h (1 + ck) /

√
q − ck/√q and g2 = h/

√
q we have:

εg =

∫ 1/
√
q

−∞
Dg1H

(
g1
√
q + ck

σ
√
q (1 + ck)

)
+

∫ ∞
1/
√
q

Dg2H (g2/σ)

(80)

Using identity 10,010.4 from [25] we get an expression
which is approximated for σ � 1/

√
q as εg ≈ H (S) for

S from equation 16.

Note 6. Optimal choice of c for points

We may optimize the SNR S with respect to c:
c∗ = arg min

c
S−2 (81)

Taking its derivative should satisfy 0 = ∂S−2

∂c , yield-
ing an expression for ∂q

∂c . On the other hand, start-
ing from the self-consistent equations 7, 8 and tak-
ing the derivative with respect to c, using the iden-
tity ∂

∂cqα
−1
0

(
1/
√
q
)

= H
(
−1/
√
q
)
∂q
∂c we have a sec-

ond expression for ∂q
∂c . Combining these two equations

yields an expression without ∂q
∂c or ∂k

∂c . Using the self-
consistent equations again to substitute αα−1

0

(
1/
√
q
)

and αH
(
−1/
√
q
)
we get that the optimal c satisfies

equation 18, which needs to be solved self-consistently
as k depends on c. Furthermore, for σ = 0 we have no
solution with finite c and non-zero q, thus proving that
εtr is monotonic in c for any α.

Note 7. Replica theory for spheres

We write an expression for the volume V (L, c) for L =
‖w‖2/N + c‖~s‖2/N which vanishes for L < L∗:

V (L, c) =

∫
dNw

∫
dP~s

∫
dP~h

P∏
µ

δ (vµ0 −R‖~vµ‖ − hµ) Θ (hµ − 1 + sµ) δ
(
‖w‖2 + c‖~s‖2 −NL

)
(82)

=

∫
dNw

∫
dP~s

∫ ∞
1−sµ

dPhµ
∫
dP ĥµ

2π
ei

∑P
µ (vµ0−R‖~v

µ‖−hµ)ĥµ
∫

dl̂

2π
ei(‖w‖

2+c‖~s‖2−NL)l̂ (83)

where we denote vµl = yµw · uµl for l = 0..D and µ = 1..P and enforce this using appropriate v̂µl variables.
We wish to calculate the values for which the volume vanishes assuming random (Gaussian) axes uµl and random

(binary) labels yµ. Using the replica identity (equation 5) it is enough to find G which satisfies [V n] = enG, to
have that [log V ] ≈ G. Thus we consider V n and use a Gaussian integral on the axes uµli ∼ N (0, 1/N), denoting
as usual qαβ = 1

N

∑N
i w

α
i w

β
i . After Gaussian integration over v̂α,µl , wαi we have:

[V n]x =

∫
dn×nqαβ

∫
dn×nq̂αβ

2π

∫
dn l̂α√

2π
e−nNG0−nNG1 (84)

G0 =
i

n

n∑
α,β

qαβ q̂αβ +
1

2n
log det

(
−2iq̂αβ − δαβ2il̂α

)
+
i

n

n∑
α

Ll̂α (85)

G1 =
α

2n
(D + 1) log det q − α

n
log

∫
dn~sα√

2π

∫
dn×D~vαl

∫ ∞
1−sα+R‖~vα‖

dnvα0√
2π

e−
1
2

∑D
l=0

∑n
α,β q

−1
αβv

α
l v

β
l +i

∑n
α c(s

α)2 l̂α

(86)

We assume replica symmetry, namely qαβ = q+(q0−
q)δαβ , −iq̂αβ = q̂ + (q̂0 − q̂)δαβ , and −il̂α = l̂ and also
that the behavior in the thermodynamic limit N →∞

is dominated by the maximum of the integral, so that
the derivatives satisfy 0 = ∂G0

∂q̂ = ∂G0

∂q̂0
. This allows for
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getting rid of those two variables, and G0 becomes:

G0 = −1

2
+ (q0 − L) l̂ − 1

2
log (q0 − q)−

1

2

q

q0 − q
(87)

For G1 we use the Hubbard-Stratonovich transform
on
∑n
α v

α
l for l = 0..D, so that G1 decouples into n

terms, and then use the replica identity log
∫
Dt z(t)n ≈

n
∫
Dt log z(t) for n → 0. We proceed by integrat-

ing away the slack parameters s and by completion to
square of vl − tl. Renaming k = 2l̂ (q0 − q) and tak-
ing the limit q → q0, the integral is dominated by the
maximum F

(
~t, t0; ck, q

)
from equation 33.

Taking the limit q → q0 yields:

lim
q→q0

(q0 − q)G0 = (q0 − L)
k

2
− 1

2
q0 (88)

lim
q→q0

(q0 − q)G1 =
αq0

2

∫
DD~t

∫
Dt0F

(
~t, t0; ck, q

)
(89)

Thus for G = G0 + G1 the volume vanishes at
limq→q0 (q0 − q)G = 0, yielding equation 32.

Note 8. Solving the mean-field minimization
problem for spheres

Let us solve the minimization problem from equation
33, so that we can write it as a closed form expression.
Denoting a Lagrangian:

L =
1

2
‖~v − ~t‖2 +

1

2

ck

1 + ck
(v0 − t0)

2 · · · (90)

+ λ (1/
√
q +R‖~v‖ − v0) (91)

From KKT conditions we have the equations:

λ =
ck

1 + ck
(v0 − t0) (92)

tl = vl + λRvl/v (93)
0 = λ (1/

√
q +Rv − v0) (94)

denoting v = ‖~v‖ ≥ 0 (and similarly we denote below
t = ‖~t‖). We solve those for different regimes:

1. “Interior” regime, defined as λ = 0, where v0 = t0
and vl = tl so that F = 0, valid at t0 ≥ 1/

√
q+Rt.

2. “Embedded” regime, defined as λ > 0 and
v = 0, such that v0 = 1/

√
q and F =

ck
1+ck

(
1/
√
q − t0

)2
+ t2.

3. “Touching” regime, defined as λ > 0 and v > 0,
with v0 = 1/

√
q + Rv and vl = v

v+λR tl, which is
valid at 1/

√
q − 1+ck

ck t/R ≤ t0 ≤ 1/
√
q + Rt and

leads to F = ck
1+ck+ckR2

(
1/
√
q +Rt− t0

)2.
so that the minimization problem depends only on t0
and the norm t = ‖~t‖. As t ∼ χD the Chi distri-
bution with D degrees of freedom, denoting χD (t) =

Γ (D/2)
−1

21−D/2tD−1e−t
2/2dt we have equation 34.

Note 9. Self-consistent equations for spheres

Assuming the optimal loss satisfies the saddle-point
equations 0 = ∂L

∂k = ∂L
∂q we have equations 37,38. Tak-

ing the derivatives of f with respect to k, q the self-
consistent equations:

1 = α
(ck)

2 (
1 +R2

)
(1 + ck (1 +R2))

2

∫
χD (t)

∫ 1/
√
q+Rt

1/
√
q− 1+ck

ck t/R

Dt0 (1/
√
q +Rt− t0)

2 (95)

+ α

∫
χD (t)

∫ 1/
√
q− 1+ck

ck t/R

−∞
Dt0

[
(ck)

2

(1 + ck)
2 (1/

√
q − t0)

2
+ t2

]
(96)

1− k = α

∫
χD (t)

∫ 1/
√
q+Rt

1/
√
q− 1+ck

ck t/R

Dt0
ck

1 + ck (1 +R2)
(1/
√
q +Rt− t0) (Rt− t0) (97)

+ α

∫
χD (t)

∫ 1/
√
q− 1+ck

ck t/R

−∞
Dt0

[
t2 − ck

1 + ck
(1/
√
q − t0) t0

]
(98)

As for points, those equations can also be derived by
combining the equations for the optimal loss, namely
the loss definition L = q+αc

〈
s2
〉
, the mean-field equa-

tion L = q+ q
k (αf − 1) (equation 36), and an optimal-

ity condition for the loss L = cα 〈s〉 (see Note 1), where
the slack distribution (equation 111) leads to the self-
consistent equations 37,38 by noting the moments can
be written as

〈
s2
〉

= q
c
∂
∂kf and 〈s〉 = − q

ck q
∂
∂qf .

Note 10. Interesting regimes of the self-consistent
equations for spheres

The self-consistent equations 95-98 can be integrated
over t0 to yield equivalent consistent equations, which
are useful when analyzing the behavior of different lim-
its. Furthermore, when D � 1 the distribution of χD is
narrow with a mode at

√
D − 1 and a mean just below√

D, so we may assume t =
√
D and αC ≈ 1+R2

R2D .

In the limit c→∞ for α < αHardC the problem follow
the Lagrangian from equation 10 and converge with the
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max-margin case [7], while for α > αHardC the equations
can be derived by a replica theory for the Lagrangian
from equation 11. The resulting equations are related to
the self-consistent equations of soft classification theory
through limc→∞ k = 0 while q and K = limc→∞ ck are
finite, similarly to equations 70-71 for points.

In the limit of α → 0 we expect to have q → 0 and
k → 1, as in the case of soft classification of points, so
that 1/

√
q − 1+ck

ck

√
D/R � 1 and 1/

√
q + R

√
D � 1,

and the self-consistent equations are simplified, result-
ing in the following first-order approximations for small
α, k ≈ 1− α (1 +D) and √q ≈

√
α ck

1+ck .
On the other hand, for α → αSoftC we expect both

q → 0 and k → 0, so that we need to assume 1/
√
q +

R
√
D � 1 and 1+ck

ck

√
D/R − 1/

√
q � 1, leading to

different simplified equations, and the resulting order
parameters k ≈

(
1−

√
α/αC

)
/ (αc+ 1) for αC from

equation 43 and furthermore:
√
q ≈ ck 1 +R2

R
√
D

(99)

Note 11. Capacity in classification of spheres

Consider the self-consistent equations 95-98, and let
us assume both k,

√
q � 1 and further that k =

x
√
q. For the first equation we have two contributions∫ xcR

0
χD (t)

(
t2 + c2x2

)
, and c2x2

(
1 +R2

) ∫∞
xcR

χD (t),
yielding:

1 = α

∫ xcR

0

χD (t)
(
t2 + c2x2

)
+ αc2x2

(
1 +R2

) ∫ ∞
xcR

χD (t)

(100)
For the second equation we two contributions∫ xcR

0
χD (t) t2 and xcR

∫∞
xcR

χD (t) t, leading to:

1 = α

∫ xcR

0

χD (t) t2 + αxcR

∫ ∞
xcR

χD (t) t (101)

Combining these equations and replacing xc → x we
have x = kc/

√
q, but the resulting equations are inde-

pendent of c: a self-consistent equation 42 for x and
equation 41 for α = αC .

Now note that for R → 0 we have that x =
R
∫∞
xR
χD (t) t = R

√
2Γ
(
D
2 + 1

2

) /
Γ
(
D
2

)
and α−1

C = x2

(which converges to R2D for large D), whereas for
R→∞ we have x ≈ 0 and α−1

C = D. When D � 1 the
distribution of χD is narrow around

√
D. If

∫ xR
0

χD � 1

we have a much simpler result, as x ≈ R
√
D

1+R2 and thus:

α−1
C = xR

√
D =

R2D

1 +R2
(102)

From the above limits on R we obtain that for large D
this approximation is valid for any R.

Note 12. Field and slack distribution for spheres

To derive the slack and field distribution we do not inte-
grate away the slack variables and use the notation k =

2l̂ (q0 − q) to show that in the limit limq0→q (q0 − q)G1

the behavior is dominated by the solution of a constraint
optimization problem with a Lagrangian:

L =
1

2

∥∥~v −√q~t∥∥2
+

1

2
(v0 −

√
qt0)

2 · · · (103)

+
1

2
cks2 + λ (1− s+R‖~v‖ − v0) (104)

and the solution should satisfy the KKT conditions:
0 = λ (1− s+R‖~v‖ − v0) (105)
λ = v0 −

√
qt0 (106)

√
qtl = vl (‖~v‖+ λR) /‖~v‖ (107)
λ = cks (108)

Denoting v = ‖~v‖ and t = ‖~t‖ we have solution regimes:

1. “Interior” regime: assuming λ = 0, which is valid
for t0 ≥ 1/

√
q +Rt.

2. “Touching” regime: assuming λ > 0, v > 0, which
is valid for 1/

√
q − 1+ck

ck t/R ≤ t0 ≤ 1/
√
q +Rt.

3. “Embedded” regime: assuming λ > 0, v = 0 which
is valid for t0 ≤ 1/

√
q − 1+ck

ck t/R.

The fields and slack distribution can be written explic-
itly in terms of t, t0 for the three regimes:

v0 =


ck

1+ck + 1
1+ck

√
qt0 “Embedded′′

(1+R
√
qt)ck

1+(1+R2)ck +
(ckR2+1)

√
q

1+(1+R2)ck t0 “Touching′′
√
qt0 “Interior′′

(109)

v =


0 “Embedded′′

(1+ck)
√
qt−ckR

1+(1+R2)ck +
√
qckR

1+(1+R2)ck t0 “Touching′′
√
qt “Interior′′

(110)

s =


1

1+ck −
1

1+ck

√
qt0 “Embedded′′

1+R
√
qt

1+(1+R2)ck −
√
q

1+(1+R2)ck t0 “Touching′′

0 “Interior′′

(111)
From which the slack variable moments, used for the
self-consistent equations, are easily derived.

Note 13. Classification error for spheres

Assuming D � 1, t ∼ χD is concentrated around
√
D

and the distribution of v0, v, s is a concatenation of the
truncated Gaussian (or δ) distributions which corre-
spond to the different regimes. The slack distribution
is then:

s ∼


N
(

1
1+ck ,

q
(1+ck)2

) √
q

ck

√
D/R < s

N
(

1+R
√
q
√
D

1+(1+R2)ck ,
q

(1+(1+R2)ck)2

)
0 < s ≤

√
q

ck

√
D/R

δ (0)H
(

1/
√
q +R

√
D
)

s = 0

(112)
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Thus the probability of an error anywhere on the man-
ifold is εmanifoldtr = P (s > 1) = H

(
Smanifold

)
for:

Smanifold =

{
ck/
√
q

√
q

ck

√
D/R < 1(

1 +R2
)
ck/
√
q −R

√
D

√
q

ck

√
D/R ≥ 1

(113)
where for α → αSoftC we have that

(
1 +R2

)√
q/ck =

R
√
D so limα→αSoftC

Smanifold = 0.
Given any classifier w, we assume the test error is

calculated by sampling uniformly from the sphere, then
adding noise. When i.i.d. Gaussian noise N

(
0, σ2/N

)
is applied to each input component, as the weights
are independent of this noise, the fields are affected
by noise N

(
0, σ2q

)
. That is, the error is given by

ε = P
(
h+ σ

√
qη < 0

)
=
〈
H
(
h
/
σ
√
q
)〉
h
where η is a

standard Gaussian variable.
For a D-dimensional spheres of radius R, denote the

fields h(~S) = yw · x(~S) = v0 + ~S · ~v. For a given w,
we can always choose the coordinate system such as
u1 ∝ w so that v1 = w · u1 and vi = 0 for i > 1,
so that v = ‖~v‖ = v1. Denote S1 = z we note that
~S · ~v = zv and thus h = v0 + zv. As the joint distri-
bution of v0, v is given by theory (equations 109,110)
it is enough to find the distribution of z under uniform

sampling from the sphere. As z ∈ [−R,R], we can de-
note x ∈ SD−2

(√
R2 − z2

)
a sphere of all choices for

the values of S2..D; using the n-ball surface formula,
Sn−1 (r) = 2π

n
2 Γ
(
n
2

)−1
rn−1, the surface of the D − 1

sphere with a radius ‖x‖ is SD−2

(√
R2 − z2

)
, which

needs to be normalized by the total surface, given by
SD−1 (R). Using polar coordinates the measure on z

is given by R/
√
R2 − z2, and by a change of variable

ẑ = z/R we use the surface formulas to derive the
bell-shaped distribution of ẑ, equation 45, supported at
ẑ ∈ [−1, 1]. Then the error is an average with respect
to P (ẑ), namely ε =

〈
H
(
(v0 +Rẑv) /σ

√
q
)〉
ẑ,v0,v

.

For D � 1, by assuming that only the “touching”
regime contributes to the error, we may evaluate the
leading orders of v0 + Rẑv to derive a simpler expres-
sion for the error. The values of v0, v in this regime are
given by equations 109,110 and depend on t0 ∼ N (0, 1)
and t ∼ χD. Noting that ẑ, t, t0 are pairwise in-
dependent, we can calculate the first two moments;
then approximating v0 + Rẑv as Gaussian and using
〈H (x/a)〉x∼N (µ,s2) = H

(
µ/
√
s2 + a2

)
we have the fol-

lowing approximation, denoting σ2
0 the total contribu-

tion of the different terms to the variance:

ε ≈

〈
H

 (
1/
√
q +Rt

)
ck√

σ2
0 + (1 + (1 +R2) ck)

2
σ2

〉
t∼χD

(114)

σ2
0 (t)

.
=
(
ckR2 + 1

)2
+
R4

D
(ck)

2

[(
1/
√
q − 1 + ck

ck
t/R

)2

+ 1

]
(115)

and the training error is given by setting σ = 0. Near
αC we have k → 0 such that σ2

0 = 1+1/
(
R−1 +R

)2 ≈ 1

and using equation 99 yields ε ≈ H
(
R
√
D

1+R2
1√

1+σ2

)
.

Note 14. Iterative algorithm for general manifolds

From the mean-field equations of spheres we get that a
theory of general-manifolds implies the same equation:

1 = (1− L/q) k + α

∫
DD~t

∫
Dt0F

(
~t, t0

)
(116)

where the inner minimization is now defined as:
F
(
~t, t0

)
= min
v0+g(~v)≥1/

√
q

{
‖~v − ~t‖2 +

ck

1 + ck
(v0 − t0)

2

}
(117)

where g (~v) = min~S∈M ~v · ~S is a scalar function with a
subgradient S̃ (~v) = ∂

∂v g (~v). Denoting a Lagrangian:

L =
1

2

∥∥~v − ~t∥∥2
+

1

2

ck

1 + ck
(v0 − t0)

2
+ λ (1/

√
q − v0 − g (~v))

(118)

the optimal solution satisfies KKT conditions:
0 = λ (1/

√
q − v0 − g (~v)) (119)

λ =
ck

1 + ck
(v0 − t0) (120)

~v = ~t+ λS̃ (~v) (121)
so that we got equation 55 for S̃

(
~t, t0

)
when v0 6= t0.

Denoting v = ‖~v‖ and t = ‖~t‖ we have regimes:

1. “Interior” regime: assuming v > 0 and λ = 0 we
have v0 = t0 and vl = tl, so that F = 0.

2. “Embedded” regime: assuming v = 0 and λ >
0 we have v0 = 1/

√
q, so that F = t2 +

ck
1+ck

(
1/
√
q − t0

)2.
3. “Touching” regime: assuming v > 0 and λ >

0 we have v0 = 1/
√
q − g (~v) and ~v = ~t +

ck
1+ck

(
1/
√
q − ~v · S̃ − t0

)
S̃ (i.e., equation 58), so

that F = ck

1+ck(1+S̃2)

(
1/
√
q − t0 − ~t · S̃

)2

.
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