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Estimation of Drift and Diffusion Functions from Unevenly Sampled Time-Series Data1

William Davis∗ and Bruce Buffett2

Department of Earth and Planetary Science, University of California, Berkeley3

(Dated: July 5, 2022)4

Complex systems can often be modelled as stochastic processes. However, physical observations
of such systems are often irregularly spaced in time, leading to difficulties in estimating appropriate
models from data. Here we present extensions of two methods for estimating drift and diffusion
functions from irregularly sampled time-series data. Our methods are flexible and applicable to a
variety of stochastic systems, including non-Markov processes or systems contaminated with mea-
surement noise. To demonstrate applicability, we use this approach to analyse an irregularly sampled
paleoclimatological isotope record, giving insights into underlying physical processes.

I. INTRODUCTION5

The time-dependent behavior of complex systems con-6

sisting of a large number of subsystems can often be de-7

scribed by low-dimensional order parameter equations8

[1]. In many cases, a separation between slow ad-9

justments and fast fluctuations allows for a description10

of continuous observables X of such systems with a11

Langevin-type equation12

d

dt
X(t) = f(X, t) + g(X, t)Γ(t) (1)

where Γ(t) denotes the stochastic force, with 〈Γ(t)〉 = 013

and 〈Γ(t)Γ(t′)〉 = δ(t − t′) [2]. The same information is14

expressed in the Fokker-Planck equation,15

∂

∂t
p(x, t|x′, t′) =

[
− ∂

∂x
D(1)(x, t)

+
∂2

∂x2
D(2)(x, t)

]
p(x, t|x′, t′) (2)

which contains the Kramers-Moyal (KM) coefficients16

D(n)(x, t) = lim
τ→0

1

n!τ

∫ ∞
−∞

[
x′ − x

]n
p(x′, t+ τ |x, t) dx′,

(3)
where x and x′ denote values that can be taken by17

X, and p(◦|◦) is the transition probability. Here, the18

first two coefficients are the drift and diffusion, respec-19

tively, connecting to (1) under the Itô interpretation,20

with f(x, t) = D(1)(x, t) and g(x, t) =
√

2D(2)(x, t).21

It has been shown that it is possible to estimate the22

forms of such processes directly from regularly sampled23

time-series data using a technique called “direct estima-24

tion” [3, 4]. This approach has been applied to various25

fields of science [5].26
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There are two main difficulties associated with apply-27

ing this approach to “real-world” time-series data. The28

first occurs when observations are contaminated by an-29

other undesirable signal, or measurement noise. In this30

case, Böttcher et al. [6] introduced a method to para-31

metrically estimate drift and diffusion functions as well32

as the amplitude of the measurement noise, an approach33

has been expanded in subsequent studies [7–9].34

The other difficulty involves the discrete sampling of35

the time-series data. For low sampling frequencies, is can36

be difficult to perform or infer the limit τ → 0 required37

for direct estimation. In this case, Honisch and Friedrich38

[10] proposed a finite τ optimisation method that cor-39

rectly recovers drift and diffusion functions even at large40

sampling. However a related impediment is the presence41

of irregular sampling. In this case, there is no obvious42

way to calculate averages in (3). This is commonly en-43

countered in geoscientific measurements [e.g. 11, 12], but44

also is encountered in turbulence measurements [13–15],45

astrophysical observations [16–19], and biological sys-46

tems [20]. Interpolation is sometimes used to side-step47

these difficulties, however this can introduce a significant48

and hard-to-quantify bias [12, 21–23]. This motivates a49

method for estimating drift and diffusion functions di-50

rectly from unaltered time-series data.51

In the next section we review current estimation tech-52

niques, and propose two extensions for irregular sam-53

pling. Section III shows numerical examples where we54

demonstrate the functionality of our new methods. In55

Section IV we apply this framework to an empirical data-56

set, namely a paleoclimatological isotope record [24].57

Summaries are given in Section V, where further appli-58

cations are proposed.59

II. ESTIMATION OF CONDITIONAL60

MOMENTS61

We consider a stationary scalar process X(t) that62

is observed at a set of N increasing points in time,63

{t1, t2, . . . , tN}, with no guarantee of a regular sam-64

pling. Observations at these points are denoted as65

{X(t1), X(t2), . . . , X(tN )}. The finite-time KM coeffi-66

cients of X(t) are defined as [10]67
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D(n)
τ (x) =

1

n!τ
M (n)(x, τ), (4)

which are calculated using the finite-time conditional mo-68

ments69

M (n)(x, τ) =

∫ ∞
−∞

[x′ − x
]n
p(x′, t+ τ |x, t) dx′. (5)

The task is to make an estimate of these moments from70

data X(t). These moments will subsequently be used71

as finite-time KM coefficients in an appropriate method72

in order to estimate drift and diffusion functions of the73

underlying process.74

Conditional moment estimates are denoted as75

M̂ (n)(xi, τj), and are evaluated at a set of evalua-76

tion points in xi ∈ {x1, x2, . . . , xmax}, and τj ∈77

{τ1, τ2, . . . , τmax}.78

A. Histogram Based Regression79

The simplest way of estimating conditional moments80

is by means of regressogram, [e.g. 25], also known as his-81

togram based regression (HBR). This estimator can be82

written as, [e.g. 26],83

M̂ (n)(xi, τj) =

N∑
k=1

I
(
X(tk) ∈ B(x)(xi)

)[
X(tk + τj)−X(tk)

]n
T∑
k=1

I
(
X(tk) ∈ B(x)(xi)

) , (6)

where I(◦) is the indicator function, and binning is in-84

dicated with the half closed interval B(x)(xi) := [xi −85

1
2bx, xi + 1

2bx), where bx is the width of the bin.86

B. Histogram-Time Based Regression87

One simple way to extend HBR to account for uneven88

time-sampling is to average over all pairs of increasing89

times, and also bin data by time-step. We shall refer to90

this method as histogram-time based regression (HTBR).91

The estimator for conditional moments can be written as92

M̂ (n)(xi, τj) =

N−1∑
k=1

N∑
l=k+1

x-conditioning︷ ︸︸ ︷
I
(
X(tk) ∈ B(x)(xi)

) τ -conditioning︷ ︸︸ ︷
I
(
∆tl,k ∈ B(τ)(τj)

) [
X(tl)−X(tk)

]n
T−1∑
k=1

T∑
l=k+1

I
(
X(tk) ∈ B(x)(xi)

)
I
(
∆tl,k ∈ B(τ)(τj)

) (7)

where ∆tl,k := tl − tk(> 0), and binning in τ is facil-93

itated with a bounded half closed interval B(τ)(τj) :=94

[max(0, τj − 1
2bτ ), τj + 1

2bτ ).95

Both HBR and HTBR provide simple methods of es-96

timating moments, however the histogram based nature97

of both methods results in undesirable properties.98

1. Histograms assign the same weight to every point99

inside each bin, resulting in sharp cut-offs between100

data across the edge of a bin.101

2. The width of the bins sets the resolution length-102

scale. This length-scale dependence is not explicit,103

it is indirectly determined by the number and range104

of bins.105

C. Kernel Based Regression106

To address the deficiencies of the histogram based ap-107

proach, Lamouroux and Lehnertz [26] introduced kernel108

based regression (KBR) method. For this, each estimate109

at x is assigned an estimate by averaging over all obser-110

vations weighted by the distance of the observation X(t)111

to x. Moments are then estimated with112
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M̂ (n)(xi, τj) =

N∑
k=1

Kh(xi −X(tk))[X(tk + τj)−X(tk)]n

T∑
k=1

Kh(xi −X(tk))

(8)
where Kh(◦) = K(◦/h)/h is a scaled kernel, h is the113

bandwidth, and K(◦) is the kernel function. Here we use114

the Epanechnikov kernel [27]115

K(x) =

{
3
4 (1− x2) if x2 < 1,

0 otherwise.
(9)

for its computationally desirable properties [28].116

Kernel-based methods have a number of advantages117

over histogram based approached, including a higher con-118

vergence rate in the limit of a large number of data points119

[28, 29]. The introduction of a bandwidth gives an ex-120

plicit indication of the length scale of averaging, although121

there is no optimal bandwidth. However, as points are122

indexed at set time-shifts τj in the future, this method is123

unsuitable for unevenly spaced data.124

D. Kernel-Time Based Regression125

To extend KBR to unevenly spaced data, kernel den-126

sity estimation is applied to the τ component as well as127

the x component. We shall refer to this method as kernel-128

time based regression (KTBR). To enable this, bivariate129

kernel density estimation is employed130

M̂ (n)(xi, τj) =

T−1∑
k=1

T∑
l=k+1

K
(2)
h (xi −X(tk), τj −∆tl,k)

[
X(tl)−X(tk)

]n
T−1∑
k=1

T∑
l=k+1

K
(2)
h (xi −X(tk), τj −∆tl,k)

(10)

where K
(2)
h (◦, ◦) is a bandwidth scaled, Euclidian dis-131

tance 2D kernel132

K
(2)
h (x, τ) =

C

hxhτ
K

((
(x/hx)

2
+ (τ/hτ )

2
) 1

2

)
(11)

where hx and hτ and the bandwidths in x and τ , re-133

spectively [30]. The prefactor C is defined such that the134

kernel integrates to unity. We use the Epanechnikov ker-135

nel (9), therefore C = 8/3π.136

As the domain in τ only has positive support, kernel137

estimations at τ < hτ can be biased. To account for this,138

we use a boundary correction method [31] that replaces139

the application of kernel (11) inside (10), with140

K
(2)
h (xi −X(tk), τj −∆tl,k)→

[
K

(2)
h (xi −X(tk), τj −∆tl,k) +K

(2)
h (xi −X(tk), τj + ∆tl,k)

]
. (12)

III. NUMERICAL EXAMPLES141

To validate the presented methods, we test them on a142

set of three synthetic data-sets.143

A. Ornstein-Uhlenbeck process144

First we examine an Ornstein-Uhlenbeck process given145

by the drift and diffusion functions146

D(1)(x) = −x, (13a)

D(2)(x) = 1. (13b)

We consider a discrete time-series sampling of X(t) con-147

sisting of 107 points with irregular time sampling, ∆t ∼148

N (5 × 10−3, 3.2 × 10−7). The solution is integrated [32]149

with an internal time-step of δt ≤ 10−4, to ensure nu-150

merical accuracy.151

To estimate the conditional moments of this data, we152

use three separate methods. First, the moments are es-153

timated using HTBR (6). Sampling in x is performed154

by 11 evenly spaced bins in the range [−2, 2]. Sampling155

in τ is performed by a single bin, [0, 0.01]. Here τ is156

small enough that the drift and diffusion functions can157

be directly estimated from the moments158

D̂(n)(x) ≈ 1

n!τ
M̂ (n)(x, τ). (14)
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FIG. 1. Results for an Ornstein-Uhlenbeck process. Esti-
mated functions D(1)(x) and D(2)(x) are shown in the top
and bottom plots, respectively. Estimates from HBR are from
interpolated data.

Second, the moments are estimated using KTBR (10).159

Evaluation points in x are 30 evenly spaced points in160

[−2, 2], with a bandwidth of hx = 0.3. Sampling in τ is161

performed with a single evaluation point at τ = 5×10−3,162

with a bandwidth of hτ = 2.5×10−3. As with HTBR, the163

direct estimation method (14) is utilized. Finally, to com-164

pare with the two previous methods, naive resampling is165

performed on the time-series data. The data X(t) is lin-166

early interpolated to a regular sampling of ∆t = 5×10−3,167

and then direct estimation is applied with the same bin168

sampling as the HTBR estimate. The drift and diffu-169

sion functions are shown in Fig. 1. In this example—170

and all the following examples—KBR performed simi-171

larly to HBR except with finer resolution, and hence will172

not shown for conciseness.173

We find that the estimates of drift and diffusion func-174

tions are in good accordance with the true values for175

both HTBR and KTBR. These functions are systemati-176

cally underestimated when using HBR with interpolated177

time-sampling.178

B. Multiplicative process with measurement noise179

Next we examine a multiplicative process with mea-180

surement noise. The drift and diffusion functions are set181

as182

D(1)(x) = −x, (15a)

D(2)(x) = 1 + x2. (15b)

Irregularly sampled data X(t) is produced similarly to183

example III A, however we also add δ-correlated mea-184

surement noise185

Y (t) = X(t) + σζ(t), (16)

where σ denotes the amplitude of the measurement noise,186

and ζ ∼ N (0, 1). We seek to estimate coefficients of187

parameterised drift and diffusion functions188

D̂(1)(x) = p1 + p2x, (17a)

D̂(2)(x) = p3 + p4x+ p5x
2, (17b)

using the method of Lind et al. [7]. The time-series Y (t)189

is used to estimate noisy moments, M̂ (n)(y, τ). These190

moments are separated with linear regression191

M̂ (1)(yi, τj) ≈ m̂1(yi)τj + γ̂1(yi), (18a)

M̂ (2)(yi, τj) ≈ m̂2(yi)τj + γ̂2(yi) + σ2, (18b)

along with uncertainties σ2
m̂1

(yi), σ
2
γ̂1

(yi), etc. . . These192

estimates are compared with theoretical values of193

m1(y), γ1,m2(y), and γ2, which depend solely on param-194

eters p1, . . . , p5, and σ, see Lind et al. [7] for more details.195

The parameters vary the fit function196

F =

8∑
i=1

{
[m̂1(yi)−m1(yi)]

2

σ2
m̂1

(yi)
+

[γ̂1(yi)− γ1(yi)]
2

σ2
γ̂1

(yi)

+
[m̂2(yi)−m2(yi)]

2

σ2
m̂2

(yi)
+

[γ̂2(yi)− γ2(yi)− σ2]2

σ2
γ̂2

(yi)

}
, (19)

which is minimised using simulated annealing [33].197

For HTBR, sampling in y is performed with 50 equally198

spaced bins in the range [−6, 6]. Sampling in τ is per-199

formed by 8 equally spaced bins with centers from τ1 =200

5×10−3 to τ8 = 4×10−2, with bin-widths bτ = 5×10−3.201

For KTBR, evaluation points in x are 50 equally spaced202

points in the range [−6, 6], with hx = 0.18. Sampling203

in time is performed with 8 equally spaced points from204

τ1 = 5 × 10−3 to τ8 = 4 × 10−2, with hτ = 2.5 × 10−3.205

Finally, the data Y (t) is also linearly interpolated to a206

regular sampling of ∆t = 5 × 10−3 and then processed207
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in the same way as the HTBR example. The optimised208

parameters are shown in Table I.209

The parameters of the drift and diffusion functions are210

very close to the true values for both HTBR and KTBR.211

For HBR with interpolated time-sampling, while some212

elements are estimated well, the absolute gradient of the213

drift, the constant diffusion term, and the quadratic term214

are all overestimated. Finally the measurement noise am-215

plitude σ is underestimated.216

C. Bistable system with correlated noise217

Finally we examine a bistable process X(t) driven by218

correlated noise η(t) [34]. This system is defined as219

d

dt
X = D(1)(X) +

√
2D(2)(X)η(t), (20a)

d

dt
η = −1

θ
η +

1

θ
ξ(t), (20b)

where θ is the correlation time of the noise. The drift220

and diffusion functions are set as221

D(1)(x) = x− 1

2
x3, (21a)

D(2)(x) = 1 +
1

20
ln cosh 2x, (21b)

and the correlation time is θ = 0.01. An unevenly spaced222

time-series is produced in the same way as example III A,223

however only X(t) is observed.224

We estimate the drift and diffusion functions using the225

non-parametric method of [34]. This involves compar-226

ing estimates of moments, M̂ (n)(x, τ), with theoretical227

estimates228

M (n)(x, τ) ≈
3∑
i=1

λ
(n)
i (x)ri(τ, θ), (22)

TABLE I. True and optimised parameter values for a mul-
tiplicative process with measurement noise. Parameters are
rounded to either 2 significant figures or at least 2 decimal
places. The HBR column represents results from interpolated
Y (t) data. We note that entering the true parameter values
into function (19) with estimates gathered from interpolated
HBR result in a value of F two orders of magnitude higher
than the optimised minimum.

Parameter True HTBR KTBR HBR
p1 0 -0.0050 -0.0040 -0.014
p2 -1 -0.99 -1.00 -1.48
p3 1 0.99 1.00 1.62
p4 0 0.0062 0.013 0.0020
p5 1 0.97 0.98 1.11
σ 1 1.00 1.00 0.76
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FIG. 2. Results for a bistable system with correlated noise.
As Fig. 1.

where functions ri are prescribed basis functions and229

λ
(n)
i (x) are the corresponding coefficients. Coefficients230

are found through least squares, and then λ
(n)
1 (x) are231

directly related to estimates of the drift and diffusion232

functions at points in x. For a detailed description of the233

method, see Lehle and Peinke [34].234

For HTBR, sampling in x is performed by 16 equally235

spaced bins in the range [−2, 2]. Sampling in τ is per-236

formed by 30 spaced bins with from τ1 = 5 × 10−3
237

to τ30 = 1.5 × 10−1, with bin-widths bτ = 5 × 10−3.238

For KTBR, evaluation points in x are 50 equally spaced239

points in the range [−2, 2], with hx = 0.24. Sampling240

in time is performed with 30 equally spaced points from241

τ1 = 5× 10−3 to τ30 = 1.5× 10−1, with hτ = 2.5× 10−3.242

Finally, the data X(t) is also linearly interpolated to a243

regular sampling of ∆t = 5× 10−3 and then processed in244

the same way as the HTBR example. For simplicity, we245

assume that the correlation time θ has been accurately246

estimated a priori [12, 18]. For all methods, the mean ab-247

solute error between estimated moments M̂ (n)(x, τ) and248

fitted moments (22) is on the order of 10−5. The drift249

and diffusion functions are shown in Fig. 2.250
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The estimates of the drift and diffusion functions com-251

pare well with the true values for both HTBR and KTBR.252

For the interpolated HBR the drift function is reproduced253

well, whilst the diffusion function is systematically under-254

estimated.255

IV. APPLICATION TO256

PALEOCLIMATOLOGICAL DATA257

Paleoclimate proxies preserve a record of Earth’s cli-258

mate variability. This variability is commonly studied259

through carbon and oxygen isotopes records from benthic260

foraminifera [24, 35]. Of particular interest are large and261

rapid negative excursions in carbon isotope ratios, δ13C,262

throughout the Cenozoic [36–40]. These excursions have263

been interpreted as “hyperthermal” warming events, and264

are speculated to be linked to the release of isotopically265

depleted organic carbon from permafrost or methane266

clathrates [41–43]. Such records offer insights to Earth’s267

climate response to hyperthermal events, and provide268

an analogue to modern anthropogenic forcing [44–47].269

Recently Arnscheidt and Rothman [48] suggested that270

the time-variability of these records can be modelled as271

stochastic processes, invoking a single-variable correlated272

additive-multiplicative (CAM) process273

d

dt
X = − 1

τeff
X + v (X − c) Γ(t), (23)

where τeff, v, and c are constants and Γ(t) is white noise274

[49–53]. A non-parametric verification of this CAM hy-275

pothesis has been unreachable with previous estimation276

methods, as the δ13C record is unevenly sampled in time.277

In this section, we apply KTBR to a section of this un-278

evenly sampled paleoclimate record.279

We choose a stationary section of the record, from 53280

Ma to 46 Ma, containing a series of representative ex-281

cursions but excluding the anomalous Paleocene–Eocene282

Thermal Maximum [48, 54]. The sampling in this time-283

span is approximately log-normally distributed, with284

log10 ∆t ∼ N (−2.7, 0.2). To calculate moments, eval-285

uation points in x are 50 equally spaced points in the286

range [−0.8, 0.5], with hx = 0.4. Sampling in time is per-287

formed with 30 equally spaced points from τ1 = 3.5 kyr288

to τ30 = 116 kyr, with hτ = 5 kyr. The higher or-289

der moments in M (4)(x, τ) ' 3
(
M (2)(x, τ)

)2
are eval-290

uated using (10) and are comparable, showing a small291

error of ∼ 5 × 10−3, validating the continuity of the292

record [55, 56]. To estimate the drift and diffusion func-293

tions from these moments, we use the approach of Lehle294

and Peinke [34], while the correlation time is estimated295

through a grid search, θ ≈ 0.4 kyr. The moments are fit296

well, with an absolute error between estimated moments297

M̂ (n)(x, τ) and fitted moments (22) on the order of 10−4.298

The estimated drift and diffusion functions are shown in299

Fig. 4.300

The drift function has a strongly linear form, and is301

well approximated by the CAM model (23) with τeff =302

47 kyr (R2 = 0.98). For the diffusion function, while a303

CAM model (23) with the coefficients v = −3.2 and c =304

−1.2 falls within the confidence intervals (R2 = 0.67), we305

cannot reject a likely piecewise diffusion of306

D(2)(x) =

{
p1 + p2(x− p3) if x ≤ p3,

p1 otherwise,
(24)

with best fitting coefficients of p1 = 3.30, p2 = −11.50,307

and p3 = −0.36 (R2 = 0.99), although we note that this308

parameterization is not unique, and only meant to be309

suggestive.310

To demonstrate that this linear drift and piecewise dif-311

fusion cannot be rejected by the data, we numerically312

integrate a sample path with these functions. The time-313

series and distributions of the original data and SDE314

simulation are shown in Fig. 3. The SDE matches the315

skewed distribution of the original record, and also dis-316

plays characteristic excursions to low δ13C values.317

Beyond reproducing observations, the form of the esti-318

mated drift and diffusion functions can give insight into319

physical processes. The drift term indicates an average320

relaxation timescale of τeff = 47 kyr, possibly reflecting321

the stabilizing feedback of weathering of carbonate and322

silicate rocks [e.g. 58]. The piecewise nature of the dif-323

fusion suggests a “tipping-point” beyond which fluctu-324

ations are amplified, indicating an imbalance in typical325

weathering feedback mechanisms [59–61]. Further work326

should investigate whether this behavior is reflected in327

related oxygen isotope records, as well as other epochs in328

the Cenozoic.329

V. DISCUSSION AND CONCLUSION330

We present two methods to estimate conditional mo-331

ments from irregularly spaced time-series. These mo-332

ments are used alongside parametric and non-parametric333

methods to facilitate the accurate estimation of drift and334

diffusion functions of stochastic differential equations.335

We demonstrate this for three numerical examples, in336

a number of settings. Even in the presence of measure-337

ment noise or non-Markovian processes, both HTBR and338

KTBR are able to produce moments that result in accu-339

rate estimates of the original drift and diffusion functions.340

Additionally, KTBR is applied to a series of irregularly341

spaced paleoclimatological measurements. The inferred342

model is able to produce similar time-dependent behavior343

and statistics, revealing underlying dynamics.344

This study also illustrates the dangers of interpolation.345

While example III A shows that interpolation results in346

an absolute underestimate in the magnitude of estimated347

drift and diffusion functions, example III B shows the op-348

posite bias (with an underestimated measurement noise349

amplitude). Interpolation in example III C has little ef-350

fect on the estimated drift function, but not the diffusion351
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FIG. 3. Climate variations in the Early Eocene, recorded in benthic foraminiferal δ13C data [24]. A running mean of 1-Ma has
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function. These smaller errors average out for the drift352

function, as is the case with weak measurement noise [62].353

Overall, the bias may be small because longer time-scale354

information is included in the inversion, or the interpo-355

lation bias may be masked by the non-Markovian nature356

of the process.357

In addition to being applicable to a wide class of358

stochastic systems, these methods could allow for the359

handling of other non-ideal sampling conditions. Data360

with inconvenient gaps, for example, can be approached361

by this outlook when framed as irregularly sampled pro-362

cesses. This method is also capable of estimating higher-363

order moments (n > 2 in (7) and (10)), which are useful364

for analysis of jump-diffusion processes [63]. On the effect365

of number of data points on the robustness of the esti-366

mated drift and noise functions, as HTBR and KTBR are367

inherently frequency based calculations we expect them368

to perform similarly to previous methods [26, 64, 65].369

The methods here are demonstrated in one dimension,370

however extensions to higher dimensions is straightfor-371

ward.372

In the broader picture for stochastic process estima-373

tion, the methods presented here extend time-shift condi-374

tioning from index-based to histogram and kernel based375

methods. This reflects similar work regarding sample376

autocorrelation function estimators [12, 18, 66]. We note377

that it is not strictly required to match similar condition-378

ing on x and τ . In theory hybrid methods could be used,379

for example, kernel conditioning in x combined with his-380

togram conditioning in τ , however it is not clear if such381

an approach would have significant advantages.382
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