This is the accepted manuscript made available via CHORUS. The article has been published as:

Estimation of drift and diffusion functions from unevenly sampled time-series data

William Davis and Bruce Buffett
Phys. Rev. E 106, 014140 - Published 27 July 2022
DOI: 10.1103/PhysRevE.106.014140

${ }_{1}$ Estimation of Drift and Diffusion Functions from Unevenly Sampled Time-Series Data

William Davis* and Bruce Buffett
Department of Earth and Planetary Science, University of California, Berkeley

(Dated: July 5, 2022)

Abstract

Complex systems can often be modelled as stochastic processes. However, physical observations of such systems are often irregularly spaced in time, leading to difficulties in estimating appropriate models from data. Here we present extensions of two methods for estimating drift and diffusion functions from irregularly sampled time-series data. Our methods are flexible and applicable to a variety of stochastic systems, including non-Markov processes or systems contaminated with measurement noise. To demonstrate applicability, we use this approach to analyse an irregularly sampled paleoclimatological isotope record, giving insights into underlying physical processes.

I. INTRODUCTION

The time-dependent behavior of complex systems con7 sisting of a large number of subsystems can often be de\& scribed by low-dimensional order parameter equations ${ }_{9}$ [1]. In many cases, a separation between slow ad10 justments and fast fluctuations allows for a description ${ }_{11}$ of continuous observables X of such systems with a
${ }_{12}$ Langevin-type equation

$$
\begin{equation*}
\frac{d}{d t} X(t)=f(X, t)+g(X, t) \Gamma(t) \tag{1}
\end{equation*}
$$

${ }_{13}$ where $\Gamma(t)$ denotes the stochastic force, with $\langle\Gamma(t)\rangle=0$ 14 and $\left\langle\Gamma(t) \Gamma\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$ [2]. The same information is ${ }_{15}$ expressed in the Fokker-Planck equation,

$$
\begin{align*}
\frac{\partial}{\partial t} p\left(x, t \mid x^{\prime}, t^{\prime}\right)=[- & \frac{\partial}{\partial x} D^{(1)}(x, t) \\
& \left.+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t)\right] p\left(x, t \mid x^{\prime}, t^{\prime}\right) \tag{2}
\end{align*}
$$

${ }_{16}$ which contains the Kramers-Moyal (KM) coefficients

$$
\begin{equation*}
D^{(n)}(x, t)=\lim _{\tau \rightarrow 0} \frac{1}{n!\tau} \int_{-\infty}^{\infty}\left[x^{\prime}-x\right]^{n} p\left(x^{\prime}, t+\tau \mid x, t\right) d x^{\prime} \tag{3}
\end{equation*}
$$

where x and x^{\prime} denote values that can be taken by X, and $p(\circ \mid \circ)$ is the transition probability. Here, the first two coefficients are the drift and diffusion, respectively, connecting to (1) under the Itô interpretation, with $f(x, t)=D^{(1)}(x, t)$ and $g(x, t)=\sqrt{2 D^{(2)}(x, t)}$.
It has been shown that it is possible to estimate the forms of such processes directly from regularly sampled time-series data using a technique called "direct estimation" $[3,4]$. This approach has been applied to various fields of science [5].

[^0]There are two main difficulties associated with applying this approach to "real-world" time-series data. The first occurs when observations are contaminated by another undesirable signal, or measurement noise. In this case, Böttcher et al. [6] introduced a method to parametrically estimate drift and diffusion functions as well as the amplitude of the measurement noise, an approach has been expanded in subsequent studies [7-9].

The other difficulty involves the discrete sampling of the time-series data. For low sampling frequencies, is can be difficult to perform or infer the limit $\tau \rightarrow 0$ required for direct estimation. In this case, Honisch and Friedrich [10] proposed a finite τ optimisation method that correctly recovers drift and diffusion functions even at large sampling. However a related impediment is the presence of irregular sampling. In this case, there is no obvious way to calculate averages in (3). This is commonly encountered in geoscientific measurements [e.g. 11, 12], but also is encountered in turbulence measurements [13-15], astrophysical observations [16-19], and biological systems [20]. Interpolation is sometimes used to side-step these difficulties, however this can introduce a significant and hard-to-quantify bias [12, 21-23]. This motivates a method for estimating drift and diffusion functions directly from unaltered time-series data.

In the next section we review current estimation techniques, and propose two extensions for irregular sampling. Section III shows numerical examples where we demonstrate the functionality of our new methods. In Section IV we apply this framework to an empirical dataset, namely a paleoclimatological isotope record [24]. Summaries are given in Section V, where further applications are proposed.

II. ESTIMATION OF CONDITIONAL MOMENTS

We consider a stationary scalar process $X(t)$ that is observed at a set of N increasing points in time, $\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$, with no guarantee of a regular sampling. Observations at these points are denoted as $\left\{X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{N}\right)\right\}$. The finite-time KM coefficients of $X(t)$ are defined as [10]

$$
\begin{equation*}
D_{\tau}^{(n)}(x)=\frac{1}{n!\tau} M^{(n)}(x, \tau) \tag{4}
\end{equation*}
$$

${ }_{68}$ which are calculated using the finite-time conditional mo69 ments

$$
\begin{equation*}
M^{(n)}(x, \tau)=\int_{-\infty}^{\infty}\left[x^{\prime}-x\right]^{n} p\left(x^{\prime}, t+\tau \mid x, t\right) d x^{\prime} \tag{5}
\end{equation*}
$$

${ }_{70}$ The task is to make an estimate of these moments from ${ }_{71}$ data $X(t)$. These moments will subsequently be used ${ }_{72}$ as finite-time KM coefficients in an appropriate method
${ }_{73}$ in order to estimate drift and diffusion functions of the 74 underlying process.
75 Conditional moment estimates are denoted as ${ }_{76} \hat{M}^{(n)}\left(x_{i}, \tau_{j}\right)$, and are evaluated at a set of evalua${ }_{77}$ tion points in $x_{i} \in\left\{x_{1}, x_{2}, \ldots, x_{\max }\right\}$, and $\tau_{j} \in$ ${ }_{78}\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{\max }\right\}$.

A. Histogram Based Regression

The simplest way of estimating conditional moments 81 is by means of regressogram, [e.g. 25], also known as his${ }_{82}$ togram based regression (HBR). This estimator can be ${ }_{83}$ written as, [e.g. 26],

$$
\begin{equation*}
\hat{M}^{(n)}\left(x_{i}, \tau_{j}\right)=\frac{\sum_{k=1}^{N} I\left(X\left(t_{k}\right) \in B^{(x)}\left(x_{i}\right)\right)\left[X\left(t_{k}+\tau_{j}\right)-X\left(t_{k}\right)\right]^{n}}{\sum_{k=1}^{T} I\left(X\left(t_{k}\right) \in B^{(x)}\left(x_{i}\right)\right)}, \tag{6}
\end{equation*}
$$

${ }_{84}$ where $I(\circ)$ is the indicator function, and binning is in- 90 times, and also bin data by time-step. We shall refer to ${ }_{85}$ dicated with the half closed interval $B^{(x)}\left(x_{i}\right):=\left[x_{i}-{ }_{91}\right.$ this method as histogram-time based regression (HTBR).
${ }_{86} \frac{1}{2} b_{x}, x_{i}+\frac{1}{2} b_{x}$), where b_{x} is the width of the bin. ${ }_{92}$ The estimator for conditional moments can be written as

B. Histogram-Time Based Regression

${ }_{88}$ One simple way to extend HBR to account for uneven ${ }_{89}$ time-sampling is to average over all pairs of increasing

$$
\begin{equation*}
\hat{M}^{(n)}\left(x_{i}, \tau_{j}\right)=\frac{\sum_{k=1}^{N-1} \sum_{l=k+1}^{N} \overbrace{I\left(X\left(t_{k}\right) \in B^{(x)}\left(x_{i}\right)\right)}^{x \text {-conditioning }} \overbrace{I\left(\Delta t_{l, k} \in B^{(\tau)}\left(\tau_{j}\right)\right)}^{\tau \text {-conditioning }}\left[X\left(t_{l}\right)-X\left(t_{k}\right)\right]^{n}}{\sum_{k=1}^{T-1} \sum_{l=k+1}^{T} I\left(X\left(t_{k}\right) \in B^{(x)}\left(x_{i}\right)\right) I\left(\Delta t_{l, k} \in B^{(\tau)}\left(\tau_{j}\right)\right)} \tag{7}
\end{equation*}
$$

C. Kernel Based Regression

 ${ }_{94}$ itated with a bounded half closed interval $B^{(\tau)}\left(\tau_{j}\right):=$ ${ }_{95}\left[\max \left(0, \tau_{j}-\frac{1}{2} b_{\tau}\right), \tau_{j}+\frac{1}{2} b_{\tau}\right)$. ${ }_{97}$ timating moments, however the histogram based nature ${ }_{98}$ of both methods results in undesirable properties.1. Histograms assign the same weight to every point inside each bin, resulting in sharp cut-offs between data across the edge of a bin.
2. The width of the bins sets the resolution lengthscale. This length-scale dependence is not explicit, it is indirectly determined by the number and range of bins.
${ }_{107}$ To address the deficiencies of the histogram based ap108 proach, Lamouroux and Lehnertz [26] introduced kernel 109 based regression (KBR) method. For this, each estimate 110 at x is assigned an estimate by averaging over all obser111 vations weighted by the distance of the observation $X(t)$ 112 to x. Moments are then estimated with

$$
\begin{equation*}
\hat{M}^{(n)}\left(x_{i}, \tau_{j}\right)=\frac{\sum_{k=1}^{N} K_{h}\left(x_{i}-X\left(t_{k}\right)\right)\left[X\left(t_{k}+\tau_{j}\right)-X\left(t_{k}\right)\right]^{n}}{\sum_{k=1}^{T} K_{h}\left(x_{i}-X\left(t_{k}\right)\right)} \tag{8}
\end{equation*}
$$

113 where $K_{h}(\circ)=K(\circ / h) / h$ is a scaled kernel, h is the 14 bandwidth, and $K(\circ)$ is the kernel function. Here we use 115 the Epanechnikov kernel [27]

$$
K(x)= \begin{cases}\frac{3}{4}\left(1-x^{2}\right) & \text { if } x^{2}<1 \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$ ${ }_{16}$ for its computationally desirable properties [28].

117
Kernel-based methods have a number of advantages

118 over histogram based approached, including a higher con-

119 ence rate in the limit of a large number of data points [28, 29]. The introduction of a bandwidth gives an ex${ }_{21}$ plicit indication of the length scale of averaging, although 122 there is no optimal bandwidth. However, as points are ${ }_{23}$ indexed at set time-shifts τ_{j} in the future, this method is ${ }_{24}$ unsuitable for unevenly spaced data.

D. Kernel-Time Based Regression

To extend KBR to unevenly spaced data, kernel den${ }_{127}$ sity estimation is applied to the τ component as well as ${ }_{128}$ the x component. We shall refer to this method as kernel129 time based regression (KTBR). To enable this, bivariate kernel density estimation is employed

$$
\begin{equation*}
\hat{M}^{(n)}\left(x_{i}, \tau_{j}\right)=\frac{\sum_{k=1}^{T-1} \sum_{l=k+1}^{T} K_{h}^{(2)}\left(x_{i}-X\left(t_{k}\right), \tau_{j}-\Delta t_{l, k}\right)\left[X\left(t_{l}\right)-X\left(t_{k}\right)\right]^{n}}{\sum_{k=1}^{T-1} \sum_{l=k+1}^{T} K_{h}^{(2)}\left(x_{i}-X\left(t_{k}\right), \tau_{j}-\Delta t_{l, k}\right)} \tag{10}
\end{equation*}
$$

131 where $K_{h}^{(2)}(\circ, \circ)$ is a bandwidth scaled, Euclidian dis- ${ }_{133}$ where h_{x} and h_{τ} and the bandwidths in x and τ, re132 tance 2D kernel

$$
\begin{equation*}
K_{h}^{(2)}(x, \tau)=\frac{C}{h_{x} h_{\tau}} K\left(\left(\left(x / h_{x}\right)^{2}+\left(\tau / h_{\tau}\right)^{2}\right)^{\frac{1}{2}}\right) \tag{11}
\end{equation*}
$$ spectively [30]. The prefactor C is defined such that the kernel integrates to unity. We use the Epanechnikov kernel (9), therefore $C=8 / 3 \pi$.

As the domain in τ only has positive support, kernel ${ }_{38}$ estimations at $\tau<h_{\tau}$ can be biased. To account for this, ${ }^{139}$ we use a boundary correction method [31] that replaces ${ }_{140}$ the application of kernel (11) inside (10), with

$$
\begin{equation*}
K_{h}^{(2)}\left(x_{i}-X\left(t_{k}\right), \tau_{j}-\Delta t_{l, k}\right) \rightarrow\left[K_{h}^{(2)}\left(x_{i}-X\left(t_{k}\right), \tau_{j}-\Delta t_{l, k}\right)+K_{h}^{(2)}\left(x_{i}-X\left(t_{k}\right), \tau_{j}+\Delta t_{l, k}\right)\right] . \tag{12}
\end{equation*}
$$

III. NUMERICAL EXAMPLES

To validate the presented methods, we test them on a 143 set of three synthetic data-sets.

A. Ornstein-Uhlenbeck process

First we examine an Ornstein-Uhlenbeck process given 146 by the drift and diffusion functions

$$
\begin{align*}
& D^{(1)}(x)=-x \tag{13a}\\
& D^{(2)}(x)=1 \tag{13b}
\end{align*}
$$

$$
\begin{equation*}
\hat{D}^{(n)}(x) \approx \frac{1}{n!\tau} \hat{M}^{(n)}(x, \tau) \tag{14}
\end{equation*}
$$

FIG. 1. Results for an Ornstein-Uhlenbeck process. Estimated functions $D^{(1)}(x)$ and $D^{(2)}(x)$ are shown in the top and bottom plots, respectively. Estimates from HBR are from interpolated data.

167

B. Multiplicative process with measurement noise

180 Next we examine a multiplicative process with mea181 surement noise. The drift and diffusion functions are set 182 as

$$
\begin{align*}
& D^{(1)}(x)=-x \tag{15a}\\
& D^{(2)}(x)=1+x^{2} \tag{15b}
\end{align*}
$$

${ }_{183}$ Irregularly sampled data $X(t)$ is produced similarly to 184 example III A, however we also add δ-correlated mea185 surement noise

$$
\begin{equation*}
Y(t)=X(t)+\sigma \zeta(t) \tag{16}
\end{equation*}
$$

186 where σ denotes the amplitude of the measurement noise, 187 and $\zeta \sim \mathcal{N}(0,1)$. We seek to estimate coefficients of ${ }_{188}$ parameterised drift and diffusion functions

$$
\begin{align*}
& \hat{D}^{(1)}(x)=p_{1}+p_{2} x \tag{17a}\\
& \hat{D}^{(2)}(x)=p_{3}+p_{4} x+p_{5} x^{2} \tag{17b}
\end{align*}
$$

189 using the method of Lind et al. [7]. The time-series $Y(t)$ 190 is used to estimate noisy moments, $\hat{M}^{(n)}(y, \tau)$. These ${ }_{191}$ moments are separated with linear regression

$$
\begin{align*}
& \hat{M}^{(1)}\left(y_{i}, \tau_{j}\right) \approx \hat{m}_{1}\left(y_{i}\right) \tau_{j}+\hat{\gamma}_{1}\left(y_{i}\right) \tag{18a}\\
& \hat{M}^{(2)}\left(y_{i}, \tau_{j}\right) \approx \hat{m}_{2}\left(y_{i}\right) \tau_{j}+\hat{\gamma}_{2}\left(y_{i}\right)+\sigma^{2} \tag{18b}
\end{align*}
$$

192 along with uncertainties $\sigma_{\hat{m}_{1}}^{2}\left(y_{i}\right), \sigma_{\hat{\gamma}_{1}}^{2}\left(y_{i}\right)$, etc... These 193 estimates are compared with theoretical values of $194 m_{1}(y), \gamma_{1}, m_{2}(y)$, and γ_{2}, which depend solely on param195 eters p_{1}, \ldots, p_{5}, and σ, see Lind et al. [7] for more details. ${ }_{196}$ The parameters vary the fit function

$$
\begin{align*}
& F=\sum_{i=1}^{8}\left\{\frac{\left[\hat{m}_{1}\left(y_{i}\right)-m_{1}\left(y_{i}\right)\right]^{2}}{\sigma_{\hat{m}_{1}}^{2}\left(y_{i}\right)}+\frac{\left[\hat{\gamma}_{1}\left(y_{i}\right)-\gamma_{1}\left(y_{i}\right)\right]^{2}}{\sigma_{\hat{\gamma}_{1}}^{2}\left(y_{i}\right)}\right. \\
& \left.+\frac{\left[\hat{m}_{2}\left(y_{i}\right)-m_{2}\left(y_{i}\right)\right]^{2}}{\sigma_{\hat{m}_{2}}^{2}\left(y_{i}\right)}+\frac{\left[\hat{\gamma}_{2}\left(y_{i}\right)-\gamma_{2}\left(y_{i}\right)-\sigma^{2}\right]^{2}}{\sigma_{\hat{\gamma}_{2}}^{2}\left(y_{i}\right)}\right\}, \tag{19}
\end{align*}
$$

${ }_{197}$ which is minimised using simulated annealing [33].
For HTBR, sampling in y is performed with 50 equally ${ }_{99}$ spaced bins in the range $[-6,6]$. Sampling in τ is per200 formed by 8 equally spaced bins with centers from $\tau_{1}=$ 5×10^{-3} to $\tau_{8}=4 \times 10^{-2}$, with bin-widths $b_{\tau}=5 \times 10^{-3}$. 202 For KTBR, evaluation points in x are 50 equally spaced points in the range $[-6,6]$, with $h_{x}=0.18$. Sampling in time is performed with 8 equally spaced points from ${ }^{205} \tau_{1}=5 \times 10^{-3}$ to $\tau_{8}=4 \times 10^{-2}$, with $h_{\tau}=2.5 \times 10^{-3}$. Finally, the data $Y(t)$ is also linearly interpolated to a ${ }_{207}$ regular sampling of $\Delta t=5 \times 10^{-3}$ and then processed

$$
\begin{align*}
\frac{d}{d t} X & =D^{(1)}(X)+\sqrt{2 D^{(2)}(X)} \eta(t) \tag{20a}\\
\frac{d}{d t} \eta & =-\frac{1}{\theta} \eta+\frac{1}{\theta} \xi(t) \tag{20b}
\end{align*}
$$

where θ is the correlation time of the noise. The drift and diffusion functions are set as

$$
\begin{align*}
D^{(1)}(x) & =x-\frac{1}{2} x^{3} \tag{21a}\\
D^{(2)}(x) & =1+\frac{1}{20} \ln \cosh 2 x \tag{21b}
\end{align*}
$$

22 and the correlation time is $\theta=0.01$. An unevenly spaced ${ }_{23}$ time-series is produced in the same way as example III A, 24 however only $X(t)$ is observed.

We estimate the drift and diffusion functions using the non-parametric method of [34]. This involves comparing estimates of moments, $\hat{M}^{(n)}(x, \tau)$, with theoretical 228 estimates

$$
\begin{equation*}
M^{(n)}(x, \tau) \approx \sum_{i=1}^{3} \lambda_{i}^{(n)}(x) r_{i}(\tau, \theta) \tag{22}
\end{equation*}
$$

TABLE I. True and optimised parameter values for a multiplicative process with measurement noise. Parameters are rounded to either 2 significant figures or at least 2 decimal places. The HBR column represents results from interpolated $Y(t)$ data. We note that entering the true parameter values into function (19) with estimates gathered from interpolated HBR result in a value of F two orders of magnitude higher than the optimised minimum.

Parameter	True	HTBR	KTBR	HBR
p_{1}	0	-0.0050	-0.0040	-0.014
p_{2}	-1	-0.99	-1.00	-1.48
p_{3}	1	0.99	1.00	1.62
p_{4}	0	0.0062	0.013	0.0020
p_{5}	1	0.97	0.98	1.11
σ	1	1.00	1.00	0.76

FIG. 2. Results for a bistable system with correlated noise. As Fig. 1.
where functions r_{i} are prescribed basis functions and $\lambda_{i}^{(n)}(x)$ are the corresponding coefficients. Coefficients are found through least squares, and then $\lambda_{1}^{(n)}(x)$ are directly related to estimates of the drift and diffusion functions at points in x. For a detailed description of the method, see Lehle and Peinke [34].
For HTBR, sampling in x is performed by 16 equally spaced bins in the range $[-2,2]$. Sampling in τ is performed by 30 spaced bins with from $\tau_{1}=5 \times 10^{-3}$ to $\tau_{30}=1.5 \times 10^{-1}$, with bin-widths $b_{\tau}=5 \times 10^{-3}$. For KTBR, evaluation points in x are 50 equally spaced points in the range $[-2,2]$, with $h_{x}=0.24$. Sampling in time is performed with 30 equally spaced points from $\tau_{1}=5 \times 10^{-3}$ to $\tau_{30}=1.5 \times 10^{-1}$, with $h_{\tau}=2.5 \times 10^{-3}$. Finally, the data $X(t)$ is also linearly interpolated to a regular sampling of $\Delta t=5 \times 10^{-3}$ and then processed in the same way as the HTBR example. For simplicity, we assume that the correlation time θ has been accurately estimated a priori $[12,18]$. For all methods, the mean absolute error between estimated moments $\hat{M}^{(n)}(x, \tau)$ and fitted moments (22) is on the order of 10^{-5}. The drift and diffusion functions are shown in Fig. 2.

The estimates of the drift and diffusion functions com- 301 pare well with the true values for both HTBR and KTBR. ${ }_{30}$ For the interpolated HBR the drift function is reproduced well, whilst the diffusion function is systematically underestimated.

IV. APPLICATION TO PALEOCLIMATOLOGICAL DATA

The drift function has a strongly linear form, and is well approximated by the CAM model (23) with $\tau_{\text {eff }}=$ $47 \mathrm{kyr}\left(R^{2}=0.98\right)$. For the diffusion function, while a CAM model (23) with the coefficients $v=-3.2$ and $c=$ -1.2 falls within the confidence intervals $\left(R^{2}=0.67\right)$, we cannot reject a likely piecewise diffusion of

$$
D^{(2)}(x)= \begin{cases}p_{1}+p_{2}\left(x-p_{3}\right) & \text { if } x \leq p_{3} \tag{24}\\ p_{1} & \text { otherwise }\end{cases}
$$

Paleoclimate proxies preserve a record of Earth's cli- 30 mate variability. This variability is commonly studied through carbon and oxygen isotopes records from benthic foraminifera [24, 35]. Of particular interest are large and rapid negative excursions in carbon isotope ratios, $\delta^{13} \mathrm{C}$, throughout the Cenozoic [36-40]. These excursions have been interpreted as "hyperthermal" warming events, and are speculated to be linked to the release of isotopically depleted organic carbon from permafrost or methane clathrates [41-43]. Such records offer insights to Earth's climate response to hyperthermal events, and provide an analogue to modern anthropogenic forcing [44-47]. Recently Arnscheidt and Rothman [48] suggested that the time-variability of these records can be modelled as stochastic processes, invoking a single-variable correlated additive-multiplicative (CAM) process

$$
\begin{equation*}
\frac{d}{d t} X=-\frac{1}{\tau_{\mathrm{eff}}} X+v(X-c) \Gamma(t) \tag{23}
\end{equation*}
$$

where $\tau_{\text {eff }}, v$, and c are constants and $\Gamma(t)$ is white noise [49-53]. A non-parametric verification of this CAM hypothesis has been unreachable with previous estimation methods, as the $\delta^{13} \mathrm{C}$ record is unevenly sampled in time. In this section, we apply KTBR to a section of this unevenly sampled paleoclimate record.

We choose a stationary section of the record, from 53 Ma to 46 Ma , containing a series of representative excursions but excluding the anomalous Paleocene-Eocene Thermal Maximum [48, 54]. The sampling in this timespan is approximately log-normally distributed, with $\log _{10} \Delta t \sim \mathcal{N}(-2.7,0.2)$. To calculate moments, evaluation points in x are 50 equally spaced points in the range $[-0.8,0.5]$, with $h_{x}=0.4$. Sampling in time is performed with 30 equally spaced points from $\tau_{1}=3.5 \mathrm{kyr}$ to $\tau_{30}=116 \mathrm{kyr}$, with $h_{\tau}=5 \mathrm{kyr}$. The higher order moments in $M^{(4)}(x, \tau) \simeq 3\left(M^{(2)}(x, \tau)\right)^{2}$ are evaluated using (10) and are comparable, showing a small error of $\sim 5 \times 10^{-3}$, validating the continuity of the record $[55,56]$. To estimate the drift and diffusion functions from these moments, we use the approach of Lehle and Peinke [34], while the correlation time is estimated through a grid search, $\theta \approx 0.4 \mathrm{kyr}$. The moments are fit well, with an absolute error between estimated moments $\hat{M}^{(n)}(x, \tau)$ and fitted moments (22) on the order of 10^{-4}. The estimated drift and diffusion functions are shown in Fig. 4.
with best fitting coefficients of $p_{1}=3.30, p_{2}=-11.50$, and $p_{3}=-0.36\left(R^{2}=0.99\right)$, although we note that this parameterization is not unique, and only meant to be suggestive.

To demonstrate that this linear drift and piecewise diffusion cannot be rejected by the data, we numerically integrate a sample path with these functions. The timeseries and distributions of the original data and SDE simulation are shown in Fig. 3. The SDE matches the skewed distribution of the original record, and also displays characteristic excursions to low $\delta^{13} \mathrm{C}$ values.

Beyond reproducing observations, the form of the estimated drift and diffusion functions can give insight into physical processes. The drift term indicates an average relaxation timescale of $\tau_{\text {eff }}=47 \mathrm{kyr}$, possibly reflecting the stabilizing feedback of weathering of carbonate and silicate rocks [e.g. 58]. The piecewise nature of the dif324 fusion suggests a "tipping-point" beyond which fluctu25 ations are amplified, indicating an imbalance in typical 326 weathering feedback mechanisms [59-61]. Further work ${ }_{27}$ should investigate whether this behavior is reflected in ${ }_{28}$ related oxygen isotope records, as well as other epochs in 29 the Cenozoic.

V. DISCUSSION AND CONCLUSION

We present two methods to estimate conditional mo332

FIG. 3. Climate variations in the Early Eocene, recorded in benthic foraminiferal $\delta^{13} \mathrm{C}$ data [24]. A running mean of 1-Ma has been subtracted to remove longer-scale climate effects. Time-series data and a simulated trajectory are shown in the top and bottom plots, respectively. Histograms are shown in the right plot. By convention, axes for $\delta^{13} \mathrm{C}$ are reflected.
function. These smaller errors average out for the drift function, as is the case with weak measurement noise [62]. Overall, the bias may be small because longer time-scale information is included in the inversion, or the interpolation bias may be masked by the non-Markovian nature of the process.
In addition to being applicable to a wide class of stochastic systems, these methods could allow for the handling of other non-ideal sampling conditions. Data with inconvenient gaps, for example, can be approached by this outlook when framed as irregularly sampled processes. This method is also capable of estimating higherorder moments ($n>2$ in (7) and (10)), which are useful for analysis of jump-diffusion processes [63]. On the effect of number of data points on the robustness of the estimated drift and noise functions, as HTBR and KTBR are inherently frequency based calculations we expect them to perm simily to pre The methods here are demonstrated in one dimension, 387 ence Foundation (EAR-1644644).
[1] H. Haken, Synergetics: Intoduction and advanced topics 401 (Spinger-Verlag, 2004).

402
[2] H. Risken, in The Fokker-Planck Equation (Springer, 403 1996) pp. 63-95.
[3] S. Siegert, R. Friedrich, and J. Peinke, Physics Letters 40 A 243, 275 (1998).
[4] J. Gottschall and J. Peinke, New Journal of Physics 10, 40 083034 (2008).
[5] R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar, Physics Reports 506, 87 (2011).
[6] F. Böttcher, J. Peinke, D. Kleinhans, R. Friedrich, P. G. Lind, and M. Haase, Physical Review Letters 97, 090603 (2006).
[7] P. G. Lind, M. Haase, F. Böttcher, J. Peinke, D. Kleinhans, and R. Friedrich, Physical Review E 81, 041125 (2010).
[8] B. Lehle, Physical Review E 83, 021113 (2011).
[9] T. Scholz, F. Raischel, V. V. Lopes, B. Lehle, M. Wächter, J. Peinke, and P. G. Lind, Physics Letters A 381, 194 (2017).
[10] C. Honisch and R. Friedrich, Physical Review E 83, 066701 (2011).
[11] M. Schulz and K. Stattegger, Computers \& Geosciences 23, 929 (1997).
[12] K. Rehfeld, N. Marwan, J. Heitzig, and J. Kurths, Nonlinear Processes in Geophysics 18, 389 (2011).

FIG. 4. Results for early Eocene $\delta^{13} \mathrm{C}$ record. Estimated drift and diffusion functions $D^{(1)}(x)$ and $D^{(2)}(x)$ are shown in the top and bottom plots, respectively. Best estimates are plotted as black lines, and bootstrapped 95% confidence intervals are shown as grey regions [57].
[13] C. Tropea, Measurement Science and Technology 6, 605 (1995).
[14] P. Broersen, S. De Waele, and R. Bos, in Proceedings ${ }^{480}$ of the 10th International Symposium on Applications of 481 Laser Techniques to Fluid Dynamics, Lisbon, Portugal 48 (2000).
[15] W. Harteveld, R. Mudde, and H. Van den Akker, Chemical engineering science 60, 6160 (2005).
[16] J. D. Scargle, The Astrophysical Journal Supplement Series 45, 1 (1981).
[17] J. D. Scargle, The Astrophysical Journal 263, 835 (1982).
[18] R. Edelson and J. Krolik, The Astrophysical Journal 333, 646 (1988).
[19] J. D. Scargle, The Astrophysical Journal 343, 874 (1989).
[20] A. W.-C. Liew, J. Xian, S. Wu, D. Smith, and H. Yan, BMC bioinformatics 8, 1 (2007).
[21] M. Scholes and J. Williams, Journal of financial economics 5, 309 (1977).
[22] T. Hayashi and N. Yoshida, Bernoulli 11, 359 (2005).
[23] A. Eckner, Preprint. Available at: http://www.eckner. com/papers/unevenly_spaced_time_series_analysis.
pdf (2014).
[24] T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou, J. S. Barnet, S. M. Bohaty, D. De Vleeschouwer, F. Florindo, et al., Science 369, 1383 (2020).
[25] J. W. Tukey, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4 (University of California Press, 1961) pp. 681-695.
[26] D. Lamouroux and K. Lehnertz, Physics Letters A 373, 3507 (2009).
[27] V. A. Epanechnikov, Theory of Probability \& Its Applications 14, 153 (1969).
[28] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and semiparametric models, Vol. 1 (Springer, 2004).
[29] L. R. Gorjão and F. Meirinhos, Journal of Open Source Software 4, 1693 (2019).
[30] M. P. Wand and M. C. Jones, Journal of the American Statistical Association 88, 520 (1993).
[31] M. C. Jones, Statistics and computing 3, 135 (1993).
[32] G. Mil'shtejn, Theory of Probability \&; Its Applications 19, 557 (1975).
[33] J. Carvalho, F. Raischel, M. Haase, and P. Lind, in Journal of Physics: Conference Series, Vol. 285 (IOP Publishing, 2011) p. 012007.
[34] B. Lehle and J. Peinke, Physical Review E 97, 012113 (2018).
[35] J. Zachos, M. Pagani, L. Sloan, E. Thomas, and K. Billups, Science 292, 686 (2001).
[36] B. S. Cramer, J. D. Wright, D. V. Kent, and M.-P. Aubry, Paleoceanography 18 (2003).
[37] L. J. Lourens, A. Sluijs, D. Kroon, J. C. Zachos, E. Thomas, U. Röhl, J. Bowles, and I. Raffi, Nature 435, 1083 (2005).
[38] M. J. Nicolo, G. R. Dickens, C. J. Hollis, and J. C. Zachos, Geology 35, 699 (2007).
[39] P. F. Sexton, R. D. Norris, P. A. Wilson, H. Pälike, T. Westerhold, U. Röhl, C. T. Bolton, and S. Gibbs, Nature 471, 349 (2011).
[40] V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens, Climate of the Past 11, 1313 (2015).
[41] G. R. Dickens, Earth and Planetary Science Letters 213, 169 (2003).
[42] D. J. Lunt, A. Ridgwell, A. Sluijs, J. Zachos, S. Hunter, and A. Haywood, Nature Geoscience 4, 775 (2011).
[43] R. M. DeConto, S. Galeotti, M. Pagani, D. Tracy, K. Schaefer, T. Zhang, D. Pollard, and D. J. Beerling, Nature 484, 87 (2012).
[44] G. J. Bowen, T. J. Bralower, M. L. Delaney, G. R. Dickens, D. C. Kelly, P. L. Koch, L. R. Kump, J. Meng, L. C. Sloan, E. Thomas, et al., Eos, Transactions American Geophysical Union 87, 165 (2006).
[45] J. C. Zachos, G. R. Dickens, and R. E. Zeebe, Nature 451, 279 (2008).
[46] T. Dunkley Jones, A. Ridgwell, D. Lunt, M. Maslin, D. Schmidt, and P. Valdes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 2395 (2010).
[47] R. E. Zeebe and J. C. Zachos, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20120006 (2013).
[48] C. W. Arnscheidt and D. H. Rothman, Science Advances 7, eabg6864 (2021).

499 [49] P. Sura and P. D. Sardeshmukh, Journal of Physical ${ }_{500}$ Oceanography 38, 639 (2008).
501 [50] P. D. Sardeshmukh and P. Sura, Journal of Climate 22, 1193 (2009).
502
503 [51] P. Sura, Atmospheric Research 101, 1 (2011).
504 [52] C. Penland and P. D. Sardeshmukh, Chaos: An Interdis-
56 [53] P. D. Sardeshmukh and C. Penland, Chaos: An Interdis-
507
508
509
510
511
512
513
514
515 P. D. Sardeshmukh and C. Penland, Chaos: An Interdis-
ciplinary Journal of Nonlinear Science 25, 036410 (2015).
[54] F. A. McInerney and S. L. Wing, Annual Review of Earth and Planetary Sciences 39, 489 (2011).
[55] K. Lehnertz, L. Zabawa, and M. R. R. Tabar, New Jour- ${ }^{52}$ nal of Physics 20, 113043 (2018).
[56] R. Tabar, Analysis and data-based reconstruction of complex nonlinear dynamical systems, Vol. 730 (Springer, 2019).
[57] H. R. Kunsch, The Annals of Statistics , 1217 (1989).
[58] J. C. Walker, P. Hays, and J. F. Kasting, Journal of Geophysical Research: Oceans 86, 9776 (1981).
[59] T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber, Proceedings of the national Academy of Sciences 105, 1786 (2008).
[60] D. H. Rothman, Science Advances 3, e1700906 (2017).
52 [61] D. H. Rothman, Proceedings of the National Academy of Sciences 116, 14813 (2019).
[62] M. Siefert, A. Kittel, R. Friedrich, and J. Peinke, EPL (Europhysics Letters) 61, 466 (2003).
26 [63] M. Anvari, M. Tabar, J. Peinke, and K. Lehnertz, Scientific reports 6, 1 (2016).
528 [64] A. M. van Mourik, A. Daffertshofer, and P. J. Beek, Physics Letters A 351, 13 (2006).
50 [65] D. Kleinhans and R. Friedrich, in Wind Energy (Springer, 2007) pp. 129-133.
532 [66] P. Babu and P. Stoica, Digital Signal Processing 20, 359 533 (2010).

[^0]: * williamjsdavis@berkeley.edu

