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The detection of information-bearing signals in a time-series is very important for describing and
analyzing a wide variety of complex physical systems. However, identifying events in low signal-to-
noise ratio circumstances remains a challenge once heavy data pre-processing is usually required.
In this work, we propose a robust methodology based on the instantaneous-spectral Shannon en-
tropy for capturing microseismic events in noisy environments without the requirement of data pre-
processing. We call our proposal the Instantaneous Spectral Entropy Detection (ISED) method.
We tested the ISED in a couple of real empirical seismic records to detect microseismic events. Our
methodology detects microseismic patterns even without any pre-processing, in opposition to usual
methods in the literature which need appreciable data pre-processing.

I. INTRODUCTION

The detection and mapping of information-bearing sig-
nals is very important in the analysis of physical sys-
tems. In recent years, a variety of techniques have been
developed to improve the data-transmission quality [1–
3] and the low-magnitude signal detection [4–6] for un-
derstanding, for instance, the complexity of quantum
algorithms [7–9], small movements associated with vol-
canism [10–12], as well as in biomedical signal analysis
[13]. It is worth noting that the extraction of useful in-
formation from noisy signals consists in the application
of complex approaches that involve sophisticated mathe-
matical, physical and scientific computation techniques.
Such a detection task becomes especially difficult when
it comes to capturing low-magnitude signals. An exam-
ple of a low-magnitude signal pattern that is commonly
recorded in extremely noisy environments are the micro-
seismic events (or low-magnitude tremors).

The detection of microseismic events is very impor-
tant for studying the seismicity of a region [14, 15] as
well as for understanding the dynamics of several com-
plex systems, such as the rock mass response to mine
exploration [16], in reactivation of geological faults [17],
in estimation of earthquake-triggering focal mechanisms
[18], among many others. However, due to the strong
noise scenarios and the low energy of these events, de-
tecting microseismic remains a great challenge. Thus,
the scientific community has sought practical solutions
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for microseismic event detection from time series signals
using, for instance, machine learning techniques [19–21]
and spectral analysis [22, 23]. In this way, high-quality
detecting methodologies are need for a robust microseis-
mic analysis.

Nowadays, the conventional approach for detecting mi-
croseismic events is based on the estimation of the aver-
age energy of a seismic signal in two moving-time win-
dows, named short-term average (STA) and long-term
average (LTA) [24]. The idea behind this framework is
to incorporate information that is sensitive both to the
seismic event (through the STA window) and to the lo-
cal seismic noise (through the LTA window). If the ra-
tio between these two time windows (STA/LTA ratio)
exceeds a pre-defined value, the existence of an event
is declared. Due to its simplicity and effectiveness, the
STA/LTA ratio has been widely used for detecting seis-
mic events, for instance, in earthquake early-warning [25]
for alerting people about a quake arriving, which al-
low saving lives from destructive shaking. However, the
STA/LTA method is very sensitive to the signal energy,
which makes this technique inaccurate for capturing mi-
croseismic events recorded in a noisy environment [26].

To improve the detection quality of the classical
STA/LTA method in a strong noisy environment, we pro-
pose in this work a robust algorithm based on instanta-
neous spectral Shannon entropy (ISSE) [27], which mea-
sures the signal spectral-power distribution in a pre-set
time window [28]. The ISSE is useful in biomedical signal
analyses [13] and also in fault diagnosis in mechanical sys-
tems [28]. Based on the ISSE, we introduce in this work
the Instantaneous Spectral Entropy Detection (ISED)
method, which is a robust algorithm for capturing seis-
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mic waves in noisy environments without pre-processing
requirement. In this regard, the ISED is efficient to sep-
arate the coherent seismic signal from the noise via infor-
mation entropy (or Shannon entropy), since there is an
increase in the complexity of the spectrogram close to the
seismic event signal to be distinguished. In other words,
the spectrogram around the seismic event has much more
Fourier components compared to the background noise
and, as the entropy is a measure of complexity, the ISED
reveals a powerful method in this situation.

The outline adopted in this work is as follows. In
Sec. II, we start by presenting a brief review of the
STA/LTA method, including some examples, from which
we illustrate the potential and inability of this classical
framework. Then, we present the theoretical founda-
tions and mathematical basis of our proposal: the ISED
method. To demonstrate the robustness and effectiveness
of our proposal, we consider in Sec. III a real seismic data
set of low magnitude natural earthquakes under a very
strong background noise. Finally, in Sec. IV, we present
the final remarks and perspectives.

II. METHODOLOGY

A. Brief STA/LTA method review

The classical method in seismic event detection, in-
troduced by R.V. Allen in Ref. [24], is the Short Term
Average/Long Term Average (STA/LTA) ratio. Let the
seismic data consist of N samples: x = {x1, x2, ..., xN},
the STA/LTA method consists of calculating the average
energy for two time-windows (STA and LTA):

STA
i

=
1

S

i∑
j=i+1−S

CF
j
, (1)

LTA
i

=
1

L

i∑
k=i+1−L

CF
k
, (2)

where CF is the so-called characteristic function, S and
L are the lengths of a short- and long-term sliding win-
dow, and i = 1, 2, ..., N . Usually, the CF is defined
as an energy function of the signal inside the windows
(CFj = x2

j ), absolute value (CFj = |xj |), envelope func-
tion [29], among others [30–32]. If the ratio between the
STA, Eq. (1), and LTA, Eq. (2), exceeds a pre-defined
threshold, STA

LTA > ε, the existence of a seismic event is
declared.

To illustrate the working principle of the classical
STA/LTA method, we consider waveforms from two
earthquakes: in the first one, an earthquake recorded
in Peru-Ecuador-border-region, and in the second one, a
tremor recorded in California-Nevada-border-region, see
panels (a) and (b) of Fig. 1. We notice that the waveform
shown in Fig. 1(a) is less contaminated by noise than the

waveform shown in Fig. 1(d). By considering data length
(sample size) in the short-term sliding window set up to
S = 4s and long-term to L = 24s, the respective STA
and LTA series are constructed using Eqs. (1) and (2), as
depicted in panels (c) and (d) of Fig. 1. With the STA
[green (light gray) curve in Figs. 1(b) and 1(e)] and LTA
series [blue curve in Figs. 1(b) and 1(e)], the STA/LTA
ratio is computed [see Figs. 1(c) and 1(f)]. If we con-
sider the threshold factor to be ε = 2, for example, we
observe that STA/LTA method correctly identifies the
earthquake in Peru-Ecuador-border-region [see Fig. 1(c)],
but fails to capture the earthquake in California-Nevada-
border-region [see Fig. 1(f)]. In fact, STA/LTA method
is only successful when the signal has a high signal-to-
noise ratio (SNR), which is not the case for microseisms
in areas subject to strong background noise like those
close to urban activities [33].

B. Instantaneous Spectral Entropy Detection
(ISED)

Based on the theory of information, C. Shannon [34]
introduced the mathematical bases and foundations of
communication theory, in which the characterization of
information measures are analyzed using the so-called
Shannon entropy. In the last years, Shannon entropy
has been applied in several areas of the science, such as
statistical physics [35–37], information theory [38, 39], in-
ference problems [40, 41], among many others. Formally,
for a set of measures x1, x2, · · ·, xn, Shannon entropy pro-
vides a number that represents the uncertainty measure,
or degree of complexity, associated with a given proba-
bility distribution p(x). This entropy is written as the
following functional:

H[p] = −
n∑

i=1

p(xi) ln
(
p(xi)

)
. (3)

In this work, we take into account the fact that the sig-
nal amplitudes x computed into the signal-window and
the k -th frequency fk are given by an instantaneous prob-
ability function p(t, fk). In this regard, the Instantaneous
Spectral Shannon Entropy (ISSE) is defined as [27, 42]:

H(t) = −
∑
k

p(t, fk) ln
(
p(t, fk)

)
, (4)

where p(t, fk) computes the instantaneous probability
function linked with the time-frequency power-spectrum
S(t, fk) as follows:

p(t, fk) =
S(t, fk)∑
j S(t, fj)

. (5)

It is worth noting that the entropic functional in Eq. (4) is
computed at each time window using the time-frequency
power spectrogram, and t represents the average value
of that time-window. Furthermore, we notice that the
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FIG. 1. A simple example to illustrates the STA/LTA method. (a) Waveform recorded at 2019-03-20 in Peru-Ecuador-border-
region. (b) STA (green (light gray) curve) and LTA (blue curve) series by considering 4 and 24 seconds of time-windows lengths.
(c) STA/LTA ratio. (d) A low magnitude natural earthquake to illustrate the limitations of the STA/LTA method, which is
a waveform recorded at 2019-06-27 in California-Nevada-border-region. In addition, panel (e) depicts the STA and LTA series
using a 4 and 24 seconds for computing the time-windows lengths and panel (f) shows the corresponding STA/LTA ratio.

ISSE, Eq. (4), provides a measure of the homogeneity
of the frequency contents for each time-window, reveal-
ing peaks in times of the most energy-containing time-
windows [27]. In this way, it is expected that the noise en-
ergy spread out through the spectrum. Thus, the peaks
in the ISSE series must correspond to seismic events, as
will be shown below.

Since the noise spreads out and the coherent informa-
tion (i.e., the microseismic event) concentrates in some
areas of the spectrogram, the ISSE should be greater in
the region referred to the microseismic event (that has
greater energy in the time-frequency power-spectrum re-
garding the noise) than the background noise at each
time instant. In this regard, we propose a robust method-
ology based on the ISSE for detecting low-energy signals
in very noisy environments for unfiltered data. Thus,
our proposal called Instantaneous Spectral Entropy De-
tection (ISED) is able to identify (micro)seismic events
in a long time series, even when it is polluted by a
strong background noise, without the requirement for
data pre-processing. Moreover, the independence of pre-
processing make this tool relevant in automated projects.

We divide the ISED method into three main steps:
in the first one, we compute the signal time-frequency
power-spectrum using the windowed Fourier transform
and calculate the instantaneous probability at each time
window considering their respective spectral contents.
Second, we compute the ISSE by automatically gener-
ating a new time series associated with the Shannon en-
tropy of the spectral content of each time-window. Fi-
nally, the ISSE time-series is employed as input to the
STA/LTA method for automatic detection of the peak
of the ISSE which is related to the seismic events. We
summarize our proposal ISED procedure in Fig. 2.

III. MICROSEISMIC DETECTION CASE
STUDY

To test the robustness and effectiveness of the ISED
technique, and empirically validate our proposal, we em-
ploy a real data set obtained from Incorporated Research
Institutions for Seismology (IRIS) [43]. The data set con-
sists of waveforms of seismic events recorded in three dif-
ferent regions, as summarized in Table I. It is worth not-
ing that the seismic records used in this work were reg-
istered by several institutions that collaborate with IRIS
University Consortium. The event #01 was recorded
near the coast of Peru at the Nana station (NNA) lo-
cated in Peru [latitude 11.99° S and longitude 76.84° W].
The events #02 and #03 were recorded in the United
States of America (USA) by the Columbia College sta-
tion (CMB) [located in Columbia, CA: latitude 38.03° N
and longitude 120.39° W] and NVAR Array Site 31 sta-
tion (NVAR) [located in Mina, NV: latitude 38.43° N and
longitude 118.16° W].

We consider in the first detection test the waveform
of the event #01 [see Table I]. In particular, we extract
the waveform from the vertical channel of the NNA sta-
tion, which is depicted in Fig. 3(a). In this figure, the
green and magenta color lines represent the detection of
P and S-waves performed automatically by the classical
STA/LTA method, whilst the green and blue color lines
represent the detection of P and S-waves performed au-
tomatically by the ISED method. To apply the ISED
technique, we compute the ISSE, Fig. 3(c), from the time-
frequency power spectrogram depicted in Fig. 3(b). The
travel-time estimated are represented by the green and
blue color lines. As expected, the spectrogram region re-
ferring to the seismic event is more strongly represented,
as depicted by the colors close to green in Fig. 3(b), than
the region from the background noise. Note that, as
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FIG. 2. Flowchart summarizing our proposal to the robust automatic seismic event detection, which dispenses the requirements
to a data pre-processing.

Event Region Date Time UTC Latitude Longitude Depth Magnitude
ID name (yyyy/mm/dd) (hh:mm:ss) (◦) (◦) (km)
01 Coastal region of Peru 2019/03/22 12:50:30 12.64◦ S 76.59◦ W 48.14 4.6 mb

02 Columbia, CA, USA 2019/03/23 07:34:18 37.30◦ N 117.50◦ W 7.0 3.0 ml

03 Mina, NV, USA 2019/06/27 17:00:07 37.23◦ N 117.68◦ W 0.96 1.9 ml

TABLE I. Main information on the earthquakes, used in this study, extracted from the IRIS University Consortium [43] which
consists of earthquake’s date, time, hypocentral location, and magnitude.

expected, the STA/LTA algorithm with or without the
ISSE successfully identified the P- and S-wave arrivals,
since the event #01 is not very strongly contaminated by
noise.

In contrast to the previous seismic signal, the last two
seismic data have a low signal-to-noise ratio, which diffi-
cult the P- and S-waves detection, see panel (a) of Figs. 4
and 5. In these two cases, the classical STA/LTA algo-
rithm was unable to identify the P- and S-waves from
the unfiltered signals recorded in the vertical channel of
CMB and NVAR stations [events #02 and #03]. In fact,
in these two situations, the amplitude of the background
noise is of the same order of magnitude as the seismic
events. On the other hand, our proposal was able to
identify the P- and S-waves, the positions are represented
by the red and blue bars in Figs. 4 and 5. Such suc-
cess is due to the spread out of background noise energy
through the spectrogram and the concentration of the
seismic event energy. The strong energy of the seismic
events are visualized by colors close to red in the spec-
trograms [Figs. 4(b) and 5(b)]. In this regard, ISSE has
remarkable maximum points [Figs. 4(c) and 5(c)], which
helps the STA/LTA algorithm to identify seismic events
even under adverse circumstances.

To validate our results, we process the seismograms
in Figs. 4 and 5 with the Seismic Analysis Code (SAC)
[44, 45] by: (i) removing the mean of the signal; (ii)
applying a symmetric Hanning taper; and (iii) filtering
the signal between 2 and 20 Hz using a Butterworth fil-
ter. The processed waveforms are shown in panel (d)
of Figs. 4 and 5, where the P- and S-waves are clearly
visible. Using the filtered data, both methodologies are
able to automatically identify P- and S-waves. There-
fore, the processed signals validates that our methodol-
ogy does not require a pre-processing to correctly identify
the microseismic events from a low signal-to-noise ratio
recorded data.

IV. FINAL REMARKS

In this work, we have introduced a robust method-
ology for detecting low-magnitude tremor events in
(strong) noisy environments using the instantaneous-
spectral Shannon entropy. Since many physical systems
are characterized by information-bearing microsignals
in low signal-to-noise ratio circumstances, a long (and,
sometimes, a tedious) data pre-processing is required for
starting the physical analyses. In this way, our proposal
mitigates the requirement of a data pre-processing, which
is useful for analyzing large data sets and using automatic
methodologies as those applied in machine learning, for
instance. We call our proposal the Instantaneous Spec-
tral Entropy Detection (ISED) method.

Since the ISED is based on the assumption that the
energy of the background noise is spread out in the
spectrogram, we compute the Shannon entropy for each
time-frequency power-spectrum of the signal in order to
identify the maximum entropy associated with the mi-
croseismic event. Applications of our proposal in real
data sets demonstrated the potentialities of the ISED
to identify information-bearing signals in a very noisy
scenario, which indicates that the ISED is an effective
methodology for automatic detecting microseismic events
recorded under strong background noise. In fact, our
proposal was able to successfully identify the presence of
low-magnitude seismic waves obscured by noise. In this
way, we believe that the ISED is a strong alternative for
analyzing large-scale multichannel datasets.
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ISSE associated with the event #01. In panels (a) and (c), the colored vertical lines represent the identification of the P- and
S-waves for each method.
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